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Abstract

Transparent decision-making is essential for traffic signal control (TSC) systems to earn
public trust. However, traditional reinforcement learning–based TSC methods function as
black boxes, providing little to no insight into their decisions. Although large language mod-
els (LLMs) could provide the needed interpretability through natural language reasoning,
they face challenges such as limited memory and difficulty in deriving optimal policies from
sparse environmental feedback. Existing TSC methods that apply reinforcement fine-tuning
to LLMs face notable training instability and deliver only limited improvements over pre-
trained models. We attribute this instability to the long-horizon nature of TSC: feedback is
sparse and delayed, most control actions yield only marginal changes in congestion metrics,
and the resulting weak reward signals interact poorly with policy-gradient optimization. We
introduce OracleTSC, which addresses these issues through: (1) a reward hurdle mechanism
that filters weak learning signals by subtracting a calibrated threshold from environmen-
tal feedback, and (2) preventing policy degeneracy by maximizing the probability of the
chosen answer, which promotes consistent decision-making across multiple responses. Ex-
periments on the standard LibSignal benchmark demonstrate that our approach enables a
compact model (LLaMA3-8B) to achieve substantial improvements in traffic flow, with a
75% reduction in travel time and 67% decrease in queue lengths over the pretrained baseline
while preserving interpretability through natural language explanations. Furthermore, the
method exhibits strong cross-intersection generalization: a policy trained on one intersection
transfers to a structurally distinct intersection with 17% lower travel time and 39% lower
queue length, all without any additional finetuning for the target topology. These findings
show that uncertainty-aware reward shaping could stabilize reinforcement fine-tuning and
provide a new perspective for improving its effectiveness in TSC tasks.

1 Introduction

Most reinforcement fine-tuning on large language models (LLMs) is limited to short-horizon tasks such as
question answering and summarization Cobbe et al. (2021); Hendrycks et al. (2021); Rein et al. (2024),
where the outcomes of model actions are immediately observable or verifiable, thereby simplifying the credit
assignment problem. In contrast to short-horizon tasks, long-horizon RL problems—such as optimizing traffic
signals over extended periods Zhang et al. (2019); Mei et al. (2024); He et al. (2024)—pose unique challenges.
Although recent pioneering studies have explored applying LLMs to traffic signal control (TSC) Wang
et al. (2024a); Lai et al. (2025b), these methods often rely on external components—such as pretrained
critic models for policy learning and trajectory filtering, or ensembles with conventional TSC algorithms for
assisted decision-making. Such dependencies limit the TSC system’s autonomy and scalability and arise from
practical constraints: LLMs applied to TSC must make decisions whose long-term utility becomes evident
only after many timesteps. However, eliciting such long-horizon behavior using gold-standard Chain-of-
Thought (CoT) Wei et al. (2022b) annotations is impractical, as the state–action space expands exponentially
with simulation length.

Key Observations and Insights. While Proximal Policy Optimization (PPO) is a natural choice for long-
horizon TSC, we find that it struggles to deliver consistent performance gains when applied to LLM-based
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Figure 1: The OracleTSC framework. Traffic states are converted into prompts for the LLM policy, which
generates candidate signal phases from responses (G responses). The Reward Hurdle Mechanism (RHM)
emphasizes high-impact actions, while Uncertainty Regularization penalizes entropy across responses. Both
signals are optimized under the PPO objective, yielding refined control policies for adaptive traffic signal
management.

policies under realistic traffic dynamics, echoing recent observations in LLM-driven TSC Lai et al. (2025b).
Our empirical analysis reveals two recurring failure modes that are particularly pronounced in transportation
systems.

(1) Weak reward signals reinforce suboptimal actions. In TSC, most feasible phase changes lead to only small
improvements—or slight deteriorations—in congestion measures such as average queue length. As a result,
reward signals are weak and often masked by randomness, producing very small policy-gradient updates.
Instead of strengthening the few actions that truly help, PPO tends to spread learning across many actions
with little impact. This problem is made worse by delayed traffic responses and strong temporal dependence:
the effect of a signal change may appear only many steps later, making it difficult to assign credit correctly.
Consequently, learning progresses slowly and may even stall, despite extended training.

(2) Reasoning drift under output uncertainty. We further observe that when the LLM policy is uncertain, its
generated explanations can differ widely across responses for the same traffic state, resulting in inconsistent
phase choices. We refer to this behavior as reasoning drift. It injects randomness directly into the action
selection process and allows errors to accumulate over time. Notably, producing longer or more detailed
reasoning does not resolve this issue. Stable decisions emerge only when the model’s output becomes focused
on a single action. In practice, this appears as high variability across responses during early training and is
reduced only when uncertainty is explicitly penalized.

Together, these observations highlight challenges that are not typically encountered in short-horizon or rule-
based reinforcement learning tasks, but are central in TSC systems where rewards are sparse, delayed, and
weakly informative, and where action consistency across time is critical for stable TSC control.

To address these limitations, we introduce OracleTSC, a traffic signal control framework that uses a reward
hurdle to filter out low-impact updates and a Softmax Discrete Semantic Entropy regularizer to stabilize
reasoning. Together, these components produce more robust and consistent control policies with clearer,
more reliable explanations across varied intersection settings. We evaluate OracleTSC on LibSignal Mei
et al. (2024), the standard benchmark for TSC. Results show that optimizing stationary rewards under a
hurdle rate, combined with minimizing semantic entropy — measured as the presence of multiple distinct
answer modes under stochastic token generation, improves both control performance and the consistency of
the model’s explanations.
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Contributions. To summarize, our contributions are as follows:

• While prior studies have highlighted the challenges of finetuning PPO for long-horizon, non-
stationary TSC tasks, we identify insufficient suppression of suboptimal actions as a key factor
underlying this difficulty. To address this issue, we are the first to introduce a simple penalty that
imposes an explicit performance threshold, penalizing actions falling below a baseline. By suppress-
ing low-quality policy updates, our introduced Reward Hurdle Mechanism (RHM) amplifies the
learning signal from high-impact actions, leading to substantial performance gains.

• We propose a principled approach to quantifying and mitigating uncertainty across responses by
introducing the semantic entropy reward via temperature-scaled softmax as a regularization term in
policy optimization. This uncertainty-aware mechanism curbs drift in long-horizon reasoning and
enhances TSC performance across multiple metrics, including shorter queue lengths and reduced
travel times.

• We show that our OracleTSC not only enhances policy stability but also delivers consistent per-
formance gains across diverse model scales, effectively shortening queue lengths and improving the
consistency of generated explanations. The model also demonstrates strong cross-intersection gen-
eralization, performing well when trained on one intersection and tested on a structurally distinct
new intersection.

2 Related Work

Traffic Signal Control. Early TSC systems relied on rule-based heuristics and fixed-time schedules that
were unable to adapt to nonstationary traffic patterns Board et al. (2015); Martinez et al. (2011) . Classical
algorithms such as Max Pressure (MP) control Varaiya (2013) improved throughput by activating signal
phases proportional to weighted queue differences, yet remained limited to local optimization.

Deep reinforcement learning (DRL) introduced adaptive decision-making based on learning from experience.
IntelliLight Wei et al. (2018) pioneered this direction by using real-world video-derived data to train deep Q-
networks, while PressLight Wei et al. (2019a) extended MP theory into its reward function to guide efficient
signal control. Subsequent work improved generalization and coordination: AdLight Wang et al. (2023) lever-
aged movement-level augmentation to encode fine-grained vehicle interactions, and Wang et al. (2024b); Jiang
et al. (2024) proposed junction-matrix and topology-mapping methods that enabled zero-shot transfer across
heterogeneous intersections. Other advances emphasized robustness and sample efficiency—FuzzyLight Li
et al. (2025a) used fuzzy logic to handle noisy sensors, while DreamerV3 Li et al. (2025b) incorporated
world models to perform latent rollouts, reducing environment simulation costs. DRL-based TSC remains
constrained by limited interpretability.

Recent work has begun exploring the use of LLMs to overcome these limitations through explicit reason-
ing and explainable decision-making. LLMLight Lai et al. (2025a) demonstrated that prompting pretrained
LLMs with structured traffic states enables natural-language explanations of phase selection, while VLMLight
Wang et al. (2025) extended this to multimodal, vision-language reasoning for safety-critical intersections.
Yet these approaches rely primarily on zero-shot prompting or supervised imitation, lacking the closed-loop
optimization needed for long-horizon policy improvement. Weak or noisy reward signals slow convergence,
allowing suboptimal reasoning to overwhelm beneficial actions in long-horizon tasks. Standard PPO stabiliz-
ers—such as clipped ratios, reward normalization, or advantage scaling—mitigate but cannot eliminate this
drift. Models still struggle with unstable gradients, revealing a shared challenge between control variance and
epistemic uncertainty. Bridging these domains, uncertainty quantification and mitigation offers a principled
way to stabilize long-horizon learning by treating confidence not just as a diagnostic measure but as a direct
optimization signal.

Uncertainty Quantification and Reduction. A parallel line of research focuses on improving reason-
ing reliability and trustworthiness in LLMs through uncertainty quantification and entropy minimization.
Unsupervised fine-tuning frameworks such as EMPO Zhang et al. (2025) and RENT Prabhudesai et al.
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(2025) remove the need for labeled reward models by minimizing entropy at the answer and token lev-
els, respectively, enabling confidence-driven optimization. Building on CoT prompting Wei et al. (2022a),
UnCert-CoT Zhu et al. (2025) leverages token-level entropy signals to trigger additional reasoning steps,
while Uncertainty of Thoughts Hu et al. (2024) models the reasoning process as a decision tree in which
the LLM generates self-queries and selects the branch that maximizes entropy reduction in the final answer.
Semantic entropy Kuhn et al. (2023); Farquhar et al. (2024) further refines these principles by exploiting
bidirectional entailment between reasoning paths and answer candidates as a proxy for the true entropy over
semantic classes. This approach links semantic entropy values to the probability of model error, providing
a theoretically grounded measure of confidence. Meanwhile, Kernel Language Entropy (KLE) Nikitin et al.
(2024) generalizes this concept by computing von Neumann entropy over a kernelized Laplacian of a se-
mantic graph, where edge weights represent the degree of entailment between responses. Collectively, these
approaches reveal a strong coupling between accuracy and confidence Ye et al. (2025), motivating entropy
reduction as a core regularization objective in reasoning-focused training.

Across both domains, OracleTSC attempts to unify advances in TSC and uncertainty-aware reasoning.
Its RHM subtracts a fixed threshold from rewards to filter weak updates, reducing gradient variance and
stabilizing long-horizon PPO optimization. Complementing this, the Softmax-with-Temperature Discrete
Semantic Entropy regularizer extends entropy-minimization methods such as EMPO Zhang et al. (2025)
and RENT Prabhudesai et al. (2025) to sequential control by adding an uncertainty-based bonus to an
environmental reward. This coupling of reward filtering and entropy-based feedback grounds semantic con-
sistency in RL, yielding interpretable, confidence-calibrated policies that improve stability and long-horizon
performance beyond prior LLM-based TSC systems.

3 Method

To address TSC with LLMs, we begin with a key observation: although general-purpose LLMs demonstrate
strong natural language reasoning capabilities, they lack the precision and domain awareness required for
TSC decision-making. To bridge this gap, we develop a domain-specific reinforcement fine-tuning framework
that enables LLMs to acquire optimal phase-selection policies through direct interaction with simulated
traffic environments. We follow a variant of PPO Schulman et al. (2017), modified to preserve the LLM’s
instruction-following ability. Central to our approach is the idea that minimizing uncertainty and suppressing
subpar actions enhances both reasoning quality and policy performance.

3.1 Task Formulation

Given a TSC environment, we represent traffic states, reasoning, and control actions as natural language
text and formulate LLM-based TSC at timestep t as a Markov Decision Process (MDP) (S,A, P, r, γ). The
state space S ⊆ [1, V ]L consists of token sequences representing traffic intersection states, where V is the
vocabulary size and L is the maximum sequence length. The action space A ⊆ [1, V ] contains the next
candidate token generated by the policy.

For a maximum response length O, the token-level state evolves as

st
l+1 =

st
0, l = 0,

concat(st
l , at

l) , 1 ≤ l < O,

where l indexes a generated output token. Here, st
0 denotes the initial token sequence formed by concatenating

the system prompt with the tokenized traffic state, and concat(·) denotes token concatenation subject to the
length constraint O. The system prompt specifies the task instructions, output format for phase selection,
and the current as well as the two most recent traffic states and corresponding actions (see Listing 3).

The procedure for extracting the selected phase from the output tokens is outlined in Algorithm 2. This
formulation naturally induces the state transition function P : S×A → S. The reward function r : S×A → R
evaluates the agent’s performance at each token. At timestep t, the agent observes st

l ∈ S, selects at
l ∈ A

4



Under review as submission to TMLR

via policy π : S → P(A), and receives

r(st
l , at

l , l) =

−β KL
(
πθ(at

l | st
l)

∥∥ πREF(at
l | st

l)
)

, 0 ≤ l < O,

R(st
O, at

O), l = O,
(1)

where πREF is a frozen reference model and β controls the KL penalty. Thus, rewards combine (i) intermediate
KL regularization to stabilize generation and (ii) a final task-specific signal R(st

O, at
O) measuring phase

effectiveness (e.g., congestion reduction). The objective is to learn π∗ that maximizes the expected discounted
return Gl = E

[∑O
l=1 γlr(st

l , at
l , l)

]
, with discount γ ∈ [0, 1].

We aim to train a LLM-based agent πθ : S → A that generates the selected traffic phase and a corresponding
CoT explanation. The policy is parameterized by Low-Rank Adapter (LoRA) Hu et al. (2022) weights θ,
which are injected into all linear layers of the backbone LLM (e.g., the pre-trained Qwen3-0.6B Yang et al.
(2025)). Detailed descriptions of the prompt templates and sample inputs are provided in the Appendix.

3.2 Training Objective

We train our LLM-based agent to allocate its token budget toward effective reasoning that minimizes queue
lengths at intersections. Following PPO, we optimize the policy network πθ while jointly training a value
network Vϕ to reduce variance and improve stability.

At each timestep t, the LLM agent generates a trajectory that encapsulates its reasoning process and
the corresponding phase selection for the next TSC control action. For notational simplicity, we omit
the timestep superscript t from st

l+1 in the following discussion. Specifically, given a response trajectory
κ = {(s0, a0), . . . , (sO, aO)} rolled out under πold (the current LoRA-adapted LLM), the clipped surrogate
objective for the policy is

JCLIP(θ) = Êκ∼πold

[
min

(
rl(θ) Âl, clip(rl(θ), 1− ϵ, 1 + ϵ) Âl

)]
, (2)

where
rl(θ) = πθ(al | sl)

πold(al | sl)
, ϵ = 0.2,

and Ê denotes the empirical expectation over minibatches of tokens sampled from trajectories. The clipping
term constrains the policy update to remain within the trust region defined by (1 − ϵ, , 1 + ϵ). When
the likelihood ratio rl(θ) moves outside this interval, the objective is flattened so that excessively large
policy shifts do not receive disproportionately large gradients. This prevents unstable oscillations in the
log-probabilities of selected actions and helps maintain monotonic policy improvement, consistent with the
motivations of Trust Region Policy Optimization Schulman et al. (2015a) and PPO Schulman et al. (2017).
We estimate advantages using Generalized Advantage Estimation (GAE) Schulman et al. (2015b), where
temporal differences are defined as

δl = rl + γVϕ(sl+1)− Vϕ(sl) (3)

with Vϕ(sO+1) = 0, and advantages are computed as

Âl =
O−l∑
k=0

(γλ)kδl+k (4)

with discount γ ∈ [0, 1] and GAE weight λ ∈ [0, 1]. We employ GAE instead of using raw discounted returns
because direct Monte Carlo estimates exhibit high variance in long-horizon TSC trajectories. Conversely,
relying solely on bootstrapped value predictions introduces bias, since the value network Vϕ is trained to
approximate returns under the previous policy rather than the updated one. GAE provides a principled
mechanism to balance these two effects through the parameter λ, interpolating between low-variance, high-
bias temporal-difference estimates (λ = 0) and high-variance, low-bias Monte Carlo estimates (λ = 1). This
bias–variance trade-off is particularly important in LLM-based control, where reasoning trajectories are long

5



Under review as submission to TMLR

and rewards are delayed, making stable advantage estimation essential for effective policy optimization. The
bootstrapped return target is then Ĝl = Âl + Vϕ(sl).

We train the value network by minimizing a clipped regression loss:

Jvalue(ϕ) = 1
2 Ê

[
max

((
Vϕ(sl)− Ĝl

)2
,

(
clip(Vϕ(sl)− Ĝl, −ϵv, ϵv)

)2
)]

, (5)

with a separate clipping hyperparameter ϵv (e.g., ϵv = 0.2).

Overall objective. Our overall objective is to minimize directly

L(θ, ϕ) = −JCLIP(θ) + αJvalue(ϕ), (6)

with α ≥ 0. Although entropy bonuses are standard in PPO for discrete action spaces, extending them
to LLM-based policies is nontrivial because actions correspond to multi-token response trajectories rather
than single categorical choices. Prior work, such as Discrete Semantic Entropy (DSE) Zhang et al. (2025),
adapts entropy regularization to LLM outputs by aggregating uncertainty over semantically distinct answers.
However, these formulations are often too coarse to reliably penalize low-quality reasoning trajectories and
do not explicitly model the smoothness or concentration of the induced answer distribution. As a result,
they provide limited control over response-level instability in long-horizon decision-making. Motivated by
these limitations, we introduce two complementary mechanisms in the following sections that directly target
weak learning signals and reasoning instability in LLM-based TSC.

3.3 Reward Hurdle

PPO for LLMs Luong et al. (2024) is most commonly applied to short-horizon settings (e.g., context-
conditioned question answering). In long-horizon control, however, naive application of PPO is insufficient:
early suboptimal actions can push the system into regimes where later improvements are severely limited.
In TSC, once queues approach or exceed traffic capacity, even principled controllers such as MaxPres-
sure Varaiya (2013) struggle to recover; the robust strategy is to keep queues low proactively. This aligns
with our preliminary experiments, where PPO often rewarded trajectories showing only minor reductions in
queue length (small positive R(st

O, at
O)). The optimization thus failed to produce policies that preemptively

cleared queues, instead yielding idle strategies that led to traffic saturation, where subsequent actions could
no longer alleviate congestion.

Figure 2: Each runner represents a trajectory;
a hurdle represents the improvement threshold
HR. Runners that consistently clear hurdles
(Renv(st

O, at
O) ≥ HR) advance, illustrating why

the hurdle mechanism shifts the policy toward
higher-impact actions. Contacting a hurdle (fail-
ing to exceed HR) incurs a penalty and reduces
progress, analogous to a sub-hurdle sequence re-
ceiving negative reinforcement that propagates
backward through tokens.

To address this, we introduce the Hurdle Rate HR as
a constant that shifts the sequence-level reward, ensuring
that only trajectories surpassing a minimum improvement
threshold receive positive reinforcement, while subopti-
mal ones are penalized relative to baseline. This encour-
ages the LLM to explore more aggressive, high-impact
actions. Specifically, the original environmental reward
used in PPO at timestep t is defined as

Renv(st
O, at

O) = queuet−1 − queuet. (7)

We use the queue difference between timesteps t and t−1
to mitigate non-stationarity in the reward signal. With-
out this adjustment, increasing inflows may introduce
spurious penalties that incorrectly discourage otherwise
reasonable actions. We incorporate a hurdle rate HR and
yield the reward defined as:

R(st
O, at

O) = Renv(st
O, at

O)−HR. (8)

Minimizing non-stationarity alone does not substantially
reduce congestion. Once stationarity is ameliorated, the model predominantly encounters small queue-
difference rewards. As shown in Figure 3(a) for the Qwen3–0.6B model on the CityFlow1×1 benchmark,
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Figure 3: Empirical distribution of queue length differences with Hurdle HR = 2.5 from a baseline episode
on CityFlow1x1 using pretrained Qwen3-0.6B and a testing episode on CityFlow1x1 after finetuning Qwen3-
0.6B for one episode using the Renv(st

O, at
O)−HR configuration. Since decisions are taken every 10 timesteps,

360 decisions are taken over T = 3600 timesteps in an episode.

nearly 70% of actions reduce queues by fewer than 2.5 vehicles—far too weak to produce meaningful policy
updates. The remaining 30% of actions exceed this 2.5-vehicle threshold, but they occur too infrequently to
drive reliable long-horizon improvement. To amplify the learning signal associated with these higher-impact
actions, we use 2.5 vehicles as an initial reference point and introduce a constant HR: actions that fail to
surpass this threshold within each control interval are down-weighted.

As shown in Figure 3(b), subtracting this hurdle substantially sharpens the reward distribution. The pro-
portion of actions exceeding the 2.5-vehicle threshold increases from 30% to over 40% after a single training
episode—indicating a clear shift toward higher-impact interventions. In practice, we determine HR through
a combination of empirical tuning and reward-distribution analysis, using the 70% statistic only as an initial
guide rather than a fixed rule. This procedure provides a principled cutoff for distinguishing impactful from
low-impact actions while adapting across environment–model pairs.

Connection to Variance Reduction Techniques. Following Greensmith et al. (2004), an effective
baseline for policy gradient methods should (i) depend only on the state rather than the sampled actions,
and (ii) be selected to minimize the variance of the policy gradient estimator for JCLIP:

Var[∇θJCLIP(θ)] ≈ Eτ∼πθ

[ O∑
l=1
∇θ log πθ(aτ

l |sτ
l )

( O∑
k=l

r(sτ
k, aτ

k)− b(sτ
k)

)]
(9)

A common choice in PPO is to use a state-dependent learned value function Vϕ(s) as the baseline, i.e., an
estimator of the expected future return. However, as noted in Greensmith et al. (2004), other forms of
baselines can also effectively reduce gradient variance. In particular, Greensmith et al. (2004) derives an
optimal constant baseline—a single scalar value (per policy) that minimizes the variance of the policy-gradient
estimator. Their result, presented in Theorem 13 for the GPOMDP gradient ∇πθ/πθ, can be rewritten in
the equivalent ∇ log πθ form via a standard transformation:

b(sτ
k) =

Eτ∼πθ,τ0=sτ
k

[ ∑O
l=1 ||∇θ log πθ(aτ

l |sτ
l )||22

( ∑O
k=l r(sτ

k, aτ
k

)]
Eτ∼πθ,τ0=sτ

k

[ ∑O
l=1 ||∇θ log πθ(aτ

l |sτ
l )||22

] (10)

Although the expression includes expectations over trajectories, the baseline itself is a single constant value
for a fixed policy, not a function of s. Greensmith et al. (2004) refer to it as a “constant baseline” be-
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Figure 4: Visualization of the eight supported signal phases at a selected intersection in the CityFlow 1×1
benchmark.

cause, despite being defined through trajectory-level expectations, it does not vary across states. While
theoretically appealing, computing this optimal constant baseline is computationally infeasible in practice.
To overcome this limitation, we blend the benefits of both state-dependent and constant forms. Early in
training—when Vϕ is still inaccurate—we stabilize updates by subtracting a fixed Hurdle Rate HR, which
functions as a constant baseline. As training progresses and Vϕ improves, the value function naturally
begins to dominate the baseline term in the advantage estimate, providing a state-dependent adjustment
that better captures long-horizon structure. Thus the transition between the constant and state-dependent
baselines arises automatically: the Hurdle Rate provides stability when the value function is unreliable, and
Vϕ increasingly guides the updates once it becomes accurate. Conceptually, the Hurdle Rate plays a role
similar to that of the optimal constant baseline, with one key distinction: instead of being subtracted from
every reward in the trajectory, it is applied only to the final environmental reward of each trajectory κ.

3.4 Semantic Entropy Reward via Temperature-Scaled Softmax

A major challenge in long-horizon traffic control is that standard entropy-based regularizers measure un-
certainty at the token level rather than at the level of the actual decision. Token uncertainty often reflects
linguistic variation rather than uncertainty about the traffic-phase choice. As a result, token entropy poorly
estimates semantic confidence and can destabilize training, especially when the same phase is expressed
with different wording across responses. To address this limitation, we measure uncertainty at the level of
the semantic action—the traffic phase predicted by the model—rather than at the level of the text token.
Our approach relies on a simple assumption: if the model predicts the same traffic phase across multiple
responses, it is semantically confident; if it alternates between phases, it is not.

Formally, given two output responses, et
1 = s0 ∪ {a0, . . . , aO} and et

2 = s0 ∪ {a′
0, . . . , a′

O}, featuring the same
tokenized traffic intersection state s0, we can cluster both responses based on the phase we extract from
the answer e. This step is essential because the same phase can be expressed in many linguistic forms;
without grouping responses by their underlying phase, we cannot tell whether the model is semantically
consistent or simply paraphrasing. Clustering converts free-form responses into a discrete distribution over
phase choices, allowing us to compute a meaningful measure of semantic entropy. A list of supported phases
for the CityFlow 1x1 intersection are provided in Figure 4. Finally, not all uncertainty should be treated
equally. A distribution such as (0.55, 0.45) may be acceptable in some contexts but signal high uncertainty in
others. To control sensitivity to disagreement across responses, we apply temperature-scaled normalization
to the phase counts, producing a tunable, decision-level entropy measure that can be directly incorporated
into the reward.

In our study, we sample eight output token sequences et
1, et

2, . . . , et
8 and extract a single phase from each.

These extracted phases are treated as integers from 1 to NP (inclusive) to serve as discrete cluster labels.
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Figure 5: Uncertainty Regularization. Responses are first separated by extracted phase to estimate the
probability of the LLM responding with a particular action. We quantify the spread of their distributions
using the Softmax with Temperature Discrete Semantic Entropy. We apply a reward term Ranswer

E to
encourage confident policies during optimization.

We estimate
[
p1, . . . , pj , . . . , pNP

]
using the empirical probability of each phase when extracted from each of

the eight output responses given the same state:

countanswer
j =

G=8∑
g=1

I(phaseg == j)

panswer
j =

exp
(
countanswer

j /τ
)∑NP

j′=1 exp
(
countanswer

j′ /τ
) (11)

where I denotes the indicator function that is 1 when we extract the j-th phase from the g-th output
response and 0 otherwise, and τ is a temperature hyperparameter that controls how much we prioritize
marginal changes in the empirical count of an extracted phase.

Given phase probabilities for the DSE over extracted phases to proxy the LLM’s uncertainty over which
phase to report. Since we use the phase extracted from the first response as the chosen TSC action, we mark
the chosen phase as jc. We turn these probabilities into a reward as follows:

Ranswer
E (et

1, . . . , et
G, Renv, HR) =

{
panswer

jc
Renv > HR

0 otherwise
(12)

The answer entropy reward uses the probability of the selected phase panswer
jc

only when the environmental
reward Renv (measured as the reduction in queue length) exceeds the hurdle threshold HR. Otherwise, the
reward is set to zero. This mechanism prevents reinforcing poorly performing actions that are generated
with high confidence, effectively decoupling prediction certainty from control quality.

Discussion and Relation to DSE and Self-Questioning. The classic DSE Zhang et al. (2025) serves
as a natural baseline, computing entropy directly from empirical action counts, which is defined as

Ranswer,DSE
E = countanswerj∑NP

j′=1 countanswer
j′

(13)

While effective in unsupervised question-answering settings, DSE relies on manually tuned entropy clipping
and is sensitive to dataset-specific entropy scales. We generalize this idea by applying a temperature-scaled
Softmax to the phase frequencies, yielding a more flexible confidence measure. The temperature τ creates
a continuum between two behaviors. At moderate temperatures, the reward mirrors DSE, weighting phases
by frequency. As τ → 0, the Softmax approaches an arg max, producing a self-questioning–style Chen
et al. (2025) reward that activates only when the chosen phase matches the majority vote. As τ → ∞,
the distribution becomes uniform and insensitive to agreement. This unified formulation connects semantic-
entropy minimization Zhang et al. (2025) with self-consistency maximization Chen et al. (2025), providing a
single, tunable mechanism that encourages both confidence and internal consensus—two properties essential
for stabilizing long-horizon control in traffic signal optimization.

After incorporating the two mechanisms, our final total reward is then formulated as

R(st
O, at

O) = Renv(st
O, at

O)−HR + wERanswer
E , (14)

where wE is a hyperparameter that balances the impact of uncertainty.
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(a) (b)

Figure 6: Visualization of the road network at a selected intersection in the (a) CityFlow 1×1 and (b)
Cologne 1 Benchmark.

4 Experiments

We empirically investigate three key questions: (Q1) Does minimizing Temperature-Scaled Softmax Discrete
Semantic Entropy improve traffic-signal control performance compared to training without an uncertainty
regularizer? (Q2) Does introducing a reward hurdle on the environmental reward improve performance by
suppressing low-impact trajectories? (Q3) Does our approach improve the consistency and informativeness
of the LLM’s CoT rationales (e.g., cross-response agreement and alignment between reasoning and actions)?

4.1 Experimental Setup

4.1.1 Testbeds

We conduct experiments using LibSignal Mei et al. (2024), a unified benchmark for traffic-signal reinforce-
ment learning that includes widely used algorithms such as IDQN Vincent et al. (2023), CoLight Wei et al.
(2019b), PressLight Wei et al. (2019a), and MaxPressure Varaiya (2013). LibSignal provides an extensible
Gym-style observation–action interface, allowing us to integrate natural-language policies by adding a cus-
tom answer-extraction mechanism (Algorithm 2). We evaluate our method on two contrasting intersections:
CityFlow1 ×1: a compact, four-approach intersection in Hangzhou, China, characterized by symmetric
inflow patterns and an eight-phase signal plan controlling through and left-turn movements (Figure 6);
Cologne1: a more irregular and structurally complex intersection in Cologne, Germany, featuring mixed
through, right-turn, left-turn, and U-turn movements across four approaches (Figure 6). LibSignal incorpo-
rates real-world traffic data from each corresponding region—Hangzhou for CityFlow 1×1 and Cologne for
Cologne1—generating realistic inflow patterns and driver behaviors and providing a challenging testbed for
long-horizon control.

4.1.2 Evaluation Metrics

We evaluate performance using four standard traffic-signal metrics following LibSignal Mei et al. (2024).
Travel time is the average duration required for a vehicle to complete its assigned route. Queue length is
computed as the average number of vehicles whose speed falls below 0.1 m/s across all lanes and timesteps.
Delay follows the U.S. Federal Highway Administration (FHWA) definition as the additional travel time
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Table 1: Performance of TSC agents in CityFlow and Cologne.

Method CityFlow 1×1 Cologne1
Travel Time↓ Queue↓ Delay↓ Throughput↑ Travel Time↓ Queue↓ Delay↓ Throughput↑

Fixed-control Transportation Methods
FixedTime (t_fixed=10) 923.67 114.42 4.83 1006 206.46 51.59 4.04 1847
FixedTime (t_fixed=30) 552.72 100.34 5.19 1455 156.96 46.23 4.22 1910

MaxPressure 303.81 100.94 6.77 1717 58.34 7.69 2.77 2002
Non-explainable RL Methods

SOTL 212.22 69.11 5.42 1861 1358.62 104.61 5.94 515
IDQN 116.64 28.37 0.61 1959 50.58 5.37 0.31 2000
MAPG 490.71 118.61 0.74 1514 46.73 5.06 0.30 2000
IPPO 308.87 95.38 0.76 1736 55.74 7.35 0.33 1994

PressLight 105.68 23.20 0.58 1965 51.79 4.82 0.29 2001
FRAP 104.28 23.29 0.62 1979 66.67 12.09 0.31 1995

Explainable LLM Methods
Qwen3-0.6B 506.1 104.06 0.71 1485 531.8 40.61 0.57 1548
Qwen3-8B 468.95 98.91 0.72 1566 119.4 34.37 0.43 1919

LLaMA3-8B 594.9 138.63 0.81 1359 74 13.52 0.36 1995
Hurdle and Softmax Probability (Qwen3-0.6B) 204.1 (–60%) 70.4 (–32%) 0.73 (+3%) 1897 (+28%) 80.7 (–85%) 20.89 (–49%) 0.42 (–26%) 1990 (+29%)
Hurdle and Softmax Probability (Qwen3-8B) 187.9 (–60%) 66.26 (–33%) 0.76 (+6%) 1902 (+21%) 84.3 (–29%) 21.25 (–38%) 0.42 (–2%) 1987 (+4%)

Hurdle and Softmax Probability (LLaMA3-8B) 146.9 (–75%) 45.50 (–67%) 0.67 (–17%) 1946 (+43%) 52.9 (–29%) 6.73 (–50%) 0.32 (–11%) 2001 (+<1%)

experienced relative to free-flow conditions USF; that is, the average difference between actual travel time
and its free-flow counterpart. Throughput denotes the total number of vehicles that successfully complete
their routes during the simulation.

4.1.3 Implementation Details

We fine-tune LoRA adapters Hu et al. (2022) with rank 16 on top of pretrained LLM backbones rather than
updating all model parameters. All experiments are conducted on a single NVIDIA RTX A6000 GPU. Each
traffic simulation runs for 3, 600 timesteps, and the policy selects an action every 10 steps. When a phase
change is issued, a fixed 5-second yellow interval is inserted to ensure safe transitions. Policy and value
networks are optimized using the objective in Equation 6. Rewards are computed according to Equation 14
with α = 1 and discount factor γ = 0.999. We perform parameter updates every 360 timesteps using a
replay buffer containing the most recent 400 timesteps of state–action–reward tuples, and we save LoRA and
value-head checkpoints every 720 timesteps. The selected phase is extracted directly from the LLM’s output
using Algorithm 2, without additional model calls.

4.1.4 TSC Baselines

We evaluate three backbone LLMs—Qwen3-0.6B, Qwen3-8B, and LLaMA3-8B-Instruct—both before and
after reinforcement-learning fine-tuning. All models use identical prompts, reward functions, and training
protocols. During inference, we follow the decoding hyperparameters recommended by each model’s authors
(e.g., temperature, top-k, top-p), ensuring that downstream performance differences arise from policy opti-
mization rather than decoding artifacts. For context, we compare our RL-finetuned models against widely
used non-LLM traffic-signal controllers, including IDQN, PressLight, FRAP, and other fixed-time or rule-
based baselines. Unlike these non-explainable controllers, our fine-tuned LLMs produce both high-quality
control actions and interpretable chain-of-thought rationales.

4.2 Main Results

We train policies on two different road network topologies: CityFlow1×1 and Cologne1. LibSignal provides
real-world traffic data from an intersection in Hangzhou with NP = 8 phases, and from an intersection in
Cologne with NP = 4. Our method trains policies using the objective in Equation 6 with α = 1, where each
reward rt incorporates both the environmental reward and the hurdle rate HR. For computing Temperature-
scaled Softmax DSE, we set G = 8 as a balance between computational cost and estimation quality: larger
values of G reduce the variance of the estimated output phase distribution but increase wall-clock time and
memory usage. To avoid undersampling control modes, we follow the heuristic G ≥ NP , where NP is the
number of admissible traffic phases (NP =8 for CityFlow1×1). We apply the same setting to Cologne1 for
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Table 2: Ablation study over reward design. Ranswer
E is given by Softmax DSE with τ = 0. Base LLM is

LLaMA3-8B. Evaluated on CityFlow1×1.

Total Reward R Travel Time Queue Length Delay Throughput
Baseline 594.9 138.63 0.81 1359

Renv(st
O, at

O) 391.1 117 0.77 1611
Renv(st

O, at
O)−HR(= 2) 174.8 56.9 0.7 1901

Renv(st
O, at

O) + wuncertaintyRanswer
E 204 71.1 0.68 1823

Renv(st
O, at

O)−HR(= 3) + wuncertaintyRanswer
E 146.9 45.5 0.67 1946

consistency. Each traffic simulation episode lasts 3, 600 timesteps, and the agent selects an action every
10 timesteps. When the LLM proposes a phase change, a yellow-light period of five seconds is inserted to
transition safely from the current phase. We report agent performance using the best checkpoint, selected
based on the lowest average queue length during a held-out test episode.

Table 1 shows that OracleTSC consistently improves all major metrics across models and intersections. On
CityFlow1×1, applying both the Reward Hurdle and Temperature-Scaled Softmax DSE yields a 60 − 75%
reduction in travel time, a 32 − 67% reduction in queue length, and substantial gains in throughput. On
Cologne1, which is structurally different and has fewer phases, the method again reduces queue length by
29 − −50% and improves travel time despite the more constrained action space. Importantly, the gains
persist across model scales: even the 0.6B-parameter Qwen model benefits significantly, demonstrating that
the proposed mechanisms operate independently of model size.

4.3 Ablation Studies

We utilize ablation studies to study the impact of our design choices on the effectiveness of our method. We
conduct our ablation studies on the CityFlow1×1 configuration with LLaMA3-8B as the base LLM.

4.3.1 Reward Shaping

Table 2 summarizes an ablation over the key reward components in OracleTSC. We compare: (i) the pre-
trained LLM without RL finetuning, (ii) finetuning using only the environmental reward, (iii) adding a
constant hurdle rate, (iv) applying Temperature-scaled Softmax DSE as an uncertainty regularizer, and (v)
their combination.

Using the environmental reward alone yields only limited performance gains. Although average travel time
decreases from 594.9 s to 391.1 s, congestion-related metrics remain: queue length is reduced only marginally
(138.63 → 117), and delay exhibits negligible change (0.81 → 0.77). These results indicate that, in long-
horizon TSC, the raw environmental reward is both weak and noisy, and therefore insufficient to reliably
guide policy optimization.

Introducing a hurdle rate fundamentally alters the optimization landscape. By subtracting HR, low-impact
actions are explicitly penalized, preventing the policy from reinforcing transitions that induce only marginal
improvements. As a result, learning is redirected toward decisions that produce meaningful congestion
reduction. This leads to substantial gains across all metrics, most notably a reduction in queue length from
138.63 to 56.9, confirming that reward shaping is critical for mitigating PPO’s tendency to overfit to weak
positive signals in long-horizon settings.

Uncertainty regularization alone, implemented via temperature-scaled Softmax DSE, also improves perfor-
mance relative to the baseline. Queue length decreases from 138.63 to 71.1, suggesting that a significant
source of PPO instability with LLM-based policies stems from reasoning drift and inconsistent action gener-
ation. Penalizing high-entropy response distributions encourages more stable and coherent phase selection,
even in the absence of explicit reward shaping.

The strongest performance is achieved when the hurdle rate and uncertainty regularization are combined.
This joint objective yields consistent improvements across all metrics: travel time is reduced from 594.9 s
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Figure 7: Effect of entropy regularization and temperature scaling across training episodes under the
Renv(st

O, at
O) + wuncertaintyRanswer

E configuration where wuncertainty = 1 and HR = 0. Each subplot reports
one evaluation metric (Travel Time, Queue Length, Delay, and Throughput) as a function of the hurdle rate
for LLaMA3-8B on the CityFlow1×1 intersection. The results indicate that entropy regularization alone is
effective, while the sharpest probability distribution over phases (τ = 0) yields the strongest overall perfor-
mance in terms of Queue Length.

to 146.9 s, and queue length drops from 138.63 to 45.5 vehicles. These results demonstrate that the two
mechanisms are complementary: the hurdle rate strengthens informative learning signals, while uncertainty
regularization stabilizes the LLM’s internal reasoning process and reduces gradient variance.

Overall, these results indicate that entropy regularization alone delivers consistent performance improve-
ments, and that Temperature-scaled Softmax DSE provides a stronger and more stable training signal than
naïve DSE. More broadly, the findings underscore the importance of managing epistemic uncertainty in
LLM-based control policies—particularly in long-horizon domains where PPO is sensitive to variance in
both generated reasoning and trajectory-level rewards.

4.3.2 Comparison to naive Discrete Semantic Entropy

We further analyze the role of entropy regularization by comparing the proposed temperature-scaled Soft-
max DSE against the previously introduced naive DSE. All methods are evaluated under a unified reward
formulation R = Renv+wuncertaintyRanswer

E , with wuncertainty = 1. Experiments are conducted using LLaMA3-
8B-Instruct on the CityFlow-1× 1 benchmark, and results are summarized in Figure 7.

Across all episodes, entropy-based regularization consistently outperforms the pretrained baseline, demon-
strating faster learning and improved traffic efficiency. In Episode 1, naive DSE reduces average travel time
from 594.9 s to 540.4 s, while the temperature-scaled Softmax DSE with τ = 2 achieves a substantially larger
improvement, lowering travel time to 409.4 s and increasing throughput from 1,359 to 1,596 vehicles. By
Episode 2, both uncertainty-aware methods continue to accelerate convergence: naive DSE reaches 356.5 s
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Figure 8: Effect of the Hurdle rate on model performance for the Renv(st
O, at

O) − HR + wuncertaintyRanswer
E

configuration where wuncertainty = 1. Each subplot reports one evaluation metric (Travel Time, Queue
Length, Delay, and Throughput) as a function of the hurdle rate for Qwen3-0.6B, Qwen3-8B, and LLaMA3-
8B on the CityFlow1×1 intersection. The results indicate that moderate hurdle rates consistently balance
exploration and reward exploitation, leading to shorter travel times and reduced congestion compared with
both low and high thresholds, though optimal performance requires careful tuning.

travel time with throughput 1,673, whereas the τ = 2 variant further improves to 343.8 s and 1,741 vehicles,
respectively. In Episode 3, uncertainty minimization yields sustained gains, with naive DSE reducing travel
time to 248.0 s and achieving a peak throughput of 1,771, substantially outperforming the baseline across
all reported metrics. Notably, the sharpest response distribution (τ = 0) attains the lowest queue length in
Episode 3 (91.29 vehicles), despite slightly underperforming on travel time and throughput. This behavior
suggests that overly aggressive entropy suppression may trade global efficiency for local consistency by lim-
iting beneficial exploration. Importantly, this limitation is mitigated when the hurdle rate is incorporated,
which filters low-impact trajectories and stabilizes optimization even under low-entropy regimes.

Overall, these results confirm that entropy regularization is a key driver of performance improvement, and
that temperature-scaled Softmax DSE provides a more effective and stable learning signal than naive DSE.
This highlights the critical role of uncertainty control in LLM-based policies, particularly for long-horizon
decision-making problems where PPO is highly sensitive to output variance and compounded reward noise.

4.3.3 Hurdle Rate

We next investigate the influence of the hurdle rate HR under the reward formulation R = Renv − HR +
wuncertaintyRanswer

E , with wuncertainty = 1. Figure 8 summarizes results across a wide range of hurdle values
for three backbone models: Qwen3-0.6B, Qwen3-8B, and LLaMA3-8B.
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Across all architectures, a consistent trend emerges: intermediate hurdle rates yield the strongest perfor-
mance. This behavior aligns with variance-reduction theory in policy gradients Greensmith et al. (2004),
where the variance of the gradient estimator increases with the squared deviation between the optimal con-
stant baseline b∗ and a mis-specified baseline b. In our setting, the hurdle rate plays a role analogous to a
baseline, shaping the effective learning signal.

For Qwen3-0.6B, performance peaks around HR ≈ 3.7, reducing average travel time from 497.8 s to 204.1 s
and queue length from 96.2 to 70.4 relative to the lowest tested hurdle (HR = 3.5), while increasing through-
put from 1,511 to 1,897. Qwen3-8B achieves optimal performance at slightly lower thresholds (HR ≈ 2.7),
reaching a travel time of 385.4 s and throughput of 1,675. LLaMA3-8B exhibits similar behavior, attaining
its best results at HR = 3.0, with a travel time of 293.1 s in a representative training episode.

These results reveal two complementary failure modes associated with miscalibrated hurdle rates. When HR

is too low, weak or marginal trajectories are insufficiently penalized, allowing noisy rewards to dominate PPO
updates and slow convergence. In contrast, overly aggressive hurdle rates suppress informative transitions,
impairing coordination and leading to increased travel times and reduced throughput across all models.

Model scale further modulates the optimal hurdle threshold. Smaller models, such as Qwen3-0.6B, benefit
from slightly higher hurdle rates, whereas larger models attain peak performance at more moderate values.
We attribute this divergence to differences in intrinsic reasoning stability: larger models typically produce
more coherent and internally consistent action sequences prior to reinforcement fine-tuning, and are therefore
more susceptible to performance degradation when informative trajectories are excessively pruned.

Taken together, these findings demonstrate that the hurdle rate is not a fixed hyperparameter, but rather a
model- and topology-dependent control mechanism that actively shapes the policy optimization landscape.
Proper calibration is crucial for balancing exploratory learning against the suppression of low-value updates,
thereby enabling stable and efficient optimization in long-horizon, sparse-reward traffic signal control.

4.4 Comparison to Other RL Controllers

Table 1 compares our LLM-based traffic signal controllers against fixed-time baselines and non-LLM rein-
forcement learning methods across two intersection settings. On CityFlow-1×1, fixed-time controllers exhibit
poor performance, characterized by long average travel times (552 − 924 s) and severe queueing. Classical
deep-RL approaches, including IDQN, PressLight, and FRAP, substantially outperform fixed-time control,
achieving travel times of approximately 100−120 s and maintaining short queues of roughly 23−−28 vehicles.
In contrast, pretrained LLM backbones are initially uncompetitive: for example, LLaMA3-8B yields an aver-
age travel time of 594.9 s with a queue length of 138.63 vehicles, demonstrating that naïve prompting alone is
insufficient for effective TSC. After applying the proposed reward-hurdle mechanism and entropy-regularized
fine-tuning, however, the same backbone improves markedly, reaching 146.9 s average travel time, a queue
length of 45.5 vehicles, and a throughput of 1, 946 vehicles. This closes most of the performance gap relative
to specialized deep-RL controllers, while uniquely preserving interpretable natural-language rationales for
each control decision.

On the more irregular Cologne1 intersection, the gap to strong RL baselines narrows further. PressLight and
MaxPressure obtain travel times of 51.79 s and 58.34 s, respectively, with near-maximal throughput (≈ 2,000
vehicles). Our fine-tuned LLaMA3-8B controller achieves performance on par with this regime, attaining
an average travel time of 52.9 s, a queue length of 6.73 vehicles, and a throughput of 2,001 vehicles, while
substantially outperforming its pretrained counterpart (74 s, 13.52 vehicles, and 1,995 vehicles, respectively).
Smaller backbones exhibit similar trends: for example, Qwen3-0.6B improves from 531.8 s to 80.7 s travel
time and from 1,548 to 1,990 vehicles in throughput on Cologne1. These results show that (i) untrained
LLM policies fall far short of established RL controllers, but (ii) after RL fine-tuning with our reward hurdle
and uncertainty regularizer, OracleTSC attains performance comparable to strong non-LLM RL baselines
on realistic networks, while simultaneously providing interpretable chain-of-thought explanations.

Figure 9 illustrates how these gains emerge over time as the agent transitions from unstable exploration to
stable, reward-aligned control.

15



Under review as submission to TMLR

Figure 9: Training dynamics of the LLM-based traffic signal control agent over two full episodes. Each
subplot reports instantaneous metrics for the finetuned LLM (in blue) and a 30-step moving average for (a)
delay, (b) queue length, (c) travel time, and (d) throughput change. We also include the baseline LLM’s
dynamics (in red) The shaded region highlights the onset of a large improvement in traffic efficiency, marked
by reduced delay, shorter queues, and larger and more consistent throughput gains. Together, these curves
illustrate how the agent transitions from unstable exploratory behavior to stable, reward-aligned control.

4.5 Generalization across Intersections

We evaluate the cross-topology generalization capabilities of OracleTSC by training policies on one intersec-
tion and deploying them on another without any additional finetuning. Table 3 reports zero-shot transfer
results for LLaMA3-8B under the Renv −HR + wuncertaintyRanswer

E configuration.
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Table 3: Generalization performance across intersections for LLaMA3-8B under the Environmental Reward -
HR + Softmax DSE configuration. Each row reports evaluation metrics when a policy trained on one traffic
network is directly applied to another without additional finetuning. Models trained on Cologne1 generalize
well to CityFlow1×1, improving travel time from 594.9 s to 517.5 s and throughput from 1359 to 1427.
Conversely, transferring from CityFlow1×1 to Cologne1 yields further gains in efficiency (travel time 61.3 s
vs. 74 s and queue length 8.27 vs. 13.52), suggesting that the learned representations capture transferable
signal-phase coordination patterns across distinct network topologies.

Testing Intersection Variant Travel Time Queue Length Delay Throughput

CityFlow1×1 Baseline 594.9 138.63 0.81 1359
Trained on Cologne1 517.5 137.25 0.8 1427

Cologne1 Baseline 74 13.52 0.36 1995
Trained on CityFlow1×1 61.3 8.27 0.34 2002

A policy trained on Cologne1 transfers effectively to CityFlow1×1, improving travel time from 594.9 s to
517.5 s and increasing throughput from 1, 359 to 1, 427. This demonstrates that representations learned on a
structurally heterogeneous intersection can generalize to a simpler, more symmetric geometry with measur-
able gains in efficiency. The reverse transfer (CityFlow1×1→ Cologne1) yields even stronger improvements:
travel time decreases from 74 s to 61.3 s, queue length is reduced by nearly 40% (13.52 → 8.27 vehicles),
and throughput increases from 1, 995 to 2, 002—the highest throughput achieved among all RL and non-RL
controllers (explainable or not)

These bidirectional improvements suggest that combining hurdle-based shaping with uncertainty minimiza-
tion leads the policy to acquire transferable phase-selection behaviors rather than memorizing intersection-
specific patterns. The ability to deploy a model zero-shot across geometrically distinct networks indicates
that OracleTSC learns stable decision-making heuristics that generalize beyond the training topology. These
findings provide early evidence for the feasibility of scalable, reusable LLM-based traffic-signal controllers
that require minimal per-intersection adaptation.

4.6 Qualitative Results

We qualitatively analyze how incorporating environmental rewards, a hurdle rate, and Softmax DSE regular-
ization refines the model’s internal reasoning and decision-making trajectory. Before fine-tuning (Listing 1),
the model’s reasoning trace exhibits self-contradictions, vacillation, and redundant phase re-evaluation. It
frequently reverses intermediate conclusions (e.g., “Wait...”), misidentifies phase mnemonics (e.g., ETL,
WTL should be ETEL and WTWL), and repeatedly re-analyzes the same input block (Phase:ETWT),
inefficiently consuming output tokens and demonstrating weak adherence to the prompt. Collectively, these
behaviors reflect diffuse credit assignment and elevated epistemic uncertainty in the model’s chain-of-thought.

After fine-tuning (Listing 2), the CoT becomes markedly structured, grounded, and concise. The model
explicitly enumerates reasoning steps (e.g., “Step 1: Identify... Step 2: The optimal traffic signal...”), anchors
each inference in observable quantities (“(segment 3) is 4, and there are no early queued vehicles”), and
concludes decisively with a single aligned action, <signal>ETEL</signal>. The absence of reversals or
reanalysis suggests sharper credit propagation under the hurdle objective and reduced output entropy from
the Softmax DSE term.

Overall, the qualitative shift from hesitant exploration to coherent reasoning supports our quantitative find-
ings: joint optimization of environmental reward and regularized uncertainty produces more deterministic,
task-aligned reasoning trajectories and more efficient token utilization.

5 Discussion and Conclusion

This paper presents OracleTSC, a reinforcement learning framework for LLM-based TSC that explic-
itly targets the training instabilities inherent to long-horizon decision-making. The framework integrates
two complementary mechanisms: (1) a reward hurdle that suppresses low-impact actions and sharpens
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<think>
Okay, let’s see. The current phase is ETEL. The intersection’s state is given for each phase,

and I need to figure out which signal is the most effective. </think>

First, I should understand what each signal does. The signal phases are ETL, NTST, ELWL,
NLSL, ETEL, WTL, NTNL, STSL. Each phase allows certain lanes through and left-turn
lanes. The goal is to choose the phase that best reduces delays, which would depend on
the early queued vehicles and the number of approaching vehicles in different segments.

Looking at the data for each phase:

Phase ETL: Allowed lanes are Eastern through and left-turn. Early queued Eastern through: 3,
Western through: 38. Segment 1: 1, segment 2: 3, segment 3: 13. Wait, the numbers might

be different. Wait, the user provided the data for each phase. Let me check again.
Wait, the user’s input for each phase’s state is:

Phase:ETWT
Allowed lanes: Eastern and western through lanes.
Early queued Eastern through: 3.0 Western through: 38.0
segment_1 Eastern through: 1 Western through: 1
segment_2 Eastern through: 3 Western through: 3
segment_3 Eastern through: 13 Western through: 51

Wait, that seems conflicting. The initial state had Eastern through: 9, Western through: 38.
Then in the second phase, ETL, it‘s 3 and 38. But the user‘s current input shows that
after ETL, the next phase is ETL again. Wait, no, the user‘s message is:

The current phase is ETEL. The state of the intersection:

Phase:ETWT
Allowed lanes: Eastern and western through lanes.
Early queued Eastern through: 3.0 Western through: 38.0
segment_1 Eastern through: 1 Western through: 1
segment_2 Eastern through: 3 Western through: 3
segment_3 Eastern through: 13 Western through: 51

Wait, but in the previous interaction, the user had ETL, and then after that, the next phase
is ETL again. So maybe the current phase is ETL, and the state for ETL is 3 and 38.

So for phase ETL, allowed lanes are through and left-turn. The early queued for through
lanes is 3, and for left-turn is 0. The segments are 1, 3, 13 for through, and 0, 0, 0
for left-turn. Wait, but the initial data had segment_1: 1, segment_2: 3, segment_3: 13.
But in the next phase, maybe the segments change? Wait, no, the user‘s input here is for
the current phase, so maybe the segments are as given.

So for phase ETL, the number of early queued vehicles in allowed lanes is 3 (through) and 0
(left). The segments for through are 1, 3, 13. For left, they are 0.

Now, looking at other phases. For example, phase NTST: allowed lanes are northern and
southern through. Early queued Northern through: 38, Southern through: 26. Segments for
through: 0, 0, 38. So here, there‘s a high early queued in northern through.

Phase WTL: allowed lanes are western through and left-turn. Early queued: 38, 5. Segments:
0, 0, 38...

Listing 1: Illustrative reasoning trace before fine-tuning. The model demonstrates self-contradictions and
hesitation during phase selection (highlighted in red), with several phases misidentified through incorrect
mnemonics (highlighted in blue), reflecting weak adherence to prompt instructions. In addition, certain
phases (highlighted in orange) are repeatedly re-analyzed, inefficiently consuming the LLM’s output token
budget.
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Step 1: Identify the optimal traffic signal by analyzing the current phase and its state. The
current phase is ETEL, which allows Eastern through and left-turn lanes. The highest

segment (segment 3) is 4, and there are no early queued vehicles. This suggests a
potential for efficient traffic flow by prioritizing the farthest segments.

Step 2: The optimal traffic signal is ETEL. It maximizes segment utilization and minimizes
delays by allowing vehicles to flow through the farthest segments without waiting for
early queued vehicles.

<signal>ETEL</signal>

Listing 2: Output generation after finetuning with environmental, hurdle rate, and Temperature-scaled
Softmax DSE

long-term credit assignment, and (2) Temperature-scaled Softmax DSE, which regularizes uncertainty in
semantic action generation and stabilizes the model’s internal reasoning process across responses. Together,
these components address fundamental challenges in applying PPO to LLM-based control, including reward
sparsity, non-stationarity, and cross-token variance in semantic action selection.

Extensive experiments on the LibSignal benchmark have demonstrated that OracleTSC yields substantial
and consistent performance improvements. On CityFlow-1×1, fine-tuned LLaMA3-8B reduces average travel
time by 75% and queue length by 67%, with similar gains observed across multiple backbone models and
intersection configurations. Importantly, OracleTSC performs competitively with specialized, black-box
reinforcement learning controllers, while uniquely preserving the interpretability and transparency afforded
by natural-language decision rationales. Ablation studies further confirm that both the reward hurdle and
Softmax DSE are critical to performance, with the strongest results obtained when the two mechanisms are
jointly applied.

Despite these gains, several limitations remain. The optimal hurdle magnitude depends on environment
dynamics and currently requires manual tuning, while semantic entropy estimation introduces additional
computational overhead due to multi-sample generation. Addressing these limitations motivates several
promising future directions, including adaptive or learned hurdle schedules, multi-agent coordination across
networked intersections, and robustness evaluation under multimodal sensing and real-world deployment
conditions.

In summary, OracleTSC demonstrates that combining reward filtering with uncertainty-aware semantic
regularization provides a principled and effective pathway for stabilizing reinforcement fine-tuning of LLM-
based controllers. These results suggest a broader role for uncertainty-controlled semantic objectives in
long-horizon control tasks, bridging the gap between interpretability and performance in next-generation
intelligent transportation systems.
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A.1 Hyper-Parameters for Table 1

The value estimator Vϕ s parameterized as a two-layer feedforward network across all model families, sizes,
and intersection configurations. The first hidden layer expands the input dimension from the model’s hidden
state size to twice that dimension, followed by a Leaky ReLU activation with negative slope 0.01. The second
layer produces a scalar value estimate.

For optimization, we set the value estimator learning rate to 10−5 and weight decay to 5 × 10−7 uniformly
across experiments. Gradient clipping is applied with a maximum norm of 0.5 for the policy network and
5.0 for the value estimator.

The KL divergence penalty uses the K3 approximation:

KL(p||q) = p

q
− log p

q
− 1

weighted by β = 0.05 in the token-level reward. The policy is optimized using the clipped surrogate objective
given in Equation 15.

Model-specific and intersection-specific hyperparameters are detailed in Table 4, where ϵl and ϵu denote the
lower and upper PPO clipping bounds, and HR represents the reward hurdle threshold.

Table 4: Model-specific hyperparameters for experiments in Table 1

Model Intersection Actor LR Actor Weight Decay ϵl ϵu HR

Qwen3-0.6B CityFlow1x1 2.5× 10−5 10−6 0.2 0.5 3.7
Qwen3-0.6B Cologne1 2.5× 10−5 10−6 0.2 0.2 2.7
Qwen3-8B CityFlow1x1 3.0× 10−5 8× 10−7 0.2 0.2 3.1
Qwen3-8B Cologne1 2.5× 10−5 10−6 0.2 0.2 3.0

LLaMA3-8B CityFlow1x1 2.5× 10−5 10−6 0.2 0.5 3.0
LLaMA3-8B Cologne1 2.5× 10−5 10−6 0.2 0.2 3.7

A.2 Supported Phase Mnemonics for Evaluated Intersections

Table 5: Supported Phase Mnemonics for CityFlow1x1.

Phase Mnemonic Description
NTST Northern and southern through lanes
NLSL Northern and southern left-turn lanes
NTNL Northern through and left-turn lanes
STSL Southern through and left-turn lanes

ETWT Eastern and western through lanes
ELWL Eastern and western left-turn lanes
ETEL Eastern through and left-turn lanes

WTWL Western through and left-turn lanes

Table 6: Supported Phase Mnemonics for Cologne1.

Phase Mnemonic Description
NUTRLSUTRL Northern and southern U-turn, through, right-turn and left-turn lanes

NUTLSUTL Northern and southern U-turn, through, and left-turn lanes
EUTRLWUTRL Eastern and western U-turn, through, right-turn and left-turn lanes

EUTLWUTL Eastern and western U-turn, through, and left-turn lanes
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A.3 System Prompt

You are an expert in traffic management. You can use your knowledge of traffic commonsense
↪→ to solve traffic signal control tasks.

A traffic light regulates a four-section intersection with northern, southern, eastern, and
↪→ western sections, each containing two lanes: one for through traffic and one for
↪→ left-turns. Each lane is further divided into three segments.

Segment 1 is the closest to the intersection. Segment 2 is in the middle. Segment 3 is the
↪→ farthest. In a lane, there may be early queued vehicles and approaching vehicles
↪→ traveling in different segments. Early queued vehicles have arrived at the
↪→ intersection and await passage permission. Approaching vehicles will arrive at the
↪→ intersection in the future.

The traffic light has 8 signal phases. Each signal relieves vehicles‘ flow in the two
↪→ specific lanes. The state of the intersection is listed below. It describes:

- The group of lanes relieving vehicles‘ flow under each signal phase.
- The number of early queued vehicles of the allowed lanes of each signal.
- The number of approaching vehicles in different segments of the allowed lanes of each

↪→ signal. The signal phase you choose will persist for 10 seconds.
Please answer: Which is the most effective traffic signal that will most significantly

↪→ improve the current traffic condition?
Requirements:
- Let‘s think step by step.
- You can only choose one of the signals listed by the user.
- You must follow the following steps to provide your analysis:

Step 1: Provide your analysis for identifying the optimal traffic signal.
Step 2: Answer your chosen signal.

- Your choice can only be given after finishing the analysis. - Your choice must be
↪→ identified by the tag: <signal>YOUR_CHOICE</signal>.

Listing 3: Our System Prompt

A.4 Textual Phase Representation

Phase: ETWT (Eastern and Western Through Lanes)
**Early Queued Vehicles**:
- Eastern through: 17
- Western through: 3

**Approaching Vehicles**:
- Segment 1: Eastern through: 1, Western through: 2
- Segment 2: Eastern through: 5, Western through: 7
- Segment 3: Eastern through: 17, Western through: 20

Listing 4: Representation of a phase and its traffic observation. Example shown is for Eastern and Western
Through (ETWT) lanes in CityFlow1x1.
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A.5 Algorithms

Algorithm 1 PPO-Based Training for LLM-Guided Traffic Signal Control using Hurdle Rate and
Softmax with Temperature Discrete Semantic Entropy

Require: Number of responses for entropy com-
putation G, entropy weight α, clipping thresh-
old ϵ, discount γ, GAE parameter λ, episode
length T , maximum number of output tokens
L, boolean symbolizing whether to use Dis-
crete Semantic Entropy with or without Soft-
max use_softmax, optional Softmax Temper-
ature τ , number of batches to train over nb,
batch size B, Hurdle Rate HR

1: Initialize Buffer B ← ∅
2: Load pretrained language model πθ and refer-

ence model πref
3: Initialize value head Vϕ

4: for each training iteration do
5: for each environment step t = 1 to T do
6: Observe traffic state s and current signal

phase p
7: Create verbalized traffic state st

0 using s,
p

8: Sample response {at
0, . . . , at

O} ∼ πθ(· | st
0)

with maximum length O
9: Parse selected action pnext from at

10: Sample G responses {{at
0, . . . , at

O} ∼
πθ(· | st)}G

g=1 with maximum length O

11: Compute phase histogram {countanswer
p }NP

p=1
from G responses using Algorithm 3

12: if use_softmax then
13: Compute rE ← Ranswer

E from
{countanswer

p′ }NP

p′=1, pnext, τ using Equa-
tion 11

14: else
15: Compute rE ← Ranswer,DSE

E from
{countanswer

p′ }NP

p′=1, pnext using Equation
13

16: end if
17: Execute action pnext, observe reward

R(st
O, at

O), next state st+1
0

18: Compute token-level rewards rt from to-
tal reward Rhurdle(st

O, at
O) using Equa-

tions 14 and 1
19: Compute action sequence log-

probabilities {log πθold
(at

o|st
o−1)O

o=1} for
all output tokens in at

0, . . . , at
O from πθ.

20: Compute state value estimate Vold ←
Vϕ(st

0).
21: Store (st

0, at = {at
0, . . . , at

O}}, rt, log πθold
(at|st), Vold)

in buffer B
22: end for
23: Compute Advantages Â = [Ât ∀t ∈ [1, T ]]

using Generalized Advantage Estimation(r1,
. . . , rT , Vϕ(s1), . . . , Vϕ(sT ), γ, λ).

24: Compute λ-Return R̂ = [Ât + Vϕ(st) ∀t ∈
[1, T ]].

25: Shuffle Buffer B, R̂, Â in-place.
26: Get nb batches from B, Â, R̂ of batch size B

each.
27: for b ∈ [1, nb] do
28: (sbatch, abatch, rbatch, log πbatch

old , V batch
old ),

F ILLÂbatch, R̂batch ← batchb

29: Standardize all elements in Âbatch in-
place.

30: Compute action sequence log-probability
log πbatch

θ for all output tokens in abatch.
31: Compute ratio: ratiobatch =

exp(log πbatch
θ − log πbatch

old )
32: Compute Policy objective at batch-level

using Equation 15.
33: Compute Value objective at batch level

using Equation 5.
34: Update θ, ϕ with∇J (θ, ϕ) using Equation

6
35: end for
36: # Clear buffer
37: Set B ← ∅
38: end for

26



Under review as submission to TMLR

Algorithm 2 Extract Phase from Output Text
Require: Output text s, valid phase mnemonics K, phase descriptions D, mapping from phase mnemonics

to OpenAI Gym action classes phase_to_code, default action class default_code ∈ [0, NP )
1: Extract all matches M← regex search for <signal>...</signal> in s
2: for phase ∈ reverse(M) do
3: if phase ∈ K then
4: return phase_to_code[phase]
5: end if
6: end for
7: slow ← lowercase(s), i← −1, k∗ ← None
8: for all k ∈ K do
9: jk ← rfind(slow, k.lower())

10: jd ← rfind(slow,D[k].lower())
11: if max(jk, jd) > i then
12: k∗ ← k, i← max(jk, jd)
13: end if
14: end for
15: if k∗ ̸= None then
16: return phase_to_code[k∗]
17: else
18: return default_code
19: end if

Algorithm 3 Compute Unnormalized Probability of Phase from LLM Responses
Require: Number of responses G, Policy LLM πθ, Input state s
Ensure: Histogram of extracted phases from G responses, h

1: Generate G output responses: {a1, a2, . . . , aG} ← πθ(s)
2: Initialize empty list P ← []
3: for g = 1 to G do
4: pg ← ExtractPhase(ag) {See Algorithm 2}
5: Append pg to P
6: end for
7: Build histogram [countanswer

0 , . . . , countanswer
NP −1 ] over P with NP bins for NP supported phases

8: return Phase Histogram [countanswer
0 , . . . , countanswer

NP −1 ]

A.6 Ablation on Upper Clip Limit

We ablate the effect of the upper clip limit ϵu in the clipped surrogate objective (Equation 15) to examine
how it influences the policy stability and learning dynamics of language-model-based controllers. In tradi-
tional PPO, a smaller clip range (1± ϵ) constrains the policy update and prevents destructive policy shifts,
while a larger range permits more aggressive updates but risks over-fitting to noisy or stochastic rewards.
In our entropy-controlled formulation, ϵu further interacts with the uncertainty-weighted auxiliary reward
wuncertaintyRanswer

E , effectively scaling the policy’s sensitivity to exploration signals. Prior work Shen (2025)
suggests that larger upper clip limits can sustain higher entropy across training, discouraging premature
convergence to deterministic policies.

As shown in Figures 10 and 11, this trade-off manifests clearly in both models. For Qwen3-0.6B on the
Cologne1 intersection (HR = 2.7), increasing ϵu from 0.2 to 0.5 led to degraded traffic efficiency, reflected
in higher travel time and queue length. The smaller clip coefficients yielded smoother delay curves and
higher throughput, indicating more stable and well-regularized learning. We observe a similar pattern with
Qwen3-8B on CityFlow1x1 (HR = 3.1); strictest clipping (ϵu ≈ 0.2) achieved the best balance between

27



Under review as submission to TMLR

Figure 10: Effect of the Upper Clip Limit ϵu in the R(st
O, at

O)−HR +wuncertaintyRanswer
E configuration where

wuncertainty = 1 and HR = 2.7. Each subplot reports one evaluation metric (Travel Time, Queue Length,
Delay, and Throughput) as a function of ϵu for Qwen3-0.6B on the Cologne1 intersection.

exploration and control, while larger clip limits again inflated travel time and reduced throughput. However,
Delay metrics performed slightly better with a marginally higher ϵu = 0.35.

Overall, these results reinforce the importance of bounded update magnitudes in language-model-based
reinforcement learning. Tight upper clip limits constrain policy drift and encourage gradual adaptation,
enabling the agent to maintain interpretable, state-responsive decision patterns rather than collapsing to
single-phase policies. However, excessively restrictive clipping can also suppress meaningful exploration.
Hence, an intermediate range of ϵu appears most effective—sufficiently permissive to preserve entropy yet
conservative enough to maintain reward stability.

JCLIP(θ) = Êτ∼πold

[
min

(
rl(θ) Âl, clip(rl(θ), 1− ϵl, 1 + ϵu) Âl

)]
, (15)
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Figure 11: Effect of the Upper Clip Limit ϵu in the R(st
O, at

O)−HR +wuncertaintyRanswer
E configuration where

wuncertainty = 1 and HR = 3.1. Each subplot reports one evaluation metric (Travel Time, Queue Length,
Delay, and Throughput) as a function of the ϵu for Qwen3-8B on the CityFlow1x1 intersection.
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