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Abstract

In practical applications like autonomous robots, we often
need to solve similar problems repeatedly (e.g. replanning).
Existing methods, that improve search performance based on
learning from experience in similar previously solved prob-
lems, train the heuristics by imitating oracle data. However,
such methods rather focus on generating the data with ap-
propriate distribution (e.g. by aggregating data online) rather
than the computational complexity of generating it. Com-
putational complexity becomes especially limiting for high-
dimensional problems. Here, we present a search-inspired
method for systematic model exploration that allows us to ef-
ficiently generate data and use all explored states for learning
the value function — that can then be employed as heuristic.
Our method helps with data distribution as the search typ-
ically explores many more states besides the optimal path.
The coverage can be improved even further with the Pro-
longed Search algorithm, which does not stop when a goal
is reached, but rather keeps the search running until an ex-
tended region around the optimal path is explored. This, in
turn, improves both the efficiency and robustness of succes-
sive planning. To address the negative effects of using an ML
heuristic, we bound it with other heuristics to prevent (signifi-
cant) overestimating the cost-to-go and ensure bounds on op-
timality even for non-iid or out-of-domain data. Our approach
outperforms existing methods on benchmark problems and
shows promising directions for developing efficient and ro-
bust search-based planning systems.

Introduction

Many real-world applications (e.g. autonomous robots, lo-
gistics, etc.) are using search-based planning algorithms.
Considering that most of them require continuous replan-
ning to adapt to dynamic environments, the speed of search
algorithms becomes the major limitation for practical use,
in particular for robots and safety-critical tasks. Therefore,
many solutions end up with a conservative compromise of
having a global-but-slow search-based planner generating a
coarse plan, followed by a fast-but-local optimization-based
planner. Having fast search-based planners would unlock
many capabilities and enable real-time adaptation without
the need for such compromises.

It is well known that the efficiency of search-based plan-
ning (i.e., A* Search (Hart, Nilsson, and Raphael 1968))
largely depends on the quality of the heuristic function for
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Figure 1: State-space explored and data used for learning
in different methods including RL methods (e.g., e-greedy
exploration, SalL. (Bhardwaj, Choudhury, and Scherer 2017)
and PHIL (Pandy et al. 2022), Bootstrapping (Groshev et al.
2018), DeepCube (Agostinelli et al. 2019) and Prolonged
Backward Heuristic Search (PHS).

estimation of the cost-to-go (Helmert, Roger et al. 2008).
Ideally, if we knew the exact cost-to-go (oracle), we could
find the optimal solution with minimum effort (practically
traversing greedy). If the robot constantly operates in simi-
lar environments, learning the cost-to-go function from pre-
vious search experience seems a reasonable approach. That
would be also desirable as planning and learning methods
have complementary strengths. It is an issue for learning ap-
proaches to provide any guarantees on performance, have
safe exploration or learn long-term rewards. In these as-
pects, planning algorithms can provide valuable support.
On the other hand, planning algorithms are rather slow in
high-dimensional spaces which can be improved if planning
is properly guided. The effective synergy of planning and
learning provided exceptional results so far including sem-
inal achievement of super-human performance in the game



of Go (Silver et al. 2017).

Interaction of planning and learning has a long history
(Bellman 1952; Korf 1990; Barto, Bradtke, and Singh 1995),
with several modern directions including End-to-end learn-
ing approximations of planning algorithms (i.e. inspired by
Value Iteration algorithm (Tamar et al. 2016), MCTS (Guez
et al. 2018), MPC (Amos et al. 2018)), planning to guide
exploration in Reinforcement Learning (Weber et al. 2017;
Lowrey et al. 2018) and learning to guide planning (Kim,
Kaelbling, and Lozano-Perez 2017; Bhardwaj, Choudhury,
and Scherer 2017; Zhang, Huh, and Lee 2018; Ichter, Harri-
son, and Pavone 21.05.2018 - 25.05.2018) as well as model
learning and Model-Based Reinforcement Learning in gen-
eral.

(Whitehead 1991), inspired by the idea that RL can be
viewed as an online search where an agent explores un-
known environments instead of a simulated model, extend
blind exploration (like in blind search e.g. Dijkstra’s algo-
rithm) with some human-cooperative mechanisms.

This work is in the direction of learning the value function
in order to guide heuristic search-based planning but focused
in particular on the method for the exploration of the model.
The most similar approaches to the one presented in this
work appeared in (Groshev et al. 2018) and in (Choudhury
et al. 2018; Pandy et al. 2022). As it can be seen in Figure 1,
the main drawback of the other methods is that they explore
unnecessarily large portion of state space for computing the
oracle data. In particular, in (Groshev et al. 2018) the au-
thors used initial heuristics for path planning and used only
nodes from the shortest path for the learning of improved
value function (heuristics). In (Choudhury et al. 2018) and
(Pandy et al. 2022) the authors make the assumption that
the exploration algorithm can query the oracle for the exact
cost-to-go value. For the oracle, they used backward Dijk-
stra’s algorithm to compute heuristics and then the online
mixed policy (Ross and Bagnell 2014) for selecting which
states are useful for learning. However, Dijkstra’s algorithm
explores the whole search space which is unnecessary and
extremely limiting for higher-dimensional problems. We re-
lax this assumption and iteratively explore the state-space
and compute oracle values.

Similarly, DeepCube (Agostinelli et al. 2019) used ran-
dom backward scrambling to generate data for learning. A
similar method was used also for domain-independent plan-
ners (Ferber et al. 2020). Although they utilize all explored
states, the random backward rollout is de-facto brute-force
exploration, and far from a systematic approach. It can ex-
plore the same states multiple times and does not cover
neighboring regions. Additionally, it is not guided to the start
and might not include any trajectory for a given start. Explo-
ration is also important in Reinforcement Learning, in par-
ticular exploration-exploitation in online learning. However,
our work is more related to offline learning in Sim2Real set-
ting (Hofer et al. 2021), where the agent is acting in the
simulation to learn the policy. RL agents learn based on all
encountered data but explore the environment quite hecti-
cally. In particular, the search can be efficiently exploited
there with reinitialization to desired states to systematically
explore the state-space.

There are several recent approaches related to learning
search and not directly to the exploration. For example, Neu-
ral A* Search (Yonetani et al. 2021) used a trainable encoder
and differentiable A*, which allows training of the complete
algorithm using backpropagation. Also, Neuro-algorithmic
Policy (NAP) (Vlastelica, Rolinek, and Martius 2021) that is
performing the planning on raw image inputs. These meth-
ods are extremely inefficient in terms of exploration and may
run Dijskta’s algorithm even at more iterations than e.g.,
(Choudhury et al. 2018) and (Pandy et al. 2022).

The main contribution of our work is a novel approach for
efficient and systematic exploration of the models based on
backward and prolonged heuristic search. This ensures that
only interesting states are explored and all explored states
are used for value function learning.

Premise: For learning of the Value function it is more
beneficial to explore states in the neighborhood of the opti-
mal path (policy) than elsewhere, as the agent (the planner)
should spend most of the time in the neighborhood of the
optimal path.

Having explored the neighboring regions around the opti-
mal path helps to get back to the optimal path if the planner
(or the agent) deviates and has better coverage for the A*
search, which always looks for neighboring states. Inspired
by this idea, we prolonged the search even after the optimal
path was found to explore a wider region around the optimal
path. Additionally, the direction of the search is reversed,
such that the search starts from the goal node. In this way,
all expanded nodes lead to the goal state and therefore can
be used in the dataset for learning.

The contributions can be summarized as:

* search-inspired exploration method - PHS;

» asymmetric loss function for close-to-admissible value
function learning;

* bounded ML heuristics for guarantees on sub-optimality.

Preliminaries

Search-Based Planing

We consider the problem of planning based on the graph
search, as shown in the Algorithm 1. Starting from the ini-
tial node nj (i.e., representing the initial state), chosen as the
first current node n. At each iteration, successor nodes are
generated in the function Expand by expanding the current
node n using a transition model M to all reachable neigh-
boring states. Each reachable collision-free state is repre-
sented with one child node. All collision-free child nodes
n’ are processed and are added to the OPEN list, if they are
not in there already. If the child node is already in the OPEN
list, and the new child node has a lower cost, the parent of
that node is updated, otherwise, it is ignored. From the OPEN
list, at every iteration, the node with the lowest cost is chosen
to be the next current node (in the function Select), and
the procedure is repeated until the goal is reached, the whole
graph is explored or the computation time limit for planning
is reached. At the end of the planning, if successful, the path
is reconstructed starting from the goal ng.



Algorithm 1: Search: search-based planning.
input : n1, ng, O, M, h(-)

1 begin

2 OPEN < n < ng // initialization
3 CLOSED «+ @

4 while n # ng and OPEN # & and

CLOSED.size() < Nmax do

5 n < Select(OPEN)

6 OPEN < OPEN \ n

7 CLOSED < CLOSED U n

8 (n’,ng) + Expand (n, O, M, h(n))
9 CLOSED ¢« CLOSED U ng

10 foreach n’ € n’ do
11 | OPEN « Update(OPEN, n’)
12 return GetPath(ng) // reconstruct the path

Algorithm 2: Value function learning framework.

input :kscykprvMahadm(')vL(‘)
output: hyg, // Trained ML heuristic fuction

1 begin
2 D+ o // Dataset
3 foreach k € [1, ksc] do
4 (n1,ng, O) + NewScenario() // Curriculum
// Search-based Exploration
5 n FPHS(”Ianzo’ kpthhadm)
// Extracting data from the search
6 foreach n € n do
7 | D+ DuU(n,ng,O,n.g()) // Data points
8 return Train(D, L)

Learning Optimal Search

In this work, we focus on the Imitation learning approach
for learning optimal search. In contrast to previous works
in the field, we do not assume that we have access to the
oracle, representing the exact cost-to-go but we consider the
computation of that as part of the problem. So we compute
the exact state-cost iteratively as er explore the environment.

The problem of Learning to search can be split into four
subproblems:

* Curriculum design of example scenarios and scenario-
variations;
* Scenario Exploration for exact state-cost data generation;
* Supervised Learning to imitate the exact state-cost;
» Using learned heuristic function in the search;
In this work, we assume having the fixed problem in-
stances - curriculum similar to (Bhardwaj, Choudhury, and

Scherer 2017) and focus on efficiently exploring them and
learning a generalized value function.

Method

The presented approach for learning value function uses an
existing admissible heuristic function (h,qn,) and a known
model M of the system to generate dataset D of exact state-
cost (n, h*) data points, as shown in the Algorithm 2. The
dataset is used for supervised learning of the value function.

Algorithm 3: PHS: Prolonged Backward Heuristic
Search-based exploration.

input :np, ng, O, kpr, M, h(:)

output: n // explored nodes
1 begin
2 OPEN < n <+ ng // initialization
3 CLOSED <+ @
4 while OPEN # @ and CLOSED.size() < Nmax do
5 n < Select(OPEN)
6 OPEN <— OPEN \ n
7 CLOSED < CLOSED U n
8 (n’,nf) + Expand (n,0, M~1, h(n))
9 CLOSED « CLOSED U n{,
10 foreach n’ € n’ do
1 | OPEN < Update(OPEN, n’)
12 if n = ng then
13 | Nmax = kpr - CLOSED.size() // prolong.
14 | return OPEN U CLOSED // all explored nodes

The learned value function is then used as a heuristic func-
tion hygg, in the search, bounded by the admissible heuris-
tic to provide guarantees on sub-optimality. The dataset D
consists of data points that carry information about the sce-
nario (obstacles O, initial ny, and goal state ng) and current
state n together with the corresponding cost-to-go (i.e. short-
est path from the current state to the goal state h*). Using
our PHS for exploration allows that, for each node n in the
OPEN and CLOSED lists, the corresponding data point can
be stored in dataset D This approach enables theoretically
inexhaustible data generation from different scenarios and
initial conditions, therefore using computational resources
offline to have faster planning online, when necessary.

Prolonged Heuristic Search for Dataset generation

For the generation of dataset D, planning algorithms can be
used to generate data points with the exact cost-to-go. In
the vanilla Shortest Path Planning problem (SP), the goal is
to find only one collision-free path (i.e. from the initial to
the goal state), so planning is stopped when the goal state
is reached. As the goal state is reached only from one node
(and each node has only one parent), the exact cost-to-go can
be computed only for nodes on the optimal path. Contrary to
SP, when generating the dataset, the objective is to generate
as many different data points as possible. One approach is
to use Backward Dynamic Programming (Dijkstra’s algo-
rithm), however, this would explore the whole search space
which is not practical in higher dimensional problems. For
this purpose, we propose a novel exploration approach Pro-
longed Backward Heuristic Search (PHS), as it is shown in
Algorithm 3. PHS is a systematic and focused approach for
generating the dataset D. In PHS, the search is performed
backward, from ng so all explored nodes can be used in the
dataset, as the exact cost to ng is already computed. Addi-
tionally, as the region of interest is also the neighborhood of
the optimal path, the search is not terminated when the ini-
tial node np is reached (as in the SP problem), but rather
prolonged with prolongation factor k., until the number



of nodes in the CLOSED list is kp, times the number when
the goal was reached. Such prolongation assures that more
nodes in the neighborhood of the optimal path are explored.
Datapoints are constructed such that, for each node n in the
OPEN and CLOSED lists, the corresponding scenario struc-
ture (grid) and cost-to-go are stored in dataset D. Cost-to-go
from node n to goal node ng is actually cost-to-come g(n)
in backward search. In this way, paths do not have to be re-
constructed and all expanded nodes are used in the dataset.

Value Function Learning

Learning of the Value Function hygr,, in this approach, is
a supervised learning problem (regression). The proposed
hur, takes as input features representing the current and the
goal nodes (ng, ng) and a situation (obstacles ), and re-
turns a scalar value representing an estimated cost to reach
the goal from that node.

As it is preferred that the heuristic function underesti-
mates the exact cost (admissibility), a non-symmetric loss
function can be used. Asymmetry can be introduced by aug-
menting the Mean Square Error Loss function as:

e =Yi — Ui ey
| X
— E 2. (s , 2
L= 2 e; - (sign(e;) + a)7, )

with parameter a < 0 to emphasize the penalty for positive
errors e.

Using Learned Value Function as Heuristic
function

The learned value function is subsequently used as a heuris-
tic function h in the search, Algorithm 1. To assure search
performance improvement, we bound the ML heuristic Ay,
from the lower side by the admissible heuristic A,q4y,. By do-
ing that, we always consider the more informative heuristic.
Additionally, to provide guarantees on sub-optimality, we
bound the ML heuristic from the upper side by the weighted-
admissible heuristic. The weighted-admissible heuristic is
computed by multiplying admissible heuristic h,q,, with
user-defined weight ¢, as in and ARA* (Likhachev, Gordon,
and Thrun 2004) (or Weighted A* (Pohl 1970)). In this way,
the heuristic is always at most e-admissible, so the solution
is always at most ¢ times greater than the optimal solution
(Pearl 1984). Values of ¢ closer to 1 guarantee smaller de-
viation from optimal solution but reduce computational per-
formance. While the larger values of ¢ limit ML heuristics
less, but provide a less meaningful guarantee.

h = min(ma’X(hadmy hlVIL)y € hadm); € 2 1 (3)

were used for dataset generation. From each scenario, mul-
tiple data points are generated. For comparison, two datasets
were created. One dataset (representing the approach from
(Groshev et al. 2018)) is using only nodes from optimal path
( Dyan, 12.007 datapoints) and the other (as proposed in
this work) uses all nodes explored in Backward Prolonged
Heuristic Search (Dpng, 122.449 datapoints). The advan-
tage of Backward Prolonged Heuristic Search is already vis-
ible, as from the same number of scenarios about 10 times
more data points are generated, even in simple 2D prob-
lem. This is expected to be even larger in higher dimensional
problems.

Value Function approximation using Deep
Learning

In this experiment, a fully Convolutional Neural Network
(CNN) was used for the value function approximation. The
complete model architecture can be seen in Table 1. Each
layer uses the SELU nonlinear activation (Klambauer et al.
2017). The networks were trained for 4096 steps using a
batch size of 1024 images and a learning rate of 0.001. The
networks were initialized using the variance-scaling initial-
izer (He et al. 2015) and optimized with the ADAM (Kingma
and Ba 2014) optimizer. In the asymmetric loss function, the
parameter a is set to —2.5.

Using ML Value Function as Heuristic function

Three different heuristic functions are used in the exper-
iment and compared based on solution quality (i.e. path
length) and planning efficiency (i.e. number of explored
nodes). The first heuristic function is an admissible heuris-
tic function h,q,, based on Manhattan distance. The second
heuristic function is value function hvyay trained on dataset
Dvyan generated from the solution path only. The third func-
tion hpyg is trained on Dpyg from the proposed Prolonged
Heuristic Search.

Discussion

Experimental results support the initial premise that gener-
ating a dataset using Prolonged Heuristic Search improves
the quality and learnability of the value function. Figure
2 shows the training and test loss for both the Dpyg and
Dyan datasets. It can be seen that training on Dyan per-
forms poorer than training on Dpyg, with slower conver-
gence and a bigger difference between the training and test
set, indicating overfitting. One reason might be the fact that

Table 1: Model Architecture

layer ‘ kernel ‘ stride ‘ dilation ‘ avg pool output size

An alternative approach would be to use Multi-Heuristic A* convl | 3x3 | 1x1 1x1 none 30 x 30 x 4
Search (MHA ) (AI.IIC et al. 2016) that is limiting the effect com?2 | 3x3 | 1x1 2% 2 none 30 % 30 % 8
of the hyyy, directly in the search.
convd | 3x3 | 1x1 4 x4 none 30 x 30 x 16
Experiments convd | 3x3 | 1x1]| 8x8 4 x4 7TX7x32
For the experiments, we use a grid world domain with 4- convS | 3x3 | 1x1 1x1 2% 2 3x3x64
connected neighbors and 33 % of cells are covered with ob-
. . . convb | 3x3 | 1x1 1x1 2x2 1x1x1
stacles in average. In total, 531 different random scenarios
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Figure 2: Training and test loss for both the Dppg and
Dyan.

Dyan is smaller than Dpyg, as the proposed approach man-
ages to extract more data from the same scenarios. The other
reason might be that the Dyan was not diverse enough (i.e.
many variations of the same scenario) and the network was
not able to learn to generalize well. In contrast, the Dpyg
offers more diverse training data (with many similar scenar-
ios as all explored nodes are used), and the network is able
to reduce the loss much further.

Additionally, the learned value functions were used as
heuristic functions in the search. Totally 100 random sce-
narios were created and both hApgg and hyvan were used.
Results were compared based on number of explored nodes
(for search efficiency) and path length (for solution qual-
ity). Both were compared with the admissible heuristic hyqm
while changing e, which bounds the influence of ML heuris-
tics hyr,. Figure 3 shows that the path length does not in-
crease significantly even for ¢ = 3.5, which means that both
ML heuristics still provide solutions close to optimal. While
hvan has slightly worse performance than h,q4y,, hpps has
equal performance to h,qy, in this aspect. On the other hand,
Figure 4 shows that both ML heuristics hpyg expands fewer
nodes than h,qp,. In this example, the performance of Ayan
and hpyg varies slightly on e, and further study on differ-
ent domains and scenarios is necessary. Figure 5 shows an
example of hpyg use. It is clear from the figure that hpyg
expands fewer nodes.

Conclusion

The presented approach offers the possibility to effectively
include Machine Learning into a deterministic planning
framework, promising significant performance improve-
ments manifested in a reduced number of explored nodes
compared to those obtained using an admissible heuristic
(haam) while keeping guarantees on sub-optimality of the
solution. The proposed approach uses the maximum of in-
vested computational resources in planning as all expanded
nodes in planning are used for learning. Experimental re-
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Figure 3: Path length for h,qm, hvan and hpyg heuristic
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Figure 4: Number of explored nodes for h,qm, hvan and
hpyus heuristic based on ¢ value.

sults showed significant improvement in search performance
while keeping bounds on the sub-optimality of the solution.

Future steps would include studies of behavior in more
scenarios and parameter variations, other domains (i.e.
higher dimensional problems like robotic manipulation (Co-
hen, Chitta, and Likhachev 2010)), and kinodynamic motion
(e.g., automated agile driving (Ajanovié et al. 2023)). Ad-
ditional venues for exploration are the extension of the ap-
proach to the exploration in end-to-end Model-Based Rein-
forcement Learning framework and adaptation to changing
environment using Interactive Imitation Learning (Celemin
et al. 2022).
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