
To appear at the ICLR 2024 Workshop on Representational Alignment (Re-Align)

CAN FOUNDATION MODELS SMELL LIKE HUMANS?

Farzaneh Taleb, Miguel Vasco, Nona Rajabi, Mårten Björkman, Danica Kragic
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ABSTRACT

The human brain encodes stimuli from the environment into representations that
form a sensory perception of the world. Despite recent advances in understanding
visual and auditory perception, olfaction remains an under-explored topic in the
machine learning community due to the lack of large-scale datasets annotated with
labels related to human olfactory perception. Simultaneously, foundation models
have recently demonstrated impressive performance in several tasks by leveraging
large-scale datasets without a supervision signal. In this work, we ask the question
of whether foundation models of chemical structures encode representations that
are aligned with the human olfactory perception, i.e., can foundation models smell
like humans? We demonstrate that representations encoded from foundation models
pre-trained on general chemical structures are highly aligned with human olfactory
perception.

1 INTRODUCTION

The human brain receives stimuli from the environment and encodes them into a high-dimensional
representation space that forms a sensory perception of the world (Damasio, 1989; Meyer & Damasio,
2009). Sensory modalities such as visual and auditory perception have been extensively explored by
both neuroscience and machine learning communities (Sucholutsky et al., 2023; Brohan et al., 2023;
Du et al., 2022; Ganis et al., 2004; Friederici, 2012). Findings of such studies highlight a significant
level of correlation between human response (from neuron to behavior) and activations of deep neural
networks when provided with the same stimuli (Oota et al., 2023; Tang et al., 2023; Dong & Toneva,
2023).

Despite recent advances in understanding visual and auditory perception, human olfaction remains an
under-explored topic, regardless of its significant importance in many aspects Iravani et al. (2022);
Olsson et al. (2014); Gerkin et al. (2021); Parma et al. (2020). There is no single organizing principle
that determines the dimensions of odor space, making the characterization of odor perception and
its relation to chemical compounds an open and complex problem (Pannunzi & Nowotny, 2019).
Additionally, due to the lack of a universally accepted method to describe odorants either quantitatively
or qualitatively, researchers can only rely on the similarity measures (Keller & Vosshall, 2016; Snitz
et al., 2013).

There are very few studies that have explored the mapping of chemical structures to olfactory
perception. Also, processing chemical olfactory stimuli using deep neural networks has not been
extensively investigated. Nevertheless, training the existing models usually requires an extensive
(and non-trivial) effort of labeling data by experts. Foundation models (Bommasani et al., 2021) are
a recent breakthrough, surpassing the need for extensive labeling by utilizing implicit supervision
without the necessity for direct labels. These models have demonstrated impressive performance in
various tasks such as image (Dosovitskiy et al., 2020), video (Tong et al., 2022), and natural language
processing (Brown et al., 2020).

In this paper, we ask the question of whether representations of odorant chemical structures extracted
from foundation models align with human olfactory perception or, in other words, can foundation
models smell like humans? Specifically, we utilize the representations encoded by MoLFormer (Ross
et al., 2022), a state-of-the-art foundation model for chemical structures. To the best of our knowl-
edge, we provide the first empirical study on evaluating the alignment between odorant chemical
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Figure 1: Evaluating the alignment between representations of odorant chemical structures and
representations of human olfactory perception. Left: Human participants are stimulated with two
odorant substances and asked to rate the perceptual similarity between them. Right: We encode
representations of the same odorants using MoLFormer and compute the cosine similarity between
pairs of representations. We compute the Pearson correlation between the two similarity measures to
quantify their alignment.

representations encoded by foundation models and human perception of odorants. In particular, we
show that:

• Representations encoded from foundation models pre-trained on general chemical structures
are highly correlated with human olfactory perception without being explicitly trained for
this purpose;

• Linearly transforming representations extracted from pre-trained foundation models does
not significantly improve their alignment with human olfactory perception;

• The level of alignment between pre-trained models on chemical odorants and human olfac-
tory perception increases for representations extracted from deeper layers of the foundation
model.

2 RELATED WORK

Learning predictive models of olfaction from molecular structures has been addressed mostly by
the neuroscience community. Ravia et al. (2020),Keller et al. (2017), and Snitz et al. (2013) used
standard chemoinformatic representations of molecules to model olfactory perception. Specifically,
Snitz et al. (2013) proposed a computational framework and algorithm based on structural features of
molecules to predict perceptual similarities between odorant pairs. This algorithm leverages feature
engineering to identify the most relevant subset of features among 1433 chemical descriptors to
predict pair-wise odorant perceptual similarities. Later, Ravia et al. (2020) extended this model to
also include the intensity of odorant molecules. They employed 21 physicochemical descriptors
discovered in previous works and proposed a weighting approach for multicomponent odorants
(MC-odorants) based on their perceived intensity. They reported a higher correlation when employing
the weighting approach compared to using the same model without it. However, the representation
and generalization capabilities of these models are quite limited.

Recently, Lee et al. (2022) proposed a novel representation learning model of odorants, based on a
message-passing graph neural network (Gilmer et al., 2017), which they refer to as Principal Odor
Map (POM). To train this model, they curated and merged data from Leffingwell (Leffingwell &
Associates, 2001) and GoodScent (GoodScent) to create a dataset of about 5000 molecules with 138
expert-labeled odor descriptors. This model outperforms the baselines in multiple odor prediction
tasks and shows a relatively high alignment with human ratings in describing odorants. Nevertheless,
training this model requires labeled data, relying on subjective evaluations of numerous odorants by
experts. Besides being time-consuming and laborious, this process can introduce subjective biases
into the model, a concern magnified by our incomplete understanding of the foundational factors
of odorants. Large-scale pre-trained models, often known as foundation models (Bommasani et al.,
2021), have been recently explored to perform diverse tasks by leveraging large amounts of unlabeled
data. The MoLFormer (Ross et al., 2022) model has been proposed in the context of chemical
prediction tasks, able to extract rich representations from chemical structures. MoLFormer consists of
a transformer-based architecture, with linear attention and relative positional encodings. This model
is trained using multiple datasets (e.g., the PubChem (Kim et al., 2019) and ZINC (Irwin & Shoichet,
2005) datasets) on a masked token prediction loss.
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(a) MoLFormer Ross et al. (2022)
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(b) POM Lee et al. (2022)

Figure 2: Visualization of odorant representations encoded by different models on the Leffingwell-
Goodscent dataset. We plot the first and second principal components (PCs) of the representation
spaces. For POM, we replicate the results and use the figure layout of Lee et al. (2022). We highlight
the similarity between the representations encoded by both POM and MoLFormer: areas dense with
molecules that have broad category labels (floral, meaty, or ethereal) are shaded and areas dense with
narrow category labels are outlined. MolFormer is able to capture the perceptual relationship between
different odorants in its representation space, despite not being explicitly trained for such purpose.

In this work, we explore MoLFormer for olfactory perception and address the question of whether
the representations encoded by this foundation model are aligned with human olfactory perception.

3 METHOD

As highlighted in Figure 1, we focus our work on evaluating the alignment between representations of
odorant chemical structures, encoded by foundation models, and representations of human olfactory
perception.

Odorants Representations: Odorants can be described as a single molecule or as a mixture of
molecules with varying intensities, which we denote as multicomponent odorants (MC-odorants). To
represent both types of odorants, we use the simplified molecular-input line-entry system (SMILES),
a string-based representation that encodes relevant chemical information such as the type of atoms,
their bonds and the substructures present in the molecule.

We employ MoLFormer (Ross et al., 2022) to encode SMILES strings associated with a single
molecule and extract a 768-dimensional vector from the last layer of the model. For MC-odorants,
we concatenate the input SMILES strings and directly pass the concatenated string to the model. To
measure the similarity between pairs of molecules we separately encode each SMILES string and
compute the cosine similarity between the extracted representations.

Perceptual Representations: Perceptual representations of odorants are provided by human partici-
pants when exposed to odorant stimuli. Perceptual olfactory data is often collected in two ways: i)
participants are asked to provide ratings in regards to a predefined number of descriptors (Leffingwell
& Associates, 2001; GoodScent; Keller & Vosshall, 2016); ii) participants are asked to evaluate the
perceived similarity between pairs of odorants (Snitz et al., 2013; Ravia et al., 2020).

Alignment Function: To measure the alignment between human olfactory perception and embeddings
extracted from MoLFormer we compute the Pearson correlation between similarity ratings provided
by human participants and cosine similarity between pairs of odorants embeddings.

Evaluation: Our goal is to evaluate whether pre-trained foundation models of chemical structures
encode representations that are aligned with human olfactory perception, despite not being trained
explicitly for that purpose. In particular, we ask the following questions:

1. Are representations of odorants encoded from foundation models aligned with human
olfactory perception? (Section 5.1)

2. Can we improve the alignment between representations of foundation models and human
perception through linear transformations? (Section 5.2)
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Figure 3: Results on the correlation between odorant representations encoded by the MoLFormer
model and human olfactory perception from the Snitz and Ravia datasets: a) Correlation coeffi-
cients for original and linearly transformed representations; b) Correlation coefficients considering
odorant representations extracted from different depths of the MoLFormer model.

3. How does the degree of alignment change as a function of the representation depth in the
foundation model? (Section 5.3)

4 DATASETS

We consider multiple datasets containing odorants associated with labels or perceptual similarity
ratings:

Leffingwell-Goodscent (Leffingwell & Associates, 2001; GoodScent): We employ a curated
and merged version of the Leffingwell-Goodscent datasets, provided by Aryan Amit Barsainyan
(2023), following the procedure introduced by Lee et al. (2022). This dataset contains approximately
5,000 molecules with 138 expert-labeled descriptors, where each odorant may be linked to multiple
descriptors.

Snitz (Snitz et al., 2013): This dataset includes similarity ratings from 139 participants and 359
unique pairs of odorants. Participants rated the perceptual similarity between pairs of odorants. These
ratings were then averaged across all subjects. For more details, please refer to the original work.

Ravia (Ravia et al., 2020): This dataset contains similarity ratings for 94 participants and 195
unique pairs of MC-odorants and mono-molecules. The similarity values were averaged across all
the subjects. In this work, we excluded the factor of intensity of the odorant and aggregated similarity
ratings based on the unique pairs of molecules. For more details, please refer to the original work.

5 RESULTS

We begin in Section 5.1 by quantitatively evaluating the alignment between representations encoded by
the MoLFormer model and human olfactory perception. Additionally, we demonstrate qualitatively
that MoLFormer organizes odorant data similar to that of a supervised learning model trained
explicitly on odorant classes. In Section 5.2, we present quantitative evidence indicating that
traditional probing methods do not significantly alter the alignment level. Lastly, in Section 5.3, we
show that the alignment with perceptual representations increases as we extract representations from
the network’s deeper layers.

5.1 REPRESENTATIONS OF ODORANTS EXTRACTED FROM FOUNDATION MODELS ARE HIGHLY
ALIGNED WITH HUMAN PERCEPTION OF ODORANTS.

We start by evaluating the alignment between the odorant similarities encoded by MoLFormer and
similarity ratings from the Snitz and Ravia datasets. We compute the Pearson correlation between
them and present the results in Figure 3a.
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The results show that the MoLFormer is able to extract representations that encode information
related to the human olfactory perception, despite not having access to that perception during model
training. We highlight a significant high correlation between perceptual and odorant representation
for the Snitz (r = 0.64, p < 0.0001) and Ravia datasets (r = 0.66, p < 0.0001).

We conduct an additional experiment to understand the degree of perceptual detail captured in
the odorant representation space of MoLFormer. We compare odorant representations encoded by
MoLFormer with the representations encoded by POM (Lee et al., 2022), a supervised model for
odorant perception. Figure 2 depicts the first two principal components of the representations. We
observe that MoLFormer is able to capture the perceptual relationship between different odorants in
its representation space, despite not using any perceptual labels as a supervision signal (unlike POM).

5.2 LINEAR PROBING DOES NOT IMPROVE THE ALIGNMENT BETWEEN ODORANT
REPRESENTATIONS OF FOUNDATION MODELS AND HUMAN OLFACTORY PERCEPTION.

Peterson et al. (2018) highlighted that transforming deep representations of visual stimuli using a linear
transformation improves the alignment of model representations with human perceptual data, a method
we refer to as linear probing Alain & Bengio (2016).We analyze the impact of linear transformation on
odorant representations by training a linear classifier with four fully-connected layers on MoLFormer’s
768-dimensional embeddings from the Leffingwell-Goodscent dataset to project them into
a 138-dimensional space, corresponding to the dimensionality of the odorant descriptors of the
Leffingwell-Goodscent. After training the classifier to identify odorant descriptors, we
proceed to extract representations for the Snitz and Ravia datasets from MoLFormer, which are
then processed by the trained classifier. Finally, we extract representations from the penultimate
layer and follow the procedure detail in Section 3 to compute similarities. We present the results in
Figure 3.

The results show that introducing a linear transformation does not affect the correlation coefficient for
Snitz (r = 0.64, p < 0.001) and decreases it for Ravia (r = 0.64, p < 0.001) dataset. In future
work, we plan to investigate whether learning the weights of linear transformations using similarity
ratings (in addition to label data) can further improve the alignment between representations.

5.3 OLFACTORY ALIGNMENT IMPROVES WITH DEPTH IN FOUNDATION MODELS.

Scaling model depth often improves task performance in domains such as computer vision
(Kolesnikov et al., 2020), but it does not necessarily improve alignment with human perceptual
representations (Muttenthaler et al., 2022). We evaluate the effect of model depth in the alignment of
odorant representations with human olfactory perception. We extract representations from increas-
ingly deeper hidden layers in the model and follow the procedure detailed in Section 3. The results
are presented in Figure 3b, highlighting an increase in the correlation coefficient with increased model
depth.

6 CONCLUSION

In this work, we focused on an emergent property of foundation models of general chemical struc-
tures: the ability to encode representations that are aligned with human olfactory perception. We
demonstrated that odorant representations encoded by the MoLFormer model are highly aligned with
human olfactory perception. Furthermore, we have shown the effect of linear transformations and
network depth on the level of this alignment. We plan on exploring further emergent properties of
foundation models of chemical data and human olfactory data, in particular the alignment of odorant
representations with recorded data from the brain, such as fMRI.
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