
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING TO LOCALIZE LEAKAGE OF CRYPTO-
GRAPHIC KEYS THROUGH POWER CONSUMPTION

Anonymous authors
Paper under double-blind review

ABSTRACT

While cryptographic algorithms such as the ubiquitous Advanced Encryption Stan-
dard (AES) are secure, physical implementations of these algorithms in hardware
inevitably ‘leak’ sensitive information such as cryptographic keys. A particularly
insidious form of leakage arises from the fact that hardware’s power consumption
over time is statistically associated with the data it processes and the instructions
it executes. Supervised deep learning has emerged as a state-of-the-art tool for
carrying out power side-channel attacks, which exploit this leakage to break cryp-
tographic implementations by learning to map power consumption measurements
recorded during encryption to the secret key used for that encryption. In this work,
we seek instead to develop a principled deep learning framework for defense against
such attacks by understanding the relative leakage due to power measurements
recorded at different points in time. This information is invaluable to cryptographic
hardware designers for understanding why their hardware leaks and how they can
mitigate the leakage (e.g. by indicating that a particular section of code or electronic
component is responsible for leakage and should be revised). Towards this end,
we propose a novel deep learning algorithm by formulating an adversarial game
played between a classifier trained to estimate the conditional distribution of a
key given power measurements, and an ‘obfuscator’ which probabilistically erases
individual power measurements and is trained to minimize the classifier-estimated
log-likelihood of the correct key, subject to a penalty on erasure probability. We
theoretically characterize the ideal output of our algorithm in terms of conditional
mutual information quantities involving the key and individual power measure-
ments. We then empirically demonstrate the efficacy of our algorithm on real
and synthetic datasets of power measurements from implementations of the AES
cryptographic standard. Our code can be found in the supplementary materials.

1 INTRODUCTION

The Advanced Encryption Standard (AES) (Daemem & Rijmen, 1999; Daemen & Rijmen, 2013) is
widely used and trusted for protecting sensitive data. For example, it is approved by the United States
National Security Agency for protecting top secret information (Committee on National Security
Systems, 2003), it is a major component of the Transport Layer Security (TLS) protocol (Rescorla,
2000) which underlies the security of HTTPS (Rescorla, 2000), and is used in payment card readers
to secure card information before transmission to financial institutions (Bluefin Payment Systems,
2023).

AES aims to keep data secret when it is transmitted over insecure channels that are accessible to
unknown and untrusted parties (e.g. via wireless transmissions which may be intercepted, or storage
on hard drives which may be accessed by untrusted individuals). Prior to transmission, the data is first
encoded and partitioned into a sequence of fixed-length bitstrings called plaintexts. Each plaintext is
then encrypted into a ciphertext by applying an invertible function from a family of functions indexed
by an integer called a cryptographic key. This family of functions is designed so that if the key is
sampled uniformly at random, then the plaintext and ciphertext are marginally independent. The key
is known to the sender and intended recipients of the transmission,1 and is kept secret from potential

1For example, the key may be exchanged and periodically updated using an asymmetric-key cryptographic
algorithm such as RSA or Diffie-Hellman (Paar & Pelzl, 2010, ch. 6) Such algorithms do not require the sender

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

eavesdroppers. Thus, the intended recipients can use the key to decrypt the ciphertext back into the
original plaintext, while eavesdroppers who possess the ciphertext but not the key learn nothing about
the plaintext.

Clearly, such an algorithm is effective only if the cryptographic key remains outside of the hands
of eavesdroppers. AES is believed to be ‘algorithmically secure’ in the sense that given an AES
implementation with a fixed key, it is not feasible to determine the key by encrypting a chosen
sequence of plaintexts and observing the resulting ciphertexts (Mouha, 2021). For reference, to our
knowledge, the best known attack on the 128-bit version of AES under realistic conditions would
require about 2125 such encryptions on average to successfully determine the key (Tao & Wu, 2015),
compared to 2127 encryptions for a naive brute-force attack which randomly guesses and checks keys
until success.

Despite the ‘algorithmic’ security of AES and other cryptographic algorithms, physical implementa-
tions of these algorithms in hardware inevitably ‘leak’ information about their cryptographic keys.
This phenomenon, called side-channel leakage, occurs because hardware produces measurable physi-
cal signals that are statistically associated with the data it processes and the instructions it executes.
In this work, we consider power side-channel leakage, i.e. statistical association between a device’s
cryptographic key and its power consumption over time while encrypting data, which is a major secu-
rity vulnerability for AES implementations (Kocher et al., 1999; Bronchain & Standaert, 2020). Note,
however, that hardware emits many diverse physical signals which cause side-channel leakage, such
as electromagnetic radiation (Quisquater & Samyde, 2001; Genkin et al., 2016), program/operation
execution time (Kocher, 1996; Lipp et al., 2018; Kocher et al., 2019), and sound due to vibration of
electronic components (Genkin et al., 2014). Refer to appendix A for some simple intuition-building
examples of side-channel leakage.

Cryptographic implementations can be circumvented by side-channel attacks, which exploit side-
channel leakage to learn the cryptographic key of some target device. In this work, we consider
profiling power side-channel attacks, in which the attacker is assumed to possess a clone of the
target device and can repeatedly measure its power consumption over time while encrypting arbitrary
plaintexts using arbitrary keys. Measured power consumption during encryption is encoded as a real
vector called a power trace, where each element encodes the power measurement at a fixed point in
time relative to the start of encryption. Attackers can use the clone device to model the conditional
distribution of the cryptographic key given the power trace, and can then collect power traces from
the target device and identify the key which maximizes the likelihood of the key and power traces
according to their model.

Supervised deep learning has emerged as a state-of-the-art technique for carrying out profiled power
side-channel attacks, achieving comparable or superior performance to prior approaches with far less
data preprocessing and feature selection (Maghrebi et al., 2016; Benadjila et al., 2020; Zaid et al.,
2020; Wouters et al., 2020; Bursztein et al., 2023). The limitations of classical (non-deep learning)
attacks include assuming specific forms for the conditional distribution of keys given traces (Chari
et al., 2003; Schindler et al., 2005; Hospodar et al., 2011), requiring feature selection or principal
component analysis to significantly reduce the dimensionality of power traces (Chari et al., 2003;
Archambeau et al., 2006), and limited ability to exploit n-th order leakage where n > 1, i.e. where
the key is dependent on a set of n measurements but independent of all of its subsets with cardinality
less than n (Messerges, 2000; Agrawal et al., 2005). In contrast, neural nets are asymptotically
universal function approximators, and hence can in principle represent nearly arbitrary conditional
distributions (Hornik et al., 1989). CNNs and transformers have proven capable of operating on raw
power traces without feature selection or dimensionality reduction (Lu et al., 2021; Bursztein et al.,
2023), and neural nets are effective against ‘masking’ countermeasures which exploit the difficulty of
exploiting 2nd-order leakage with classical attacks (Benadjila et al., 2020; Zaid et al., 2020; Wouters
et al., 2020). Thus, deep learning is a major threat to a wide assortment of security measures and
evaluations that were designed with the limitations of classical attacks in mind.

In this work, we seek to instead leverage deep learning to defend against side-channel attacks by
identifying specific points in time at which power consumption is ‘useful’ for predicting the key. Our
intent is to enable the designers of implementations to understand why their implementations leak
(e.g. which machine instructions are responsible, whether their countermeasures are effective), as

and recipient to know the same secret key, but are slower than AES, so it is common to use them only for key
exchange and to use AES for transmission of large quantities of data.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Key

Plaintext Ciphertext

Cryptographic
hardware

Power
source

Measurement
apparatus

Known
function

Sensitive intermediate
variable

Power trace

Dataset

Supervised
learning

Side channel leakage Side channel attack

Figure 1: Diagram illustrating our probabilistic framing of power side-channel leakage. AES
hardware encrypts a plaintext given a key, resulting in a ciphertext. The power consumption over
time of the hardware is measured during encryption and encoded as a vector called a power trace.
Consider a ‘sensitive’ intermediate variable in the cryptographic algorithm which is a known function
of the key, plaintext, and ciphertext, and which gives information about the key given the plaintext
and ciphertext. We view the power trace and sensitive variable as realizations of jointly-distributed
random variables X, Y ∼ pX,Y respectively, and side channel attacks can be carried out by using
supervised learning to estimate pY |X .

opposed to a mere indication of how vulnerable the implementation is to attacks. Towards this end,
we propose a novel algorithm that localizes leakage using an adversarial game played between a deep
neural network classifier trained to map power traces to the associated AES keys (via a ‘sensitive’
intermediate variable), and a data-independent ‘obfuscator’ which randomly erases individual power
measurements in these traces and is trained to maximize the loss of the classifier, subject to a penalty
on the erasure probabilities. The optimal erasure probabilities constitute a trade-off between being
large and depriving the classifier of the information provided by the associated power measurement,
and being small to reduce the penalty. Thus, after training, measurements that have ‘high leakage’ in
the sense of being more useful to the classifier will have high erasure probabilities, and ‘low leakage’
measurements will have low erasure probabilities, so the probabilities can be observed to identify the
relative leakage of different measurements. Our key contributions are as follows:

• We propose the aforementioned novel deep learning-based power side-channel leakage
localization algorithm.

• We theoretically characterize the ideal solution of our algorithm’s optimization problem
in terms of conditional mutual information quantities involving the cryptographic key and
individual power measurements.

• We experimentally demonstrate the efficacy of our algorithm using simulated and real power
side-channel attack datasets. To facilitate the latter, we further propose a novel performance
metric for evaluating the correctness of an attempt to localize leakage when we lack ground
truth knowledge about which power measurements are leaking.

2 BACKGROUND AND SETTING

Here we provide a probabilistic framing of power side-channel leakage. Refer to appendix A for a
more detailed background which includes simple intuition-building examples of side-channel leakage.

2.1 PROBABILISTIC FRAMING OF POWER SIDE-CHANNEL LEAKAGE

See figure 1 for a diagram illustrating our setting. We assume to have a symmetric-key cryptographic
device that encrypts data in a manner dependent on some sensitive intermediate variable y ∈ Y,
where Y is a finite set (e.g. consisting of bytestrings encoding all possible values of the variable).
We assume to have some measurement apparatus that allows us to measure power traces during
encryption, encoded as x ∈ RT where T ∈ Z++ denotes the number of measurements recorded per

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

encryption. We view the power traces and sensitive variables as realizations of jointly-distributed
random variables X, Y ∼ pX,Y respectively, where pY is a simple known distribution (e.g. uniform)
and pX|Y is a priori unknown and dictated by factors such as the hardware, environment, and
measurement setup. In this work we assume that the conditional density functions pX|Y (· | y)
exist and have support equal to RT , which is reasonable because power consumption usually has a
‘random’ component which is well-described by additive Gaussian noise (Mangard et al., 2007). This
setting is amenable to supervised learning, and most profiled power side channel attacks (e.g. based
on deep learning) are based on collecting a dataset D i.i.d.∼ pX,Y and using it to model the conditional
distribution pY |X .

2.2 QUANTIFYING SIDE-CHANNEL LEAKAGE USING CONDITIONAL MUTUAL INFORMATION

Given that devices are vulnerable to side-channel attacks because of the statistical association between
X and Y , it is reasonable to quantify the amount of leakage at a timestep t ∈ [1 .. T] using Shannon
(conditional) mutual information (Shannon, 1948) between Xt and Y :

I[Y ;Xt | S] := E
[
log pY |Xt,S(Y | Xt,S)− log pY |S(Y | S)

]
(1)

where S ⊂ {X1, . . . , XT }\{Xt}. Intuitively, this quantity tells us the extent to which our uncertainty
about Y is reduced upon observing Xt, provided we have already observed the elements of S.

Clearly, we should consider timestep t to be leaking if Xt is directly associated with Y. For example,
consider the device characterized by Mangard et al. (2007) which consumes power in proportion to
the Hamming weight (number of nonzero bits) of the chunk of data it is presently operating on, and
suppose our chosen sensitive variable is the output of the first SubBytes operation, as is common
when attacking AES implementations (see appendix A for elaboration). In this case, if the device
carries out the first SubBytes operation at time t, we expect to have I[Y ;Xt] > 0.

Intuitively, it is very reasonable to consider timestep t to be leaking if I[Y ;Xt] > 0. More subtle is
the fact that I[Y ;Xt] = 0 does not imply that Xt is ‘innocuous’. It may be the case that Xt tells us
nothing about Y by itself, but it tells us something useful in combination with some Xτ for τ ̸= t. For
example, the power consumption of electronic devices has ‘inertia’ due to fundamental physical laws
and intentional design decisions. Suppose our aforementioned device carries out the first SubBytes
operation at time t+ 1. Due to this ‘inertia’, Xt+1 will depend not only on Y , but also on Xt. Thus,
even if Xt is independent of Y , Xt is dependent on Y given Xt+1. This is because by learning Xt,
we can ‘subtract’ its influence from Xt+1, thereby isolating the component of Xt+1 which depends
on Y . In this case, we expect that I[Y ;Xt] = 0 but I[Y ;Xt | Xt+1] > 0. In general, to have a
reasonable notion of leakage at time t, we must consider not only I[Y ;Xt], but I[Y ;Xt | S] for every
S ⊂ {X1, . . . , XT } \ {Xt}.

3 METHOD: ADVERSARIAL LEAKAGE LOCALIZATION (ALL)

Given X, Y ∼ pX,Y as defined above with X = (Xt : t = 1, . . . , T), we seek to assign to
each t ∈ [1 .. T] a scalar indicating the ‘amount of leakage’ of information about Y due to power
measurement Xt. Clearly the quantities {I[Y ;Xt | S] : S ⊂ {X1, . . . , XT } \ {Xt}} give us insight
into leakage, but it is not obvious how they should be weighted in a single scalar leakage measurement.
In this section, we will propose an optimization problem with a solution that can be interpreted as a
leakage measurement assignment to each timestep according to an intuitively reasonable weighting
scheme. We will then prove that given ideal assumptions, its solution is equivalent to that of an
adversarial game played between a neural network classifier trained to map realizations of X to Y
where some of the elements of X have been ‘erased’, and an ‘obfuscator’ which probabilistically
erases elements of these realizations of X in order to maximize the loss of the classifier, subject to
a penalty on erasure probability. Refer to appendix B for an extended version of this section with
proofs and additional results.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.1 OPTIMIZATION PROBLEM

We define a vector γ ∈ [0, 1]T which we name the erasure probabilities. This vector will parameterize
a distribution over binary vectors in {0, 1}T as follows:

Aγ ∼ pAγ where Aγ,t =

{
1 with probability 1− γt
0 with probability γt,

(2)

i.e. its elements are independent Bernoulli random variables where the t-th element has parameter
p = 1 − γt. For arbitrary vectors x ∈ RT , α ∈ {0, 1}T , let us denote xα := (xt : t = 1, . . . , T :
αt = 1), i.e. the sub-vector of x containing its elements for which the corresponding element of α is
1. We can accordingly use Aγ to obtain random sub-vectors XAγ of X. Note that γt represents the
probability that Xt will not be an element of XAγ (thus, ‘erasure probability’).

Consider the optimization problem

min
γ∈[0,1]T

Lideal(γ) :=
1

2
λ ∥γ∥22 + I[Y ;XAγ | Aγ]. (3)

where λ > 0 is a hyperparameter. Intuitively, this is a trade-off between having high erasure probabil-
ities and thereby reducing the mutual information quantity, and having low erasure probabilities to
reduce the norm penalty. For each t, we can write

Lideal(γ) =
1

2
λγ2

t +
∑

α∈{0,1}T : αt=0

[I[Y ;Xt,Xα]− γt I[Y ;Xt |Xα]] pAγ,−t
(α−t)+

1

2
λ ∥γ−t∥22 .

(4)
As γt decreases, so does the penalty 1

2λγ
2
t . As γt increases, the quantities −γt I[Y ;Xt | Xα]

decrease in proportion to I[Y ;Xt | Xα]. For γ∗ ∈ arg minγ∈[0,1]T Lideal(γ), it follows that γ∗
t

positively correlates with some notion of a ‘typical’ value of I[Y ;Xt |Xα], and it appears reasonable
to view it as a notion of the ‘amount of leakage’ at time t.

We can verify that a solution to equation 3, and derive an implicit expression for it:

Proposition 1. For Lideal as defined in equation 3, arg minγ∈[0,1]T Lideal(γ) ̸= ∅. Furthermore,
every γ∗ ∈ arg minγ∈[0,1]T Lideal(γ) must satisfy

γ∗
t = min

 1

λ

∑
α∈{0,1}T : αt=0

I[Y ;Xt |Xα]
∏

τ∈[1 .. T]\{t}
(γ∗

τ)
1−ατ (1− γ∗

τ)
ατ , 1

 ∀t ∈ [1 .. T].

(5)

Sketch of proof (full proof). The existence of a solution follows from the extreme value theorem
because [0, 1]T is compact and Lideal(γ) is continuous in γ. We derive the expression for γ∗

t by
expressing our objective function as f1(γ−t)+γtf2(γ−t)+

1
2λγ

2
t and computing the first and second

partial derivatives with respect to γt. The first partial derivative always has a zero, which may or may
not be feasible. The second partial derivative is equal to λ > 0. Thus, if the zero is feasible, it is the
solution. If it is not feasible, we show that the first partial derivative is negative for all γt ∈ [0, 1],
implying that the objective is minimized for γt = 1.

Corrolary 1.1. Under the conditions of Proposition 1, if λ > log|Y|, then γ∗ ∈ [0, 1)T .

Sketch of proof (full proof). This follows from noting that each conditional mutual information term
is upper-bounded by the Shannon entropy of Y , which in turn is upper-bounded by the Shannon
entropy of a uniform distribution over Y.

This suggests that we should choose λ to be large enough that no γ∗
t saturates at 1, and that for

consistency we should quantify leakage using λγ∗ rather than γ∗.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3.2 EQUIVALENT ADVERSARIAL GAME

In practice we cannot directly solve equation 3 because we lack an expression for pX,Y . Here we will
propose a different optimization problem which is equivalent to equation 3 given ideal assumptions,
and allows us to use deep learning to characterize pX,Y using data.

Consider the family Φ := {Φα}α∈{0,1}T with each element a deep neural network

Φα : Y × R
∑T

t=1 αt × RP → R+ : (y,x,θ) 7→ Φα(y | x;θ). (6)

We denote by Φα(y | x;θ) the mass assigned to y by the network Φα with weights θ and input x.
We assume that each Φα(· | x;θ) is a probability mass function over Y (e.g. the neural net has a
softmax output activation). Consider the optimization problem

min
γ∈[0,1]T

max
θ∈RP

Ladv(γ,θ) :=
1

2
λ ∥γ∥22 + E log ΦAγ (Y |XAγ ;θ). (7)

Proposition 2. Consider the objective function Ladv of equation 7. Suppose there exists some
θ∗ ∈ RP such that Φα(y | xα;θ

∗) = pY |Xα
(y | xα) for all α ∈ {0, 1}T , x ∈ RT , y ∈ Y. Then

θ∗ ∈ arg max
θ∈RP

Ladv(γ,θ) ∀γ ∈ [0, 1]T . (8)

Furthermore, for all y ∈ Y and for all γ ∈ [0, 1]T , α ∈ {0, 1}T such that pAγ (α) > 0,

Φα(y |Xα; θ̂) = pY |Xα
(y |Xα) pX -almost surely ∀θ̂ ∈ arg min

θ∈RP

Ladv(γ,θ). (9)

Sketch of proof (full proof). The first claim follows straightforwardly from Gibbs’ inequality. The
second claim follows from re-writing the difference Ladv(γ,θ

∗) − Ladv(γ, θ̂) as a function of KL
divergences between distributions pY |Xα

(· | xα) and Φα(· | xα; θ̂), which makes it clear that the
difference is nonnegative and equal to zero if and only if the claim is satisfied.

Corrolary 2.1. Under the assumptions of Proposition 2, equations 7 and 3 are equivalent.

Sketch of proof (full proof). We first note that for any θ̂ ∈ arg maxθ∈RP Ladv(γ,θ), we can replace
each Φα(y | xα; θ̂) by pY |Xα

(y | xα) in minγ∈[0,1]T Ladv(γ, θ̂) without changing its solution.
We then algebraically manipulate minγ∈[0,1]T Ladv(γ, θ̂) using information theoretic identities and
dropping additive constants which do not depend on γ until we arrive at equation 3.

3.3 IMPLEMENTATION DETAILS

It would be impractical to train 2T neural networks independently, so we amortize the cost by instead
training a single network with α as an auxiliary input:

Φ : Y × RT × {0, 1}T × RP : (y, x̃,α,θ) 7→ Φ(y | x̃,α,θ) (10)

where each Φα(y | xα;θ) := Φ(y | α⊙ x,α;θ). We can then re-write equation 7 as

min
γ∈[0,1]T

max
θ∈RP

L(γ,θ) := 1

2
λ ∥γ∥22 + E log Φ(Y | Aγ ⊙X,Aγ ;θ). (11)

See figure 2 for an illustration of this implementation. We intent to approximately solve equation
11 using an alternating minibatch stochastic gradient descent-style technique, similarly to GANs
(Goodfellow et al., 2014). To do so, we must first convert it into an equivalent unconstrained
optimization problem so that it is amenable to gradient descent. We must then derive expressions
for the gradients of our objective function which can be estimated using automatic differentiation
(Paszke et al., 2019) and Monte Carlo integration.

Note that the inner optimization problem is already unconstrained, and it is immediate that

∇θL(γ,θ) = E∇θ log Φ(Y | Aγ ⊙X,Aγ ;θ). (12)

We can re-parameterize the outer problem and derive an appropriate gradient expression as follows:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Classifier

Estimate of

Binary
noise

Sensitive
variable

Power
trace

Erasure
probabilities

Classifier
weights

Figure 2: A diagram illustrating our adversarial leakage localization technique. We sample a sensitive
variable Y ∼ pY and a power trace X ∼ pX|Y from our training dataset, and a binary noise vector
Aγ ∼ pAγ such that each element at position t is equal to 0 with probability γt and 1 with probability
1− γt, where γ ∈ [0, 1]T denotes our obfuscation weights. We multiply the power trace elementwise
by the binary noise vector, and feed both the noisy power trace Aγ ⊙X and the noise vector Aγ as
inputs to our classifier Φ. The classifier is trained to maximize the log-likelihood of Y given XAγ ,
while simultaneously the erasure probabilities are trained to minimize this log-likelihood, subject to a
norm penalty which pushes them towards 0.

Proposition 3. The optimization problem of equation 11 is equivalent to

min
γ′∈(R∪{±∞})T

max
θ∈RP

L(Sigmoid(γ′),θ) (13)

where γ = Sigmoid(γ′). Furthermore, we can express

∇γ′L(γ,θ) = λγ ⊙ γ ⊙ γ + E
[
log Φ(Y | Aγ ⊙X,Aγ ;θ) ·

(
Aγ ⊙ γ −Aγ ⊙ γ

)]
, (14)

where for compactness we have left implicit that γ is a function of γ′, and have denoted Aγ :=
1−Aγ and γ := 1− γ.

Sketch of proof (full proof). The re-parameterization is valid because Sigmoid is bijective and
Sigmoid

(
(R ∪ {±∞})T

)
= [0, 1]T . When deriving the expression for the gradient, we cannot

immediately exchange the order of expectation and differentiation because the expectation is taken
over Aγ where pAγ depends on γ′. Instead, we use the REINFORCE estimator (Williams, 1992)
and simplify the expression using the definition of pAγ .

See algorithm 1 for pseudo-code describing a simplified algorithm to approximately solve equation
11. Additional engineering details and performance-enhancing tweaks can be found in algorithm 3 of
appendix B. Note that a straightforward implementation of our algorithm would update θ to minimize
L(Sigmoid(γ′),θ). However, in practice we find that this version of the algorithm is highly sensitive
to λ. Choosing λ too small will lead to elements of γ saturating at 1, and choosing it too large will
push all elements of γ close to zero, resulting in the classifier training almost exclusively on the
inputs (1⊙ x,1). However, Proposition 2 implies that in the ideal case, our algorithm is equivalent
to equation 3 when the classifier is trained with noise sampled from any full-support distribution over
{0, 1}T , not just pAγ . We thus train our classifier with noise sampled from U({0, 1}T), and find that
this version of the algorithm is significantly easier to tune.

4 RELATED WORK

The adversarial nature of our algorithm was inspired by GANs (Goodfellow et al., 2014). The use of
classifiers with probabilistic input ablation for mutual information estimation was inspired by the
causal graph edge detection technique of the ENCO algorithm (Lippe et al., 2022). However, due to
the distinct nature of our problem, our algorithm departs significantly from both of these.

A great deal of prior work has applied neural net interpretability techniques for tasks similar to power
side channel leakage localization (Masure et al., 2019; Hettwer et al., 2020; Jin et al., 2020; Wouters
et al., 2020; Zaid et al., 2020; van der Valk et al., 2021; Wu et al., 2021; Golder et al., 2022; Li et al.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Algorithm 1: A practical implementation of our algorithm, simplified for clarity.

Input: Dataset D := {(x(n), y(n)) : n ∈ [1 .. N]} ⊂ RT × Y, initial classifier weights
θ(0) ∈ RP , initial unsquashed erasure probabilities γ′(0) ∈ RT , norm penalty coefficient
λ ∈ R+

Output: Trained parameters θ̂ ∈ RP , γ̂′ ∈ RT

1 t← 0 // training step counter
2 while not converged do
3 Choose n ∈ [1 .. N] // datapoint index

4 α(t) ∼ U({0, 1}T) // binary noise

5 l(t) ← log Φ(y(n) | α(t) ⊙ x(n),α(t);θ(t)) // estimated log likelihood

6 g
(t)
c ← AutoDiff

(
−l(t),θ(t)

)
// gradient of NLL w.r.t. classifier weights

7 θ(t+1) ← OptimizerStep(θ(t), g
(t)
c)

8 γ(t) ← Sigmoid(γ′(t)) // erasure probabilities

9 α(t+0.5) ←
(
α
(t+0.5)
τ ∼ Bernoulli(p = 1− γ

(t)
τ) : τ = 1, . . . , T

)
// binary noise

10 l(t+0.5) ← log Φ(y(n) | α(t+0.5) ⊙ x(n),α(t+0.5);θ(t+1)) // new estimated log
likelihood

11 g
(t)
o ← λγ(t)⊙γ(t)⊙(1−γ(t))+ l(t+0.5)

(
(1−α(t+0.5))⊙ (1− γ(t))−α(t+0.5) ⊙ γ(t)

)
// gradient of loss w.r.t. unsquashed erasure probabilities

12 γ′(t+1) ← OptimizerStep(γ′(t), g(t)
o)

13 t← t+ 1

14 return θ(t), γ′(t)

2022; Perin et al., 2022; Schamberger et al., 2023; Yap et al., 2023; Li et al., 2024). As baselines we
compare our method to Gradient Visualization (Masure et al., 2019), input ∗ gradient (Shrikumar
et al., 2017) (applied to side-channel attacks by Wouters et al. (2020)), and input occlusion (Zeiler
& Fergus, 2014) (applied to side-channel attacks by Hettwer et al. (2020)), as they are neural net
architecture-agnostic and widely used in the side-channel attack literature. Whereas these approaches
simply perform supervised deep learning in the conventional manner and then interpret their trained
neural net’s outputs, we train our classifier in an unconventional but principled manner so that it can
be used to estimate conditional mutual information quantities. Compared to this prior work, we expect
our approach to perform better when conventionally-trained neural nets learn shortcuts (Geirhos et al.,
2020; Hermann & Lampinen, 2020) and fail to leverage all available key-trace associations.

It is common to use first-order statistical techniques to estimate quantities similar to I[Y ;Xt]. As
baselines we consider correlation power analysis (Brier et al., 2004) and the sum of squared differences
technique (Chari et al., 2003) because their leakage estimates have been found to correlate well with
Gaussian template attack performance (Fan et al., 2014), as well as the signal-to-noise ratio technique
(Mangard et al., 2007) due to its ubiquity in the power side-channel attack literature. In contrast to
our method, these techniques are unable to exploit higher-order statistical associations and make
strong assumptions about the form of pX,Y . Higher-order statistical techniques exist, but still require
strong assumptions, and tend to either have exponential runtime in the maximum-considered order
of association, assume the existence of device flaws, or assume unrealistic knowledge of internal
random variables or the points in time at which they are operated on (Messerges, 2000; Agrawal
et al., 2005).

5 EXPERIMENTAL RESULTS

Experiments on synthetic AES datasets We first apply our technique to synthetic AES power
trace datasets generated using the Hamming weight leakage model of Mangard et al. (2007) (see
figure 3). We verify that results are consistent with ground-truth leaking points which we know by
virtue of having generated the datasets ourselves. This holds for an unprotected AES implementation,
as well as when we simulate the common random delay (Coron & Kizhvatov, 2009), random shuffling

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0 200 400

Timestep t

0.00

0.05

0.10

0.15

0.20

E
st

im
at

ed
le

ak
ag

e
of
X
t

Unprotected

Ground truth
γ∗t (Ours)

0 200 400

Timestep t

0.00

0.01

0.02

0.03

0.04
Random delays

0 200 400

Timestep t

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010
Random shuffling

0 200 400

Timestep t

0.000

0.002

0.004

0.006

0.008

0.010
Boolean masking

Ground truth (share 1)
Ground truth (share 2)
γ∗t (Ours)

0 200 400

Timestep t

0.00

0.05

0.10

0.15

0.20

E
st

im
at

ed
le

ak
ag

e
of
X
t

λ = 0.0001

0 200 400

Timestep t

λ = 0.1

0 200 400

Timestep t

λ = 0.2

0 200 400

Timestep t

λ = 0.3

0 200 400

Timestep t

λ = 0.4

0 200 400

Timestep t

λ = 0.5

0 200 400

Timestep t

λ = 1000.0

Figure 3: (top row) Adversarial leakage localization (our technique) is able to detect leakage from
simulated AES implementations with various realistic countermeasures. Yellow lines denote ground-
truth leaking points, and blue dots denote the estimated leakage λγ∗

t by our technique. (bottom row)
As predicted by Proposition 1, for ‘reasonable’ values of λ, λγ∗

t is approximately constant as λ is
varied. Here we sweep λ for a simulated unprotected AES implementation. Observe that results are
nearly the same for λ ∈ {0.2, 0.3, 0.4, 0.5}. For λ ∈ {0.0001, 0.1}, the estimated leakage is smaller
because γ∗

t has saturated at 1. For λ = 1000, non-leaky points are more underfit than leaky points
because all values of γ∗

t lie far into the lower saturation region of Sigmoid .

0 2000 4000

Timestep t

−2.5

0.0

2.5

E
st

.l
ea

ka
ge

of
X
t

0 2000 4000

Timestep t

0

2

4

0 2000 4000

Timestep t

0.0

0.5

1.0

1.5

0 2000 4000

Timestep t

−0.5

0.0

0.5

0 2000 4000

Timestep t

0.01

0.02

0 2000 4000

Timestep t

0.0

0.1

0.2

0 2000 4000

Timestep t

0.0

0.1

0.2

0 2000 4000

Timestep t

0.1

0.2

0.3

ALL (ours)AblationInput×GradGradVisCPASOSDSNRRandom

0 500

Timestep t

−2

0

2

E
st

.l
ea

ka
ge

of
X
t

0 500

Timestep t

0.005

0.006

0 500

Timestep t

0

5000

10000

0 500

Timestep t

−0.01

0.00

0.01

0 500

Timestep t

0.5

1.0

1.5

×10−5

0 500

Timestep t

0.00

0.05

0.10

0.15

0 500

Timestep t

0.00

0.05

0.10

0 500

Timestep t

0.6

0.8

ALL (ours)AblationInput×GradGradVisCPASOSDSNRRandom

Figure 4: Qualitative comparison of our leakage localization technique with various baselines. Blue
dots denote the estimated leakage assigned to each Xt by the considered methods. (top row) DPAv4
dataset. (bottom row) ASCADv1 (fixed key) dataset. In the leftmost column, as a baseline we have a
random assignment of leakage values. The following 3 columns show results for the following first-
order statistical techniques: signal-noise ratio (SNR), sum of squared differences (SOSD), correlation
power analysis with a Hamming weight leakage model (CPA). The next 3 columns show neural
network interpretation-based techniques: gradient visualization (GradVis), input ∗ gradient, and input
ablation. The rightmost column shows our adversarial leakage localization (ALL) technique.

(Masure & Strullu, 2023), and Boolean masking (Benadjila et al., 2020) countermeasures which are
often present in actual AES implementations. Additionally, we sweep the hyperparameter λ to verify
the implication of Proposition 2 that our algorithm’s output is inversely proportional to λ (except for
extreme values which lead to underfitting or saturation of erasure probabilities at 1).

Experiments on recorded power traces from real AES implementations We next evaluate the
performance of our algorithm on 2 publicly-available datasets of recorded AES power traces paired
with plaintexts, ciphertexts, and cryptographic keys. We use the fixed-key variant of the ASCADv1
database (Benadjila et al., 2020) based on a Boolean-masked AES implementation, as well as the
DPAv4 (Nassar et al., 2012) subset released by Zaid et al. (2020) which is modified to effectively be
unprotected. These datasets were chosen because they have fairly-localized side channel leakage,
whereas many other commonly-evaluated public datasets are cropped to contain mostly leaking points
and are thus poor choices for evaluating a leakage localization algorithm.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Method DPAv4 dataset ASCADv1 dataset
Random 0.000330± 0.00371 −0.0186± 0.0378

First-order
statistics

Signal-noise ratio 0.0489 −0.0918 / 0.198†

Sum of squared differences 0.0740 −0.0105 / 0.193†

Correlation power analysis 0.0586 −0.0363 / 0.188†

Neural net in-
terpretation

Gradient Visualization 0.0622± 0.00410 0.136± 0.0162
Input ∗ gradient 0.0507± 0.00230 0.0869± 0.0139
Input ablation 0.0512± 0.00216 0.0580± 0.0180

Adversarial leakage localization (Ours) 0.0401± 0.00256 0.138± 0.00729

Table 1: Performance comparison (higher is better) on datasets of recorded power traces according
to the metric proposed in appendix C.2.1. For stochastic techniques, results are reported as mean
± standard deviation over 5 repetitions of the trial. The first-order statistical techniques perform
similarly to the random baseline on ASCADv1 because this dataset has only second-order leakage.
Apart from this, all methods far outperform the random baseline on both datasets. Our method
achieves the best performance on ASCADv1 and the worst on DPAv4. We emphasize, however, that
our metric only accounts for low-order statistical associations which can be represented by a Gaussian
mixture model, and unavoidably discards nuance and information by summarizing performance
with a scalar. Thus, while the reported numbers correlate with the fidelity of a leakage localization
attempt, they should not be viewed as an oracle for fidelity. †Ground truth-like performance when
we effectively disable the Boolean masking countermeasure using unrealistic knowledge of internal
random numbers generated by the AES hardware.

Unlike for our synthetic datasets, here we lack ground truth knowledge about which power measure-
ments are leaking, and it is not established or obvious how to evaluate the fidelity of an attempt to
localize leakage. Masure et al. (2019) and Hettwer et al. (2020) propose several metrics and heuristics
based on the intuition that the ‘leakiness’ assigned to a set of measurements should positively-correlate
with the performance of a side-channel attack carried out using only those measurements. We propose
our own metric (see appendix C.2.1) which is inspired by these but addresses shortcomings that they
have. The rough idea is to perform many Gaussian template attacks (Chari et al., 2003) on subsets
of available power measurements and compute the expected Kendall τ rank correlation coefficient
(Kendall, 1938) between a set of points and its estimated leakage. A higher expected rank correlation
indicates that estimated-leakier points are indeed more exploitable to side-channel attackers, and thus
indicates higher fidelity of the leakage localization attempt.

In table 1 we report the performance of our method and considered baselines. Figure 4 contains plots
of the amount of leakage at each timestep as estimated by each method. We find qualitatively-similar
results for all methods apart from our random baseline, apart from the first-order statistical methods
on ASCADv1 which are unable to detect the second-order statistical associations which result from
Boolean masking. It appears that the deep learning-based methods assign significant leakage to non-
leaky timesteps, likely due to overfitting. Our synthetic dataset results suggest that this issue may be
alleviated in settings where we have access to infinitely-large datasets (e.g. in the pre-manufacturing
phase where we can simulate arbitrarily-many synthetic power traces for a design).

6 CONCLUSION

We have proposed a novel, principled algorithm for learning to localize power side channel leakage
from cryptographic algorithms, and have demonstrated its efficacy on real and synthetic implementa-
tions of the ubiquitous AES cryptographic standard. Our algorithm is generic enough to be applicable
to other cryptographic standards as well. The growing assortment of deep learning-based side-channel
attacks departs from classical attacks in that the DL-based attacks can largely treat cryptographic
hardware as a black box to be characterized using data, whereas classical techniques required strong
assumptions and knowledge about the particular device to be attacked. However, despite the demon-
strated ability of deep learning to exploit side-channel leakage without a priori knowledge about its
existence or nature, little work thus far exists on leveraging this ability to understand why devices leak,
which is critical for designing countermeasures against side-channel attacks. Our work represents an
initial step towards using deep learning to uncover power side-channel leakage without relying on
human understanding of the complicated and non-ideal device physics by which the leakage happens.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Dakshi Agrawal, Josyula R Rao, Pankaj Rohatgi, and Kai Schramm. Templates as master keys.
In Cryptographic Hardware and Embedded Systems–CHES 2005: 7th International Workshop,
Edinburgh, UK, August 29–September 1, 2005. Proceedings 7, pp. 15–29. Springer, 2005.

Cédric Archambeau, Eric Peeters, F X Standaert, and J J Quisquater. Template attacks in principal
subspaces. In Cryptographic Hardware and Embedded Systems-CHES 2006: 8th International
Workshop, Yokohama, Japan, October 10-13, 2006. Proceedings 8, pp. 1–14. Springer, 2006.

Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas. Deep learn-
ing for side-channel analysis and introduction to ASCAD database. Journal of Cryptographic
Engineering, 10(2):163–188, 2020.

Bluefin Payment Systems. Bluefin and ID TECH partner to deliver PCI validated
Advanced Encryption Standard (AES) P2PE solution. Online, November 2023.
URL https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-
validated-advanced-encryption-standard-aes-p2pe-solution/.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage
model. In Marc Joye and Jean-Jacques Quisquater (eds.), Cryptographic Hardware and Embedded
Systems - CHES 2004, pp. 16–29, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN
978-3-540-28632-5.

Olivier Bronchain and François-Xavier Standaert. Side-channel countermeasures’ dissection and the
limits of closed source security evaluations. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 1–25, 2020.

Elie Bursztein, Luca Invernizzi, Karel Král, Daniel Moghimi, Jean-Michel Picod, and Marina Zhang.
Generic attacks against cryptographic hardware through long-range deep learning. arXiv preprint
arXiv:2306.07249, 2023.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S. Kaliski, çetin K.
Koç, and Christof Paar (eds.), Cryptographic Hardware and Embedded Systems - CHES 2002, pp.
13–28, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-36400-9.

Committee on National Security Systems. Committee on National Security Systems Policy No.
15, Fact Sheet No. 1, June 2003. URL https://csrc.nist.gov/csrc/media/projects/
cryptographic-module-validation-program/documents/cnss15fs.pdf.

Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random delay generation in
embedded software. In International Workshop on Cryptographic Hardware and Embedded
Systems, pp. 156–170. Springer, 2009. Dataset available at https://github.com/ikizhvatov/
randomdelays-traces.

Joan Daemem and Vincent Rijmen. AES proposal: Rijndael document version 2. AES Algo-
rithm Submission, September 1999. URL https://csrc.nist.gov/csrc/media/projects/
cryptographic-standards-and-guidelines/documents/aes-development/rijndael-
ammended.pdf.

Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer Berlin, Heidelberg, March 2013.
URL https://link.springer.com/book/10.1007/978-3-662-04722-4.

Josef Danial, Debayan Das, Anupam Golder, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen.
Em-x-dl: Efficient cross-device deep learning side-channel attack with noisy em signatures. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 18(1):1–17, 2021.

Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Raychowdhury, and Shreyas Sen.
X-deepsca: Cross-device deep learning side channel attack. In Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1–6, 2019.

11

https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://www.bluefin.com/news/bluefin-and-id-tech-partner-to-deliver-pci-validated-advanced-encryption-standard-aes-p2pe-solution/
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/cnss15fs.pdf
https://github.com/ikizhvatov/randomdelays-traces
https://github.com/ikizhvatov/randomdelays-traces
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/ documents/aes-development/rijndael-ammended.pdf
https://link.springer.com/book/10.1007/978-3-662-04722-4

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Guangjun Fan, Yongbin Zhou, Hailong Zhang, and Dengguo Feng. How to choose interesting
points for template attacks? Cryptology ePrint Archive, Paper 2014/332, 2014. URL https:
//eprint.iacr.org/2014/332.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665–673, 2020.

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-bandwidth acoustic
cryptanalysis. In Juan A. Garay and Rosario Gennaro (eds.), Advances in Cryptology – CRYPTO
2014, pp. 444–461, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. ISBN 978-3-662-44371-
2.

Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval Yarom. ECDSA key
extraction from mobile devices via nonintrusive physical side channels. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 1626–1638, 2016.

Anupam Golder, Ashwin Bhat, and Arijit Raychowdhury. Exploration into the explainability of
neural network models for power side-channel analysis. In Proceedings of the Great Lakes
Symposium on VLSI 2022, GLSVLSI ’22, pp. 59–64, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450393225. doi: 10.1145/3526241.3530346. URL
https://doi.org/10.1145/3526241.3530346.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Katherine Hermann and Andrew Lampinen. What shapes feature representations? exploring datasets,
architectures, and training. Advances in Neural Information Processing Systems, 33:9995–10006,
2020.

Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep neural network attribution methods for
leakage analysis and symmetric key recovery. In Kenneth G. Paterson and Douglas Stebila (eds.),
Selected Areas in Cryptography – SAC 2019, pp. 645–666, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-38471-5.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/science/
article/pii/0893608089900208.

Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and Joos Vandewalle.
Machine learning in side-channel analysis: a first study. Journal of Cryptographic Engineering, 1
(4):293–302, 2011.

Minhui Jin, Mengce Zheng, Honggang Hu, and Nenghai Yu. An enhanced convolutional neural
network in side-channel attacks and its visualization. arXiv preprint arXiv:2009.08898, 2020.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael Wiener (ed.),
Advances in Cryptology — CRYPTO’ 99, pp. 388–397, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg. ISBN 978-3-540-48405-9.

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
attacks: Exploiting speculative execution. In 40th IEEE Symposium on Security and Privacy
(S&P’19), 2019.

Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.
In Neal Koblitz (ed.), Advances in Cryptology — CRYPTO ’96, pp. 104–113, Berlin, Heidelberg,
1996. Springer Berlin Heidelberg. ISBN 978-3-540-68697-2.

12

https://eprint.iacr.org/2014/332
https://eprint.iacr.org/2014/332
https://doi.org/10.1145/3526241.3530346
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Yanbin Li, Yuxin Huang, Fuwei Jia, Qingsong Zhao, Ming Tang, and Shougang Ren. A gradient
deconvolutional network for side-channel attacks. Computers & Electrical Engineering, 98:107686,
2022.

Yanbin Li, Jiajie Zhu, Zhe Liu, Ming Tang, and Shougang Ren. Deep learning gradient visualization-
based pre-silicon side-channel leakage location. IEEE Transactions on Information Forensics and
Security, 2024.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann
Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown:
Reading kernel memory from user space. In 27th USENIX Security Symposium (USENIX Security
18), 2018.

Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclicity
constraints. In International Conference on Learning Representations, 2022. URL https://
openreview.net/forum?id=eYciPrLuUhG.

Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to raw traces: A
deep learning architecture for end-to-end profiling attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 235–274, 2021.

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking cryptographic imple-
mentations using deep learning techniques. In Security, Privacy, and Applied Cryptography
Engineering: 6th International Conference, SPACE 2016, Hyderabad, India, December 14-18,
2016, Proceedings 6, pp. 3–26. Springer, 2016.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks. Springer New York,
NY, 1st edition, March 2007. doi: 10.1007/978-0-387-38162-6. URL https://link.springer.
com/book/10.1007/978-0-387-38162-6.

Loïc Masure and Rémi Strullu. Side-channel analysis against anssi’s protected aes implementation
on arm: end-to-end attacks with multi-task learning. Journal of Cryptographic Engineering, 13(2):
129–147, 2023.

Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization for general character-
ization in profiling attacks. In Constructive Side-Channel Analysis and Secure Design: 10th
International Workshop, COSADE 2019, Darmstadt, Germany, April 3–5, 2019, Proceedings 10,
pp. 145–167. Springer, 2019.

Thomas S Messerges. Using second-order power analysis to attack dpa resistant software. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pp. 238–251. Springer,
2000.

Nicky Mouha. Review of the Advanced Encryption Standard. NIST Interagency/Internal Report
(NISTIR) 8319, National Institute of Standards and Technology, July 2021. URL https://csrc.
nist.gov/pubs/ir/8319/final.

Maxime Nassar, Youssef Souissi, Sylvain Guilley, and Jean-Luc Danger. Rsm: A small and fast
countermeasure for aes, secure against 1st and 2nd-order zero-offset scas. In 2012 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1173–1178. IEEE, 2012.

Christof Paar and Jan Pelzl. Understanding cryptography, volume 1. Springer, 2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Guilherme Perin, Lichao Wu, and Stjepan Picek. I know what your layers did: Layer-wise explain-
ability of deep learning side-channel analysis. Cryptology ePrint Archive, Paper 2022/1087, 2022.
URL https://eprint.iacr.org/2022/1087.

Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. SoK: Deep learning-
based physical side-channel analysis. ACM Computing Surveys, 55(11):1–35, 2023.

13

https://openreview.net/forum?id=eYciPrLuUhG
https://openreview.net/forum?id=eYciPrLuUhG
https://link.springer.com/book/10.1007/978-0-387-38162-6
https://link.springer.com/book/10.1007/978-0-387-38162-6
https://csrc.nist.gov/pubs/ir/8319/final
https://csrc.nist.gov/pubs/ir/8319/final
https://eprint.iacr.org/2022/1087

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Analysis (EMA): Measures and
counter-measures for smart cards. In Isabelle Attali and Thomas Jensen (eds.), Smart Card
Programming and Security, pp. 200–210, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
ISBN 978-3-540-45418-2.

Christian Rechberger and Elisabeth Oswald. Practical template attacks. In Chae Hoon Lim and Moti
Yung (eds.), Information Security Applications, pp. 440–456, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg. ISBN 978-3-540-31815-6.

Eric Rescorla. HTTP over TLS. RFC 2818, May 2000. URL https://www.rfc-editor.org/
info/rfc2818.

Thomas Schamberger, Maximilian Egger, and Lars Tebelmann. Hide and seek: Using occlusion
techniques for side-channel leakage attribution in cnns. In Jianying Zhou, Lejla Batina, Zengpeng
Li, Jingqiang Lin, Eleonora Losiouk, Suryadipta Majumdar, Daisuke Mashima, Weizhi Meng,
Stjepan Picek, Mohammad Ashiqur Rahman, Jun Shao, Masaki Shimaoka, Ezekiel Soremekun,
Chunhua Su, Je Sen Teh, Aleksei Udovenko, Cong Wang, Leo Zhang, and Yury Zhauniarovich
(eds.), Applied Cryptography and Network Security Workshops, pp. 139–158, Cham, 2023. Springer
Nature Switzerland. ISBN 978-3-031-41181-6.

Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for differential side channel
cryptanalysis. In Cryptographic Hardware and Embedded Systems–CHES 2005: 7th International
Workshop, Edinburgh, UK, August 29–September 1, 2005. Proceedings 7, pp. 30–46. Springer,
2005.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
propagating activation differences. In Doina Precup and Yee Whye Teh (eds.), Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pp. 3145–3153. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.
press/v70/shrikumar17a.html.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1409.1556.

Biaoshuai Tao and Hongjun Wu. Improving the biclique cryptanalysis of AES. In Ernest Foo
and Douglas Stebila (eds.), Information Security and Privacy, pp. 39–56, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-19962-7.

Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kilroy was here: The first step towards
explainability of neural networks in profiled side-channel analysis. In Guido Marco Bertoni and
Francesco Regazzoni (eds.), Constructive Side-Channel Analysis and Secure Design, pp. 175–199,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-68773-1.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revisiting a methodology for
efficient CNN architectures in profiling attacks. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 147–168, 2020.

Lichao Wu, Yoo-Seung Won, Dirmanto Jap, Guilherme Perin, Shivam Bhasin, and Stjepan Picek.
Explain some noise: Ablation analysis for deep learning-based physical side-channel analysis.
IACR Cryptol. ePrint Arch., 2021:717, 2021.

Trevor Yap, Adrien Benamira, Shivam Bhasin, and Thomas Peyrin. Peek into the black-box:
Interpretable neural network using sat equations in side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pp. 24–53, 2023.

14

https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2818
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
http://arxiv.org/abs/1409.1556

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Methodology for efficient
CNN architectures in profiling attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pp. 1–36, 2020.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), Computer Vision – ECCV 2014,
pp. 818–833, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10590-1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CiphertextPlaintext PlaintextCryptographic
hardware

Cryptographic
hardware

Key

Secure
channel

Insecure
channel

Sender Intended recipient

"The credit card
number is..."

"The credit card
number is..."

Potential eavesdroppers

Figure 5: Diagram illustrating the main components of symmetric-key cryptographic algorithms,
which enable secure transmission of data over insecure channels where it may be intercepted by
eavesdroppers. The data is first partitioned and encoded as a sequence of plaintexts. Each plaintext
is transformed into a ciphertext by an invertible function indexed by a cryptographic key. The key
is transmitted over a secure channel to intended recipients of the data, allowing them to invert the
function and recover the original plaintext. The set of functions is designed so that absent this
key, the ciphertext gives no information about the plaintext. Thus, the data remains secure even if
eavesdroppers have access to the ciphertext.

A EXTENDED BACKGROUND

Here we provide a high-level overview of the AES algorithm and power side-channel attacks aimed
at a machine learning audience. Since our algorithm views the cryptographic algorithm and hardware
as a black box to be characterized with data, a deep understanding is not necessary to understand and
appreciate our work. Thus, we omit many details and aim to impart an intuitive understanding of
these topics. Interested readers may refer to Daemen & Rijmen (2013) for a detailed introduction to
the AES algorithm, to Mangard et al. (2007) for a detailed introduction to power side-channel attacks,
and to Picek et al. (2023) for a survey of supervised deep learning-based power side-channel attacks
on AES implementations.

A.1 CRYPTOGRAPHIC ALGORITHMS

Data is often transmitted over insecure channels which leave it accessible not only to intended
recipients, but also to unknown and untrusted parties. For example, when a signal is wirelessly
transmitted from one antenna to another, an eavesdropper could set up a third antenna between the
two and intercept the signal. Alternately, data stored on a hard drive by one user of a computer may
be accessed by a different user. Cryptographic algorithms aim to preserve the privacy of data under
such circumstances by transforming it so that it is meaningful only in combination with additional
data which is known to its intended recipients but not to the untrusted parties.

In this work we consider the advanced encryption standard (AES), which is a symmetric-key cryp-
tographic algorithm. See figure 5 for a diagram illustrating the important components of such
algorithms. The unencrypted data to be transmitted is encoded and partitioned into a sequence of
fixed-length bitstrings called plaintexts. The cryptographic algorithm encrypts each plaintext into a
ciphertext by applying an invertible function from a set of functions indexed by an integer called the
cryptographic key. This set of functions is designed so that of one were to sample a key and plaintext
uniformly at random from the sets of all possible keys and plaintexts, then the plaintext and ciphertext
would be marginally independent. Thus, such an algorithm may be used to securely transmit data by
ensuring that the sender and recipient of the data know a shared key,2 and that the key is kept secret
from all potential eavesdroppers on the data.

2The key is typically shared using an asymmetric-key cryptographic algorithm such as RSA or ECC.
Asymmetric-key cryptography is slow and resource-intensive, so when a sufficiently-large amount of data must

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

A.2 SIDE-CHANNEL ATTACKS

Many symmetric-key cryptographic algorithms are believed to be secure in the sense that it is not
feasible to determine their cryptographic key by encrypting known plaintexts and observing the
resulting ciphertexts. Any such algorithm with a finite number of possible keys is vulnerable to
‘brute-force’ attacks based on arbitrarily guessing and checking keys until success, but doing so
requires checking half of all possible keys in the average case, which is unrealistic for algorithms
such as AES which has either 2128, 2192, or 2256 possible keys. To our knowledge the best known
such attack against AES reduces the required number of guesses by less than a factor of 8 compared
to a naive brute force attack (Mouha, 2021; Tao & Wu, 2015).

However, while algorithms may be secure when considering only their intended inputs and outputs,
hardware executing these algorithms will inevitably emit measurable physical signals which are statis-
tically associated with their intermediate variables and operations. Examples of such signals include
a device’s power consumption over time (Kocher et al., 1999), the amount of time it takes to execute
a program or instruction (Kocher, 1996; Lipp et al., 2018; Kocher et al., 2019), electromagnetic
radiation it emits (Quisquater & Samyde, 2001; Genkin et al., 2016), and sound due to vibrations of
its electronic components (Genkin et al., 2014). This phenomenon is called side-channel leakage,
and can be exploited to determine sensitive data such as a cryptographic key through side-channel
attacks.

As a simple example of side-channel leakage, consider the following Python function which checks
whether a password is correct:

def is_correct(provided_password: str , correct_password: str) -> bool:
if len(provided_password) != len(correct_password):

return False
for i in range(len(provided_password)):

if provided_password[i] != correct_password[i]:
return False

return True

Suppose the password consists of n characters, each with c possible values. Consider an at-
tacker seeking to determine the correct password by feeding various guessed passwords until
the function returns True. Naively, the attacker could simply guess and check all possible m-
length passwords for m = 1, . . . , n. This would require O(cn) calls to the function, which
would be extremely costly for realistically-large c and n. However, an attacker with knowledge
of the function’s implementation could dramatically reduce this cost by observing that the func-
tion’s execution time depends on correct_password. Because the function exits immediately if
len(provided_password) != len(correct_password), the attacker can determine the length of
correct_password in O(n) time by feeding increasing-length guesses to is_correct until its exe-
cution time increases. Next, because is_correct exits the first time it detects an incorrect character,
the attacker can sequentially determine each of the characters of correct_password by checking all
c possible values of each character and noting that the correct value leads to an increase in execution
time. Thus, although is_correct secure against attackers which use only its intended inputs and
outputs, it provides essentially no security against attackers which measure its execution time.

In this work we focus on side-channel leakage due to the power consumption over time of a device.
A device’s power consumption is inevitably statistically-associated with the operations it executes
and the data it operates on, because these dictate which components are active and the order and
manner in which they operate. There are many types of components with different functionality, and
components with the same intended functionality are not identical due to imperfect manufacturing
processes. These differences impact power consumption. While in general the association between
power consumption and data is multifactorial and difficult to describe, in figure 6 we illustrate a
simple relationship which accounts for a significant portion of the leakage in a device characterized
by Mangard et al. (2007).

be transmitted, it is more-efficient to share the key with an asymmetric-key algorithm and then transmit data
using a symmetric-key algorithm than to simply transmit the data with an asymmetric-key algorithm.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Voltage
source

High voltage
 bit

Low voltage
 bit

Data line
-- stores charge

Data line pre-charged to 1

Bit value?

1

0

No change

Charge is drained

Figure 6: Diagram illustrating one reason there is power side-channel leakage in the device charac-
terized by Mangard et al. (2007, ch. 4). Data is transmitted over a bus consisting of multiple wires,
with one wire representing each bit. Each wire represents a 0 bit as some prescribed ‘low’ voltage
and a 1 bit as a ‘high’ voltage. Energy is consumed when the voltage of a wire changes from low to
high because positive and negative charges, which are attracted to one-another, must be separated
to create a high concentration of positive charge on the wire. When ‘writing’ data to the bus, this
particular device first ‘pre-charges’ all wires to 1, then drains charge from the wires which should
represent 0. Thus, because the 0’s must be changed to 1’s before the next write, energy is consumed
in proportion to the number of 0’s, thereby creating a statistical association between the device’s
power consumption and the data it operates on.

A.3 POWER SIDE-CHANNEL ATTACKS ON AES IMPLEMENTATIONS

Side-channel attacks are techniques which exploit side-channel leakage to learn sensitive information
such as cryptographic keys. There are many categories of attacks, but in this work we focus on a cate-
gory called profiled side-channel attacks on symmetric-key cryptographic algorithms. These attacks
assume that the ‘attacker’ has access to a clone of the actual cryptographic device to be attacked,
and the ability to encrypt arbitrary plaintexts with arbitrary cryptographic keys, observe the resulting
ciphertexts, and measure the side-channel leakage during encryption. In practice, these assumptions
almost certainly overestimate the capabilities of attackers – for example, while in some cases an
attacker could plausibly identify the hardware and source code of a cryptographic implementation,
purchase copies of this hardware, program them with the source code, and characterize these devices,
the nature of the side-channel leakage of these purchased copies would differ from those of the actual
device due to imperfect manufacturing processes. It has been demonstrated that profiled side-channel
attacks can be effective despite this, especially when numerous copies of the target hardware are used
for profiling (Das et al., 2019; Danial et al., 2021). Regardless, this type of attack provides an upper
bound on the vulnerability of a device to side-channel attacks, which is a useful metric for hardware
designers.

While there are diverse types of profiled side-channel attacks, at a high level the following steps
encompass the important elements of these attacks:

1. Select some ‘sensitive’ intermediate variable of the cryptographic algorithm which reveals
the cryptographic key (or part of it).

2. Compile a dataset of (side-channel leakage, intermediate variable) pairs by repeatedly
randomly selecting a key and plaintext, encrypting the plaintext using the key and recording
the resulting ciphertext and side-channel leakage during encryption, and computing the
intermediate variable based on knowledge of the cryptographic algorithm.

3. Use supervised learning to train a parametric function approximator to predict intermediate
variables from recordings of side-channel leakage during encryption.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

4. Measure side-channel leakage during encryptions by the actual target device. Use the
trained predictor to predict sensitive variables from side-channel leakage. Potentially, these
predictions can be combined to get a better estimate of the key.

In the case of power side-channel attacks on AES, it is generally infeasible to directly target the
cryptographic key because care is taken by hardware designers to prevent it from directly influencing
power consumption. Instead, it is common to target an intermediate variable called the SubBytes
output, which is computed as

y := AES-SBOX(k ⊕ w) (15)

where k ∈ {0, 1}nbits is the key, w ∈ {0, 1}nbits is the plaintext, nbits ∈ Z++ is the number of bits of the
key and plaintext, ⊕ is the bitwise exclusive-or operation, and AES-SBOX : {0, 1}nbits → {0, 1}nbits

is an invertible function which is widely known and the same for all AES implementations. Note that
if the plaintext is known, the key can be computed as

k = AES-SBOX−1(y)⊕ w. (16)

Additionally, it is common to independently target subsets of the bits of the cryptographic key (e.g.
the individual bytes). This is reasonable because many devices can operate on only a subset of the
bytes in a single machine instruction, in which case one gains little by attacking more than this
number of bytes simultaneously. Even in devices for which this is not the case, subsets of bits will
still be statistically associated with power consumption.

A.3.1 TEMPLATE ATTACK: EXAMPLE OF A CLASSICAL PROFILED SIDE-CHANNEL ATTACK

In order to underscore the advantage of deep learning over previous side-channel attack algorithms,
we will here describe the template attack algorithm of Chari et al. (2003), variations of which are the
state-of-the-art non-deep learning based attacks. The attack is based on modeling the joint distribution
of power consumption and intermediate variable as a Gaussian mixture model, as described in
algorithm 2.

Algorithm 2: The Gaussian template attack algorithm of Chari et al. (2003)

Input: Profiling (training) dataset D := {(x(n), y(n) : n ∈ [1 .. N]} ⊂ RT × {0, 1}nbits , attack
(testing) dataset Dattack := {(x(n)

a , w
(n)
a) : n ∈ [1 .. Na]} ⊂ RT × {0, 1}nbits , ‘points of

interest’ Tpoi := {tm : m = 1, . . . , T̃} ⊂ [1 .. T]
Output: Predicted key k∗

1 Function get_y (k, w)
2 return AES-SBOX(k ⊕ w) // calculate intermediate variable for given key

3 for n ∈ [1 .. N] do
4 x̃(n) ←

(
x
(n)
tm : m = 1, . . . , T̃

)
// prune power traces to ‘points of interest’

5 for y ∈ {0, 1}nbits do
// fit a multivariate Gaussian mixture model to the training dataset

6 Dy ←
{
x̃(n) : n ∈ [1 .. N], y(n) = y

}
7 Ny ← |Dy|
8 µy ← 1

Ny

∑
x̃∈Dy

x̃

9 Σy ← 1
Ny−1

∑
x̃∈Dy

(x̃− µy)(x̃− µy)
⊤

10 for n ∈ [1 .. Na] do
11 x̃

(n)
a ←

(
x
(n)
a,tm : m = 1, . . . , T̃

)
// prune power traces of attack dataset

// predict key value which maximizes log-likelihood of attack dataset
12 k∗ ←

arg maxk∈{0,1}nbits

∑Na
n=1

[
logN

(
x̃(n);µ

get_y(k,w
(n)
a)

,Σ
get_y(k,w

(n)
a)

)
+ logN

get_y(k,w
(n)
a)

]
13 return k∗

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Note that this algorithm assumes that the joint distribution is well-described by a Gaussian mixture
model, which may not hold in practice. Additionally, due to the near-cubic runtime of the matrix inver-
sion of each Σy required to compute the Gaussian density functions, this algorithm requires pruning
power traces down to a small number of ‘high-leakage’ timesteps. Follow-up work (Rechberger &
Oswald, 2005) proposed performing principle component analysis on the traces and modeling the
coefficients of the top principle components rather than individual timesteps. Nonetheless, these
constraints mean that the efficacy of this attack is contingent on simplifying assumptions and judge-
ment of which points are ‘leaky’ using simple statistical techniques and implementation knowledge,
limiting its usefulness as a way for hardware designers to evaluate the amount of side-channel leakage
from their device.

A.3.2 PRACTICAL PROFILED DEEP LEARNING SIDE-CHANNEL ATTACKS ON AES
IMPLEMENTATIONS

Here we will give a common and concrete setting and method for performing profiled power side-
channel attacks on AES implementations, which is used for all of our experiments.

Consider an AES-128 implementation, which has a 128-bit cryptographic key and plaintext. Typically,
attackers target each of the 16 bytes of the key independently rather than attacking the full key at
once. This practice tacitly assumes that the bytes of the sensitive variable are statistically-independent
given the power trace, which is reasonable because many AES operations (including those which are
commonly targeted) are performed independently on the individual bytes. Thus, it is a convenient
way to simplify the attack with only a small performance degradation.

Additionally, it is difficult and uncommon to try to directly map power traces to associated crypto-
graphic keys, because great care is taken by hardware designers to ensure that the key does not directly
impact power consumption. Instead, attackers generally target ‘sensitive’ intermediate variables
which unavoidably directly impact power consumption and can be combined with the plaintext and
ciphertext to learn the key. We consider one such intermediate variable which is referred to as the
first SubBytes output, and is equal to

y := AES-SBOX(k ⊕ w), (17)

where k ∈ {0, 1}8 is one byte of the cryptographic key, w ∈ {0, 1}8 is the corresponding byte of the
plaintext, ⊕ denotes the bitwise exclusive-or operation, and AES-SBOX : {0, 1}8 → {0, 1}8 is an
invertible function which is publicly-available and the same for all AES implementations. Note that
if w is known, as is assumed in the profiled side-channel attack setting, then k can be recovered as

k = w ⊕AES-SBOX−1(y). (18)

In the context of profiled power side-channel analysis, one assumes to have a ‘profiling’ dataset (i.e.
a training dataset) and an ‘attack’ dataset (i.e. a test dataset). Suppose we target nbytes bytes of the
sensitive variable. In our setting, the profiling dataset consists of ordered pairs of power traces and
their associated sensitive intermediate variables:

D :=
{
(x(n), y(n)) : n ∈ [1 .. N]

}
⊂ RT × {0, 1}nbytes×8 (19)

and the attack dataset consists of ordered pairs of power traces and their associated plaintexts:

Da :=
{
(x(n)

a , w(n)
a) : n ∈ [1 .. Na]

}
⊂ RT × {0, 1}nbytes×8. (20)

Many works prove the concept of their approaches by targeting only a single byte of the sensitive
variable. When multiple bytes are targeted, it is common to either train a separate neural network
for each byte of the sensitive variable, or to amortize the cost of targeting these bytes by training a
single neural network with a shared backbone and a separate head for each byte. In this work we
exclusively target single bytes, though it would be straightforward to extend our approach to the
multitask learning setting.

Consider a neural network architecture Φ : Y × RT × RP → R+ : (y,x,θ) 7→ Φ(y | x;θ), where
each Φ(· | x;θ) is a probability mass function over Y. In the case of a multi-headed network with
each head independently predicting a single byte, we compute this probability mass of y ∈ Y as the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

product of the mass assigned to each of its bytes. We train the network by approximately solving the
optimization problem

max
θ∈RP

L(θ) := 1

N

N∑
n=1

log Φ(y(n) | x(n);θ). (21)

Given θ̂ ∈ arg maxθ∈RP L(θ), we then identify the key which maximizes our estimated likelihood
of our attack dataset and key as follows:

k̂ ∈ arg max
k∈{0,1}nbytes×8

Na∑
n=1

log Φ
((

AES-SBOX(ki ⊕ w
(n)
a,i) : i = 1, . . . , nbytes

)
| x(n)

a ; θ̂
)

(22)

where we denote by ki and w
(n)
i the individual bytes of k and w(n).

Model evaluation In the context of profiled power side-channel analysis, the accuracy of trained
models is usually only marginally higher than that of randomly guessing, and higher accuracy is
achieved by accumulating predictions about many power traces in the manner of equation 22. Thus,
accuracy generally lacks the resolution to usefully evaluate and compare models. Instead, it is
common to estimate the rank of the correct key in the distribution predicted by the model, defined as
E rank(Φ(· |X;θ), Y) where

rank(f, y) := |{y′ ∈ Y : f(y′) ≥ f(y)}| − 1 (23)

for f : Y → R. This quantity is not equivalent to the performance of the model when accumulating
predictions on multiple power traces, as performance in this regime may vary significantly depending
on the extent to which the model’s incorrect predictions are systematic or random. For multi-trace
predictions, given the attack dataset Da of equation 20 and arbitrary D̂a ⊂ Da, let us define

p̃K(k; D̂a,θ) :=
∑

(x,w)∈D̂a

log Φ ((AES-SBOX(ki ⊕ wi) : i = 1, . . . , nbytes) | x;θ) , (24)

i.e. a quantity proportional to the logarithm of the estimated distribution of the key by our model
given our attack dataset. We define

rank-auc(θ; t,Da, k) :=

t∑
τ=1

ED̂a∼U(Da
t)

rank(p̃K(·; D̂a,θ), k). (25)

Intuitively, this tells us the area under the curve we would get if we were to evaluate our model’s key
predictions using random τ -cardinality subsets of our attack dataset and compute the mean rank of
key k in these predictions, and plot this quantity for each τ ∈ [1 .. t]. Lower values of this quantity
when k denotes the correct key tell us that our model has better performance in the regime where it is
fed multiple power traces.

B EXTENDED METHOD WITH PROOFS AND DERIVATIONS

B.1 NOTATION

We denote sets with Serif font, e.g. S, with the exception of the real numbers R and the integers Z.
For arbitrary sets S ⊂ R, we will define S+ := {x ∈ S : x ≥ 0} and S++ := {x ∈ S : x > 0}. For
a ≤ b ∈ Z, we will define [a .. b] := [a, b] ∩ Z. We will use set-builder notation when we wish to
assign names to a set’s elements, e.g. S := {xt : t ∈ [1 .. T]}.
We denote vectors with boldface text, e.g. x, and scalars with non-bold text, e.g. x. We will denote
by xt the element of vector x at position t. We will sometimes use the following ‘vector-builder’
notation to define elements of the vectors: x := (xt : t = 1, . . . , T). We will denote by x⊤ the
transpose of x. Note that in this work, (·)T does not denote transposition, but rather some object to
the power of another object T.

Random variables will always be upper-case, whereas deterministic variables may be either lower-
or upper-case. In this work we will assume that all real-valued random variables have probability

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

density functions, and will denote by ‘distribution’ a probability mass, density, or joint mass/density
function, depending on the context. Distributions will be denoted by p··· with subscript indicating the
nature of the distribution. For example, we may denote by pX the distribution of random vector X,
by pX,Y the joint distribution of random vector X and scalar Y , or pY |X the conditional distribution
of Y given X. We will denote expectation by E .

For arbitrary vectors x ∈ RT and binary vectors α ∈ {0, 1}T , we denote xα := (xt : t = 1, . . . , T :
αt = 1), i.e. the sub-vector of x containing its elements for which the corresponding element of α is
1. We will denote by x−t := (xτ : τ = 1, . . . , T : τ ̸= t), i.e. the vector x with element t omitted.

We will use the following Shannon information theoretic quantities (Shannon, 1948):

H[X] := E log pX(X) for discrete X, (entropy)
I[X;Y] := E [log pX,Y (X,Y)− log pX(X)− log pY (Y)] . (mutual information)

KL[p ∥ q] := EX∼p [log p(X)− log q(X)] (KL divergence)

Conditional entropies are defined similarly: H[Y | X] := E log pY |X(Y | X). Note that I[X;Y] =
H[X] − H[X | Y] = H[Y] − H[Y | X]. While we have used random scalar notation in these
definitions, they are equally-applicable to random vectors.

B.2 SETTING

We view power traces as vectors x ∈ RT and sensitive variable values as elements y ∈ Y where Y
is a finite set. We view these as realizations of jointly-distributed random variables X, Y ∼ pX,Y

respectively, where pY is a simple known (e.g. uniform) distribution and pX|Y is a priori unknown
and dictated by factors such as the hardware, environment, and measurement setup. In this work we
assume that the conditional density functions pX|Y (· | y) exist and have support equal to RT , which
is reasonable because power consumption usually has a ‘random’ component which is well-described
by additive Gaussian noise (Mangard et al., 2007).

B.3 OPTIMIZATION PROBLEM

Recall that we have defined the erasure probabilities to be a binary vector γ ∈ [0, 1]T . This vector
parameterizes a distribution over binary vectors in {0, 1}T as follows:

Aγ ∼ pAγ where Aγ,t =

{
1 with probability 1− γt
0 with probability γt

, (26)

i.e. its elements are independent Bernoulli random variables where the t-th element has parameter
p = 1 − γt. We will use Aγ to get random sub-vectors XAγ of X. Note that γt represents the
probability that Xt will not be an element of XAγ .

We consider the optimization problem

min
γ∈[0,1]T

Lideal(γ) :=
1

2
λ ∥γ∥22 + I[Y ;XAγ | Aγ] (27)

where λ > 0 is a hyperparameter. Intuitively, this is a trade-off between having high erasure probabil-
ities and thereby reducing the mutual information quantity, and having low erasure probabilities to

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

reduce the norm penalty. For each t, we can write

Lideal(γ) =
1

2
λ

T∑
τ=1

γ2
τ +

∑
α∈{0,1}T

I[Y ;Xα]pAγ (α) (28)

=
1

2
λ

T∑
τ=1

γ2
τ +

∑
α∈{0,1}T

αt=1

pAγ,t
(1)pAγ (α−t) I[Y ;Xα]

+
∑

α∈{0,1}T

αt=0

pAγ,t(0)pAγ,−t(α−t) I[Y ;Xα] (29)

=
1

2
λ

T∑
τ=1

γ2
τ +

∑
α∈{0,1}T

αt=0

[(1− γt) I[Y ;Xα, Xt]] + γt I[Y ;Xα]] pAγ,−t(α−t) (30)

=
1

2
λγ2

t +
∑

α∈{0,1}T

αt=0

[I[Y ;Xt,Xα]− γt I[Y ;Xt |Xα]] pAγ,−t(α−t) +
1

2
λ ∥γ−t∥22 .

(31)

As γt decreases, so does the penalty 1
2λγ

2
t . As γt increases, the quantities −γt I[Y ;Xt | Xα]

decrease in proportion to I[Y ;Xt | Xα]. For γ∗ ∈ arg minγ∈[0,1]T Lideal(γ), it follows that γ∗
t

positively correlates with some notion of a ‘typical’ value of I[Y ;Xt |Xα], and it appears reasonable
to view it as a notion of the ‘amount of leakage’ at time t.

We can verify that a solution to equation 27 exists, and derive an implicit expression for it:

Proposition 1. For Lideal as defined in equation 27, arg minγ∈[0,1]T Lideal(γ) ̸= ∅. Furthermore,
every γ∗ ∈ arg minγ∈[0,1]T Lideal(γ) must satisfy

γ∗
t = min

1

λ

∑
α∈{0,1}T

αt=0

I[Y ;Xt |Xα]
∏

τ∈[1 .. T]\{t}
(γ∗

τ)
1−ατ (1− γ∗

τ)
ατ , 1

 ∀t ∈ [1 .. T].

(32)

Proof. To establish existence of a solution, we observe that [0, 1]T is compact and

I[Y ;XAγ | Aγ] =
∑

α∈{0,1}T

I[Y ;Xα]pAγ (α) (33)

=
∑

α∈{0,1}T

I[Y ;Xα]

T∏
t=1

(1− γt)
αtγ1−αt

t (34)

is continuous in γ. Clearly, Lideal is also continuous in γ, and by the extreme value theorem there
must be some vector γ∗ ∈ [0, 1]T such that Lideal(γ

∗) = infγ∈[0,1]T L(γ).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

We now derive an implicit expression that such γ∗ must satisfy. Note that by equation 31, we can
write

Lideal(γ) =

12λ ∥γ−t∥22 +
∑

α∈{0,1}T

αt=0

I[Y ;Xt,Xα]pAγ,−t
(α−t)

− γt

 ∑
α∈{0,1}T

αt=0

I[Y ;Xt |Xα]pAγ,−t
(α−t)

+
1

2
λγ2

t (35)

=: f1(γ−t)− γtf2(γ−t) +
1

2
λγ2

t . (36)

Our optimization problem may thus be expressed

min
γ∈[0,1]T

Lideal(γ) (37)

≡ min
γ−t∈[0,1]T−1

min
γt∈[0,1]

1

2
λγ2

t − γtf2(γ−t) + f1(γ−t). (38)

Consider the inner optimization problem and observe that

∂

∂γt
Lideal(γt,γ−t) = λγt − f2(γ−t) and

∂2

∂γ2
t

Lideal(γt,γ−t) = λ > 0. (39)

It follows that if f2(γ−t)
λ ∈ [0, 1], then it is the sole element of minγt∈[0,1] Lideal(γt,γ−t). Because

λ > 0 and f2(·) ≥ 0, we can never have f2(γ−t)
λ < 0. If f2(γ−t)

λ > 1, then ∂
∂γt
Lideal(γt,γ−t) < 0

for all γt ∈ [0, 1], which implies that 1 is the sole element of arg minγt∈[0,1] Lideal(γt,γ−t). The
implicit form for γ∗

t listed above follows from replacing pAγ,−t(α−t) by its definition.

Corrolary 1.1. Under the conditions of Proposition 1, if λ > log|Y|, then γ∗ ∈ [0, 1)T .

Proof. Note that for arbitrary t ∈ [1 .. T] and S ⊂ {X1, . . . , XT } \ {Xt}, we have the inequality

I[Y ;Xt | S] = H[Y | S]−H[Y | Xt,S] (40)
≤ H[Y | S] (41)
≤ H[Y] (42)
≤ log|Y|. (43)

Thus, γ∗
t < 1 provided

1

λ

∑
α∈{0,1}T

αt=0

I[Y ;Xt |Xα]pAγ,−t(α−t) (44)

≤ log|Y|
λ

∑
α∈{0,1}T

αt=0

pAγ,−t
(α−t) (45)

=
log|Y|
λ

< 1. (46)

Corrolary 1.2. Suppose the conditions of Proposition 1 are satisfied. Consider Xt such that
I[Y ;Xt | S] = 0 for all sets S ⊂ {X1, . . . , XT } \ {Xt}. It follows immediately from Proposition 1
that γ∗

t = 0. Suppose it additionally holds that I[Y ;Xt | S] > 0 =⇒ I[Y ;Xt | Xτ ,S] > 0 for all
t, τ ∈ [1 .. T] such that t ̸= τ and for all S ⊂ {X1, . . . , XT } \ {Xt, Xτ}. Let λ be sufficiently-large
that γ∗ ∈ [0, 1)T . If there exists some S ⊂ {X1, . . . , XT } \ {Xt} such that I[Y ;Xt | S] > 0, then
γ∗
t > 0.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Proof. Recall that by Corollary 1.1, there exists some finite λ for which γ∗ ∈ [0, 1)T . It follows that
we can write

γ∗
t =

1

λ

∑
α∈{0,1}T

αt=0

I[Y ;Xt |Xα]
∏

τ∈[1 .. T]\{t}
(γ∗

τ)
1−ατ (1− γ∗

τ)
ατ (47)

≥ 1

λ
I[Y ;Xt |Xα′]

∏
τ∈[1 .. T]\{t}

(γ∗
τ)

1−α′
τ (1− γ∗

τ)
α′

τ (48)

where α′ := (1 if Xt ∈ S else 0 : t = 1, . . . , T). If this quantity is greater than zero, then our claim
is satisfied. Else, suppose it is equal to zero. Since we have assumed that I[Y ;Xt | Xα′] > 0 and
γτ < 1 ∀τ, it must be the case that γ∗

τ = α′
τ = 0 for at least one τ.

Suppose we have timesteps {τi : i ∈ [1 .. η]} for which γ∗
τi = α′

τi = 0. Consider the vector
α̃ := (1 if α′

τ = 1 or τ = τi for some i ∈ [1 .. η]), i.e. α′ with all of its ‘offending’ 0’s flipped to
1’s. Note that

∏
τ∈[1 .. T]\{t}(γ

∗
τ)

1−α̃τ (1− γ∗
τ)

α̃τ > 0. Furthermore, by assumption we have

I[Y ;Xt |Xα′] > 0 (49)
=⇒ I[Y ;Xt |Xα′ , Xτ1] > 0 (50)

=⇒ · · · =⇒ I[Y ;Xt |Xα′ , Xτ1 , . . . , Xτη] = I[Y ;Xt |Xα̃] > 0. (51)

Thus, we have

γ∗
t ≥

1

λ
I[Y ;Xt |Xα̃]

∏
τ∈[1 .. T]\{t}

(γ∗
τ)

1−α̃τ (1− γ∗
τ)

α̃τ > 0. (52)

These results suggest that we should choose λ to be large enough that no γ∗
t saturates at 1, and that

for consistency we should quantify leakage using λγ∗ rather than γ∗.

B.4 EQUIVALENT ADVERSARIAL GAME

In practice we cannot solve equation 27 directly because we lack an expression for pX,Y . Here we
will propose a different optimization problem which is equivalent to equation 27, and allows us to
use deep learning to characterize pX,Y using data.

Consider the family Φ := {Φα}α∈{0,1}T with each element a deep neural network

Φα : Y × R
∑T

t=1 αt × RP → R+ : (y,x,θ) 7→ Φα(y | x;θ). (53)

We denote by Φα(y | x;θ) the mass assigned to y by the network Φα with weights θ and input x.
We assume each Φα(· | x;θ) is a probability mass function over Y (e.g. the neural net has a softmax
output activation). Consider the optimization problem

min
γ∈[0,1]T

max
θ∈RP

Ladv(γ,θ) :=
1

2
λ ∥γ∥22 + E log ΦAγ (Y |XAγ ;θ). (54)

Proposition 2. Consider the objective function Ladv of equation 54. Suppose there exists some
θ∗ ∈ RP such that Φα(y | xα;θ

∗) = pY |Xα
(y | xα) for all α ∈ {0, 1}T , x ∈ RT , y ∈ Y. Then

θ∗ ∈ arg max
θ∈RP

Ladv(γ,θ) ∀γ ∈ [0, 1]T . (55)

Furthermore, for all y ∈ Y and for all γ ∈ [0, 1]T , α ∈ {0, 1}T such that pAγ (α) > 0,

Φα(y |Xα; θ̂) = pY |Xα
(y |Xα) pX -almost surely ∀θ̂ ∈ arg min

θ∈RP

Ladv(γ,θ). (56)

Proof. Note that since each Φα(· | x,θ) is a probability mass function over Y, by Gibbs’ inequality
we have that

E log Φα(Y |Xα;θ) ≤ E log pY |Xα
(Y |Xα) ∀α ∈ {0, 1}T , θ ∈ RP . (57)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Thus,
Ladv(γ,θ

∗) ≥ Ladv(γ,θ) ∀θ ∈ RP , γ ∈ [0, 1]T , (58)
which implies the first claim.

Next, consider some fixed γ ∈ [0, 1]T and θ̂ ∈ arg minθ∈RP Ladv(γ,θ). We must haveLadv(γ, θ̂) =
Ladv(γ,θ

∗). Thus,

0 = Ladv(γ, θ̂)− Ladv(γ,θ
∗) (59)

= E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]

(60)

=
∑

α∈{0,1}T

pAγ (α)E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]
. (61)

By Gibbs’ inequality each of the expectations in the summation is nonnegative, which implies that
whenever pAγ (α) > 0 we must have

0 = E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]

(62)

=

∫
R

∑T
t=1 αt

pXα(xα)KL
[
pY |Xα

(· | xα) ∥Φα(· | xα; θ̂)
]
dxα. (63)

Since KL
[
pY |Xα

(· | xα) ∥Φα(· | xα; θ̂
]
≥ 0 with equality if and only if pY |Xα

(y | xα) =

Φα(y | xα; θ̂) ∀y ∈ Y, this must be the case except possibly for x ∈ RT where∫
{xα:x∈RT }

pXα(xα) dxα = 0 =⇒
∫
RT

pX(x) dx = 0. (64)

This implies the second claim.

Corrolary 2.1. Under the assumptions of Proposition 2, equations 54 and 27 are equivalent.

Proof. Observe

min
γ∈[0,1]T

max
θ∈RP

Ladv(γ,θ) (65)

≡ min
γ∈[0,1]T

max
θ∈RP

1

2
λ ∥γ∥22 + E log ΦAγ (Y |XAγ ;θ) (66)

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 +

∑
α∈{0,1}T

pAγ (α)E log pY |Xα
(Y |Xα) (67)

by Proposition 2

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 −

∑
α∈{0,1}T

pAγ (α)H[Y |Xα] (68)

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 +

∑
α∈{0,1}T

pAγ (α) [H[Y]−H[Y |Xα]] (69)

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 +

∑
α∈{0,1}T

pAγ (α) I[Y ;Xα] (70)

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 + I[Y ;XAγ | Aγ] (71)

≡ min
γ∈[0,1]T

Lideal(γ). (72)

Corrolary 2.2. Suppose the conditions of Proposition 2 are satisfied, and let θ̂ ∈
arg minθ∈RP Ladv(γ,θ) for some γ ∈ [0, 1]T . Consider α := α′ + α′′ where α′,α′′ ∈ {0, 1}T
such that α′

t = 1 =⇒ α′′
t = 0, α′′

t = 1 =⇒ α′
t = 0, and pAγ (α) > 0. For all y ∈ Y, almost

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

surely for X ∼ pX , it follows immediately from Proposition 2 that we can compute the conditional
pointwise mutual information as

pmi(y;Xα′ |Xα′′) := log pY |Xα
(y |Xα)− log pY |Xα′′ (y |Xα′′) (73)

= logΦ(y | α⊙X,α; θ̂)− log Φ(y | α′′ ⊙X,α′′; θ̂). (74)

This property is useful because it allows us to assess the leakage of a single power trace, as opposed
to merely a summary of the entire distribution of traces. There are scenarios where a point might
leak for some traces but not for others. For example, a common countermeasure is to randomly
delay leaky instructions or swap their order with another instruction so that they do not occur at a
deterministic time relative to the start of encryption.

B.5 IMPLEMENTATION DETAILS

It would be impractical to train 2T neural nets independently, so we amortize the cost by instead
training a single network with α as an auxiliary input:

Φ : Y × RT × {0, 1}T × RP : (y, x̃,α,θ) 7→ Φ(y | x̃,α,θ) (75)

where each Φα(y | xα;θ) := Φ(y | α⊙ x,α;θ). We can then re-write equation 54 as

min
γ∈[0,1]T

max
θ∈RP

L(γ,θ) := 1

2
λ ∥γ∥22 + E log Φ(Y | Aγ ⊙X,Aγ ;θ). (76)

We intend to approximately solve equation 76 using an alternating minibatch stochastic gradient
descent-style technique, similarly to GANs (Goodfellow et al., 2014). To do so, we must first convert
it into an equivalent unconstrained optimization problem so that it is amenable to gradient descent.
We must then derive expressions for the gradients of our objective function which can be estimated
using automatic differentiation (Paszke et al., 2019) and Monte Carlo integration.

Note that the inner optimization problem is already unconstrained, and it is immediate that

∇θL(γ,θ) = E∇θ log Φ(Y | Aγ ⊙X,Aγ ;θ). (77)

We can re-parameterize the outer problem and derive an appropriate gradient expression as follows:

Proposition 3. The optimization problem of equation 76 is equivalent to

min
γ′∈(R∪{±∞})T

max
θ∈RP

L(Sigmoid(γ′,θ) (78)

where γ = Sigmoid(γ′). Furthermore, we can express

∇γ′L(γ,θ) = λγ ⊙ γ ⊙ γ + E
[
log Φ(Y | Aγ ⊙X,Aγ ;θ) · (Aγ ⊙ γ −Aγ ⊙ γ)

]
, (79)

where for compactness we have left implicit that γ is a function of γ′, and have denoted Aγ :=
1−Aγ and γ := 1− γ.

Proof. Note that because Sigmoid is bijective and Sigmoid
(
(R ∪ {±∞})T

)
= [0, 1]T , by the

change of variables formula of Boyd & Vandenberghe (2004, pp. 130),

min
γ∈[0,1]T

max
θ∈RP

L(γ,θ) ≡ min
γ′∈(R∪{±∞}T

max
θ∈RP

L(Sigmoid(γ′),θ). (80)

Let us now derive an expression for ∇γ′L(γ = Sigmoid(γ′),θ), considering the two terms of L
separately. Consider the leftmost term and note that for all t ∈ [1 .. T],

∂

∂γ′
t

1

2
∥γ∥22 = γt

dγt
dγ′

t

(81)

= γ2
t (1− γt) (82)

=⇒ ∇γ′
1

2
∥γ∥22 = γ ⊙ γ ⊙ γ. (83)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Now considering the rightmost term, observe that because Aγ is independent of X and Y ,

∇γ′ E log Φ (Y | Aγ ⊙X,Aγ ;θ) (84)
= ∇γ′ EX,Y EAγ log Φ (Y | Aγ ⊙X,Aγ ;θ) (85)

= EX,Y ∇γ′ EAγ log Φ (Y | Aγ ⊙X,Aγ ;θ) . (86)

Using the REINFORCE estimator (Williams, 1992), we can bring the gradient operator into the
expected value. For arbitrary x ∈ RT , y ∈ Y, θ ∈ RP ,

∇γ′ EAγ log Φ(y | Aγ ⊙ x,Aγ ;θ) (87)

= ∇γ′

∑
α∈{0,1}T

log Φ(y | α⊙ x,α;θ) · pAγ (α) (88)

=
∑

α∈{0,1}T

log Φ(y | α⊙ x,α;θ) · ∇γ′pAγ (α) (89)

=
∑

α∈{0,1}T

log Φ(y | α⊙ x,α;θ) · pAγ (α)∇γ′ log pAγ (α) (90)

= EAγ

[
log Φ(y | Aγ ⊙ x,Aγ ;θ) · ∇γ′ log pAγ (Aγ)

]
. (91)

Note that we can express

pAγ (α) =

T∏
t=1

γ1−αt
t (1− γt)

αt (92)

and observe that for arbitrary t ∈ [1 .. T], α ∈ {0, 1}T ,

∂

∂γ′
t

log pAγ (α) =
∂

∂γ′
t

log

(
T∏

τ=1

(1− γτ)
ατ γ1−ατ

τ

)
(93)

=
∂

∂γ′
t

T∑
τ=1

ατ log(1− γτ) + (1− ατ) log γτ (94)

= − dγt
dγ′

t

αt

1− γt
+

dγt
dγ′

t

1− αt

γt
(95)

= (1− αt)(1− γt)− αtγt (96)
=⇒ ∇γ′pAγ (α) = α⊙ γ −α⊙ γ. (97)

Combining these results, we get

∇γ′L(γ,θ) = λγ ⊙ γ ⊙ γ + E
[
log Φ (Y | Aγ ⊙X,Aγ ;θ) ·

(
Aγ ⊙ γ −Aγ ⊙ γ

)]
. (98)

In practice, when computing Monte Carlo estimates of this gradient we find it helpful to sub-
tract ℓ̂ from log Φ (Y | Aγ ⊙X,Aγ ;θ), where ℓ̂ is an exponentially-weighted moving average of
log Φ (Y | Aγ ⊙X,Aγ ;θ) updated after every training step. This is a standard technique from
reinforcement learning which reduces the variance of the gradient estimator for practically no cost.
Note that because ℓ̂ does not depend on γ, it does not change the expected value of our gradient
estimator:

∇γ E
[
log Φ (Y | Aγ ⊙X,Aγ ;θ)− ℓ̂

]
(99)

= ∇γ E [log Φ (Y | Aγ ⊙X,Aγ ;θ)]−∇γ ℓ̂ (100)
= ∇γ E [log Φ (Y | Aγ ⊙X,Aγ ;θ)] . (101)

Additionally, observe that our gradient estimator requires only forward passes through Φ. Thus,
we can use a significantly larger minibatch size when estimating∇γL than when estimating∇θL
because the intermediate activations do not have to be preserved during forward passes.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Algorithm 3: A practical implementation of our adversarial leakage localization algorithm.

Input: Training dataset D ⊂ RT × Y, initial classifier weights θ(0) ∈ RP , initial unsquashed
erasure probabilities γ′(0) ∈ RT , norm penalty coefficient λ ∈ R+, log likelihood EMA
coefficient β ∈ [0, 1), obfuscator batch size multiplier M ∈ Z++

Output: Trained parameters θ̂ ∈ RP , γ̂′ ∈ RT

1 Function CalcThetaGrad (x, y, θ)
2 α ∼ U({0, 1}T)
3 l← log Φ(y | α⊙ x,α;θ)
4 gc ← ∇θ (−l)
5 return gc

6 Function CalcGammaGrad (x, y, θ, γ, lEMA)
7 α← (αt ∼ Bernoulli(1− γt) : t = 1, . . . , T)
8 l← log Φ(y | α⊙ x,α;θ)

9 ∇γ′

(
1
2 ∥γ∥

2
2

)
← γ ⊙ γ ⊙ (1− γ)

10 ∇γ′ l← (l − lEMA) ((1−α)⊙ (1− γ)−α⊙ γ)

11 go ← λ∇γ′

(
1
2 ∥γ∥

2
2

)
+∇γ′ l

12 l′EMA ← βlEMA + (1− β)l
13 return go, l′EMA

14 t← 0
15 while not converged do
16 D(t) ← SampleMinibatch(D)

17 D
(t)
aug ← AugData(SampleMinibatch(D))

18 γ(t) ← Sigmoid(γ′(t))

19 g
(t)
c ← 1

|D(t)
aug |
∑

(x,y)∈D
(t)
aug

CalcThetaGrad(x, y,θ(t))

20 θ(t+1) ← OptStep(θ(t), g
(t)
c)

21 g
(t)
o , l

(t+1)
EMA ← 1

M |D(t)|
∑

(x,y)∈D(t)

∑M
m=1 CalcGammaGrad(x, y,θ

(t+1),γ(t), l
(t)
EMA)

22 γ′(t+1) ← OptStep(γ′(t), g(t)
o)

23 t← t+ 1

24 return θ(t), γ′(t)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

10−1 101

λ

10−3

10−2

10−1

100

γ
∗

Norm penalty sweep

10−3 10−1 101 103

σ2

10−5

10−4

10−3

10−2

10−1

100

γ
∗

Variance sweep

Theoretical Empirical (true pY |X) Empirical (MLP classifier)

Figure 7: A simple numerical experiment to validate our theoretical results. We run our algorithm on
a 2-component Gaussian mixture model where the classifier estimates the conditional distribution of
the latent variable based on samples from the mixture. We explicitly compute the optimal erasure
probability γ∗ based on our theoretical analysis, and verify that the results closely match those of
our algorithm, both with a multilayer perceptron classifier and with the ground truth conditional
latent distribution used in place of the classifier. (left) A plot of γ∗ while we sweep the ℓ2 norm
penalty coefficient λ with a fixed Gaussian component variance of σ2 = 1. For small values of λ, γ∗

saturates at 1. (right) A plot of γ∗ while we sweep σ2 and leave λ = 1. Note that γ∗ is equal to the
mutual information between the latent variable and the samples, which decreases as σ2 increases.
The mutual information is upper-bounded by the entropy of the latent variable, which is equal to
log 2 ≈ 0.7 in this case.

B.6 SIMPLE CORROBORATING NUMERICAL EXPERIMENT

Here we validate our theory with simple numerical experiments where we have explicit expressions
for the distributions under consideration and can directly calculate the optimum we expect to converge
to.

Consider a simple setting where we have Y ∼ U{0, 1} and a 1-dimensional power trace X with
pX|Y = N (Y, σ2). In this case, our distributions satisfy

pY (y) =
1
2 , (102)

pX|Y (x | y) = 1√
2πσ2

exp
(
− 1

2σ2 (x− y)2
)
, (103)

pX(x) =
∑
y

pX|Y (x | y)pY (y) = 1

2
√
2πσ2

(
exp

(
− 1

2σ2x
2
)
+ exp

(
− 1

2σ2 (x− 1)2
))

, (104)

pY |X(y | x) = pX|Y (x|y)pY (y)

pX(x) =
exp

(
− 1

2σ2 (x− y)2
)

exp
(
− 1

2σ2x2
)
+ exp

(
1

2σ2 (x− 1)2
) . (105)

Based on Proposition 1, we expect the erasure probability to converge to

γ∗ = min

{
I[Y ;X]

λ
, 1

}
. (106)

This is true regardless of our distributions whenever the power trace is 1-dimensional. While in
general the mutual information depends on distributions which are not known a priori and must be
learned from data, in our particular case of a Gaussian mixture model we can directly estimate

I[Y ;X] =
∑

y∈{0,1}

∫
R
pY (y)pX|Y (x | y)

(
log pX|Y (x | y)− log pX(x)

)
dx. (107)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

We estimate the above quantity using scipy.integrate.quad with its default settings as of scipy
version 1.14.1, and use it to compute theoretical values for our final obfuscation weight. We train
obfuscation weights using the methodology described in previous sections. We run experiments using
a multilayer perceptron with 512 hidden units and a ReLU activation as our classifier, as well as using
the known pY |X in place of the classifier. Both our obfuscation weights and multilayer perceptron
weights are optimized using torch.optim.Adam with lr=2e-4, betas=(0.9, 0.999), eps=1e-8.
We train for 80 000 minibatches with 8192 examples per minibatch and all examples sampled
independently from pX|Y pY . We exponential moving average our log-likelihood estimate when
computing gradients for the obfuscation weights, with the update rule x(t)

ema = 0.9 ·x(t−1)
ema +0.1 ·x(t).

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTS ON SYNTHETIC DATASETS

Here we present experiments done on synthetic datasets of power traces and associated AES keys.
Given that recorded power trace datasets lack ‘ground truth’ labels about which timesteps are
leaking, these experiments are an invaluable validation that the output of our technique is reasonable.
Additionally, synthetic datasets allow us to test the limits of our algorithm by varying data generation
parameters to extreme values. Refer to our code for further details: in the supplementary materials.

C.1.1 DATA GENERATION PROCEDURE

We base our synthetic power trace datasets on the Hamming weight leakage model of Mangard
et al. (2007, ch. 4). This model3 assumes that we have a device which executes a cryptographic
algorithm as a sequence of operations on data. As above, let X := (Xt : t = 1, . . . , T) be a random
vector with range RT which encodes power consumption. Let D := (Dt : t = 1, . . . , T) and
O := (Ot : t = 1, . . . , T) be random vectors denoting the data and operations, respectively, where
each Dt has range {0, 1}nbits (i.e. a sequence of nbits bits) and each Ot has range [1 .. nops] for some
nbits, nops ∈ Z++. For each t ∈ [1 .. T], we can decompose

Xt = Xdata,t +Xop,t +Xresid,t (108)

with dependency structure illustrated in the causal diagram of figure 8. Note that Xdata,t is directly
associated with the data Dt, Xop,t is directly associated with the operation Ot, and Xresid,t captures
the randomness in power consumption we would see if we were to repeatedly measure power
consumption with a fixed operation and data (e.g. due to other processes on the device independently
of the encryption process, or noise due to the thermal motion of electrons in wires).

The authors of Mangard et al. (2007) experimentally characterize the power consumption of a
cryptographic device and find that it is reasonable to approximate Xdata,t as Gaussian noise with
Dt-dependent mean, Xop,t as Gaussian noise with Ot-dependent mean, and Xresid,t as Gaussian
noise with a constant mean (which we will assume to be 0). For their device, the mean of Xdata,t is
proportional to

nbits −HammingWeight(Dt) :=

nbits∑
k=1

1−Dt,k, (109)

i.e. the number of bits of Dt which are equal to 0. Additionally, the per-Ot means of Xop,t are
approximately Gaussian-distributed.

We adopt these approximations for our experiments, though we emphasize that they are not universally-
applicable to cryptographic devices. For example, the Hamming weight dependence of the mean of
Xdata,t on Dt is due to the fact that their device ‘pre-charges’ all of its data bus lines to 1, then drains
the charge from the lines which should represent 0, thereby consuming power proportional to the
number of lines which represent 0. Many devices operate differently. Additionally, cryptographic
hardware is often explicitly designed to obfuscate the association between power consumption and
data/operations as a defense mechanism against side-channel attacks.

3Mangard et al. (2007) uses the notation Ptotal = Pop+Pdata+Pel. noise+Pconst. For clarity and consistency, we
alter the notation, consolidate Pel. noise and Pdata into a single variable, and more-explicitly define the probabilistic
nature of the variables and the associations between them.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

unobserved confounder representing
arbitrary associations between

elements of

Figure 8: Causal diagram which shows the independence conditions between different components of
power consumption which we have assumed in our synthetic power trace dataset. Power consumption
at a time t is decomposed as Xt = Xdata,t +Xop,t +Xresid,t where Xdata,t is directly associated with
the present data Dt, Xop,t is directly associated with the present operation Ot, and Xresid,t is directly
associated with neither, and accounts for all sources of randomness in power consumption not directly
associated with the data or operation. We assume that arbitrary associations may exist between the
data and operations at different points in time. We assume that power consumption at time t+ 1 is
associated with that at time t due to the ‘inertia’ of power consumption.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Algorithm 4: Simplified procedure for generating synthetic power trace datasets based on the
Hamming weight leakage model of Mangard et al. (2007).
Input: Dataset size N ∈ Z++,

Timesteps per power trace T ∈ Z++,
Bit count nbits ∈ Z++,
Operation count nops ∈ Z++,
1st-order leaking timestep count nlkg ∈ Z+,
Data-dependent noise variance σ2

data ∈ R+,
Operation-dependent noise variance σ2

op ∈ R+,
Residual noise variance σ2

resid ∈ R+

Output: Synthetic dataset D ⊂ RT × [1 .. 2nbits]

1 {k(n) : n ∈ [1 .. N]} i.i.d.∼ U ({0, 1}nbits) // cryptographic keys

2 {w(n) : n ∈ [1 .. N]} i.i.d.∼ U ({0, 1}nbits) // plaintexts

3 {ot : t ∈ [1 .. T]} i.i.d.∼ U([1 .. nops]) // operations

4 {x̃op,o : o ∈ [1 .. nops]} i.i.d.∼ N (0, σ2
op) // per-operation power consumption

5 xop ← (x̃op,ot : t = 1, . . . , T) // operation-dependent power consumption

6 Tlkg ∼ U
(
[1 .. T]
nlkg

)
// leaking timesteps, sampled w/o replacement

7 for n ∈ [1 .. N] do
8 y(n) ← AES-SBOX(k(n) ⊕ w(n)) // sensitive variable

9 x
(n)
resid ∼ NT (0, σ

2
residI) // residual power consumption

10 for t ∈ Tlkg do
11 d

(n)
t ← y(n) // timesteps at which the sensitive variable leaks

12 for t ∈ [1 .. T] \ Tlkg do
13 d

(n)
t ∼ U ({0, 1}nbits) // other data which we treat as random

14 for t ∈ [1 .. T] do
15 x

(n)
data,t ← σdata(4−HammingWeight(d

(n)
t))/

√
2 // data-dependent power

consumption

16 x(n) ← x
(n)
data + xop + x

(n)
resid // total power consumption

17 return
{
(x(n), y(n)) : n ∈ [1 .. N]

}

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

ELU

Flatten Softmax

Dense

Concatenate along
channel dimension

Adversarial localization?

Supervised learning?

Figure 9: Multilayer perceptron architecture used for our experiments on synthetic datasets. We use
nearly the same architecture for adversarial and supervised experiments. For adversarial experiments
we feed the MLP both a noisy power trace and the noise vector, concatenated along the channel di-
mension. For supervised experiments (e.g. for computing neural network ‘interpretability’ baselines),
we simply feed the power trace to the MLP.

Countermeasure Training steps θ LR γ′ LR
Unprotected 5× 104 10−3 10−3

Random delays 5× 104 10−3 10−3

Random shuffling 5× 104 10−4 10−3

Boolean masking 2× 105 2× 10−4 10−3

Table 2: Hyperparameters used in our synthetic data experiments.

A simplified version of our data generation procedure is shown in algorithm 4. In our experiments we
have also simulated desynchronization, Boolean masking and shuffling countermeasures. We have
also explored low-pass filtering (exponentially-weighted moving averaging) the traces as a rough
approximation to the ‘inertia’ of power consumption in real devices. We omit these details for brevity
in the above algorithm, but they can be found in our code in the supplementary materials.

C.1.2 NEURAL NET ARCHITECTURE AND HYPERPARAMETERS

For all synthetic data experiments we use the simple multilayer perceptron architecture shown in
figure 9. To avoid potential overfitting effects we generate data online for these experiments. Note
that overfitting is a factor in our experiments on the finite-size real datasets. We use the dataset
settings N = ∞, T = 500, nbits = 8, nops = 32, and σ2

data = σresid = σop = 1.0. To simulate
the inertia of power rails of real hardware, we apply an exponentially-weighted moving average
x
(t)
EMA ← 0.9 · x(t−1)

EMA + x(t).

For all experiments, both γ′ and θ are trained with the AdamW optimizer with β1 = 0.9, β2 = 0.999,
and weight decay disabled. We use a minibatch size of 1024 for θ and 8× 1024 for γ′ (i.e. M = 8
in algorithm 3). Our log-likelihood EMA coefficient is set to β = 0.9. The experiment-dependent
hyperparameters are shown in table 2.

C.2 EXPERIMENTS ON RECORDED POWER TRACE DATASETS

Real-world associations between AES keys and power traces are complicated and are not completely
characterized by our simple synthetic data generation process. Thus, evaluation on datasets recorded
from real cryptographic hardware is critical. Here we present experiments done on a variety of
publicly-available power trace datasets which are commonly used in the literature of deep learning-
based side channel attacks.

C.2.1 EVALUATING PERFORMANCE WITHOUT GROUND TRUTH KNOWLEDGE ABOUT LEAKAGE

For synthetic datasets it is easy to tell whether the output of our algorithm is reasonable because
we know the points in time at which power consumption is directly affected by sensitive variables.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

However, we lack this knowledge for real datasets and in our motivating setting, which is hardware
designers seeking to understand why their cryptographic implementation leaks. Intuitively, a power
measurement is ‘more-leaky’ if it is more-useful for performing a side-channel attack. Based on
this intuition, we propose a novel performance metric based on the extent to which the leakage
value assigned to a power measurement positively correlates with the performance gain of a profiled
side-channel attack on partial power traces which includes this measurement. This metric is similar
to the evaluation methods of Masure et al. (2019) and Hettwer et al. (2020), while overcoming
limitations of both.

In Masure et al. (2019), the authors propose the Gradient Visualization techinque and evaluate its
efficacy by performing a Gaussian template attack on the ‘most-leaky’ points it has identified, with
better template attack performance indicating that the identified points were ‘leakier’. The limitation
of this approach is that while it is sensitive to true-positive leakage detection, it is not sensitive to
false-negatives.

In Hettwer et al. (2020), the authors evaluate several existing neural network attribution techniques as
ways to localize leakage. They propose several performance metrics which are all conceptually-similar
to the following: 1) Train a deep neural network to perform a side-channel attack. 2) Successively
replace individual timesteps with random noise in order of their estimated ‘leakiness’. 3) Visually
assess how the performance of the neural net changes as points are replaced. It is expected that
performance will decrease monotonically as points are replaced, and a steeper negative slope early
on indicates that ‘leakier’ points have been identified. The limitations of this approach are that it
requires visual inspection of the curves, and that because the same style of neural net is used for
both leakage localization and evaluation of the leakage assessment, there is a risk that evaluations are
biased towards types of leakage which happen to be useful to that style of neural net.

To evaluate the performance of a leakage assessment, we sort the timesteps based on their estimated
leakage and partition the sorted points into sets of 10. We fit a Gaussian mixture model (similar to a
Gaussian template attack) to each of these sets of 10 measurements and fit a Gaussian distribution
to the rank of the correct key for each power trace in the conditional distribution returned by the
model. We then compute a ‘softened’ version of the Kendall τ rank correlation coefficient between
the amount of leakage estimated for a set of points and the mean rank assigned to the correct key. It
is ‘softened’ in the sense that we compute the expected value of the difference between concordant
and discordant pair counts. See algorithm 5 for details. We use the Kendall τ correlation coefficient
because it checks only the monotonicity of a curve, rather than its shape. We model the performance
metrics as random variables because there are generally many performance evaluations which are
statistically-indistinguishable but may differ due to random change, and expectation is a natural way
to ‘downweight’ the pairs of measurements for which this the case.

C.2.2 NEURAL NET ARCHITECTURE AND HYPERPARAMETERS

For all ‘real dataset’ experiments we use a simple VGG-like CNN (Simonyan & Zis-
serman, 2015), similarly to Benadjila et al. (2020); Zaid et al. (2020) (see figure 10).
As done in the publicly-available implementation of Wouters et al. (2020), we initialize
the dense layers with torch.nn.init.xavier_uniform_ and the convolutional layers with
torch.nn.init.kaiming_uniform_. We find that this detail is critical, as networks completely fail
to generalize on some datasets when we use the default PyTorch initializations.

For all experiments, both γ′ and θ are trained with the AdamW optimizer with β1 = 0.9 and
β2 = 0.999. We set the algorithm 3 hyperparameters to M = 8 and β = 0.9. To tune hyperparameters,
we first tried learning rates in {1×10−6, 2×10−6, . . . , 7×10−6} for DPAv4 and {1×10−6, . . . , 9×
10−6} ∪ {1× 10−5, . . . , 9× 10−5} ∪ {10−4} for ASCADv1. For each of these models we tested
weight decay values of 0 and 10−2, and data augmentation via additive Gaussian input noise with
standard deviation values of 0 and 0.25. We then selected the hyperparameters which minimized the
mean correct-key rank on our validation dataset after training for 104 steps. This sweep is displayed
in figure 11 for DPAv4 and in figure 12 for ASCADv1.

For the neural net interpretation baselines, we trained a neural network with these optimal hyper-
parameters for 104 steps and early-stopped based on validation rank. For the adversarial leakage
localization experiments, we used these settings for our classifier and tuned λ and the learning rate of
γ′ ad hoc.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Algorithm 5: Our metric for evaluating the fidelity of a leakage localization attempt. We call this
metric the Gaussian Mixture Model Performance Rank Correlation (GMM-PRC).

Input: Profiling dataset D := {(x(n), y(n)) : n ∈ [1 .. N]} ⊂ RT × Y, attack dataset
Da := {(x(n)

a , y
(n)
a) : n ∈ [1 .. Na]} ⊂ RT × Y, leakage assessment γ ∈ RT , order of

GMM attack m ∈ Z++.
Output: Gaussian mixture model performance rank correlation (GMM-PRC) τ ∈ [−1, 1].

1 Function PerformGMMAttack (t ∈ [1 .. T]
m)

// Fit a Gaussian mixture model to the profiling dataset.
2 for y ∈ Y do
3 Dy ← {(x(n), y(n)) : n ∈ [1 .. N] : y(n) = y}
4 Ny ← |Dy|
5 µy ← 1

Ny

∑
(x,y)∈Dy

xt

6 Σy ← 1
Ny−1

∑
(x,y)∈Dy

(xt − µy)(xt − µy)
⊤

// Compute the rank of the correct intermediate variable for each trace in
the attack dataset

7 for n = 1, . . . , Na do
8 for y ∈ Y do
9 u

(n)
y ← logN (x

(n)
a,t ;µy,Σy) + logNy

10 r(n) ← |{y ∈ Y : u
(n)
y ≥ u

(n)

y(n)}|
// Compute the mean and standard deviation of the rank

11 µ← 1
Na

∑Na
n=1 r

(n)

12 σ2 ← 1
Na−1

∑Na
n=1(r

(n) − µ)2

13 return µ, σ2

// Compute the statistics of the rank of the correct intermediate variable
for groups of timesteps with similar relative amount of leakage, as
estimated by the leakage localization attempt we are evaluating.

14 κ← ArgSort(γ)

15 for l = 0, . . . , ⌊ Tm⌋ − 1 do
16 tl ← κ(m·l,...,m·(l+1)−1)

17 µl, σ
2
l ← PerformGMMAttack(tl)

// Compute the expected value of the Kendall τ rank correlation coefficient
of these GMM performance statistics.

18 τ ← 0

19 for i = 1, . . . , ⌊ Tm⌋ do
20 for j = i+ 1, . . . , ⌊ Tm⌋ do
21 τ ← τ +

∫∞
0
N (x;µi − µj , σ

2
i + σ2

j) dx

22 τ ← 2τ
⌊ T
m ⌋2+⌊ T

m ⌋
23 return τ

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Conv11

ELU

BatchNorm

AvgPool4

Flatten Softmax

Dense

Concatenate along
channel dimension

Adversarial localization?

Supervised learning?

Figure 10: Simple VGG-style CNN architecture used for our experiments on recorded power trace
datasets. We use nearly the same architecture for adversarial and supervised experiments. For
adversarial experiments we feed the CNN both a noisy power trace and the noise vector, concatenated
along the channel dimension. For supervised experiments (e.g. for computing neural network
‘interpretability’ baselines), we simply feed the power trace to the CNN.

0 5000

Training steps

4

5

L
os

s

lr=1.0e-06

0 5000

Training steps

2

4

6

L
os

s

lr=2.0e-06

0 5000

Training steps

2

4

6

L
os

s

lr=3.0e-06

0 5000

Training steps

0

2

4

6

L
os

s

lr=4.0e-06

0 5000

Training steps

0

2

4

6

L
os

s

lr=5.0e-06

0 5000

Training steps

0

2

4

6

L
os

s

lr=6.0e-06

0 5000

Training steps

0

2

4

6

L
os

s

lr=7.0e-06

0 5000

Training steps

50

100

M
ea

n
ra

nk

0 5000

Training steps

0

50

100

M
ea

n
ra

nk

0 5000

Training steps

0

50

100

M
ea

n
ra

nk

0 5000

Training steps

0

50

100

M
ea

n
ra

nk

0 5000

Training steps

0

50

100

M
ea

n
ra

nk

0 5000

Training steps

0

50

100

M
ea

n
ra

nk

0 5000

Training steps

0

50

100

M
ea

n
ra

nk

101

Traces seen

0

50

100

C
or

re
ct

-k
ey

ra
nk

101

Traces seen

0

20

40

C
or

re
ct

-k
ey

ra
nk

101

Traces seen

0

10

20

30

C
or

re
ct

-k
ey

ra
nk

101

Traces seen

0

10

20

C
or

re
ct

-k
ey

ra
nk

101

Traces seen

0

10

20

C
or

re
ct

-k
ey

ra
nk

101

Traces seen

0

10

20

C
or

re
ct

-k
ey

ra
nk

101

Traces seen

0

10

20

C
or

re
ct

-k
ey

ra
nk

10−6 2× 10−6 3× 10−64× 10−6 6× 10−6

Learning rate

4.0

4.2

4.4

4.6

4.8

5.0

5.2

Fi
na

ll
os

s

10−6 2× 10−6 3× 10−64× 10−6 6× 10−6

Learning rate

20

30

40

50

60

70

Fi
na

lm
ea

n
ra

nk

10−6 2× 10−6 3× 10−64× 10−6 6× 10−6

Learning rate

10−1

Fi
na

lm
ea

n
ac

cu
m

ul
at

ed
ra

nk

Figure 11: Performance metrics on the DPAv4 dataset for various learning rates.

Figures 13 and 14 provide detailed comparisons of the leakage assessments done by our compared
baselines. The bottom rows of these figures show the mean ± standard deviation of the rank of
the correct intermediate variable that is used to compute our GMM-PRC metric. Observe that high
GMM-PRC values in table 1 correspond to monotonically-decreasing rank in these plots.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

0 5000

Training steps

5.55

5.60

5.65

5.70

L
os

s

lr=1.0e-06

0 5000

Training steps

5.5

5.6

5.7

L
os

s

lr=2.0e-06

0 5000

Training steps

5.5

5.6

5.7

L
os

s

lr=3.0e-06

0 5000

Training steps

5.5

5.6

5.7

L
os

s

lr=4.0e-06

0 5000

Training steps

5.5

5.6

5.7

L
os

s

lr=5.0e-06

0 5000

Training steps

5.5

5.6

L
os

s

lr=6.0e-06

0 5000

Training steps

5.5

5.6

L
os

s

lr=7.0e-06

0 5000

Training steps

5.4

5.5

5.6

L
os

s

lr=8.0e-06

0 5000

Training steps

5.4

5.5

5.6

L
os

s

lr=9.0e-06

0 5000

Training steps

5.4

5.5

5.6

5.7

L
os

s

lr=1.0e-05

0 5000

Training steps

5.2

5.4

5.6

L
os

s

lr=2.0e-05

0 5000

Training steps

5.00

5.25

5.50

L
os

s

lr=3.0e-05

0 5000

Training steps

5.0

5.5

L
os

s

lr=4.0e-05

0 5000

Training steps

4.5

5.0

5.5

6.0

L
os

s

lr=5.0e-05

0 5000

Training steps

5

6

L
os

s

lr=6.0e-05

0 5000

Training steps

4

5

6

L
os

s

lr=7.0e-05

0 5000

Training steps

4

5

6

L
os

s

lr=8.0e-05

0 5000

Training steps

4

5

6

7

L
os

s

lr=9.0e-05

0 5000

Training steps

4

6

L
os

s

lr=1.0e-04

0 5000

Training steps

115

120

125

130

M
ea

n
ra

nk

0 5000

Training steps

110

120

130

M
ea

n
ra

nk

0 5000

Training steps

110

120

130

M
ea

n
ra

nk

0 5000

Training steps

100

110

120

M
ea

n
ra

nk

0 5000

Training steps

100

110

120

130

M
ea

n
ra

nk

0 5000

Training steps

100

120

M
ea

n
ra

nk

0 5000

Training steps

100

120

M
ea

n
ra

nk

0 5000

Training steps

100

120

M
ea

n
ra

nk

0 5000

Training steps

100

120

M
ea

n
ra

nk

0 5000

Training steps

100

120

M
ea

n
ra

nk

0 5000

Training steps

80

100

120

M
ea

n
ra

nk

0 5000

Training steps

75

100

125

M
ea

n
ra

nk

0 5000

Training steps

50

75

100

125

M
ea

n
ra

nk

0 5000

Training steps

50

75

100

125

M
ea

n
ra

nk

0 5000

Training steps

50

100

M
ea

n
ra

nk

0 5000

Training steps

50

100

M
ea

n
ra

nk

0 5000

Training steps

50

100

M
ea

n
ra

nk

0 5000

Training steps

50

100

M
ea

n
ra

nk

0 5000

Training steps

50

100

M
ea

n
ra

nk

101 103

Traces seen

0

100

200

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

100

200

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

200

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

200

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

200

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

200

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

200

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

200

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

100

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

50

100

150

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

50

100

150

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

50

100

150

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

50

100

150

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

50

100

150

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

50

100

150

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

50

100

150

C
or

re
ct

-k
ey

ra
nk

101 103

Traces seen

0

50

100

150

C
or

re
ct

-k
ey

ra
nk

10−6 10−5 10−4

Learning rate

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

Fi
na

ll
os

s

10−6 10−5 10−4

Learning rate

110

115

120

125

130

Fi
na

lm
ea

n
ra

nk

10−6 10−5 10−4

Learning rate

100

101

102

Fi
na

lm
ea

n
ac

cu
m

ul
at

ed
ra

nk

Figure 12: Performance metrics on the ASCADv1-fixed dataset while sweeping the learning rate.

0 2000 4000

Timestep

−2

0

2

L
ea

ka
ge

as
se

ss
m

en
t

Random

0 2000 4000

Timestep

0

2

4

L
ea

ka
ge

as
se

ss
m

en
t

SNR

0 2000 4000

Timestep

0.0

0.5

1.0

1.5

L
ea

ka
ge

as
se

ss
m

en
t

SOSD

0 2000 4000

Timestep

−0.5

0.0

0.5

L
ea

ka
ge

as
se

ss
m

en
t

CPA

0 2000 4000

Timestep

0.01

0.02

L
ea

ka
ge

as
se

ss
m

en
t

GradVis

0 2000 4000

Timestep

0.0

0.1

0.2
L

ea
ka

ge
as

se
ss

m
en

t

Input×Grad

0 2000 4000

Timestep

0.0

0.1

0.2

L
ea

ka
ge

as
se

ss
m

en
t

Ablation

0 2000 4000

Timestep

0.25

0.50

0.75

1.00

L
ea

ka
ge

as
se

ss
m

en
t

ALL (Ours)

0 200 400

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 200 400

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 200 400

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 200 400

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 200 400

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 200 400

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 200 400

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 200 400

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

Figure 13: Qualitative comparison of considered methods on the DPAv4 dataset (right column: ours).
The top row shows plots of the estimated leakage of Xt vs t for each method. The bottom row shows
plots of the performance of a Gaussian mixture model-based side channel attack (lower is better), vs
the relative estimated leakage of the partition of timesteps it is trained on (solid: mean, shaded: std.
dev.). We expect the correlation to be more negative for more accurate estimated leakage values.

0 500

Timestep

−2

0

2

L
ea

ka
ge

as
se

ss
m

en
t

Random

0 500

Timestep

0

2

4

6

L
ea

ka
ge

as
se

ss
m

en
t

SNR

0 500

Timestep

0

100000

200000

300000

L
ea

ka
ge

as
se

ss
m

en
t

SOSD

0 500

Timestep

−0.5

0.0

0.5

L
ea

ka
ge

as
se

ss
m

en
t

CPA

0 500

Timestep

0.5

1.0

1.5

L
ea

ka
ge

as
se

ss
m

en
t

×10−5 GradVis

0 500

Timestep

0.00

0.05

0.10

0.15

L
ea

ka
ge

as
se

ss
m

en
t

Input×Grad

0 500

Timestep

0.00

0.05

0.10

L
ea

ka
ge

as
se

ss
m

en
t

Ablation

0 500

Timestep

0.6

0.8

L
ea

ka
ge

as
se

ss
m

en
t

ALL (Ours)

0 50

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 50

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 50

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 50

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 50

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 50

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 50

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

0 50

Partition index

0

100

200

C
or

re
ct

-k
ey

ra
nk

Figure 14: Qualitative comparison of considered methods on the ASCADv1 (fixed key) dataset (right
column: ours). The top row shows plots of the estimated leakage of Xt vs t for each method. The
bottom row shows plots of the performance of a GMM-based side channel attack (lower is better), vs
the relative estimated leakage of the partition of timesteps it is trained on (solid: mean, shaded: std.
dev.). SNR, SOSD, and CPA are unable to detect leakage due to the Boolean masking of this dataset,
but because this dataset provides unrealistic knowledge of the random mask values, as an idealistic
baseline we show the results from targeting the mask (red) and masked sensitive variable (yellow)
separately. The orange traces in the bottom row correspond to summing these leakage assessments.

38

	Introduction
	Background and setting
	Probabilistic framing of power side-channel leakage
	Quantifying side-channel leakage using conditional mutual information

	Method: Adversarial Leakage Localization (ALL)
	Optimization problem
	Equivalent adversarial game
	Implementation details

	Related work
	Experimental results
	Conclusion
	Extended background
	Cryptographic algorithms
	side-channel attacks
	Power side-channel attacks on AES implementations
	Template attack: example of a classical profiled side-channel attack
	Practical profiled deep learning side-channel attacks on AES implementations

	Extended method with proofs and derivations
	Notation
	Setting
	Optimization problem
	Equivalent adversarial game
	Implementation details
	Simple corroborating numerical experiment

	Experimental details
	Experiments on synthetic datasets
	Data generation procedure
	Neural net architecture and hyperparameters

	Experiments on recorded power trace datasets
	Evaluating performance without ground truth knowledge about leakage
	Neural net architecture and hyperparameters

