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ABSTRACT

To avoid prohibitive computation cost of sending entire data, we propose
four sparsification schemes RANDOM-KNOTS, RANDOM-KNOTS-SPATIAL, B-
SPLINE, BSPLINE-SPATIAL, and present corresponding nonparametric estimation
of the covariance function. The covariance estimators are asymptotically equiva-
lent to the sample covariance computed directly from the original data. And the
estimated functional principal components effectively approximate the infeasible
principal components under regularity conditions. The convergence rate reflects
that leveraging spatial correlation and B-spline interpolation helps to reduce in-
formation loss. Data-driven selection method is further applied to determine the
number of eigenfunctions in the model. Extensive numerical experiments are con-
ducted to illustrate the theoretical results. 1

1 INTRODUCTION

Dimension reduction has received increasing attention to avoid expensive and slow computation.
Stich et al. (2018) investigated the convergence rate of Stochastic Gradient Descent after sparsifica-
tion. Jhunjhunwala et al. (2021) focused on the mean function of a vector containing only a subset
of the original vector. The goal of this paper is to estimate the covariance function of sparsified
functional data, which is a set of sparsified vectors collected from a distributed system of nodes.

Functional data analysis (FDA) has become an important research area due to its wide applications.
Classical FDA requires a large number of regularly spaced measurements per subject. The data takes
the form {(xij , j/d) , 1 ≤ i ≤ n, 1 ≤ j ≤ d} in which xi(·) is a latent smooth trajectory,

xi(·) = m(·) + Zi(·). (1)

The deterministic functionm(·) denotes the common population mean, the randomZi(·) are subject-
specific small variation with EZi(·) = 0. Bothm (·) and Zi (·) are smooth functions of time t = j/d
which is rescaled to domain D = [0, 1]. Trajectories xi(·) are identically distributed realizations of
the continuous stochastic process {x(t), t ∈ D}, E supt∈D |x(t)|2 < +∞ which can be decomposed
as x(·) = m(·) + Z(·), EZ(t) = 0. The true covariance function is G (t, t′) = Cov {Z(t), Z (t′)}.

Let sequences {λk}∞k=1 and {ψk}∞k=1 be the eigenvalues and eigenfunctions of G (t, t′), respec-
tively, in which λ1 ≥ λ2 ≥ · · · ≥ 0,

∑∞
k=1 λk < ∞, {ψk}∞k=1 form an orthonormal basis

of L2[0, 1], see Hsing & Eubank (2015). Mercer Lemma entails that the ψk ’s are continuous
and G (t, t′) =

∑∞
k=1 λkψk(t)ψk (t

′),
∫
G (t, t′)ψk (t

′) dt′ = λkψk(t). The standard process
x(·) allows Karhunen-Loève L2 representation x(·) = m(·)+

∑∞
k=1 ξkϕk(·), in which the ran-

dom coefficients, ξk, called functional principal component (FPC) scores, are uncorrelated with
mean 0 and variance 1. The rescaled eigenfunctions, ϕk, called FPC, satisfy ϕk =

√
λkψk and∫

{x(t) − m(t)}ϕk(t)dt = λkξk, for k ≥ 1. Although the sequences {λk}∞k=1, {ϕk}∞k=1 and
{ξik}n,∞i=1,k=1 exist mathematically, they are either unknown or unobservable.

1.1 MAIN CONTRIBUTION

In FDA, covariance estimation plays a critical role in FPC analysis (Ramsay & Silverman (2005),
Li & Hsing (2010)), functional generalized linear models and other nonlinear models (Yao et al.

1The code is attached to the supplementary material and will be publicly available once accepted.
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(2005b)). We propose four sparsification schemes, RANDOM-KNOTS & RANDOM-KNOTS-SPATIAL
can be classified as RANDOM-SPARSIFICATION where knots are selected uniformly from the entire
points at random. B-SPLINE & BSPLINE-SPATIAL are called FIXED-SPARSIFICATION, intercepting
knots at fixed positions in each dimension of the vector. For all sparsification modes, we construct
the two-step covariance estimator Ĝ (·, ·), where the first step involving sparsified trajectories and
the second step plug-in covariance estimator by using the estimated trajectories in place of the latent
true trajectories. The statistic is further multiplied by an appropriate constant to ensure unbiased-
ness. The covariance estimator Ĝ (·, ·) enjoys good properties and can effectively approximates the
sample covariance function Ḡ (·, ·) computed directly from the original data. This paper improves
the performance of statistics from the following two aspects, requiring little or no side information
and additional local computation.

• SPATIAL CORRELATION: We adjust the fixed weights assigned to different vectors to data-
driven parameters that represent the amount of spatial correlation. This family of statistics
naturally takes the influence of correlation among nodes into account, which can be viewed
as spatial factor 2. Theoretical derivation reveals that the estimation error can be drastically
reduced when spatial factors among subjects are considered.

• B-SPLINE INTERPOLATION: To fill in the gap between equispaced knots, we introduce
spline interpolation method to characterize the temporally ordered trajectories of the func-
tional data. The estimated trajectory obtained by B-spline smoothing method is as effi-
cient as the original trajectory. The proposed covariance estimator has globally consistent
convergence rate, enjoying superior theoretical properties than that without interpolation.
Superior to the covariance estimation leveraging tensor product B-splines, our two-step
estimators are guaranteed to be the positive semi-definite.

In sum, the main advantage of our methods is the computational efficiency and feasibility for large-
scale dense functional data. It is practically relevant since curves or images measured using new
technology are usually of much higher resolution than the previous generation. This directly leads
to the doubling of the amount of data recorded in each node, which is also the motivation of this
paper to propose sparsification before feature extraction, modeling, or other downstream steps.

The paper is organized as follows. Section 2 introduces four sparsification schemes and the corre-
sponding unbiased covariance estimators. We also deduce the convergence rate of the covariance
estimators and the related FPCs. Simulation studies are presented in Section 3 and application in
domain clustering is in Section 4. All technical proofs are involved in the Appendix.

1.2 RELATED WORK

Considerable efforts have been made to analyze first-order structure of function-valued random el-
ements, i.e., the functional mean m (·). Estimation of mean function has been investigated in Jhun-
jhunwala et al. (2021), Garg et al. (2014), Suresh et al. (2017), Mayekar et al. (2021) and Brown
et al. (2021). Cao et al. (2012) and Huang et al. (2022) considered empirical mean estimation using
B-spline smoothing. The second-order structure of random functions – covariance function G (·, ·)
is the next object of interests. To the best of our knowledge, spatial correlation across nodes has
not yet been considered in the context of sparsified covariance estimation. The research on sparsi-
fication has received wide attention recently, for instance Alistarh et al. (2018), Stich et al. (2018)
and Sahu et al. (2021). Sparsification methods mainly focus on sending only a subset of elements of
the vectors, yet no existing method combine sparsity method with B-spline fitting. Moreover, there
has been striking improvement over sparse PCA. Berthet & Rigollet (2013b) and Choo & d’Orsi
(2021) have analyzed the complexity of sparse PCA; Berthet & Rigollet (2013a) and Deshpande &
Montanari (2014) have obtained sparse principle components for particular data models. Since our
estimation methods are innovative, the related study of PCA is proposed for the first time.

2 MAIN RESULTS

We consider n geographically distributed nodes, each node generates a d-dimensional vector
xi = (xi1, . . . , xid)

⊤ for i ∈ {1, 2, . . . , n}. The mean and covariance functions could be estimated
2The superscript SPAT is applied to distinguish whether the statistic considering spatial factor.
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by m̄(t) = 1
n

∑n
i=1 xi(t) and Ḡ (t, t′) = 1

n

∑n
i=1 (xi (t)− m̄ (t)) (xi (t

′)− m̄ (t′)), see Brockwell
& Davis (2009). For q ∈ N, µ ∈ (0, 1], write H(q,µ)[0, 1] as the space of µ-Hölder continuous func-

tions, i.e., H(q,µ)[0, 1] =

{
φ : [0, 1] → R | ∥φ∥q,µ = supx,y∈[0,1],x ̸=y

|φ(q)(x)−φ(q)(y)|
|x−y|µ < +∞

}
.

Notations: In this paper, Op (or Op) denotes a sequence of random variables of certain order in
probability and by Oa.s. (or Oa.s.) almost surely O (or O). For sequences an and bn, denote an ≍ bn
if an and bn are asymptotically equivalent. For any Lebesgue measurable function ϕ(x) on a domain
D, let ∥ϕ∥∞ = supx∈D |ϕ(x)|. For any L2 integrable functions ϕ(x) and φ(x),x ∈ D, take
⟨ϕ, φ⟩ =

∫
D ϕ(x)φ(x)dx, with ∥ϕ∥22 = ⟨ϕ, ϕ⟩. For simplicity, ∥ϕ∥ = ∥ϕ∥2.

We next introduce some technical assumptions.

Assumption 1: There exists an integer q > 0 and a constant µ ∈ (0, 1], such that the regression
function m(·) ∈ H(q,µ)[0, 1]. In the following, we denote p∗ = q + µ for simplicity.

Assumption 2: The covariance function satisfies sup(t,t′)∈[0,1]2 G (t, t′) < C, for some positive
constant C and mint∈[0,1]G (t, t′) > 0.

Assumption 3: There exists a constant θ > 0, such that as d→ ∞, n = n(d) → ∞, n = O
(
dθ
)
.

Assumption 4: The rescaled FPCs ϕk(·) ∈ H(q,µ)[0, 1] with
∑∞

k=1

(
∥ϕk∥q,µ + ∥ϕk∥∞

)
< +∞;

for increasing positive integers {kn}∞n=1, as n → ∞,
∑∞

kn+1 ∥ϕk∥∞ = O
(
n−1/2

)
and kn =

O (nω) for some ω > 0.

Assumption 5: The FPC scores {ξik}i≥1,k≥1 are independent over k ≥ 1. The number of distinct
distributions for all FPC scores {ξik}i≥1,k≥1 is finite, and max1≤k<∞ Eξr01k <∞ for r0 > 4.

Assumption 6: The number of knots Js ≍ dγCd for some τ > 0 with Cd + C−1
d = O (logτ d) as

d→ ∞, γ ≥ 1− θ
2 for RANDOM-SPARSIFICATION, γ > θ

2p∗ + 2θ
r0p∗ for FIXED-SPARSIFICATION.

Assumptions 1–5 are standard requirements for obtaining mean and covariance estimators in lit-
erature. Assumption 1 guarantees the orders of the bias terms of the spline smoothers for m (·).
Assumption 2 ensures the covariance G (·, ·) is uniformly bounded. Assumption 3 implies the di-
mension of vectors d diverges to infinity as n→ ∞, which is a well-developed asymptotic scenario
for dense functional data and all the following asymptotics are developed as both the number of
nodes n and dimensionality d tend to infinity. Assumption 4 concerns the bounded smoothness of
FPC and Assumption 5 ensures bounded FPC scores, for bounding the bias terms in the spline co-
variance estimator. The smoothness of our estimator is controlled by the number of knots, which is
specified in Assumption 6.
Remark 1. These assumptions are mild conditions that can be satisfied in many practical situations.
One simple and reasonable setup is: q + µ = p∗ = 4, θ = 1, γ = 5/8, Cd ≍ log log d. We set
p = 4 for RANDOM-SPARSIFICATION to obtain cubic spline estimation and p = 0 for FIXED-
SPARSIFICATION to get estimates without interpolation. These constants are used as defaults in
numerical studies.

2.1 RANDOM-SPARSIFICATION

Elements in each vector are randomly setting to zero with probability 1 − Js

d . Under this sparsi-
fication scheme, RANDOM-KNOTS and RANDOM-KNOTS-SPATIAL covariance estimators are pro-
posed, where temporal dependence exhibited in functional samples is ignored. Proportion Js

d depicts
the difference of data volume before and after sparsification, reflecting the degree of sparsification.

RANDOM-KNOTS (RK) As shown in Figure 2.2 (a), on the left are original vectors {xi}ni=1 and
right are sparsified vectors {hi}ni=1 randomly containing Js elements of the original vector with
n = 3, d = 6, Js = 3. This definition tells that P (hij = 0) = 1 − Js

d , P (hij = xij) = Js

d . The
estimator generated from {hi}ni=1 is called sparsified estimator which is obtained by replacing orig-
inal trajectory xi = (xi1, . . . , xid)

⊤ with sparsified hi = (hi1, . . . , hid)
⊤, i.e. m̂ = 1

n
d
Js

∑n
i=1 hi

and Ĝ = 1
n

(
d
Js

)2∑n
i=1

(
hi − h̄

) (
hi − h̄

)⊤
, where h̄ = 1

n

∑n
i=1 hi is a d-dimensional vector.
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The next theorem states the mean squared error (MSE) of the estimator tends to zero as n→ ∞.

Theorem 1. (RK Estimation Error) Under Assumptions 1–5, MSE of estimate Ĝ produced by the

RK sparsification scheme described above is given by E∥Ĝ − Ḡ∥2 = 1
n2

((
d
Js

)2
− 1

)
R1 where

R1 =
∑n

i=1 ∥xi − m̄∥4. Assumption 6 further guarantees that
∥∥∥Ĝ− Ḡ

∥∥∥ = Op

(
n−1/2

)
.

RANDOM-KNOTS-SPATIAL (RK-SPAT) Denote by Mj the number of nodes that send their j-th
coordinate to describe the correlation between nodes. It is obvious that Mj is a binomial random
variable that takes values in the range {0, 1, . . . , n} with P (Mj = m) =

(
n
m

)
pm (1− p)

n−m, p =
Js

d . If Mj = 0, none of the nodes have drawn the j-th element, and the information at position j is
completely missing.

If nodes are highly correlated, the estimator is accurate at position j even if few points at that
position are selected. Consider a special case where vectors of all nodes are the same, i.e., x1 =
x2 = . . . = xn. The j-th coordinate of mean can be exactly estimated as m̂j = 1

Mj

∑n
i=1 hij

whenever Mj > 0. And the exact covariance function is Ĝjj′ =
1

Mj

∑n
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
,

h̄j is the j-th element of the d-dimensional vector h̄, j′ ̸= j. Simple mathematical derivation implies
that h̄j = m̂j under this situation. Hence, the fixed scaling parameter Js

d is not necessary.

If nodes are lowly correlated, smallMj may lead to a large MSE. Consider (i) vectors corresponding
to n− 1 nodes follow sine distribution xij = sin

(
2π j

d

)
, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ d and the outlier

node follows cosine distribution xnj = cos
(
2π j

d

)
; (ii) the outlier vector has a jump at j-th position

xnj = sin
(
2π j

d

)
+ δ, xnj′ = sin

(
2π j′

d

)
, δ > 0, for j′ ∈ {1, . . . j − 1, j + 1, . . . , d} while

other n − 1 nodes follow standard sine distribution. In special case that only the outlier vector is
selected for position j, the estimation at this position is bound to have large deviation. Therefore,
the correlation between nodes is an important indicator to measure the accuracy of estimators.

We propose a RK-SPAT estimator wherein the fixed scaling parameter Js

d is replaced by a function
of Mj such that the spatial correlation between nodes is taken into account. Specifically, the mean
estimator for j-th element is m̂SPAT

j = 1
n

β̄
T (Mj)

∑n
i=1 hij . Covariance function at position (j, j′) is

ĜSPAT
jj′ =

1

n

β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
(2)

where the introduced function T (Mj) changes the scaling parameter and β̄ is

β̄−1 =
Js
d
EMj |Mj≥1

(
1

T (Mj)

)
=

n∑
r=1

Js
dT (r)

(
n− 1

r − 1

)(
Js
d

)r−1(
1− Js

d

)n−r

. (3)

We prove that the RK-SPAT covariance estimator is unbiased.

Proposition 1. (RK-SPAT estimator Unbiasedness) EĜSPAT = Ḡ.

The following theorem measures the approximate quality of RK-SPAT estimator,
Theorem 2. (RK-SPAT Estimation Error) Under Assumptions 1–5, MSE of estimate produced by

the RK-SPAT family is E∥ĜSPAT − Ḡ∥2 = 1
n2

((
d
Js

+ c1

)2
− 1

)
R1 + 1

n2

(
(1− c2)

2 − 1
)
R2,

where R1 =
∑n

i=1 ∥xi − m̄∥4, R2 = 2
∑n

i=1

∑n
k=i+1

〈
(xi − m̄)

2
, (xk − m̄)

2
〉

and β̄ is defined

in (3). The parameters c1, c2 depend on the choice of T (·) as

c1 = β̄2
n∑

r=1

Js
dT (r)2

(
n− 1

r − 1

)(
Js
d

)r−1(
1− Js

d

)n−r

− d

Js

c2 = 1− β̄2
n∑

r=2

J2
s

d2T (r)2

(
n− 2

r − 2

)(
Js
d

)r−2(
1− Js

d

)n−r

.

Assumption 6 further guarantees that
∥∥∥ĜSPAT − Ḡ

∥∥∥ = Op

(
n−1/2

)
.
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Theorem 2 can be further simplified as E∥ĜSPAT − Ḡ∥2 = 1
n2

((
d
Js

)2
+ c21 + 2c1

d
Js

− 1

)
R1 +

1
n2

(
c22 − 2c2

)
R2. The MSE of RK-SPAT covariance estimator ensures to be lower than that of RK

estimator whenever
(
c21 + 2c1

d
Js

)
R1 <

(
2c2 − c22

)
R2, i.e. R2/R1 >

(
c21 + 2c1

d
Js

)
/
(
2c2 − c22

)
.

In general, since the MSE depends on the function T (·) through c1 and c2, we can define T (·) to
ensure that RK-SPAT estimate is more accurate than RK estimate.

Theorem 3. (RK-SPAT minimum MSE) The optimal RK-SPAT estimator that minimizes the MSE

in Theorem 2, can be obtained by setting T ∗(r) =

(
1 + R2

R1

(
r−1
n−1

)2)1/2

, for r ∈ {1, 2, . . . , n}.

Jhunjhunwala et al. (2021) claimed that optimal RK-SPAT mean estimator is obtained when
T ∗(r) = 1 + R2

R1

r−1
n−1 , which is perfect for tasks involving only mean function, such as K-means

but cannot guarantee the optimal estimation of covariance function. It is significant to get accurate
covariance estimate by setting T ∗ (·) as Theorem 3. In this way, the extracted features computed
from eigenequation would improve the efficiency of downstream tasks, such as PCA. Meanwhile,
the nodes number n and dimension d yield the amount of computation for R1 and R2. We pro-

pose the RK-SPAT (AVG) T̃ (r) =

(
1 + n

2

(
r−1
n−1

)2)1/2

as a default setting to avoid complicated

computation about R1 and R2.

2.2 FIXED-SPARSIFICATION

We retain elements at Js fixed positions and set the rest to zero. This dimensionality reduction
method only utilizes values at fixed positions in the vector and has several disadvantages. (i) Each
step only leverages the subset of data with size n× Js, while the size of the origin data set is n× d.
The fact that Js ≪ d resulting in a serious loss of information. (ii) Approximate quality of the
estimator depends on the selected points, and is difficult to control if the selected knots deviate
from the overall distribution. (iii) Even if suitable knots are determined by adding penalty terms or
selecting artificially, these knots may not be suitable for another node.

B-SPLINE (BS) As shown in Figure 2.2 (b), B-spline interpolation reduces the loss of information
by fitting the values between fixed knots. It is worth noticing that the choice of basis functions
and other smoothing methods (polynomial, kernel and wavelet smoothing) do not affect the large-
sample theories. We choose standard B-spline bases because they are more computationally efficient
and numerically stable in finite samples compared with other basis functions such as the truncated
power series and trigonometric series. The B-spline estimation is suitable for analyzing large data
sets without uniform distribution, see Schumaker (2007).

Denote by {tℓ}Js

ℓ=1 a sequence of equally-spaced points, tℓ = ℓ/ (Js + 1), 0 < t1 < · · · <
tJs

< 1, called interior knots, which divide the interval [0, 1] into (Js + 1) equal subintervals
I0 = [0, t1) , Iℓ = [tℓ, tℓ+1), ℓ ∈ {1, . . . , Js − 1}, IJs = [tJs , 1]. Let t1−p = · · · = t0 = 0,
1 = tJs+1 = · · · = tJs+p be auxiliary knots, and S(p−2) = S(p−2)[0, 1] be the polynomial spline
space of order p on Iℓ, ℓ ∈ {0, . . . , Js}, which consists of all (p − 2) times continuously dif-
ferentiable functions on [0, 1] that are polynomials of degree (p − 1) on subintervals Iℓ. Denote
by {Bℓ,p(t), 1 ≤ ℓ ≤ Js + p} the p-th order B-spline basis functions of S(p−2), hence S(p−2) ={∑Js+p

ℓ=1 λℓ,pBℓ,p(t) | λℓ,p ∈ R, t ∈ [0, 1]
}

. The unknown trajectory xi(·) is estimated by hi(·) =

argming(·)∈S(p−2)

∑d
j=1 {xij − g (xj)}2 =

∑Js+p
ℓ=1 λ̂ℓ,p,iBℓ,p(·). Coefficients estimation follows(

λ̂1,p,i, . . . , λ̂Js+p,p,i

)⊤
= argmin(λ1,p,...,λJs+p,p)∈RJs+p

∑d
j=1

{
xij −

∑Js+p
ℓ=1 λℓ,pBℓ,p (j/d)

}2

.

The BS covariance estimator is obtained by replacing {hij}n,di=1,j=1 with B-spline trajectories.

BSPLINE-SPATIAL (BS-SPAT) We replace {hij}n,di=1,j=1 in RK-SPAT estimator with B-spline esti-
mation of trajectories. The BS-SPAT estimator not only considers the correlation among nodes, but
also the correlation within a single node.

Next theorem states the convergence rate of BS and BS-SPAT estimators.

5



Under review as a conference paper at ICLR 2023

(a) RK (RK-SPAT) Sparsification (b) BS (BS-SPAT) Sparsification

Theorem 4. (BS (BS-SPAT) Estimation Error) Under Assumptions 1–6, the BS (BS-SPAT) esti-
mator m̂(·) is asymptotically equivalent to m̄(·) up to order n1/2 and similar conclusion holds for
covariance function, i.e., as n→ ∞,

(i) ∥m̂− m̄∥∞ = Oa.s.

(
n−1/2

)
, ∥Ĝ− Ḡ∥∞ = Op

(
n−1/2

)
.

(ii) ∥m̂SPAT − m̄∥∞ = Op

(
n−1/2

)
, ∥ĜSPAT − Ḡ∥∞ = Op

(
n−1/2

)
.

Remark 2. The convergence rates in Theorems 1, 2 and 4 reflect that BS (BS-SPAT) covariance
estimator converges faster to Ḡ than RK (RK-SPAT) estimator and the result uniformly holds on the
interval D. It is obvious that the estimation performance of the proposed estimator is significantly
improved by applying B-spline interpolation. This conclusion is also confirmed in the simulation.

2.3 CONVERGENCE OF PRINCIPAL COMPONENT

The estimates of eigenfunctions and eigenvalues are obtained by solving the eigenequations∫
Ĝ (x, x′) ψ̂k (x

′) dx′ = λ̂kψ̂k (x), the consistency of which is then obtained.

Theorem 5. As n→ ∞, for k ∈ N, we have

(i) (Convergence rate of eigenfunctions)
∥∥∥ψ̂k − ψk

∥∥∥ = Op

(
n−1/2

)
;

(ii) (Convergence rate of eigenvalues)
∣∣∣λ̂k − λk

∣∣∣ = Op

(
n−1/2

)
;

(iii) (Convergence rate of FPC scores) max1≤i≤n

∥∥∥ξ̂ik − ξik

∥∥∥ = Op

(
n−1/2

)
.

It is worth noticing that the orthonormal basis of the eigenmanifold corresponding to {λk}κk=1
may be obtained by rotation, seeDauxois et al. (1982). Therefore, the unique form of the eigen-
function should be determined by minimizing the estimation error through the loss function
L(ϕ̂k, ϕk) = 1

2 mins∈{+1,−1} ∥ϕ̂k − sϕk∥2 = 1 − |⟨ϕ̂k, ϕk⟩| for ϕ̂k, ϕk ∈ {v ∈ Rκ : ∥v∥ = 1}.

This is required because the estimated principal components
{
ϕ̂k

}κ

k=1
are only identifiable up to

a sign. Analogous results can obtained for alternate loss functions such as the projection distance:

Lp(ϕ̂k, ϕk) =
1√
2

∥∥∥ϕ̂kϕ̂⊤k − ϕkϕ
⊤
k

∥∥∥
2
=

√
1− ⟨ϕ̂k, ϕk⟩2.

3 SIMULATION

We conduct simulation studies to illustrate the finite-sample performance of the proposed methods.

3.1 KNOTS SELECTION

The number of knots is treated as an unknown tuning parameters, and the fitting results can be
sensitive to it. Since the in-sample fitting errors cannot gauge the prediction accuracy of the fitted
function, we select a criterion function that attempts to measure the out-of-sample performance of
the fitted model. The formula based selection strategy as stated in Remark 1, we seek Js satisfies
Js ≍ dγCd. Therefore, we suggest Js = [cdγ log log d] for some positive constant c, and γ = 5/8.

Apart from this, minimizing Akaike information criterion (AIC) is one computationally efficient
approach to selecting smoothing parameters. The candidate pool is all the integers between 1 and
Js∗ , where J∗

s = min{10, [cdγ log log d]}. Specifically, given any data set (xij , j/d)
n,d
i=1,j=1 from

6
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model (1), denote the estimator for response xij by hij (J). The trajectory estimates depend on the
knot selection sequence, which are sparsified vectors for RK (RK-SPAT) estimator and B-spline
smoothing vectors for BS (BS-SPAT) estimator. Then, Ĵs,i for the i-th curve is the one minimizing
AIC,

Ĵs,i = argminJ∈[1,Js∗ ]
AIC (J) ,

where AIC (J) = log(RSS/d) + 2 (J + p) /d, with the residual sum of squares RSS =∑d
j=1 {xij − hij (J)}2. Then, Ĵs is set as the median of

{
Ĵs,i

}n

i=1
.

3.2 ACCURACY OF COVARIANCE ESTIMATOR

Data is generated from model:

xij = m (j/d) +

∞∑
k=1

ξikϕk (j/d) , 1 ≤ j ≤ d, 1 ≤ i ≤ n, k ≥ 1, (4)

where m(t) = sin{2π(t− 1/2)}, ϕk(t) =
√
λkψk(t), λk = (1/4)[k/2], ψ2k−1(t) =

√
2 cos(2kπt),

ψ2k(t) =
√
2 sin(2kπt). {ξik} follow standardized normal distribution. The infinite series

G (t, t′) =
∑∞

k=1 ϕk(t)ϕk (t
′) is well approximated by finite sum G (t, t′) =

∑1000
k=1 ϕk(t)ϕk (t

′),
according to the fraction of variance explained (FVE) criteria, FVE =

∑1000
k=1 λk/

∑∞
k=1 λk >

1 − 10−10, see Yao et al. (2005a). d (or n) is set to vary equally between 50 and 400 with fixed
n = 200 (or d = 200). Each simulation is repeated 1000 times.

Denote by Ĝs
j,j′ (Ḡs

j,j′ ) the s-th replication of covariance Ĝ (Ḡ) at position (j, j′) and G the
true covariance function. The average mean squared error (AMSE) is computed to assess the
performance of the covariance estimators Ĝ(·, ·) and Ḡ(·, ·), which is defined as AMSE(Ĝ) =

1
1000d2

∑1000
s=1

∑d
j,j′=1

(
Ĝs

j,j′ − Ḡs
j,j′

)2
, AMSE

(
Ḡ
)
= 1

1000d2

∑1000
s=1

∑d
j,j′=1

(
Ḡs

j,j′ −Gj,j′
)2

.

Figure 1 3 shows that AMSE(Ĝ) decreases as n increases, consistent with Theorems 1 and 2.
AMSE(Ĝ) reveals a slow downward trend with the increase of d, mainly because the number of
knots changes with d, affecting the performance of the covariance estimator. By setting T (·) as
Theorem 3, AMSE of estimator that takes spatial factor into account is generally lower than estima-
tor that does not. AMSE of BS (BS-SPAT) covariance estimator confirms Theorem 4 and estimation
accuracy of the estimator is significantly improved by spline interpolation. Results on AMSE

(
Ḡ
)

are consistent with the fact that Ḡ converges to G at the rate of Op(n
−1/2). Visualization of covari-

ance functions is in Figure H in Appendix.

3.3 ACCURACY OF PRINCIPLE COMPONENTS

Spectral decomposition is truncated at κ = 5 according to the standard criteria called ”pseudo-AIC”,
see Mu et al. (2008). The selected eigenvalues can explain over 95% of the total variation. That is,

κ = argmin1−p≤ℓ≤Js

{∑ℓ
k=1−p λ̂k/

∑Js

k=1−p λ̂k > 0.95
}

where
{
λ̂k

}Js

k=1−p
are all nonnegative

eigenvalues estimated in FPC analysis. Figure 3 illustrates the first five eigenfunctions which ac-
count for 68.2%, 17.0%, 4.3%, 4.3%, 4.0% of the total variation. The first figure shows a large
difference overall the curve, depicting the trend of the covariance. The other four graphs have great
fluctuations, and the frequency of fluctuations increases with k. The gap between the estimated FPC
computed from the covariance estimators and the true FPC also increases with k.

Denote by λ̂sk, ϕ̂sk the s-th replication of λ̂k, ϕ̂k, AMSEs of eigenvalues λ̂k ’s and the eigen-

functions ϕ̂k ’s are defined as AMSE(λ̂) = 1
1000κ

∑1000
s=1

∑κ
k=1

(
λ̂sk − λk

)2
, AMSE(ϕ̂) =

1
1000dκ

∑1000
s=1

∑d
j=1

∑κ
k=1

{(
ϕ̂sk − ϕk

)
(j/d)

}2

.

3“d: Random-knots” AMSE(Ĝ) changes with d and Ĝ is the RK estimator; “n: Random-knots-Spatial”
AMSE(Ĝ) changes with n and Ĝ is the RK-Spat estimator. Other curves are defined similarly.
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Figure 2 reveals that AMSE(λ̂) decreases with the increase of n, while the change with d is small,
AMSE(ϕ̂) exhibits the same regularity as AMSE(λ̂), in accordance with Theorem 5. Whether or
not to consider spatial factors has greater impact on the accuracy of eigenvectors than eigenvalues.

Figure 1: Left, middle: AMSE(Ĝ) as a function of d, n. Right: AMSE
(
Ḡ
)

as a function of d, n.

Figure 2: Row 1: AMSE(λ̂) as a function of d, n. Row 2: AMSE(ϕ̂) as a function of d, n.

Figure 3: Eigenfunctions computed from the true covariance and four covariance estimators.

4 APPLICATION

We seek to harness our method for a downstream task – domain data selection. The multi-domain
corpus proposed in Koehn & Knowles (2017) includes parallel text in German and English from five
domains: translations of the Koran, subtitles, medical, legal and IT-related text, available via OPUS
(Aulamo & Tiedemann (2019)), split as Aharoni & Goldberg (2020).

We encode multi-domain data at the sentence level into vector representations by pre-trained models.
(i) MLM-based model: BERT (Devlin et al. (2018)), DistilBERT (Sanh et al. (2019)) and RoBERTa
(Liu et al. (2019)), in both the base and large versions; (ii) autoregressive model: GPT-2 (Radford
et al. (2018)) and XLNet (Yang et al. (2019)); (iii) baseline model: word2vex (Mikolov et al. (2013)).
In all cases we use the implementations from the HuggingFace Transformers toolkit (Wolf et al.

8
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Pre-trained Model without PCA PCA RK RK-SPAT BS BS-SPAT

GMM-5

word2vec 45.93 54.37 58.56 49.76 52.24 49.16
BERT-base 85.81 78.98 87.45 87.27 86.13 86.42
BERT-large 72.25 88.00 87.91 87.59 72.54 86.89
DistilBERT 73.35 87.53 87.03 86.84 85.83 85.94

RoBERTa-base 70.21 78.95 79.02 79.08 72.79 61.86
RoBERTa-large 59.32 73.74 80.94 73.51 73.38 86.15

GPT-2 37.82 70.25 68.97 68.96 69.42 69.47
XLNet 30.35 56.31 56.86 56.92 51.29 51.19

GMM-10

word2vec 65.80 71.13 66.43 68.29 63.76 66.44
BERT-base 84.65 88.76 88.50 88.45 86.34 87.71
BERT-large 84.32 88.21 86.71 86.83 86.24 87.55
DistilBERT 86.00 83.17 86.16 87.62 84.22 85.12

RoBERTa-base 79.26 88.72 86.84 86.32 84.51 86.06
RoBERTa-large 81.17 88.13 89.27 89.21 88.67 89.29

GPT-2 40.26 84.34 83.47 83.09 83.50 83.36
XLNet 36.57 70.47 68.92 68.37 64.43 55.64

Table 1: Clustering Purity for unsupervised domain clustering. Best results in each row are marked
in bold. Explanatory variables involved in GMM-k are set to be original data without PCA, standard
PCA and FPC scores computed from RK(-SPAT) & BS(-SPAT) sparsified covariance estimators.

(2019)). We cluster these vector representations through a Gaussian Mixture Model (GMM-k) where
k is the number of predetermined clusters. The estimated FPC scores are naturally independent
random variables and converge to the infeasible true FPC scores at the rate of n−1/2 in probability,
see Theorem 5 (iii). It is reasonable to set the estimated FPC scores as explanatory variables in
GMM-k step, which are computed from ξ̂ik = λ̂

−1/2
k

∫
{hi (t)− m̂ (t)} ψ̂k (t) dt with λ̂k and ψ̂k

the estimates of eigenvalues and eigenfunctions of covariance estimator. We also set original vectors
and FPC scores computed from standard PCA method as explanatory variables for comparison.
To evaluate whether the resulting clusters indeed capture the domains, we measure the Clustering
Purity, which is a well-known metric for evaluating clustering, see Schütze et al. (2008).

Table 1 shows MLM-based models dominate over word2vec and auto-regressive models. Mainly
because MLM-based models use the entire sentence context when generating the representations,
while auto-regressive models only use the past context, and word2vec uses a limited window con-
text. Direct modeling with data without dimensionality reduction has the worst results, and PCA
significantly improves the performance in all cases. The last four columns of Table 1 reflect that Pu-
rity of the domain-clustering task is not sacrificed and even slightly improves in some cases. Hence,
modeling on FPC scores computed from sparsified covariance estimators are shown to be efficient
and effective. In sum, by applying our sparsification methods and related covariance estimation, we
achieve the same performance as standard PCA on the basis of accelerating computation speed.

5 CONCLUSIONS AND LIMITATION

In this paper, RK (RK-SPAT) estimator converges to an averaged sample estimator without sparsi-
fication at the rate of Op(n

−1/2), and BS (BS-SPAT) estimator converges at the rate of Op(n
−1/2).

We further characterize the uniform weak convergence of the corresponding estimation of eigen-
values and eigenvectors. It is necessary to take spatial factor into account when correlation across
nodes is non-negligible, thus standard approach to averaging sample vectors can lead to high esti-
mation error. And spline interpolation is carried out to avoid the loss of overall data information.
Theoretical results are backed by simulation and application.

A few more issues still merit further research. The AIC selection method works well in practice, but
a stronger theoretical justification for its use is still needed. Our work focuses on the approximation
and estimation, while in recent years, there has been a great deal of work on deriving approximate
distribution, which is crucial for making global inference. It is also worth exploring to extend our
novel sparsification methodology to functional regression model and large-scale longitudinal model,
which is expected to find more applications in various scientific fields. Covariance estimation in such
models is a significant challenge and requires more in-depth investigation.
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A DECOMPOSITION

For estimation in FIXED-SPARSIFICATION method, we define the design matrix for B-spline regres-
sion as

B = {B(1/d), . . . ,B(d/d)}⊤ =

 B1,p(1/d) · · · BJs+p,p(1/d)
... · · ·

...
B1,p(d/d) · · · BJs+p,p(d/d)

 .
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Denote by Vn,p the empirical inner product matrix of B-spline basis {Bℓ,p(t)}Js+p
ℓ=1 , i.e.

Vn,p =
{
⟨Bℓ,p, Bℓ′,p⟩d

}Js+p

ℓ,ℓ′=1
= d−1B⊤B.

Denote xi = (xi(1/d), . . . , xi(d/d))
⊤, m = (m(1/d), . . . ,m(d/d))

⊤ and Zi =

(Zi(1/d), . . . , Zi(d/d))
⊤. The form of model (1) ensures that spline estimator hi(·) allows rep-

resentation hi(·) = d−1B(·)⊤V−1
n,pB

⊤xi = m̂(·) + Ẑi(·), where

m̂(·) = d−1B(·)⊤V−1
n,pB

⊤m,

Ẑi(·) = d−1B(·)⊤V−1
n,pB

⊤Zi.

B PROOF OF THEOREM 1

According to the definition of Ĝ and Ḡ, the MSE can be computed as

E∥Ĝ− Ḡ∥2 =

d∑
j,j′=1

E

(
∥ 1
n

(
d

Js

)2 n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
− 1

n

n∑
i=1

(xij − m̄j) (xij′ − m̄j′) ∥2
)

Now, as E
(

d
Js
hij

)
= xij and E

(
d
Js
hij′
)
= xij′ , it holds that

1

n2

n∑
i=1

E

((
d

Js

)2 (
hij − h̄j

) (
hij′ − h̄j′

)
− (xij − m̄j) (xij′ − m̄j′)

)2

=
1

n2

n∑
i=1

E

((
d

Js

)2 (
hij − h̄j

) (
hij′ − h̄j′

))2

− E ((xij − m̄j) (xij′ − m̄j′))
2


where h̄j stands for the j-th element of the d-dimensional vector h̄. Since hij = xij with probability
Js/d and hij = 0 with probability 1− Js/d, therefore

E

((
d

Js

)2 (
hij − h̄j

) (
hij′ − h̄j′

))2

=

(
d

Js

)4

E
((
hij − h̄j

) (
hij′ − h̄j′

))2
=

(
d

Js

)2

E ((xij − m̄j) (xij′ − m̄j′))
2

Since elements in each vector are assumed to be generated independently for RANDOM-
SPARSIFICATION, that is xij is independence of xij′ , 1 ≤ i ≤ n, j ̸= j′. Hence,

E∥Ĝ− Ḡ∥2 =
1

n2

((
d

Js

)2

− 1

)
n∑

i=1

d∑
j,j′=1

E ((xij − m̄j) (xij′ − m̄j′))
2

=
1

n2

((
d

Js

)2

− 1

)
n∑

i=1

E

 d∑
j=1

(xij − m̄j)
2

d∑
j′=1

(xij′ − m̄j′)
2


=

1

n2

((
d

Js

)2

− 1

)
R1

where R1 =
∑n

i=1 ∥xi − m̄∥4.

Moreover, according to Assumption 6,

n−1

((
d

Js

)2

− 1

)
≍ d−θ

(
d

dγCd

)2

→ 0.

The boundedR1 further tells that E∥Ĝ−Ḡ∥2 = O(n−1), and consequently ∥Ĝ−Ḡ∥ = Op(n
−1/2).
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C PROOF OF PROPOSITION 1

The trick is to introduce the random variable ξij to aid in the computation of conditional
expectations EMj |Mj≥1 (·). Let ξij be an indicator random variable which takes value in
{0, 1}, depending on whether hij = xij or not for 1 ≤ i ≤ n, 1 ≤ j ≤ d, lead-
ing to EMj |Mj≥1,Mj′≥1 (·) = EMj |ξij=1,ξij′=1 (·), EMj |Mj=0,Mj′≥1 (·) = EMj |ξij=0,ξij′=1 (·),
EMj |Mj=0,Mj′=0 (·) = EMj |ξij=0,ξij′=0 (·). Event {ξij = 1, ξij′ = 1} happens with prob-

ability
(
Js

d

)2
, event {ξij = 0, ξij′ = 1} happens with probability

(
Js

d

) (
1− Js

d

)
and event

{ξij = 0, ξij′ = 0} happens with probability
(
1− Js

d

)2
.

Case 1: With probability
(
1− Js

d

)2
, event {ξij = 0, ξij′ = 0} holds, which implies hij = 0 and

hij′ = 0. Therefore,

EMj ,Mj′ |ξij=0,ξij′=0

(
β̄2
(
hij − h̄j

) (
hij′ − h̄j′

)
T (Mj)T (Mj′)

)

=EMj |ξij=0

(
β̄
(
hij − h̄j

)
T (Mj)

)
EMj′ |ξij′=0

(
β̄
(
hij′ − h̄j′

)
T (Mj′)

)
= 0.

Case 2: With probability
(
Js

d

) (
1− Js

d

)
, event {ξij = 0, ξij′ = 1} holds, which implies hij = 0

and hij′ = xij′ . Still we have

EMj ,Mj′ |ξij=0,ξij′=1

(
β̄2
(
hij − h̄j

) (
hij′ − h̄j′

)
T (Mj)T (Mj′)

)
= 0.

Case 3: With probability
(
Js

d

)2
, event {ξij = 1, ξ′ = 1} holds, which implies hij = xij and hij′ =

xij′ . Therefore,

EMj ,Mj′ |ξij=1,ξij′=1

(
β̄2
(
hij − h̄j

) (
hij′ − h̄j′

)
T (Mj)T (Mj′)

)

=EMj ,Mj′ |Mj≥1,Mj′≥1

(
β̄2
(
hij − h̄j

) (
hij′ − h̄j′

)
T (Mj)T (Mj′)

)

=β̄2 (xij − m̄j) (xij′ − m̄j′)EMj ,Mj′ |Mj≥1,Mj′≥1

(
1

T (Mj)T (Mj′)

)
.

A crucial observation is that ξij = 1 only implies Mj ≥ 1 and does not give any other information
about Mj . Taking expectation with respect to ξij we have,

Eξij ,ξij′EMj ,Mj′ |ξij ,ξij′

(
β̄2
(
hij − h̄j

) (
hij′ − h̄j′

)
T (Mj)T (Mj′)

)

=

(
Js
d

)2

β̄2 (xij − m̄j) (xij′ − m̄j′)EMj ,Mj′ |Mj≥1,Mj′≥1

(
1

T (Mj)T (Mj′)

)
=(xij − m̄j) (xij′ − m̄j′) .

This proves Proposition 1.
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D PROOF OF THEOREM 2

According to the definition, the (j, j′)-th element of ĜSPAT is

ĜSPAT
jj′ =

1

n

(
d

Js

)2

(
EMj |Mj≥1

(
1

T (Mj)

)
EMj′ |Mj′≥1

(
1

T(Mj′)

))−1

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
=
1

n

β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
MSE can be computed as

E∥ĜSPAT − Ḡ∥2 =

d∑
j,j′=1

E
(
ĜSPAT

jj′ − Ḡjj′

)2

=

d∑
j,j′=1

E

(
1

n

β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
− 1

n

n∑
i=1

(xij − m̄j) (xij′ − m̄j′)

)2

(5)

As the estimator is designed to be unbiased, i.e.,

E

(
1

n

β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

))
=

1

n

n∑
i=1

(xij − m̄j) (xij′ − m̄j′) ,

it holds that

E

(
1

n

β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
− 1

n

n∑
i=1

(xij − m̄j) (xij′ − m̄j′)

)2

=
1

n2
E

(
β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

))2

− 1

n2

(
n∑

i=1

(xij − m̄j) (xij′ − m̄j′)

)2

(6)

We now analyze the first term above.

E

(
β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

))2

=

n∑
i=1

β̄4E

((
hij − h̄j

)2 (
hij′ − h̄j′

)2
T (Mj)

2
T (Mj′)

2

)

+ 2

n∑
i=1

n∑
k=i+1

β̄4E

((
hij − h̄j

) (
hkj − h̄j

) (
hij′ − h̄j′

) (
hkj′ − h̄j′

)
T (Mj)

2
T (Mj′)

2

)
. (7)

Note that the expectation is taken over the randomness in hij as well as T (Mj). Further,

β̄4 (hij−h̄j)
2
(hij′−h̄j′)

2

T (Mj)
2T(Mj′)

2 is non-zero only when a node i samples coordinate j and j′, i.e., hij = xij

and hij′ = xij′ . This implies that Mj ≥ 1 and Mj′ ≥ 1. Therefore, by the law of total expectation,
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we have

β̄4E

((
hij − h̄j

)2 (
hij′ − h̄j′

)2
T (Mj)

2
T (Mj′)

2

)

=β̄4EMj |Mj≥1

(
Js (xij − m̄j)

2

dT (Mj)
2

)
EMj′ |Mj′≥1

(
Js (xij′ − m̄j′)

2

dT (Mj′)
2

)

=

β̄4
n∑

r,r′=1

Js
dT (r)2

Js
dT (r′)2

(
n− 1

r − 1

)(
n− 1

r′ − 1

)(
Js
d

)r+r′−2(
1− Js

d

)2n−r−r′


× (xij − m̄j)
2
(xij′ − m̄j′)

2

=

(
d

Js
+ c1

)2

(xij − m̄j)
2
(xij′ − m̄j′)

2 (8)

where c1 is defined in Theorem 2.

Following a similar argument as above, note that (
hij−h̄j)(hkj−h̄j)(hij′−h̄j′)(hkj′−h̄j′)

T (Mj)
2T(Mj′)

2 is non-zero

only when nodes i and k sample coordinate j and j′, i.e., hij = xij , hkj = xkj , hij′ = xij′ ,
hkj′ = xkj′ . This implies that Mj ≥ 2 and Mj′ ≥ 2. Therefore, by the law of total expectation, we
have

β̄4E

((
hij − h̄j

) (
hkj − h̄j

) (
hij′ − h̄j′

) (
hkj′ − h̄j′

)
T (Mj)

2
T (Mj′)

2

)

=β̄4EMj |Mj≥2

(
Js (xij − m̄j) (xkj − m̄j)

dT (Mj)
2

)
EMj′ |Mj′≥2

(
Js (xij′ − m̄j′) (xkj′ − m̄j′)

dT (Mj′)
2

)

=

β̄4
n∑

r,r′=2

Js

dT (r′)
2

J2
s

d2T (r′)
2

(
n− 2

r − 2

)(
n− 2

r′ − 2

)(
J2
s

d2

)r+r′−4(
1− Js

d

)2n−r−r′


× (xij − m̄j) (xkj − m̄j) (xij′ − m̄j′) (xkj′ − m̄j′)

= (1− c2)
2
(xij − m̄j) (xkj − m̄j) (xij′ − m̄j′) (xkj′ − m̄j′) (9)

where c2 is defined in Theorem 2. Substituting (8) and (9) into (7), we get

E

(
β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

))2

=

(
d

Js
+ c1

)2 n∑
i=1

(xij − m̄j)
2
(xij′ − m̄j′)

2

+ (1− c2)
2

n∑
i=1

n∑
k=i+1

(xij − m̄j) (xkj − m̄j) (xij′ − m̄j′) (xkj′ − m̄j′) (10)

Now, substituting (10) into (6), we get

E

(
1

n

β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
− 1

n

n∑
i=1

(xij − m̄j) (xij′ − m̄j′)

)2

=
1

n2

((
d

Js
+ c1

)2

− 1

)
n∑

i=1

(xij − m̄j)
2
(xij′ − m̄j′)

2

+
1

n2

(
(1− c2)

2 − 1
) n∑

i=1

n∑
k=i+1

(xij − m̄j) (xkj − m̄j) (xij′ − m̄j′) (xkj′ − m̄j′) (11)
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Finally substituting (11) into (5) we get,

E∥ĜSPAT − Ḡ∥2 =
1

n2

((
d

Js
+ c1

)2

− 1

)
R1 +

1

n2

(
(1− c2)

2 − 1
)
R2

where R1 =
∑n

i=1 ∥xi − m̄∥4 and R2 = 2
∑n

i

∑n
k=i+1

〈
(xi − m̄)

2
, (xk − m̄)

2
〉

.

Moreover, according to Assumption 6 and the boundness of c1,

n−1

((
d

Js
+ c1

)2

− 1

)
≍ d−θ

(
d

dγCd

)2

+ d−θ

(
d

dγCd

)
→ 0.

The bounded R1 further tells that n−2

((
d
Js

+ c1

)2
− 1

)
R1 = O(n−1). The bounded c2 and R2

assure that n−2
(
(1− c2)

2 − 1
)
R2 = O(n−2). Therefore, E∥ĜSPAT − Ḡ∥2 = O(n−1) and thus

∥ĜSPAT − Ḡ∥ = Op(n
−1/2).

E PROOF OF THEOREM 3

Note that c1 and c2 are completely determined by the original data, while R1 and R2 are depen-
dent on function T (·). Observing the result in Theorem 2, the only term that depends on T (·) is(

d
Js

+ c1

)2
R1+(1− c2)

2
R2 since these terms contain c1 and c2, which are computed from T (·).

Thus to find the function T ∗(·) that minimizes the MSE, we just need to minimize this term.

From the definitions of c1 and c2 in Theorem 2, we can obtain the following expression for T ∗(·)

T ∗(r) = argmin
T

β̄4

(
n∑

r=1

Js
dT (r)2

(
n− 1

r − 1

)(
Js
d

)r−1(
1− Js

d

)n−r
)2

+
R2

R1
β̄4

(
n∑

r=2

J2
s

d2T (r)2

(
n− 2

r − 2

)(
Js
d

)r−2(
1− Js

d

)n−r
)2
 . (12)

We claim that T ∗ (r) =

(
1 + R2

R1

(
r−1
n−1

)2)1/2

is an optimal solution for our objective defined in

(12). To see this, consider the following cases,

Case 1: p = 0 or p = 1. In this case c1 and c2 are independent of T (·) and hence our objective does
not depend on the choice of T (·).
Case 2: 0 < p < 1, we define

w∗ = argmin
w

w⊤Aw

(b⊤w)
2 , (13)

where w is a n-dimensional vector whose r-th entry is wr = 1/T (r)2, b is a vector whose r-th
entry is

br =

((
n− 1

r − 1

)
pr−1(1− p)n−r

)2

where p = Js

d , and A is a diagonal matrix whose r-th diagonal entry is

Arr =

((
n− 1

r − 1

)
pr−1(1− p)n−r

)2

+
R2

R1

(
p

(
n− 2

r − 2

)
pr−2(1− p)n−r

)2

= br

(
1 +

R2

R1

(
r − 1

n− 1

)2
)
.
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Note that Arr > 0 for all r ∈ {1, 2, . . . , n} which implies that w → A1/2w is a one-to-one
mapping. Therefore setting z = A1/2w, the objective in (13) reduces to

z∗ = argmin
z

∥z∥2(
b⊤A−1/2z

)2 (14)

Observe that the objectives (13) and (14) are invariant to the scale of T (·), w and z respectively and
thus the solutions will be unique up to a scaling factor. Therefore, in the case of (14), it is sufficient
to solve the reduced objective,

z∗ = argmin
z,∥z∥=1

∥z∥2(
b⊤A−1/2z

)2 = argmin
z,∥z∥=1

1(
b⊤A−1/2z

)2
which is minimized by z∗ = A−1/2b

∥A−1/2b∥ . Therefore, the optimal solution (up to a constant) is w∗ =

A−1/2
(
A−1/2b

)
. Correspondingly, we conclude that

T ∗(r) = (w∗
r)

−1/2
=

(
Arr

br

)1/2

=

(
1 +

R2

R1

(
r − 1

n− 1

)2
)1/2

.

minimizes (12), and consequently minimizes the MSE of the RK-SPAT estimator.

F PROOF OF THEOREM 4

PROOF OF (I) We first provide several technical lemmas.
Lemma 1. Let Wi ∼ N

(
0, σ2

i

)
, σi > 0, i ∈ {1, 2, . . . , n}, then for n > 2, a > 2,

P
(

max
1≤i≤n

|Wi/σi| > a
√
log n

)
<

√
2

π
n1−a2/2.

Hence, (max1≤i≤n |Wi|) / (max1≤i≤n σi) ≤ max1≤i≤n |Wi/σi| = Oa.s.(
√
log n).

PROOF. Note that for n > 2, a > 2,

P
(

max
1≤i≤n

∣∣∣∣Wi

σi

∣∣∣∣ > a
√
log n

)
≤

n∑
i=1

P
(∣∣∣∣Wi

σi

∣∣∣∣ > a
√
log n

)

≤2n{1− Φ(a
√
log n)} < 2n

ϕ(a
√
log n)

a
√
log n

≤ 2nϕ(a
√

log n) =

√
2

π
n1−a2/2

where ϕ(x) denotes standard probability density function at x and Φ(x) denotes the corresponding
cumulative distribution function. Lemma 1 follows by applying Borel-Cantelli lemma.
Lemma 2. As n→ ∞, we have

max
1≤i≤n

∥hi − xi∥∞ = Oa.s.

{
J−p∗

s (n log n)2/r0
}
= Oa.s.

(
n−1/2

)
.

PROOF. The trajectory xi(t) can be written as xi(t) = m(t) +
∑∞

k=1 ξikϕk(t). Denote ϕk =

(ϕk(1/d), . . . , ϕk(d/d))
⊤, and let ϕ̂k(t) = d−1B(t)⊤V−1

n,pB
⊤ϕk be the B-spline smoothing of

ϕk(t). The linearity of spline smoothing implies that

hi(t)− xi(t) = m̂(t)−m(t) +

∞∑
k=1

ξik

{
ϕ̂k(t)− ϕk(t)

}
.

Lemma A.4 in Cao et al. (2012) assures there exists a constant Cq,µ > 0, such that

∥m̂−m∥∞ ≤ Cq,µ∥m∥q,µJ−p∗

s , (15)∥∥∥ϕ̂k − ϕk

∥∥∥
∞

≤ Cq,µ ∥ϕk∥q,µ J
−p∗

s , k ≥ 1 (16)
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Thus, with norm inequality, we have

∥hi − xi∥∞ ≤ ∥m̂−m∥∞ +

∞∑
k=1

|ξik|
∥∥∥ϕ̂k − ϕk

∥∥∥
∞

≤ Cq,µWiJ
−p∗

s

whereWi = ∥m∥q,µ+
∑∞

k=1 |ξik| ∥ϕk∥q,µ are i.i.d. nonnegative random variables. W r0
i has a finite

absolute moment and we have

P
{

max
1≤i≤n

Wi > (n log n)2/r0
}

≤ n
EW r0

i

(n log n)2
= EW r0

i (n log n)−2

which implies

∞∑
n=1

P
{

max
1≤i≤n

Wi > (n log n)2/r0
}

≤ EW r0
i

∞∑
n=1

(n log n)−2 < +∞

According to Borel Cantelli lemma, we conclude that max1≤i≤nWi = Oa.s.

{
(n log n)2/r0

}
,

which together with (15) and (16), prove the result

max
1≤i≤n

∥hi − xi∥∞ = Oa.s.

{
J−p∗

s (n log n)2/r0
}

Moreover, Assumption 6 assures that

n1/2J−p∗

s (n log n)2/r0 ≍ dθ/2 (dγCd)
−p∗ (

dθ log dθ
)2/r0

= dθ/2−γp∗+2θ/r0O (log d) → 0 (17)

Therefore, max1≤i≤n ∥hi − xi∥∞ = Oa.s.

(
n−1/2

)
. According to the definition of m̂(·) and m̄(·),

m̂(·) − m̄(·) can be decomposed as m̂(·) − m̄(·) = n−1
∑n

i=1 {hi(·)− xi(·)}. Lemma 2 further
tells that

sup
t∈[0,1]

n1/2|m̂(t)− m̄(t)| ≤ n1/2 max
1≤i≤n

∥hi − xi∥∞ = oa.s. (1).

Hence, ∥m̂− m̄∥∞ = Oa.s.

(
n−1/2

)
is proved where m̂ is a BS estimator.

Denote by Ẑi(·) = hi(·)− m̂(·) and Z̄i(·) = xi(·)− m̄(·), we further obtain the following lemmas.

Lemma 3. As n→ ∞

max
1≤i≤n

∥∥∥Ẑi − Zi

∥∥∥
∞

= Oa.s.

{
J−p∗

s (n log n)2/r0
}
.

PROOF. Denote ϕ̂k(x) = d−1B(x)⊤V−1
n,pB

⊤ϕk and Ẑi(t) =
∑∞

k=1 ξikϕ̂k(t) for k ∈ N+,

Ẑi(t)− Zi(t) =

∞∑
k=1

ξik

{
ϕ̂k(t)− ϕk(t)

}
.

From (16) and Assumption 5,
∥∥∥Ẑi − Zi

∥∥∥
∞

≤
∑∞

k=1 |ξik|
∥∥∥ϕ̂k − ϕk

∥∥∥
∞

≤ CWiJ
−p∗

s , whereWi =∑∞
k=1 |ξik| ∥ϕk∥q,µ, are i.i.d nonnegative random variables with finite absolute moment. Then

P
{

max
1≤i≤n

Wi > (n log n)2/r0
}

≤ n
EW r0

i

(n log n)2
= EW r0

i n−1(log n)−2,

thus,
∞∑

n=1

P
{

max
1≤i≤n

Wi > (n log n)2/r0
}

≤ EW r0
i

∞∑
n=1

n−1(log n)−2 < +∞,

so Lemma 1 tells max1≤i≤nWi = Oa.s.
{
(n log n)2/r0

}
. Lemma 3 is then obtained.
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Next we compute the convergence rate of BS covariance estimators. For any t, t′ ∈ [0, 1], we
decompose Ĝ (t, t′)− Ḡ (t, t′) into three parts

Ĝ (t, t′)− Ḡ (t, t′) =n−1
n∑

i=1

Ẑi(t)Ẑi (t
′)− n−1

n∑
i=1

Z̄i(t)Z̄i (t
′)

=n−1
n∑

i=1

(
Ẑi(t)− Z̄i(t)

)(
Ẑi (t

′)− Z̄i (t
′)
)
+ n−1

n∑
i=1

Z̄i (t
′)
(
Ẑi(t)− Z̄i(t)

)
+ n−1

n∑
i=1

Z̄i(t)
(
Ẑi (t

′)− Z̄i (t
′)
)

(18)

According to decomposition of {hi}ni=1 and {xi}ni=1, that is hi(t) = Ẑi(t) + m̂(t) and xi(t) =

Zi(t) + m(t), we get hi(t) − xi(t) = Ẑi(t) − Zi(t) + m̂(t) − m(t). Noting that m̂(t) =

n−1
∑n

i′=1 hi′(t) and m̄(t) = n−1
∑n

i′=1 xi′(t), then Ẑi(t)− Z̄i(t) can be represented by

Ẑi(t)− Z̄i(t) = hi(t)− m̂(t)−

{
(xi(t)−m(t))− n−1

n∑
i=1

(xi(t)−m(t))

}

= hi(t)− n−1
n∑

i′=1

hi′(t)−

{
xi(t)− n−1

n∑
i′=1

xi′(t)

}

= hi(t)− xi(t)− n−1
n∑

i′=1

{hi′(t)− xi′(t)} .

Therefore, we obtain that Ẑi(t)− Z̄i(t) = Ẑi(t)− Zi(t)− n−1
∑n

i′=1

{
Ẑi′(t)− Zi′(t)

}
. Hence,

n−1
n∑

i=1

(
Ẑi(t)− Z̄i(t)

)(
Ẑi (t

′)− Z̄i (t
′)
)

=n−1
n∑

i=1

(
Ẑi(t)− Zi(t)

)(
Ẑi (t

′)− Zi (t
′)
)
− n−1

n∑
i=1

(
Ẑi(t)− Zi(t)

)
n−1

n∑
i=1

(
Ẑi (t

′)− Zi (t
′)
)
.

According to Lemma 3, it is easy to obtain that

n−1
n∑

i=1

(
Ẑi(t)− Zi(t)

)
≤ max

1≤i≤n

∥∥∥Ẑi − Zi

∥∥∥
∞

= Oa.s.

{
J−p∗

s (n log n)2/r0
}
= Oa.s.

(
n−1/2

)
where the last equation holds for (17). And

n−1
n∑

i=1

(
Ẑi(t)− Zi(t)

)(
Ẑi (t

′)− Zi (t
′)
)

≤
(

max
1≤i≤n

∥∥∥Ẑi − Zi

∥∥∥
∞

)2

= Oa.s.

{
J−2p∗

s (n log n)4/r0
}
= Oa.s.

(
n−1/2

)
.

where the last equation follows from Assumption 6, as d→ ∞,

n1/2J−2p∗

s (n log n)4/r0 ≍ dθ/2 (dγCd)
−2p∗

(dθ log dθ)4/r0 = dθ/2−2γp∗+4θ/r0O(log d) → 0

Hence,

sup
t,t′∈[0,1]

∣∣∣∣∣n−1
n∑

i=1

(
Ẑi(t)− Z̄i(t)

)(
Ẑi (t

′)− Z̄i (t
′)
)∣∣∣∣∣ = Oa.s.

(
n−1/2

)
. (19)
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Moreover,

n−1
n∑

i=1

Z̄i (t
′)
(
Ẑi(t)− Z̄i(t)

)
=n−1

n∑
i=1

{
Zi (t

′} − n−1
n∑

i′=1

Zi′ (t
′)

}{
Ẑi(t)− Zi(t)− n−1

n∑
i′=1

(
Ẑi′(t)− Zi′(t)

)}

=n−1
n∑

i=1

Zi (t
′)
(
Ẑi(t)− Zi(t)

)
− n−2

n∑
i=1

Zi (t
′)

n∑
i′=1

(
Ẑi′(t)− Zi′ (t)

)
. (20)

Noting that
∥∥n−1

∑n
i=1 Zi

∥∥
∞ = Op(1) since E

∣∣n−1
∑n

i=1 Zi (t)
∣∣ ≤ ∑∞

k=1 ∥ϕk∥∞ E
∣∣ξ̄·k∣∣ < ∞

where ξ̄·k = 1
n

∑n
i=1 ξik. Then we have

∣∣∣∣∣n−2
n∑

i=1

Zi (t
′)

n∑
i′=1

(
Ẑi′(t)− Zi′ (t)

)∣∣∣∣∣ ≤ max
1≤i′≤n

∥∥∥Ẑi′ − Zi′

∥∥∥
∞

∥∥∥∥∥n−1
n∑

i=1

Zi

∥∥∥∥∥
∞

= Op

(
n−1/2

)
∣∣∣∣∣n−1

n∑
i=1

Zi (t
′)
(
Ẑi(t)− Zi(t)

)∣∣∣∣∣ ≤ max
1≤i≤n

∥∥∥Ẑi − Zi

∥∥∥
∞

∥∥∥∥∥n−1
n∑

i=1

Zi

∥∥∥∥∥
∞

= Op

(
n−1/2

)
(21)

Substituting (21) into (20), we conclude that

sup
t,t′∈[0,1]

∣∣∣∣∣n−1
n∑

i=1

Z̄i (t
′)
(
Ẑi(t)− Z̄i(t)

)∣∣∣∣∣ = Op

(
n−1/2

)
. (22)

Similarly, we have

sup
t,t′∈[0,1]

∣∣∣∣∣n−1
n∑

i=1

Z̄i(t)
(
Ẑi (t

′)− Z̄i (t
′)
)∣∣∣∣∣ = Op

(
n−1/2

)
. (23)

Substituting (19), (22) and (23) into (18), we have supt,t′∈[0,1]

∣∣∣Ĝ (t, t′)− Ḡ (t, t′)
∣∣∣ = Op

(
n−1/2

)
.

Then ∥Ĝ− Ḡ∥∞ = Op

(
n−1/2

)
is proved where Ĝ is BS estimator.

PROOF OF (II) Next we prove the conclusion of BS-SPATIAL mean and covariance estimators. The
estimation error of spatial mean can be computed as

∥m̂SPAT − m̄∥∞ = max
1≤j≤d

∥∥∥∥∥ 1n β̄

T (Mj)

n∑
i=1

hij −
1

n

n∑
i=1

xij

∥∥∥∥∥
=
1

n
max
1≤j≤d

∥∥∥∥∥ β̄

T (Mj)

n∑
i=1

hij −
β̄

T (Mj)

n∑
i=1

xij +
β̄

T (Mj)

n∑
i=1

xij −
n∑

i=1

xij

∥∥∥∥∥
≤ β̄

T (Mj)
∥m̂− m̄∥∞ +

(
β̄

T (Mj)
− 1

)
∥m̄∥∞

=Op

(
n−1/2

)
where the last equality holds by noticing that β̄

T (Mj)
→p 1 from the law of large numbers and from

Theorem 4 (i) ∥m̂− m̄∥∞ = Oa.s.

(
n−1/2

)
, m̂ is BS mean estimator.
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The estimation error of spatial covariance can be computed as

∥ĜSPAT − Ḡ∥∞ = max
1≤j,j′≤d

∥∥∥ĜSPAT
jj′ − Ḡjj′

∥∥∥
=
1

n
max

1≤j,j′≤d

∥∥∥∥∥ β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
−

n∑
i=1

(xij − m̄j) (xij′ − m̄j′)

∥∥∥∥∥
≤ 1

n
max

1≤j,j′≤d

∥∥∥∥∥ β̄2

T (Mj)T (Mj′)

n∑
i=1

(
hij − h̄j

) (
hij′ − h̄j′

)
− β̄j β̄j′

T (Mj)T (Mj′)

n∑
i=1

(xij − m̄j) (xij′ − m̄j′)

∥∥∥∥∥
+

1

n
max

1≤j,j′≤d

∥∥∥∥∥ β̄2

T (Mj)T (Mj′)

n∑
i=1

(xij − m̄j) (xij′ − m̄j′)−
n∑

i=1

(xij − m̄j) (xij′ − m̄j′)

∥∥∥∥∥
≤ max

1≤j,j′≤d

β̄2

T (Mj)T (Mj′)

∥∥∥Ĝjj′ − Ḡjj′

∥∥∥+ max
1≤j,j′≤d

(
β̄2

T (Mj)T (Mj′)
− 1

)∥∥Ḡjj′
∥∥

≤Op (1)
∥∥∥Ĝ− Ḡ|

∥∥∥
∞

+ Op

(
n−1/2

)∥∥Ḡ∥∥∞
=Op

(
n−1/2

)
where the last equality holds by noticing that β̄2

T (Mj)T(Mj′)
→p 1 from the law of large numbers and

from Theorem 4 (i)
∥∥∥Ĝ− Ḡ

∥∥∥
∞

= Op

(
n−1/2

)
, Ĝ is BS covariance estimator.

G PROOF OF THEOREM 5

PROOF OF (I) The proposed RK and RK-SPAT covariance estimators follows
∥∥∥Ĝ− Ḡ

∥∥∥ =

Op(n
−1/2) and the proposed BS and BS-SPAT covariance estimators follows

∥∥∥Ĝ− Ḡ
∥∥∥
∞

=

Op(n
−1/2). Consequently, the result

∥∥∥Ĝ− Ḡ
∥∥∥ = Op(n

−1/2) holds for all four estimators. More-

over, it is easy to obtain that
∥∥Ḡ−G

∥∥ = Op(n
−1/2) whereG is the true covariance estimator which

is usually unknown in application. In sum,∥∥∥Ĝ−G
∥∥∥ ≤

∥∥∥Ĝ− Ḡ
∥∥∥+ ∥∥Ḡ−G

∥∥ = Op(n
−1/2).

It is worth noticing that although although the BS and BS-SPAT estimators enjoys smaller conver-
gence rate,

∥∥∥Ĝ−G
∥∥∥ still converge at the rate of Op(n

−1/2) since
∥∥Ḡ−G

∥∥ is the dominant term.

Denote ∆ψk(t) =
∫
(Ĝ − G) (t, t′)ψk (t

′) dt′. Based on the result that ∥Ĝ − G∥ = Op

(
n−1/2

)
,

we have ∥∆ψk∥ = Op

(
n−1/2

)
for any k ≥ 1. Let

∥∆∥ =

{∫∫ (
Ĝ (t, t′)−G (t, t′)

)2
dtdt′

}1/2

= Op

(
n−1/2

)
,

then according to Hall et al. (2006), we have

ψ̂k − ψk =
∑
j:j ̸=k

(λk − λj)
−1 ⟨∆ψk, ψj⟩ψj +O

(
∥∆∥22

)
.

It follows from Bessel’s inequality that∥∥∥ψ̂k − ψk

∥∥∥ ≤ C
(
∥∆ψk∥+O

(
∥∆∥22

))
= Op

(
n−1/2

)
.

Hence, we obtain that
∥∥∥ψ̂k − ψk

∥∥∥ = Op

(
n−1/2

)
.

PROOF OF (II) By (2.9) in Hall et al. (2006) and ∥Ĝ−G∥ = Op

(
n−1/2

)
, we obtain that

λ̂k − λk =

∫∫ (
Ĝ−G

)
(t, t′)ψk (t)ψk (t

′) dtdt′ +O
(
∥∆ψk∥22

)
= Op

(
n−1/2

)
.
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Hence,
∣∣∣λ̂k − λk

∣∣∣ = Op

(
n−1/2

)
is proved.

PROOF OF (III) According to
∫
{xi (t)−m (t)}ϕk (t) dx = λkξik, we have

ξik = λ
−1/2
k

∫
{xi (t)−m (t)}ψk (t) dx.

Similarly, ξ̂ik = λ̂
−1/2
k

∫
{hi (t)− m̂ (t)} ψ̂k (t) dt.

For 1 ≤ i ≤ n, ξ̂ik − ξik can be divided into two parts ξ̂ik − ξik = R1 +R2 where

R1 = λ̂
−1/2
k

∫
{hi (t)− m̂ (t)} ψ̂k (t) dt− λ̂

−1/2
k

∫
{xi (t)−m (t)}ψk (t) dt

R2 = λ̂
−1/2
k

∫
{xi (t)−m (t)}ψk (t) dx− λ

−1/2
k

∫
{xi (t)−m (t)}ψk (t) dt

We assume that for k ∈ N, λk > 0, λ̂k > 0. Moreover, according to the fact that ∥hi − xi∥ =

Op

(
n−1/2

)
,
∥∥∥ψ̂k − ψk

∥∥∥ = Op

(
n−1/2

)
and

∥m̂−m∥ ≤ ∥m̂− m̄∥+ ∥m̄−m∥ = Op

(
n−1/2

)
,

we obtain

R1 =λ̂
−1/2
k

∫
{hi (t)− m̂ (t)}

{
ψ̂k (t)− ψk (t)

}
dt+ λ̂

−1/2
k

∫
{hi (t)− m̂ (t)}ψk (t) dt

− λ̂
−1/2
k

∫
{xi (t)−m (t)}ψk (t) dt

=λ̂
−1/2
k

∫
{hi (t)− m̂ (t)}

{
ψ̂k (t)− ψk (t)

}
dt

+ λ̂
−1/2
k

∫
{hi (t)− m̂ (t)− xi (t) +m (t)}ψk (t) dt

≤λ̂−1/2
k ∥xi −m∥

∥∥∥ψ̂k − ψk

∥∥∥+ λ̂
−1/2
k (∥hi − xi∥+ ∥m̂−m∥) ∥ψk∥

=Op

(
n−1/2

)
.

Through first order Taylor expansion of λ̂k at λk, it is easy to obtain that λ̂−1/2
k = λ

−1/2
k −

(1/2)λ
−3/2
k

(
λ̂k − λk

)
+ O

(∣∣∣λ̂k − λk

∣∣∣). Hence,
∣∣∣λ̂k − λk

∣∣∣ = Op

(
n−1/2

)
ensures that∣∣∣λ̂−1/2

k − λ
−1/2
k

∣∣∣ = Op

(
n−1/2

)
. Consequently,

R2 =
(
λ̂
−1/2
k − λ

−1/2
k

)∫
{xi (t)−m (t)}ψk (t) dt

≤
∣∣∣λ̂−1/2

k − λ
−1/2
k

∣∣∣ ∥xi −m∥ ∥ψk∥ = Op

(
n−1/2

)
.

where ∥xi −m∥ = Op(1). Therefore,

max
1≤i≤n

∥∥∥ξ̂ik − ξik

∥∥∥ = max
1≤i≤n

(∥R1∥+ ∥R2∥) = Op

(
n−1/2

)
.

H MORE NUMERICAL STUDY

To visualize covariance function of functional data generated from model (4) in simulation study,
Figure 4 shows the true covariance function, the sample averaged covariance estimator using orig-
inal data without sparsification, and four proposed covariance estimator generated from sparsified
vectors. The deviation of RK and RK-SPAT estimators is large on the diagonal t = t′ and the
smoothness of the surfaces are poor. The accuracy of BS estimator is significantly improved, with
only slight deviation at the boundary points. On the basis of RK estimator, RK-SPAT estimator
further considers the spatial factor, such that the estimation accuracy of boundary points is improved
but the smoothness of the surface is sacrificed to some extent.
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(a) G (t, t′) (b) Ḡ (t, t′)

(c) Random-knots Ĝ (t, t′) (d) Random-knots-Spatial Ĝ (t, t′)

(e) B-spline Ĝ (t, t′) (f) Bspline-Spatial Ĝ (t, t′)

Figure 4: Plots of true covariance, averaged covariance and four different covariance estimators.
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