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ABSTRACT

While cryptographic algorithms such as the ubiquitous Advanced Encryption Stan-
dard (AES) are secure, physical implementations of these algorithms in hardware
inevitably ‘leak’ sensitive information such as cryptographic keys. A particularly
insidious form of leakage arises from the fact that hardware’s power consumption
over time is statistically associated with the data it processes and the instructions
it executes. Supervised deep learning has emerged as a state-of-the-art tool for
carrying out power side-channel attacks, which exploit this leakage to break cryp-
tographic implementations by learning to map power consumption measurements
recorded during encryption to the secret key used for that encryption. In this work,
we seek instead to develop a principled deep learning framework for defense against
such attacks by understanding the relative leakage due to power measurements
recorded at different points in time. This information is invaluable to cryptographic
hardware designers for understanding why their hardware leaks and how they can
mitigate the leakage (e.g. by indicating that a particular section of code or electronic
component is responsible for leakage and should be revised). Towards this end,
we propose a novel deep learning algorithm by formulating an adversarial game
played between a classifier trained to estimate the conditional distribution of a
key given power measurements, and an ‘obfuscator’ which probabilistically erases
individual power measurements and is trained to minimize the classifier-estimated
log-likelihood of the correct key, subject to a penalty on erasure probability. We
theoretically characterize the ideal output of our algorithm in terms of conditional
mutual information quantities involving the key and individual power measure-
ments. We then empirically demonstrate the efficacy of our algorithm on real
and synthetic datasets of power measurements from implementations of the AES
cryptographic standard. Our code can be found in the supplementary materials.

1 INTRODUCTION

The Advanced Encryption Standard (AES) (Daemem & Rijmen, 1999; Daemen & Rijmen, 2013) is
widely used and trusted for protecting sensitive data. For example, it is approved by the United States
National Security Agency for protecting top secret information (Committee on National Security
Systems, 2003), it is a major component of the Transport Layer Security (TLS) protocol (Rescorla,
2000) which underlies the security of HTTPS (Rescorla, 2000), and is used in payment card readers
to secure card information before transmission to financial institutions (Bluefin Payment Systems,
2023).

AES aims to keep data secret when it is transmitted over insecure channels that are accessible to
unknown and untrusted parties (e.g. via wireless transmissions which may be intercepted, or storage
on hard drives which may be accessed by untrusted individuals). Prior to transmission, the data is first
encoded and partitioned into a sequence of fixed-length bitstrings called plaintexts. Each plaintext is
then encrypted into a ciphertext by applying an invertible function from a family of functions indexed
by an integer called a cryptographic key. This family of functions is designed so that if the key is
sampled uniformly at random, then the plaintext and ciphertext are marginally independent. The key
is known to the sender and intended recipients of the transmission,1 and is kept secret from potential

1For example, the key may be exchanged and periodically updated using an asymmetric-key cryptographic
algorithm such as RSA or Diffie-Hellman (Paar & Pelzl, 2010, ch. 6) Such algorithms do not require the sender
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eavesdroppers. Thus, the intended recipients can use the key to decrypt the ciphertext back into the
original plaintext, while eavesdroppers who possess the ciphertext but not the key learn nothing about
the plaintext.

Clearly, such an algorithm is effective only if the cryptographic key remains outside of the hands
of eavesdroppers. AES is believed to be ‘algorithmically secure’ in the sense that given an AES
implementation with a fixed key, it is not feasible to determine the key by encrypting a chosen
sequence of plaintexts and observing the resulting ciphertexts (Mouha, 2021). For reference, to our
knowledge, the best known attack on the 128-bit version of AES under realistic conditions would
require about 2125 such encryptions on average to successfully determine the key (Tao & Wu, 2015),
compared to 2127 encryptions for a naive brute-force attack which randomly guesses and checks keys
until success.

Despite the ‘algorithmic’ security of AES and other cryptographic algorithms, physical implementa-
tions of these algorithms in hardware inevitably ‘leak’ information about their cryptographic keys.
This phenomenon, called side-channel leakage, occurs because hardware produces measurable physi-
cal signals that are statistically associated with the data it processes and the instructions it executes.
In this work, we consider power side-channel leakage, i.e. statistical association between a device’s
cryptographic key and its power consumption over time while encrypting data, which is a major secu-
rity vulnerability for AES implementations (Kocher et al., 1999; Bronchain & Standaert, 2020). Note,
however, that hardware emits many diverse physical signals which cause side-channel leakage, such
as electromagnetic radiation (Quisquater & Samyde, 2001; Genkin et al., 2016), program/operation
execution time (Kocher, 1996; Lipp et al., 2018; Kocher et al., 2019), and sound due to vibration of
electronic components (Genkin et al., 2014). Refer to appendix A for some simple intuition-building
examples of side-channel leakage.

Cryptographic implementations can be circumvented by side-channel attacks, which exploit side-
channel leakage to learn the cryptographic key of some target device. In this work, we consider
profiling power side-channel attacks, in which the attacker is assumed to possess a clone of the
target device and can repeatedly measure its power consumption over time while encrypting arbitrary
plaintexts using arbitrary keys. Measured power consumption during encryption is encoded as a real
vector called a power trace, where each element encodes the power measurement at a fixed point in
time relative to the start of encryption. Attackers can use the clone device to model the conditional
distribution of the cryptographic key given the power trace, and can then collect power traces from
the target device and identify the key which maximizes the likelihood of the key and power traces
according to their model.

Supervised deep learning has emerged as a state-of-the-art technique for carrying out profiled power
side-channel attacks, achieving comparable or superior performance to prior approaches with far less
data preprocessing and feature selection (Maghrebi et al., 2016; Benadjila et al., 2020; Zaid et al.,
2020; Wouters et al., 2020; Bursztein et al., 2023). The limitations of classical (non-deep learning)
attacks include assuming specific forms for the conditional distribution of keys given traces (Chari
et al., 2003; Schindler et al., 2005; Hospodar et al., 2011), requiring feature selection or principal
component analysis to significantly reduce the dimensionality of power traces (Chari et al., 2003;
Archambeau et al., 2006), and limited ability to exploit n-th order leakage where n > 1, i.e. where
the key is dependent on a set of n measurements but independent of all of its subsets with cardinality
less than n (Messerges, 2000; Agrawal et al., 2005). In contrast, neural nets are asymptotically
universal function approximators, and hence can in principle represent nearly arbitrary conditional
distributions (Hornik et al., 1989). CNNs and transformers have proven capable of operating on raw
power traces without feature selection or dimensionality reduction (Lu et al., 2021; Bursztein et al.,
2023), and neural nets are effective against ‘masking’ countermeasures which exploit the difficulty of
exploiting 2nd-order leakage with classical attacks (Benadjila et al., 2020; Zaid et al., 2020; Wouters
et al., 2020). Thus, deep learning is a major threat to a wide assortment of security measures and
evaluations that were designed with the limitations of classical attacks in mind.

In this work, we seek to instead leverage deep learning to defend against side-channel attacks by
identifying specific points in time at which power consumption is ‘useful’ for predicting the key. Our
intent is to enable the designers of implementations to understand why their implementations leak
(e.g. which machine instructions are responsible, whether their countermeasures are effective), as

and recipient to know the same secret key, but are slower than AES, so it is common to use them only for key
exchange and to use AES for transmission of large quantities of data.
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Figure 1: Diagram illustrating our probabilistic framing of power side-channel leakage. AES
hardware encrypts a plaintext given a key, resulting in a ciphertext. The power consumption over
time of the hardware is measured during encryption and encoded as a vector called a power trace.
Consider a ‘sensitive’ intermediate variable in the cryptographic algorithm which is a known function
of the key, plaintext, and ciphertext, and which gives information about the key given the plaintext
and ciphertext. We view the power trace and sensitive variable as realizations of jointly-distributed
random variables X, Y ∼ pX,Y respectively, and side channel attacks can be carried out by using
supervised learning to estimate pY |X .

opposed to a mere indication of how vulnerable the implementation is to attacks. Towards this end,
we propose a novel algorithm that localizes leakage using an adversarial game played between a deep
neural network classifier trained to map power traces to the associated AES keys (via a ‘sensitive’
intermediate variable), and a data-independent ‘obfuscator’ which randomly erases individual power
measurements in these traces and is trained to maximize the loss of the classifier, subject to a penalty
on the erasure probabilities. The optimal erasure probabilities constitute a trade-off between being
large and depriving the classifier of the information provided by the associated power measurement,
and being small to reduce the penalty. Thus, after training, measurements that have ‘high leakage’ in
the sense of being more useful to the classifier will have high erasure probabilities, and ‘low leakage’
measurements will have low erasure probabilities, so the probabilities can be observed to identify the
relative leakage of different measurements. Our key contributions are as follows:

• We propose the aforementioned novel deep learning-based power side-channel leakage
localization algorithm.

• We theoretically characterize the ideal solution of our algorithm’s optimization problem
in terms of conditional mutual information quantities involving the cryptographic key and
individual power measurements.

• We experimentally demonstrate the efficacy of our algorithm using simulated and real power
side-channel attack datasets. To facilitate the latter, we further propose a novel performance
metric for evaluating the correctness of an attempt to localize leakage when we lack ground
truth knowledge about which power measurements are leaking.

2 BACKGROUND AND SETTING

Here we provide a probabilistic framing of power side-channel leakage. Refer to appendix A for a
more detailed background which includes simple intuition-building examples of side-channel leakage.

2.1 PROBABILISTIC FRAMING OF POWER SIDE-CHANNEL LEAKAGE

See figure 1 for a diagram illustrating our setting. We assume to have a symmetric-key cryptographic
device that encrypts data in a manner dependent on some sensitive intermediate variable y ∈ Y,
where Y is a finite set (e.g. consisting of bytestrings encoding all possible values of the variable).
We assume to have some measurement apparatus that allows us to measure power traces during
encryption, encoded as x ∈ RT where T ∈ Z++ denotes the number of measurements recorded per
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encryption. We view the power traces and sensitive variables as realizations of jointly-distributed
random variables X, Y ∼ pX,Y respectively, where pY is a simple known distribution (e.g. uniform)
and pX|Y is a priori unknown and dictated by factors such as the hardware, environment, and
measurement setup. In this work we assume that the conditional density functions pX|Y (· | y)
exist and have support equal to RT , which is reasonable because power consumption usually has a
‘random’ component which is well-described by additive Gaussian noise (Mangard et al., 2007). This
setting is amenable to supervised learning, and most profiled power side channel attacks (e.g. based
on deep learning) are based on collecting a dataset D i.i.d.∼ pX,Y and using it to model the conditional
distribution pY |X .

2.2 QUANTIFYING SIDE-CHANNEL LEAKAGE USING CONDITIONAL MUTUAL INFORMATION

Given that devices are vulnerable to side-channel attacks because of the statistical association between
X and Y , it is reasonable to quantify the amount of leakage at a timestep t ∈ [1 .. T ] using Shannon
(conditional) mutual information (Shannon, 1948) between Xt and Y :

I[Y ;Xt | S] := E
[
log pY |Xt,S(Y | Xt,S)− log pY |S(Y | S)

]
(1)

where S ⊂ {X1, . . . , XT }\{Xt}. Intuitively, this quantity tells us the extent to which our uncertainty
about Y is reduced upon observing Xt, provided we have already observed the elements of S.

Clearly, we should consider timestep t to be leaking if Xt is directly associated with Y. For example,
consider the device characterized by Mangard et al. (2007) which consumes power in proportion to
the Hamming weight (number of nonzero bits) of the chunk of data it is presently operating on, and
suppose our chosen sensitive variable is the output of the first SubBytes operation, as is common
when attacking AES implementations (see appendix A for elaboration). In this case, if the device
carries out the first SubBytes operation at time t, we expect to have I[Y ;Xt] > 0.

Intuitively, it is very reasonable to consider timestep t to be leaking if I[Y ;Xt] > 0. More subtle is
the fact that I[Y ;Xt] = 0 does not imply that Xt is ‘innocuous’. It may be the case that Xt tells us
nothing about Y by itself, but it tells us something useful in combination with some Xτ for τ ̸= t. For
example, the power consumption of electronic devices has ‘inertia’ due to fundamental physical laws
and intentional design decisions. Suppose our aforementioned device carries out the first SubBytes
operation at time t+ 1. Due to this ‘inertia’, Xt+1 will depend not only on Y , but also on Xt. Thus,
even if Xt is independent of Y , Xt is dependent on Y given Xt+1. This is because by learning Xt,
we can ‘subtract’ its influence from Xt+1, thereby isolating the component of Xt+1 which depends
on Y . In this case, we expect that I[Y ;Xt] = 0 but I[Y ;Xt | Xt+1] > 0. In general, to have a
reasonable notion of leakage at time t, we must consider not only I[Y ;Xt], but I[Y ;Xt | S] for every
S ⊂ {X1, . . . , XT } \ {Xt}.

3 METHOD: ADVERSARIAL LEAKAGE LOCALIZATION (ALL)

Given X, Y ∼ pX,Y as defined above with X = (Xt : t = 1, . . . , T ), we seek to assign to
each t ∈ [1 .. T ] a scalar indicating the ‘amount of leakage’ of information about Y due to power
measurement Xt. Clearly the quantities {I[Y ;Xt | S] : S ⊂ {X1, . . . , XT } \ {Xt}} give us insight
into leakage, but it is not obvious how they should be weighted in a single scalar leakage measurement.
In this section, we will propose an optimization problem with a solution that can be interpreted as a
leakage measurement assignment to each timestep according to an intuitively reasonable weighting
scheme. We will then prove that given ideal assumptions, its solution is equivalent to that of an
adversarial game played between a neural network classifier trained to map realizations of X to Y
where some of the elements of X have been ‘erased’, and an ‘obfuscator’ which probabilistically
erases elements of these realizations of X in order to maximize the loss of the classifier, subject to
a penalty on erasure probability. Refer to appendix B for an extended version of this section with
proofs and additional results.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.1 OPTIMIZATION PROBLEM

We define a vector γ ∈ [0, 1]T which we name the erasure probabilities. This vector will parameterize
a distribution over binary vectors in {0, 1}T as follows:

Aγ ∼ pAγ where Aγ,t =

{
1 with probability 1− γt
0 with probability γt,

(2)

i.e. its elements are independent Bernoulli random variables where the t-th element has parameter
p = 1 − γt. For arbitrary vectors x ∈ RT , α ∈ {0, 1}T , let us denote xα := (xt : t = 1, . . . , T :
αt = 1), i.e. the sub-vector of x containing its elements for which the corresponding element of α is
1. We can accordingly use Aγ to obtain random sub-vectors XAγ of X. Note that γt represents the
probability that Xt will not be an element of XAγ (thus, ‘erasure probability’).

Consider the optimization problem

min
γ∈[0,1]T

Lideal(γ) :=
1

2
λ ∥γ∥22 + I[Y ;XAγ | Aγ ]. (3)

where λ > 0 is a hyperparameter. Intuitively, this is a trade-off between having high erasure probabil-
ities and thereby reducing the mutual information quantity, and having low erasure probabilities to
reduce the norm penalty. For each t, we can write

Lideal(γ) =
1

2
λγ2

t +
∑

α∈{0,1}T : αt=0

[I[Y ;Xt,Xα]− γt I[Y ;Xt |Xα]] pAγ,−t
(α−t)+

1

2
λ ∥γ−t∥22 .

(4)
As γt decreases, so does the penalty 1

2λγ
2
t . As γt increases, the quantities −γt I[Y ;Xt | Xα]

decrease in proportion to I[Y ;Xt | Xα]. For γ∗ ∈ arg minγ∈[0,1]T Lideal(γ), it follows that γ∗
t

positively correlates with some notion of a ‘typical’ value of I[Y ;Xt |Xα], and it appears reasonable
to view it as a notion of the ‘amount of leakage’ at time t.

We can verify that a solution to equation 3, and derive an implicit expression for it:

Proposition 1. For Lideal as defined in equation 3, arg minγ∈[0,1]T Lideal(γ) ̸= ∅. Furthermore,
every γ∗ ∈ arg minγ∈[0,1]T Lideal(γ) must satisfy

γ∗
t = min

 1

λ

∑
α∈{0,1}T : αt=0

I[Y ;Xt |Xα]
∏

τ∈[1 .. T ]\{t}
(γ∗

τ )
1−ατ (1− γ∗

τ )
ατ , 1

 ∀t ∈ [1 .. T ].

(5)

Sketch of proof (full proof). The existence of a solution follows from the extreme value theorem
because [0, 1]T is compact and Lideal(γ) is continuous in γ. We derive the expression for γ∗

t by
expressing our objective function as f1(γ−t)+γtf2(γ−t)+

1
2λγ

2
t and computing the first and second

partial derivatives with respect to γt. The first partial derivative always has a zero, which may or may
not be feasible. The second partial derivative is equal to λ > 0. Thus, if the zero is feasible, it is the
solution. If it is not feasible, we show that the first partial derivative is negative for all γt ∈ [0, 1],
implying that the objective is minimized for γt = 1.

Corrolary 1.1. Under the conditions of Proposition 1, if λ > log|Y|, then γ∗ ∈ [0, 1)T .

Sketch of proof (full proof). This follows from noting that each conditional mutual information term
is upper-bounded by the Shannon entropy of Y , which in turn is upper-bounded by the Shannon
entropy of a uniform distribution over Y.

This suggests that we should choose λ to be large enough that no γ∗
t saturates at 1, and that for

consistency we should quantify leakage using λγ∗ rather than γ∗.

5
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3.2 EQUIVALENT ADVERSARIAL GAME

In practice we cannot directly solve equation 3 because we lack an expression for pX,Y . Here we will
propose a different optimization problem which is equivalent to equation 3 given ideal assumptions,
and allows us to use deep learning to characterize pX,Y using data.

Consider the family Φ := {Φα}α∈{0,1}T with each element a deep neural network

Φα : Y × R
∑T

t=1 αt × RP → R+ : (y,x,θ) 7→ Φα(y | x;θ). (6)

We denote by Φα(y | x;θ) the mass assigned to y by the network Φα with weights θ and input x.
We assume that each Φα(· | x;θ) is a probability mass function over Y (e.g. the neural net has a
softmax output activation). Consider the optimization problem

min
γ∈[0,1]T

max
θ∈RP

Ladv(γ,θ) :=
1

2
λ ∥γ∥22 + E log ΦAγ (Y |XAγ ;θ). (7)

Proposition 2. Consider the objective function Ladv of equation 7. Suppose there exists some
θ∗ ∈ RP such that Φα(y | xα;θ

∗) = pY |Xα
(y | xα) for all α ∈ {0, 1}T , x ∈ RT , y ∈ Y. Then

θ∗ ∈ arg max
θ∈RP

Ladv(γ,θ) ∀γ ∈ [0, 1]T . (8)

Furthermore, for all y ∈ Y and for all γ ∈ [0, 1]T , α ∈ {0, 1}T such that pAγ (α) > 0,

Φα(y |Xα; θ̂) = pY |Xα
(y |Xα) pX -almost surely ∀θ̂ ∈ arg min

θ∈RP

Ladv(γ,θ). (9)

Sketch of proof (full proof). The first claim follows straightforwardly from Gibbs’ inequality. The
second claim follows from re-writing the difference Ladv(γ,θ

∗) − Ladv(γ, θ̂) as a function of KL
divergences between distributions pY |Xα

(· | xα) and Φα(· | xα; θ̂), which makes it clear that the
difference is nonnegative and equal to zero if and only if the claim is satisfied.

Corrolary 2.1. Under the assumptions of Proposition 2, equations 7 and 3 are equivalent.

Sketch of proof (full proof). We first note that for any θ̂ ∈ arg maxθ∈RP Ladv(γ,θ), we can replace
each Φα(y | xα; θ̂) by pY |Xα

(y | xα) in minγ∈[0,1]T Ladv(γ, θ̂) without changing its solution.
We then algebraically manipulate minγ∈[0,1]T Ladv(γ, θ̂) using information theoretic identities and
dropping additive constants which do not depend on γ until we arrive at equation 3.

3.3 IMPLEMENTATION DETAILS

It would be impractical to train 2T neural networks independently, so we amortize the cost by instead
training a single network with α as an auxiliary input:

Φ : Y × RT × {0, 1}T × RP : (y, x̃,α,θ) 7→ Φ(y | x̃,α,θ) (10)

where each Φα(y | xα;θ) := Φ(y | α⊙ x,α;θ). We can then re-write equation 7 as

min
γ∈[0,1]T

max
θ∈RP

L(γ,θ) := 1

2
λ ∥γ∥22 + E log Φ(Y | Aγ ⊙X,Aγ ;θ). (11)

See figure 2 for an illustration of this implementation. We intent to approximately solve equation
11 using an alternating minibatch stochastic gradient descent-style technique, similarly to GANs
(Goodfellow et al., 2014). To do so, we must first convert it into an equivalent unconstrained
optimization problem so that it is amenable to gradient descent. We must then derive expressions
for the gradients of our objective function which can be estimated using automatic differentiation
(Paszke et al., 2019) and Monte Carlo integration.

Note that the inner optimization problem is already unconstrained, and it is immediate that

∇θL(γ,θ) = E∇θ log Φ(Y | Aγ ⊙X,Aγ ;θ). (12)

We can re-parameterize the outer problem and derive an appropriate gradient expression as follows:

6
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Figure 2: A diagram illustrating our adversarial leakage localization technique. We sample a sensitive
variable Y ∼ pY and a power trace X ∼ pX|Y from our training dataset, and a binary noise vector
Aγ ∼ pAγ such that each element at position t is equal to 0 with probability γt and 1 with probability
1− γt, where γ ∈ [0, 1]T denotes our obfuscation weights. We multiply the power trace elementwise
by the binary noise vector, and feed both the noisy power trace Aγ ⊙X and the noise vector Aγ as
inputs to our classifier Φ. The classifier is trained to maximize the log-likelihood of Y given XAγ ,
while simultaneously the erasure probabilities are trained to minimize this log-likelihood, subject to a
norm penalty which pushes them towards 0.

Proposition 3. The optimization problem of equation 11 is equivalent to

min
γ′∈(R∪{±∞})T

max
θ∈RP

L(Sigmoid(γ′),θ) (13)

where γ = Sigmoid(γ′). Furthermore, we can express

∇γ′L(γ,θ) = λγ ⊙ γ ⊙ γ + E
[
log Φ(Y | Aγ ⊙X,Aγ ;θ) ·

(
Aγ ⊙ γ −Aγ ⊙ γ

)]
, (14)

where for compactness we have left implicit that γ is a function of γ′, and have denoted Aγ :=
1−Aγ and γ := 1− γ.

Sketch of proof (full proof). The re-parameterization is valid because Sigmoid is bijective and
Sigmoid

(
(R ∪ {±∞})T

)
= [0, 1]T . When deriving the expression for the gradient, we cannot

immediately exchange the order of expectation and differentiation because the expectation is taken
over Aγ where pAγ depends on γ′. Instead, we use the REINFORCE estimator (Williams, 1992)
and simplify the expression using the definition of pAγ .

See algorithm 1 for pseudo-code describing a simplified algorithm to approximately solve equation
11. Additional engineering details and performance-enhancing tweaks can be found in algorithm 3 of
appendix B. Note that a straightforward implementation of our algorithm would update θ to minimize
L(Sigmoid(γ′),θ). However, in practice we find that this version of the algorithm is highly sensitive
to λ. Choosing λ too small will lead to elements of γ saturating at 1, and choosing it too large will
push all elements of γ close to zero, resulting in the classifier training almost exclusively on the
inputs (1⊙ x,1). However, Proposition 2 implies that in the ideal case, our algorithm is equivalent
to equation 3 when the classifier is trained with noise sampled from any full-support distribution over
{0, 1}T , not just pAγ . We thus train our classifier with noise sampled from U({0, 1}T ), and find that
this version of the algorithm is significantly easier to tune.

4 RELATED WORK

The adversarial nature of our algorithm was inspired by GANs (Goodfellow et al., 2014). The use of
classifiers with probabilistic input ablation for mutual information estimation was inspired by the
causal graph edge detection technique of the ENCO algorithm (Lippe et al., 2022). However, due to
the distinct nature of our problem, our algorithm departs significantly from both of these.

A great deal of prior work has applied neural net interpretability techniques for tasks similar to power
side channel leakage localization (Masure et al., 2019; Hettwer et al., 2020; Jin et al., 2020; Wouters
et al., 2020; Zaid et al., 2020; van der Valk et al., 2021; Wu et al., 2021; Golder et al., 2022; Li et al.,

7
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Algorithm 1: A practical implementation of our algorithm, simplified for clarity.

Input: Dataset D := {(x(n), y(n)) : n ∈ [1 .. N ]} ⊂ RT × Y, initial classifier weights
θ(0) ∈ RP , initial unsquashed erasure probabilities γ′(0) ∈ RT , norm penalty coefficient
λ ∈ R+

Output: Trained parameters θ̂ ∈ RP , γ̂′ ∈ RT

1 t← 0 // training step counter
2 while not converged do
3 Choose n ∈ [1 .. N ] // datapoint index

4 α(t) ∼ U({0, 1}T ) // binary noise

5 l(t) ← log Φ(y(n) | α(t) ⊙ x(n),α(t);θ(t)) // estimated log likelihood

6 g
(t)
c ← AutoDiff

(
−l(t),θ(t)

)
// gradient of NLL w.r.t. classifier weights

7 θ(t+1) ← OptimizerStep(θ(t), g
(t)
c )

8 γ(t) ← Sigmoid(γ′(t)) // erasure probabilities

9 α(t+0.5) ←
(
α
(t+0.5)
τ ∼ Bernoulli(p = 1− γ

(t)
τ ) : τ = 1, . . . , T

)
// binary noise

10 l(t+0.5) ← log Φ(y(n) | α(t+0.5) ⊙ x(n),α(t+0.5);θ(t+1)) // new estimated log
likelihood

11 g
(t)
o ← λγ(t)⊙γ(t)⊙(1−γ(t))+ l(t+0.5)

(
(1−α(t+0.5))⊙ (1− γ(t))−α(t+0.5) ⊙ γ(t)

)
// gradient of loss w.r.t. unsquashed erasure probabilities

12 γ′(t+1) ← OptimizerStep(γ′(t), g(t)
o )

13 t← t+ 1

14 return θ(t), γ′(t)

2022; Perin et al., 2022; Schamberger et al., 2023; Yap et al., 2023; Li et al., 2024). As baselines we
compare our method to Gradient Visualization (Masure et al., 2019), input ∗ gradient (Shrikumar
et al., 2017) (applied to side-channel attacks by Wouters et al. (2020)), and input occlusion (Zeiler
& Fergus, 2014) (applied to side-channel attacks by Hettwer et al. (2020)), as they are neural net
architecture-agnostic and widely used in the side-channel attack literature. Whereas these approaches
simply perform supervised deep learning in the conventional manner and then interpret their trained
neural net’s outputs, we train our classifier in an unconventional but principled manner so that it can
be used to estimate conditional mutual information quantities. Compared to this prior work, we expect
our approach to perform better when conventionally-trained neural nets learn shortcuts (Geirhos et al.,
2020; Hermann & Lampinen, 2020) and fail to leverage all available key-trace associations.

It is common to use first-order statistical techniques to estimate quantities similar to I[Y ;Xt]. As
baselines we consider correlation power analysis (Brier et al., 2004) and the sum of squared differences
technique (Chari et al., 2003) because their leakage estimates have been found to correlate well with
Gaussian template attack performance (Fan et al., 2014), as well as the signal-to-noise ratio technique
(Mangard et al., 2007) due to its ubiquity in the power side-channel attack literature. In contrast to
our method, these techniques are unable to exploit higher-order statistical associations and make
strong assumptions about the form of pX,Y . Higher-order statistical techniques exist, but still require
strong assumptions, and tend to either have exponential runtime in the maximum-considered order
of association, assume the existence of device flaws, or assume unrealistic knowledge of internal
random variables or the points in time at which they are operated on (Messerges, 2000; Agrawal
et al., 2005).

5 EXPERIMENTAL RESULTS

Experiments on synthetic AES datasets We first apply our technique to synthetic AES power
trace datasets generated using the Hamming weight leakage model of Mangard et al. (2007) (see
figure 3). We verify that results are consistent with ground-truth leaking points which we know by
virtue of having generated the datasets ourselves. This holds for an unprotected AES implementation,
as well as when we simulate the common random delay (Coron & Kizhvatov, 2009), random shuffling
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Figure 3: (top row) Adversarial leakage localization (our technique) is able to detect leakage from
simulated AES implementations with various realistic countermeasures. Yellow lines denote ground-
truth leaking points, and blue dots denote the estimated leakage λγ∗

t by our technique. (bottom row)
As predicted by Proposition 1, for ‘reasonable’ values of λ, λγ∗

t is approximately constant as λ is
varied. Here we sweep λ for a simulated unprotected AES implementation. Observe that results are
nearly the same for λ ∈ {0.2, 0.3, 0.4, 0.5}. For λ ∈ {0.0001, 0.1}, the estimated leakage is smaller
because γ∗

t has saturated at 1. For λ = 1000, non-leaky points are more underfit than leaky points
because all values of γ∗

t lie far into the lower saturation region of Sigmoid .
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Figure 4: Qualitative comparison of our leakage localization technique with various baselines. Blue
dots denote the estimated leakage assigned to each Xt by the considered methods. (top row) DPAv4
dataset. (bottom row) ASCADv1 (fixed key) dataset. In the leftmost column, as a baseline we have a
random assignment of leakage values. The following 3 columns show results for the following first-
order statistical techniques: signal-noise ratio (SNR), sum of squared differences (SOSD), correlation
power analysis with a Hamming weight leakage model (CPA). The next 3 columns show neural
network interpretation-based techniques: gradient visualization (GradVis), input ∗ gradient, and input
ablation. The rightmost column shows our adversarial leakage localization (ALL) technique.

(Masure & Strullu, 2023), and Boolean masking (Benadjila et al., 2020) countermeasures which are
often present in actual AES implementations. Additionally, we sweep the hyperparameter λ to verify
the implication of Proposition 2 that our algorithm’s output is inversely proportional to λ (except for
extreme values which lead to underfitting or saturation of erasure probabilities at 1).

Experiments on recorded power traces from real AES implementations We next evaluate the
performance of our algorithm on 2 publicly-available datasets of recorded AES power traces paired
with plaintexts, ciphertexts, and cryptographic keys. We use the fixed-key variant of the ASCADv1
database (Benadjila et al., 2020) based on a Boolean-masked AES implementation, as well as the
DPAv4 (Nassar et al., 2012) subset released by Zaid et al. (2020) which is modified to effectively be
unprotected. These datasets were chosen because they have fairly-localized side channel leakage,
whereas many other commonly-evaluated public datasets are cropped to contain mostly leaking points
and are thus poor choices for evaluating a leakage localization algorithm.
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Method DPAv4 dataset ASCADv1 dataset
Random 0.000330± 0.00371 −0.0186± 0.0378

First-order
statistics

Signal-noise ratio 0.0489 −0.0918 / 0.198†

Sum of squared differences 0.0740 −0.0105 / 0.193†

Correlation power analysis 0.0586 −0.0363 / 0.188†

Neural net in-
terpretation

Gradient Visualization 0.0622± 0.00410 0.136± 0.0162
Input ∗ gradient 0.0507± 0.00230 0.0869± 0.0139
Input ablation 0.0512± 0.00216 0.0580± 0.0180

Adversarial leakage localization (Ours) 0.0401± 0.00256 0.138± 0.00729

Table 1: Performance comparison (higher is better) on datasets of recorded power traces according
to the metric proposed in appendix C.2.1. For stochastic techniques, results are reported as mean
± standard deviation over 5 repetitions of the trial. The first-order statistical techniques perform
similarly to the random baseline on ASCADv1 because this dataset has only second-order leakage.
Apart from this, all methods far outperform the random baseline on both datasets. Our method
achieves the best performance on ASCADv1 and the worst on DPAv4. We emphasize, however, that
our metric only accounts for low-order statistical associations which can be represented by a Gaussian
mixture model, and unavoidably discards nuance and information by summarizing performance
with a scalar. Thus, while the reported numbers correlate with the fidelity of a leakage localization
attempt, they should not be viewed as an oracle for fidelity. †Ground truth-like performance when
we effectively disable the Boolean masking countermeasure using unrealistic knowledge of internal
random numbers generated by the AES hardware.

Unlike for our synthetic datasets, here we lack ground truth knowledge about which power measure-
ments are leaking, and it is not established or obvious how to evaluate the fidelity of an attempt to
localize leakage. Masure et al. (2019) and Hettwer et al. (2020) propose several metrics and heuristics
based on the intuition that the ‘leakiness’ assigned to a set of measurements should positively-correlate
with the performance of a side-channel attack carried out using only those measurements. We propose
our own metric (see appendix C.2.1) which is inspired by these but addresses shortcomings that they
have. The rough idea is to perform many Gaussian template attacks (Chari et al., 2003) on subsets
of available power measurements and compute the expected Kendall τ rank correlation coefficient
(Kendall, 1938) between a set of points and its estimated leakage. A higher expected rank correlation
indicates that estimated-leakier points are indeed more exploitable to side-channel attackers, and thus
indicates higher fidelity of the leakage localization attempt.

In table 1 we report the performance of our method and considered baselines. Figure 4 contains plots
of the amount of leakage at each timestep as estimated by each method. We find qualitatively-similar
results for all methods apart from our random baseline, apart from the first-order statistical methods
on ASCADv1 which are unable to detect the second-order statistical associations which result from
Boolean masking. It appears that the deep learning-based methods assign significant leakage to non-
leaky timesteps, likely due to overfitting. Our synthetic dataset results suggest that this issue may be
alleviated in settings where we have access to infinitely-large datasets (e.g. in the pre-manufacturing
phase where we can simulate arbitrarily-many synthetic power traces for a design).

6 CONCLUSION

We have proposed a novel, principled algorithm for learning to localize power side channel leakage
from cryptographic algorithms, and have demonstrated its efficacy on real and synthetic implementa-
tions of the ubiquitous AES cryptographic standard. Our algorithm is generic enough to be applicable
to other cryptographic standards as well. The growing assortment of deep learning-based side-channel
attacks departs from classical attacks in that the DL-based attacks can largely treat cryptographic
hardware as a black box to be characterized using data, whereas classical techniques required strong
assumptions and knowledge about the particular device to be attacked. However, despite the demon-
strated ability of deep learning to exploit side-channel leakage without a priori knowledge about its
existence or nature, little work thus far exists on leveraging this ability to understand why devices leak,
which is critical for designing countermeasures against side-channel attacks. Our work represents an
initial step towards using deep learning to uncover power side-channel leakage without relying on
human understanding of the complicated and non-ideal device physics by which the leakage happens.
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Figure 5: Diagram illustrating the main components of symmetric-key cryptographic algorithms,
which enable secure transmission of data over insecure channels where it may be intercepted by
eavesdroppers. The data is first partitioned and encoded as a sequence of plaintexts. Each plaintext
is transformed into a ciphertext by an invertible function indexed by a cryptographic key. The key
is transmitted over a secure channel to intended recipients of the data, allowing them to invert the
function and recover the original plaintext. The set of functions is designed so that absent this
key, the ciphertext gives no information about the plaintext. Thus, the data remains secure even if
eavesdroppers have access to the ciphertext.

A EXTENDED BACKGROUND

Here we provide a high-level overview of the AES algorithm and power side-channel attacks aimed
at a machine learning audience. Since our algorithm views the cryptographic algorithm and hardware
as a black box to be characterized with data, a deep understanding is not necessary to understand and
appreciate our work. Thus, we omit many details and aim to impart an intuitive understanding of
these topics. Interested readers may refer to Daemen & Rijmen (2013) for a detailed introduction to
the AES algorithm, to Mangard et al. (2007) for a detailed introduction to power side-channel attacks,
and to Picek et al. (2023) for a survey of supervised deep learning-based power side-channel attacks
on AES implementations.

A.1 CRYPTOGRAPHIC ALGORITHMS

Data is often transmitted over insecure channels which leave it accessible not only to intended
recipients, but also to unknown and untrusted parties. For example, when a signal is wirelessly
transmitted from one antenna to another, an eavesdropper could set up a third antenna between the
two and intercept the signal. Alternately, data stored on a hard drive by one user of a computer may
be accessed by a different user. Cryptographic algorithms aim to preserve the privacy of data under
such circumstances by transforming it so that it is meaningful only in combination with additional
data which is known to its intended recipients but not to the untrusted parties.

In this work we consider the advanced encryption standard (AES), which is a symmetric-key cryp-
tographic algorithm. See figure 5 for a diagram illustrating the important components of such
algorithms. The unencrypted data to be transmitted is encoded and partitioned into a sequence of
fixed-length bitstrings called plaintexts. The cryptographic algorithm encrypts each plaintext into a
ciphertext by applying an invertible function from a set of functions indexed by an integer called the
cryptographic key. This set of functions is designed so that of one were to sample a key and plaintext
uniformly at random from the sets of all possible keys and plaintexts, then the plaintext and ciphertext
would be marginally independent. Thus, such an algorithm may be used to securely transmit data by
ensuring that the sender and recipient of the data know a shared key,2 and that the key is kept secret
from all potential eavesdroppers on the data.

2The key is typically shared using an asymmetric-key cryptographic algorithm such as RSA or ECC.
Asymmetric-key cryptography is slow and resource-intensive, so when a sufficiently-large amount of data must
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A.2 SIDE-CHANNEL ATTACKS

Many symmetric-key cryptographic algorithms are believed to be secure in the sense that it is not
feasible to determine their cryptographic key by encrypting known plaintexts and observing the
resulting ciphertexts. Any such algorithm with a finite number of possible keys is vulnerable to
‘brute-force’ attacks based on arbitrarily guessing and checking keys until success, but doing so
requires checking half of all possible keys in the average case, which is unrealistic for algorithms
such as AES which has either 2128, 2192, or 2256 possible keys. To our knowledge the best known
such attack against AES reduces the required number of guesses by less than a factor of 8 compared
to a naive brute force attack (Mouha, 2021; Tao & Wu, 2015).

However, while algorithms may be secure when considering only their intended inputs and outputs,
hardware executing these algorithms will inevitably emit measurable physical signals which are statis-
tically associated with their intermediate variables and operations. Examples of such signals include
a device’s power consumption over time (Kocher et al., 1999), the amount of time it takes to execute
a program or instruction (Kocher, 1996; Lipp et al., 2018; Kocher et al., 2019), electromagnetic
radiation it emits (Quisquater & Samyde, 2001; Genkin et al., 2016), and sound due to vibrations of
its electronic components (Genkin et al., 2014). This phenomenon is called side-channel leakage,
and can be exploited to determine sensitive data such as a cryptographic key through side-channel
attacks.

As a simple example of side-channel leakage, consider the following Python function which checks
whether a password is correct:

def is_correct(provided_password: str , correct_password: str) -> bool:
if len(provided_password) != len(correct_password):

return False
for i in range(len(provided_password)):

if provided_password[i] != correct_password[i]:
return False

return True

Suppose the password consists of n characters, each with c possible values. Consider an at-
tacker seeking to determine the correct password by feeding various guessed passwords until
the function returns True. Naively, the attacker could simply guess and check all possible m-
length passwords for m = 1, . . . , n. This would require O(cn) calls to the function, which
would be extremely costly for realistically-large c and n. However, an attacker with knowledge
of the function’s implementation could dramatically reduce this cost by observing that the func-
tion’s execution time depends on correct_password. Because the function exits immediately if
len(provided_password) != len(correct_password), the attacker can determine the length of
correct_password in O(n) time by feeding increasing-length guesses to is_correct until its exe-
cution time increases. Next, because is_correct exits the first time it detects an incorrect character,
the attacker can sequentially determine each of the characters of correct_password by checking all
c possible values of each character and noting that the correct value leads to an increase in execution
time. Thus, although is_correct secure against attackers which use only its intended inputs and
outputs, it provides essentially no security against attackers which measure its execution time.

In this work we focus on side-channel leakage due to the power consumption over time of a device.
A device’s power consumption is inevitably statistically-associated with the operations it executes
and the data it operates on, because these dictate which components are active and the order and
manner in which they operate. There are many types of components with different functionality, and
components with the same intended functionality are not identical due to imperfect manufacturing
processes. These differences impact power consumption. While in general the association between
power consumption and data is multifactorial and difficult to describe, in figure 6 we illustrate a
simple relationship which accounts for a significant portion of the leakage in a device characterized
by Mangard et al. (2007).

be transmitted, it is more-efficient to share the key with an asymmetric-key algorithm and then transmit data
using a symmetric-key algorithm than to simply transmit the data with an asymmetric-key algorithm.
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Figure 6: Diagram illustrating one reason there is power side-channel leakage in the device charac-
terized by Mangard et al. (2007, ch. 4). Data is transmitted over a bus consisting of multiple wires,
with one wire representing each bit. Each wire represents a 0 bit as some prescribed ‘low’ voltage
and a 1 bit as a ‘high’ voltage. Energy is consumed when the voltage of a wire changes from low to
high because positive and negative charges, which are attracted to one-another, must be separated
to create a high concentration of positive charge on the wire. When ‘writing’ data to the bus, this
particular device first ‘pre-charges’ all wires to 1, then drains charge from the wires which should
represent 0. Thus, because the 0’s must be changed to 1’s before the next write, energy is consumed
in proportion to the number of 0’s, thereby creating a statistical association between the device’s
power consumption and the data it operates on.

A.3 POWER SIDE-CHANNEL ATTACKS ON AES IMPLEMENTATIONS

Side-channel attacks are techniques which exploit side-channel leakage to learn sensitive information
such as cryptographic keys. There are many categories of attacks, but in this work we focus on a cate-
gory called profiled side-channel attacks on symmetric-key cryptographic algorithms. These attacks
assume that the ‘attacker’ has access to a clone of the actual cryptographic device to be attacked,
and the ability to encrypt arbitrary plaintexts with arbitrary cryptographic keys, observe the resulting
ciphertexts, and measure the side-channel leakage during encryption. In practice, these assumptions
almost certainly overestimate the capabilities of attackers – for example, while in some cases an
attacker could plausibly identify the hardware and source code of a cryptographic implementation,
purchase copies of this hardware, program them with the source code, and characterize these devices,
the nature of the side-channel leakage of these purchased copies would differ from those of the actual
device due to imperfect manufacturing processes. It has been demonstrated that profiled side-channel
attacks can be effective despite this, especially when numerous copies of the target hardware are used
for profiling (Das et al., 2019; Danial et al., 2021). Regardless, this type of attack provides an upper
bound on the vulnerability of a device to side-channel attacks, which is a useful metric for hardware
designers.

While there are diverse types of profiled side-channel attacks, at a high level the following steps
encompass the important elements of these attacks:

1. Select some ‘sensitive’ intermediate variable of the cryptographic algorithm which reveals
the cryptographic key (or part of it).

2. Compile a dataset of (side-channel leakage, intermediate variable) pairs by repeatedly
randomly selecting a key and plaintext, encrypting the plaintext using the key and recording
the resulting ciphertext and side-channel leakage during encryption, and computing the
intermediate variable based on knowledge of the cryptographic algorithm.

3. Use supervised learning to train a parametric function approximator to predict intermediate
variables from recordings of side-channel leakage during encryption.
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4. Measure side-channel leakage during encryptions by the actual target device. Use the
trained predictor to predict sensitive variables from side-channel leakage. Potentially, these
predictions can be combined to get a better estimate of the key.

In the case of power side-channel attacks on AES, it is generally infeasible to directly target the
cryptographic key because care is taken by hardware designers to prevent it from directly influencing
power consumption. Instead, it is common to target an intermediate variable called the SubBytes
output, which is computed as

y := AES-SBOX(k ⊕ w) (15)

where k ∈ {0, 1}nbits is the key, w ∈ {0, 1}nbits is the plaintext, nbits ∈ Z++ is the number of bits of the
key and plaintext, ⊕ is the bitwise exclusive-or operation, and AES-SBOX : {0, 1}nbits → {0, 1}nbits

is an invertible function which is widely known and the same for all AES implementations. Note that
if the plaintext is known, the key can be computed as

k = AES-SBOX−1(y)⊕ w. (16)

Additionally, it is common to independently target subsets of the bits of the cryptographic key (e.g.
the individual bytes). This is reasonable because many devices can operate on only a subset of the
bytes in a single machine instruction, in which case one gains little by attacking more than this
number of bytes simultaneously. Even in devices for which this is not the case, subsets of bits will
still be statistically associated with power consumption.

A.3.1 TEMPLATE ATTACK: EXAMPLE OF A CLASSICAL PROFILED SIDE-CHANNEL ATTACK

In order to underscore the advantage of deep learning over previous side-channel attack algorithms,
we will here describe the template attack algorithm of Chari et al. (2003), variations of which are the
state-of-the-art non-deep learning based attacks. The attack is based on modeling the joint distribution
of power consumption and intermediate variable as a Gaussian mixture model, as described in
algorithm 2.

Algorithm 2: The Gaussian template attack algorithm of Chari et al. (2003)

Input: Profiling (training) dataset D := {(x(n), y(n) : n ∈ [1 .. N ]} ⊂ RT × {0, 1}nbits , attack
(testing) dataset Dattack := {(x(n)

a , w
(n)
a ) : n ∈ [1 .. Na]} ⊂ RT × {0, 1}nbits , ‘points of

interest’ Tpoi := {tm : m = 1, . . . , T̃} ⊂ [1 .. T ]
Output: Predicted key k∗

1 Function get_y (k, w)
2 return AES-SBOX(k ⊕ w) // calculate intermediate variable for given key

3 for n ∈ [1 .. N ] do
4 x̃(n) ←

(
x
(n)
tm : m = 1, . . . , T̃

)
// prune power traces to ‘points of interest’

5 for y ∈ {0, 1}nbits do
// fit a multivariate Gaussian mixture model to the training dataset

6 Dy ←
{
x̃(n) : n ∈ [1 .. N ], y(n) = y

}
7 Ny ← |Dy|
8 µy ← 1

Ny

∑
x̃∈Dy

x̃

9 Σy ← 1
Ny−1

∑
x̃∈Dy

(x̃− µy)(x̃− µy)
⊤

10 for n ∈ [1 .. Na] do
11 x̃

(n)
a ←

(
x
(n)
a,tm : m = 1, . . . , T̃

)
// prune power traces of attack dataset

// predict key value which maximizes log-likelihood of attack dataset
12 k∗ ←

arg maxk∈{0,1}nbits

∑Na
n=1

[
logN

(
x̃(n);µ

get_y(k,w
(n)
a )

,Σ
get_y(k,w

(n)
a )

)
+ logN

get_y(k,w
(n)
a )

]
13 return k∗
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Note that this algorithm assumes that the joint distribution is well-described by a Gaussian mixture
model, which may not hold in practice. Additionally, due to the near-cubic runtime of the matrix inver-
sion of each Σy required to compute the Gaussian density functions, this algorithm requires pruning
power traces down to a small number of ‘high-leakage’ timesteps. Follow-up work (Rechberger &
Oswald, 2005) proposed performing principle component analysis on the traces and modeling the
coefficients of the top principle components rather than individual timesteps. Nonetheless, these
constraints mean that the efficacy of this attack is contingent on simplifying assumptions and judge-
ment of which points are ‘leaky’ using simple statistical techniques and implementation knowledge,
limiting its usefulness as a way for hardware designers to evaluate the amount of side-channel leakage
from their device.

A.3.2 PRACTICAL PROFILED DEEP LEARNING SIDE-CHANNEL ATTACKS ON AES
IMPLEMENTATIONS

Here we will give a common and concrete setting and method for performing profiled power side-
channel attacks on AES implementations, which is used for all of our experiments.

Consider an AES-128 implementation, which has a 128-bit cryptographic key and plaintext. Typically,
attackers target each of the 16 bytes of the key independently rather than attacking the full key at
once. This practice tacitly assumes that the bytes of the sensitive variable are statistically-independent
given the power trace, which is reasonable because many AES operations (including those which are
commonly targeted) are performed independently on the individual bytes. Thus, it is a convenient
way to simplify the attack with only a small performance degradation.

Additionally, it is difficult and uncommon to try to directly map power traces to associated crypto-
graphic keys, because great care is taken by hardware designers to ensure that the key does not directly
impact power consumption. Instead, attackers generally target ‘sensitive’ intermediate variables
which unavoidably directly impact power consumption and can be combined with the plaintext and
ciphertext to learn the key. We consider one such intermediate variable which is referred to as the
first SubBytes output, and is equal to

y := AES-SBOX(k ⊕ w), (17)

where k ∈ {0, 1}8 is one byte of the cryptographic key, w ∈ {0, 1}8 is the corresponding byte of the
plaintext, ⊕ denotes the bitwise exclusive-or operation, and AES-SBOX : {0, 1}8 → {0, 1}8 is an
invertible function which is publicly-available and the same for all AES implementations. Note that
if w is known, as is assumed in the profiled side-channel attack setting, then k can be recovered as

k = w ⊕AES-SBOX−1(y). (18)

In the context of profiled power side-channel analysis, one assumes to have a ‘profiling’ dataset (i.e.
a training dataset) and an ‘attack’ dataset (i.e. a test dataset). Suppose we target nbytes bytes of the
sensitive variable. In our setting, the profiling dataset consists of ordered pairs of power traces and
their associated sensitive intermediate variables:

D :=
{
(x(n), y(n)) : n ∈ [1 .. N ]

}
⊂ RT × {0, 1}nbytes×8 (19)

and the attack dataset consists of ordered pairs of power traces and their associated plaintexts:

Da :=
{
(x(n)

a , w(n)
a ) : n ∈ [1 .. Na]

}
⊂ RT × {0, 1}nbytes×8. (20)

Many works prove the concept of their approaches by targeting only a single byte of the sensitive
variable. When multiple bytes are targeted, it is common to either train a separate neural network
for each byte of the sensitive variable, or to amortize the cost of targeting these bytes by training a
single neural network with a shared backbone and a separate head for each byte. In this work we
exclusively target single bytes, though it would be straightforward to extend our approach to the
multitask learning setting.

Consider a neural network architecture Φ : Y × RT × RP → R+ : (y,x,θ) 7→ Φ(y | x;θ), where
each Φ(· | x;θ) is a probability mass function over Y. In the case of a multi-headed network with
each head independently predicting a single byte, we compute this probability mass of y ∈ Y as the
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product of the mass assigned to each of its bytes. We train the network by approximately solving the
optimization problem

max
θ∈RP

L(θ) := 1

N

N∑
n=1

log Φ(y(n) | x(n);θ). (21)

Given θ̂ ∈ arg maxθ∈RP L(θ), we then identify the key which maximizes our estimated likelihood
of our attack dataset and key as follows:

k̂ ∈ arg max
k∈{0,1}nbytes×8

Na∑
n=1

log Φ
((

AES-SBOX(ki ⊕ w
(n)
a,i ) : i = 1, . . . , nbytes

)
| x(n)

a ; θ̂
)

(22)

where we denote by ki and w
(n)
i the individual bytes of k and w(n).

Model evaluation In the context of profiled power side-channel analysis, the accuracy of trained
models is usually only marginally higher than that of randomly guessing, and higher accuracy is
achieved by accumulating predictions about many power traces in the manner of equation 22. Thus,
accuracy generally lacks the resolution to usefully evaluate and compare models. Instead, it is
common to estimate the rank of the correct key in the distribution predicted by the model, defined as
E rank(Φ(· |X;θ), Y ) where

rank(f, y) := |{y′ ∈ Y : f(y′) ≥ f(y)}| − 1 (23)

for f : Y → R. This quantity is not equivalent to the performance of the model when accumulating
predictions on multiple power traces, as performance in this regime may vary significantly depending
on the extent to which the model’s incorrect predictions are systematic or random. For multi-trace
predictions, given the attack dataset Da of equation 20 and arbitrary D̂a ⊂ Da, let us define

p̃K(k; D̂a,θ) :=
∑

(x,w)∈D̂a

log Φ ((AES-SBOX(ki ⊕ wi) : i = 1, . . . , nbytes) | x;θ) , (24)

i.e. a quantity proportional to the logarithm of the estimated distribution of the key by our model
given our attack dataset. We define

rank-auc(θ; t,Da, k) :=

t∑
τ=1

ED̂a∼U(Da
t )

rank(p̃K(·; D̂a,θ), k). (25)

Intuitively, this tells us the area under the curve we would get if we were to evaluate our model’s key
predictions using random τ -cardinality subsets of our attack dataset and compute the mean rank of
key k in these predictions, and plot this quantity for each τ ∈ [1 .. t]. Lower values of this quantity
when k denotes the correct key tell us that our model has better performance in the regime where it is
fed multiple power traces.

B EXTENDED METHOD WITH PROOFS AND DERIVATIONS

B.1 NOTATION

We denote sets with Serif font, e.g. S, with the exception of the real numbers R and the integers Z.
For arbitrary sets S ⊂ R, we will define S+ := {x ∈ S : x ≥ 0} and S++ := {x ∈ S : x > 0}. For
a ≤ b ∈ Z, we will define [a .. b] := [a, b] ∩ Z. We will use set-builder notation when we wish to
assign names to a set’s elements, e.g. S := {xt : t ∈ [1 .. T ]}.
We denote vectors with boldface text, e.g. x, and scalars with non-bold text, e.g. x. We will denote
by xt the element of vector x at position t. We will sometimes use the following ‘vector-builder’
notation to define elements of the vectors: x := (xt : t = 1, . . . , T ). We will denote by x⊤ the
transpose of x. Note that in this work, (·)T does not denote transposition, but rather some object to
the power of another object T.

Random variables will always be upper-case, whereas deterministic variables may be either lower-
or upper-case. In this work we will assume that all real-valued random variables have probability
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density functions, and will denote by ‘distribution’ a probability mass, density, or joint mass/density
function, depending on the context. Distributions will be denoted by p··· with subscript indicating the
nature of the distribution. For example, we may denote by pX the distribution of random vector X,
by pX,Y the joint distribution of random vector X and scalar Y , or pY |X the conditional distribution
of Y given X. We will denote expectation by E .

For arbitrary vectors x ∈ RT and binary vectors α ∈ {0, 1}T , we denote xα := (xt : t = 1, . . . , T :
αt = 1), i.e. the sub-vector of x containing its elements for which the corresponding element of α is
1. We will denote by x−t := (xτ : τ = 1, . . . , T : τ ̸= t), i.e. the vector x with element t omitted.

We will use the following Shannon information theoretic quantities (Shannon, 1948):

H[X] := E log pX(X) for discrete X, (entropy)
I[X;Y ] := E [log pX,Y (X,Y )− log pX(X)− log pY (Y )] . (mutual information)

KL[p ∥ q] := EX∼p [log p(X)− log q(X)] (KL divergence)

Conditional entropies are defined similarly: H[Y | X] := E log pY |X(Y | X). Note that I[X;Y ] =
H[X] − H[X | Y ] = H[Y ] − H[Y | X]. While we have used random scalar notation in these
definitions, they are equally-applicable to random vectors.

B.2 SETTING

We view power traces as vectors x ∈ RT and sensitive variable values as elements y ∈ Y where Y
is a finite set. We view these as realizations of jointly-distributed random variables X, Y ∼ pX,Y

respectively, where pY is a simple known (e.g. uniform) distribution and pX|Y is a priori unknown
and dictated by factors such as the hardware, environment, and measurement setup. In this work we
assume that the conditional density functions pX|Y (· | y) exist and have support equal to RT , which
is reasonable because power consumption usually has a ‘random’ component which is well-described
by additive Gaussian noise (Mangard et al., 2007).

B.3 OPTIMIZATION PROBLEM

Recall that we have defined the erasure probabilities to be a binary vector γ ∈ [0, 1]T . This vector
parameterizes a distribution over binary vectors in {0, 1}T as follows:

Aγ ∼ pAγ where Aγ,t =

{
1 with probability 1− γt
0 with probability γt

, (26)

i.e. its elements are independent Bernoulli random variables where the t-th element has parameter
p = 1 − γt. We will use Aγ to get random sub-vectors XAγ of X. Note that γt represents the
probability that Xt will not be an element of XAγ .

We consider the optimization problem

min
γ∈[0,1]T

Lideal(γ) :=
1

2
λ ∥γ∥22 + I[Y ;XAγ | Aγ ] (27)

where λ > 0 is a hyperparameter. Intuitively, this is a trade-off between having high erasure probabil-
ities and thereby reducing the mutual information quantity, and having low erasure probabilities to
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reduce the norm penalty. For each t, we can write

Lideal(γ) =
1

2
λ

T∑
τ=1

γ2
τ +

∑
α∈{0,1}T

I[Y ;Xα]pAγ (α) (28)

=
1

2
λ

T∑
τ=1

γ2
τ +

∑
α∈{0,1}T

αt=1

pAγ,t
(1)pAγ (α−t) I[Y ;Xα]

+
∑

α∈{0,1}T

αt=0

pAγ,t(0)pAγ,−t(α−t) I[Y ;Xα] (29)

=
1

2
λ

T∑
τ=1

γ2
τ +

∑
α∈{0,1}T

αt=0

[(1− γt) I[Y ;Xα, Xt]] + γt I[Y ;Xα]] pAγ,−t(α−t) (30)

=
1

2
λγ2

t +
∑

α∈{0,1}T

αt=0

[I[Y ;Xt,Xα]− γt I[Y ;Xt |Xα]] pAγ,−t(α−t) +
1

2
λ ∥γ−t∥22 .

(31)

As γt decreases, so does the penalty 1
2λγ

2
t . As γt increases, the quantities −γt I[Y ;Xt | Xα]

decrease in proportion to I[Y ;Xt | Xα]. For γ∗ ∈ arg minγ∈[0,1]T Lideal(γ), it follows that γ∗
t

positively correlates with some notion of a ‘typical’ value of I[Y ;Xt |Xα], and it appears reasonable
to view it as a notion of the ‘amount of leakage’ at time t.

We can verify that a solution to equation 27 exists, and derive an implicit expression for it:

Proposition 1. For Lideal as defined in equation 27, arg minγ∈[0,1]T Lideal(γ) ̸= ∅. Furthermore,
every γ∗ ∈ arg minγ∈[0,1]T Lideal(γ) must satisfy

γ∗
t = min


1

λ

∑
α∈{0,1}T

αt=0

I[Y ;Xt |Xα]
∏

τ∈[1 .. T ]\{t}
(γ∗

τ )
1−ατ (1− γ∗

τ )
ατ , 1

 ∀t ∈ [1 .. T ].

(32)

Proof. To establish existence of a solution, we observe that [0, 1]T is compact and

I[Y ;XAγ | Aγ ] =
∑

α∈{0,1}T

I[Y ;Xα]pAγ (α) (33)

=
∑

α∈{0,1}T

I[Y ;Xα]

T∏
t=1

(1− γt)
αtγ1−αt

t (34)

is continuous in γ. Clearly, Lideal is also continuous in γ, and by the extreme value theorem there
must be some vector γ∗ ∈ [0, 1]T such that Lideal(γ

∗) = infγ∈[0,1]T L(γ).
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We now derive an implicit expression that such γ∗ must satisfy. Note that by equation 31, we can
write

Lideal(γ) =

12λ ∥γ−t∥22 +
∑

α∈{0,1}T

αt=0

I[Y ;Xt,Xα]pAγ,−t
(α−t)



− γt

 ∑
α∈{0,1}T

αt=0

I[Y ;Xt |Xα]pAγ,−t
(α−t)

+
1

2
λγ2

t (35)

=: f1(γ−t)− γtf2(γ−t) +
1

2
λγ2

t . (36)

Our optimization problem may thus be expressed

min
γ∈[0,1]T

Lideal(γ) (37)

≡ min
γ−t∈[0,1]T−1

min
γt∈[0,1]

1

2
λγ2

t − γtf2(γ−t) + f1(γ−t). (38)

Consider the inner optimization problem and observe that

∂

∂γt
Lideal(γt,γ−t) = λγt − f2(γ−t) and

∂2

∂γ2
t

Lideal(γt,γ−t) = λ > 0. (39)

It follows that if f2(γ−t)
λ ∈ [0, 1], then it is the sole element of minγt∈[0,1] Lideal(γt,γ−t). Because

λ > 0 and f2(·) ≥ 0, we can never have f2(γ−t)
λ < 0. If f2(γ−t)

λ > 1, then ∂
∂γt
Lideal(γt,γ−t) < 0

for all γt ∈ [0, 1], which implies that 1 is the sole element of arg minγt∈[0,1] Lideal(γt,γ−t). The
implicit form for γ∗

t listed above follows from replacing pAγ,−t(α−t) by its definition.

Corrolary 1.1. Under the conditions of Proposition 1, if λ > log|Y|, then γ∗ ∈ [0, 1)T .

Proof. Note that for arbitrary t ∈ [1 .. T ] and S ⊂ {X1, . . . , XT } \ {Xt}, we have the inequality

I[Y ;Xt | S] = H[Y | S]−H[Y | Xt,S] (40)
≤ H[Y | S] (41)
≤ H[Y ] (42)
≤ log|Y|. (43)

Thus, γ∗
t < 1 provided

1

λ

∑
α∈{0,1}T

αt=0

I[Y ;Xt |Xα]pAγ,−t(α−t) (44)

≤ log|Y|
λ

∑
α∈{0,1}T

αt=0

pAγ,−t
(α−t) (45)

=
log|Y|
λ

< 1. (46)

Corrolary 1.2. Suppose the conditions of Proposition 1 are satisfied. Consider Xt such that
I[Y ;Xt | S] = 0 for all sets S ⊂ {X1, . . . , XT } \ {Xt}. It follows immediately from Proposition 1
that γ∗

t = 0. Suppose it additionally holds that I[Y ;Xt | S] > 0 =⇒ I[Y ;Xt | Xτ ,S] > 0 for all
t, τ ∈ [1 .. T ] such that t ̸= τ and for all S ⊂ {X1, . . . , XT } \ {Xt, Xτ}. Let λ be sufficiently-large
that γ∗ ∈ [0, 1)T . If there exists some S ⊂ {X1, . . . , XT } \ {Xt} such that I[Y ;Xt | S] > 0, then
γ∗
t > 0.
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Proof. Recall that by Corollary 1.1, there exists some finite λ for which γ∗ ∈ [0, 1)T . It follows that
we can write

γ∗
t =

1

λ

∑
α∈{0,1}T

αt=0

I[Y ;Xt |Xα]
∏

τ∈[1 .. T ]\{t}
(γ∗

τ )
1−ατ (1− γ∗

τ )
ατ (47)

≥ 1

λ
I[Y ;Xt |Xα′ ]

∏
τ∈[1 .. T ]\{t}

(γ∗
τ )

1−α′
τ (1− γ∗

τ )
α′

τ (48)

where α′ := (1 if Xt ∈ S else 0 : t = 1, . . . , T ). If this quantity is greater than zero, then our claim
is satisfied. Else, suppose it is equal to zero. Since we have assumed that I[Y ;Xt | Xα′ ] > 0 and
γτ < 1 ∀τ, it must be the case that γ∗

τ = α′
τ = 0 for at least one τ.

Suppose we have timesteps {τi : i ∈ [1 .. η]} for which γ∗
τi = α′

τi = 0. Consider the vector
α̃ := (1 if α′

τ = 1 or τ = τi for some i ∈ [1 .. η]), i.e. α′ with all of its ‘offending’ 0’s flipped to
1’s. Note that

∏
τ∈[1 .. T ]\{t}(γ

∗
τ )

1−α̃τ (1− γ∗
τ )

α̃τ > 0. Furthermore, by assumption we have

I[Y ;Xt |Xα′ ] > 0 (49)
=⇒ I[Y ;Xt |Xα′ , Xτ1 ] > 0 (50)

=⇒ · · · =⇒ I[Y ;Xt |Xα′ , Xτ1 , . . . , Xτη ] = I[Y ;Xt |Xα̃] > 0. (51)

Thus, we have

γ∗
t ≥

1

λ
I[Y ;Xt |Xα̃]

∏
τ∈[1 .. T ]\{t}

(γ∗
τ )

1−α̃τ (1− γ∗
τ )

α̃τ > 0. (52)

These results suggest that we should choose λ to be large enough that no γ∗
t saturates at 1, and that

for consistency we should quantify leakage using λγ∗ rather than γ∗.

B.4 EQUIVALENT ADVERSARIAL GAME

In practice we cannot solve equation 27 directly because we lack an expression for pX,Y . Here we
will propose a different optimization problem which is equivalent to equation 27, and allows us to
use deep learning to characterize pX,Y using data.

Consider the family Φ := {Φα}α∈{0,1}T with each element a deep neural network

Φα : Y × R
∑T

t=1 αt × RP → R+ : (y,x,θ) 7→ Φα(y | x;θ). (53)

We denote by Φα(y | x;θ) the mass assigned to y by the network Φα with weights θ and input x.
We assume each Φα(· | x;θ) is a probability mass function over Y (e.g. the neural net has a softmax
output activation). Consider the optimization problem

min
γ∈[0,1]T

max
θ∈RP

Ladv(γ,θ) :=
1

2
λ ∥γ∥22 + E log ΦAγ (Y |XAγ ;θ). (54)

Proposition 2. Consider the objective function Ladv of equation 54. Suppose there exists some
θ∗ ∈ RP such that Φα(y | xα;θ

∗) = pY |Xα
(y | xα) for all α ∈ {0, 1}T , x ∈ RT , y ∈ Y. Then

θ∗ ∈ arg max
θ∈RP

Ladv(γ,θ) ∀γ ∈ [0, 1]T . (55)

Furthermore, for all y ∈ Y and for all γ ∈ [0, 1]T , α ∈ {0, 1}T such that pAγ (α) > 0,

Φα(y |Xα; θ̂) = pY |Xα
(y |Xα) pX -almost surely ∀θ̂ ∈ arg min

θ∈RP

Ladv(γ,θ). (56)

Proof. Note that since each Φα(· | x,θ) is a probability mass function over Y, by Gibbs’ inequality
we have that

E log Φα(Y |Xα;θ) ≤ E log pY |Xα
(Y |Xα) ∀α ∈ {0, 1}T , θ ∈ RP . (57)
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Thus,
Ladv(γ,θ

∗) ≥ Ladv(γ,θ) ∀θ ∈ RP , γ ∈ [0, 1]T , (58)
which implies the first claim.

Next, consider some fixed γ ∈ [0, 1]T and θ̂ ∈ arg minθ∈RP Ladv(γ,θ). We must haveLadv(γ, θ̂) =
Ladv(γ,θ

∗). Thus,

0 = Ladv(γ, θ̂)− Ladv(γ,θ
∗) (59)

= E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]

(60)

=
∑

α∈{0,1}T

pAγ (α)E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]
. (61)

By Gibbs’ inequality each of the expectations in the summation is nonnegative, which implies that
whenever pAγ (α) > 0 we must have

0 = E
[
log pY |Xα

(Y |Xα)− log Φα(Y |Xα; θ̂)
]

(62)

=

∫
R

∑T
t=1 αt

pXα(xα)KL
[
pY |Xα

(· | xα) ∥Φα(· | xα; θ̂)
]
dxα. (63)

Since KL
[
pY |Xα

(· | xα) ∥Φα(· | xα; θ̂
]
≥ 0 with equality if and only if pY |Xα

(y | xα) =

Φα(y | xα; θ̂) ∀y ∈ Y, this must be the case except possibly for x ∈ RT where∫
{xα:x∈RT }

pXα(xα) dxα = 0 =⇒
∫
RT

pX(x) dx = 0. (64)

This implies the second claim.

Corrolary 2.1. Under the assumptions of Proposition 2, equations 54 and 27 are equivalent.

Proof. Observe

min
γ∈[0,1]T

max
θ∈RP

Ladv(γ,θ) (65)

≡ min
γ∈[0,1]T

max
θ∈RP

1

2
λ ∥γ∥22 + E log ΦAγ (Y |XAγ ;θ) (66)

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 +

∑
α∈{0,1}T

pAγ (α)E log pY |Xα
(Y |Xα) (67)

by Proposition 2

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 −

∑
α∈{0,1}T

pAγ (α)H[Y |Xα] (68)

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 +

∑
α∈{0,1}T

pAγ (α) [H[Y ]−H[Y |Xα]] (69)

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 +

∑
α∈{0,1}T

pAγ (α) I[Y ;Xα] (70)

≡ min
γ∈[0,1]T

1

2
λ ∥γ∥22 + I[Y ;XAγ | Aγ ] (71)

≡ min
γ∈[0,1]T

Lideal(γ). (72)

Corrolary 2.2. Suppose the conditions of Proposition 2 are satisfied, and let θ̂ ∈
arg minθ∈RP Ladv(γ,θ) for some γ ∈ [0, 1]T . Consider α := α′ + α′′ where α′,α′′ ∈ {0, 1}T
such that α′

t = 1 =⇒ α′′
t = 0, α′′

t = 1 =⇒ α′
t = 0, and pAγ (α) > 0. For all y ∈ Y, almost
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surely for X ∼ pX , it follows immediately from Proposition 2 that we can compute the conditional
pointwise mutual information as

pmi(y;Xα′ |Xα′′) := log pY |Xα
(y |Xα)− log pY |Xα′′ (y |Xα′′) (73)

= logΦ(y | α⊙X,α; θ̂)− log Φ(y | α′′ ⊙X,α′′; θ̂). (74)

This property is useful because it allows us to assess the leakage of a single power trace, as opposed
to merely a summary of the entire distribution of traces. There are scenarios where a point might
leak for some traces but not for others. For example, a common countermeasure is to randomly
delay leaky instructions or swap their order with another instruction so that they do not occur at a
deterministic time relative to the start of encryption.

B.5 IMPLEMENTATION DETAILS

It would be impractical to train 2T neural nets independently, so we amortize the cost by instead
training a single network with α as an auxiliary input:

Φ : Y × RT × {0, 1}T × RP : (y, x̃,α,θ) 7→ Φ(y | x̃,α,θ) (75)

where each Φα(y | xα;θ) := Φ(y | α⊙ x,α;θ). We can then re-write equation 54 as

min
γ∈[0,1]T

max
θ∈RP

L(γ,θ) := 1

2
λ ∥γ∥22 + E log Φ(Y | Aγ ⊙X,Aγ ;θ). (76)

We intend to approximately solve equation 76 using an alternating minibatch stochastic gradient
descent-style technique, similarly to GANs (Goodfellow et al., 2014). To do so, we must first convert
it into an equivalent unconstrained optimization problem so that it is amenable to gradient descent.
We must then derive expressions for the gradients of our objective function which can be estimated
using automatic differentiation (Paszke et al., 2019) and Monte Carlo integration.

Note that the inner optimization problem is already unconstrained, and it is immediate that

∇θL(γ,θ) = E∇θ log Φ(Y | Aγ ⊙X,Aγ ;θ). (77)

We can re-parameterize the outer problem and derive an appropriate gradient expression as follows:

Proposition 3. The optimization problem of equation 76 is equivalent to

min
γ′∈(R∪{±∞})T

max
θ∈RP

L(Sigmoid(γ′,θ) (78)

where γ = Sigmoid(γ′). Furthermore, we can express

∇γ′L(γ,θ) = λγ ⊙ γ ⊙ γ + E
[
log Φ(Y | Aγ ⊙X,Aγ ;θ) · (Aγ ⊙ γ −Aγ ⊙ γ)

]
, (79)

where for compactness we have left implicit that γ is a function of γ′, and have denoted Aγ :=
1−Aγ and γ := 1− γ.

Proof. Note that because Sigmoid is bijective and Sigmoid
(
(R ∪ {±∞})T

)
= [0, 1]T , by the

change of variables formula of Boyd & Vandenberghe (2004, pp. 130),

min
γ∈[0,1]T

max
θ∈RP

L(γ,θ) ≡ min
γ′∈(R∪{±∞}T

max
θ∈RP

L(Sigmoid(γ′),θ). (80)

Let us now derive an expression for ∇γ′L(γ = Sigmoid(γ′),θ), considering the two terms of L
separately. Consider the leftmost term and note that for all t ∈ [1 .. T ],

∂

∂γ′
t

1

2
∥γ∥22 = γt

dγt
dγ′

t

(81)

= γ2
t (1− γt) (82)

=⇒ ∇γ′
1

2
∥γ∥22 = γ ⊙ γ ⊙ γ. (83)
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Now considering the rightmost term, observe that because Aγ is independent of X and Y ,

∇γ′ E log Φ (Y | Aγ ⊙X,Aγ ;θ) (84)
= ∇γ′ EX,Y EAγ log Φ (Y | Aγ ⊙X,Aγ ;θ) (85)

= EX,Y ∇γ′ EAγ log Φ (Y | Aγ ⊙X,Aγ ;θ) . (86)

Using the REINFORCE estimator (Williams, 1992), we can bring the gradient operator into the
expected value. For arbitrary x ∈ RT , y ∈ Y, θ ∈ RP ,

∇γ′ EAγ log Φ(y | Aγ ⊙ x,Aγ ;θ) (87)

= ∇γ′

∑
α∈{0,1}T

log Φ(y | α⊙ x,α;θ) · pAγ (α) (88)

=
∑

α∈{0,1}T

log Φ(y | α⊙ x,α;θ) · ∇γ′pAγ (α) (89)

=
∑

α∈{0,1}T

log Φ(y | α⊙ x,α;θ) · pAγ (α)∇γ′ log pAγ (α) (90)

= EAγ

[
log Φ(y | Aγ ⊙ x,Aγ ;θ) · ∇γ′ log pAγ (Aγ)

]
. (91)

Note that we can express

pAγ (α) =

T∏
t=1

γ1−αt
t (1− γt)

αt (92)

and observe that for arbitrary t ∈ [1 .. T ], α ∈ {0, 1}T ,

∂

∂γ′
t

log pAγ (α) =
∂

∂γ′
t

log

(
T∏

τ=1

(1− γτ )
ατ γ1−ατ

τ

)
(93)

=
∂

∂γ′
t

T∑
τ=1

ατ log(1− γτ ) + (1− ατ ) log γτ (94)

= − dγt
dγ′

t

αt

1− γt
+

dγt
dγ′

t

1− αt

γt
(95)

= (1− αt)(1− γt)− αtγt (96)
=⇒ ∇γ′pAγ (α) = α⊙ γ −α⊙ γ. (97)

Combining these results, we get

∇γ′L(γ,θ) = λγ ⊙ γ ⊙ γ + E
[
log Φ (Y | Aγ ⊙X,Aγ ;θ) ·

(
Aγ ⊙ γ −Aγ ⊙ γ

)]
. (98)

In practice, when computing Monte Carlo estimates of this gradient we find it helpful to sub-
tract ℓ̂ from log Φ (Y | Aγ ⊙X,Aγ ;θ), where ℓ̂ is an exponentially-weighted moving average of
log Φ (Y | Aγ ⊙X,Aγ ;θ) updated after every training step. This is a standard technique from
reinforcement learning which reduces the variance of the gradient estimator for practically no cost.
Note that because ℓ̂ does not depend on γ, it does not change the expected value of our gradient
estimator:

∇γ E
[
log Φ (Y | Aγ ⊙X,Aγ ;θ)− ℓ̂

]
(99)

= ∇γ E [log Φ (Y | Aγ ⊙X,Aγ ;θ)]−∇γ ℓ̂ (100)
= ∇γ E [log Φ (Y | Aγ ⊙X,Aγ ;θ)] . (101)

Additionally, observe that our gradient estimator requires only forward passes through Φ. Thus,
we can use a significantly larger minibatch size when estimating∇γL than when estimating∇θL
because the intermediate activations do not have to be preserved during forward passes.
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Algorithm 3: A practical implementation of our adversarial leakage localization algorithm.

Input: Training dataset D ⊂ RT × Y, initial classifier weights θ(0) ∈ RP , initial unsquashed
erasure probabilities γ′(0) ∈ RT , norm penalty coefficient λ ∈ R+, log likelihood EMA
coefficient β ∈ [0, 1), obfuscator batch size multiplier M ∈ Z++

Output: Trained parameters θ̂ ∈ RP , γ̂′ ∈ RT

1 Function CalcThetaGrad (x, y, θ)
2 α ∼ U({0, 1}T )
3 l← log Φ(y | α⊙ x,α;θ)
4 gc ← ∇θ (−l)
5 return gc

6 Function CalcGammaGrad (x, y, θ, γ, lEMA)
7 α← (αt ∼ Bernoulli(1− γt) : t = 1, . . . , T )
8 l← log Φ(y | α⊙ x,α;θ)

9 ∇γ′

(
1
2 ∥γ∥

2
2

)
← γ ⊙ γ ⊙ (1− γ)

10 ∇γ′ l← (l − lEMA) ((1−α)⊙ (1− γ)−α⊙ γ)

11 go ← λ∇γ′

(
1
2 ∥γ∥

2
2

)
+∇γ′ l

12 l′EMA ← βlEMA + (1− β)l
13 return go, l′EMA

14 t← 0
15 while not converged do
16 D(t) ← SampleMinibatch(D)

17 D
(t)
aug ← AugData(SampleMinibatch(D))

18 γ(t) ← Sigmoid(γ′(t))

19 g
(t)
c ← 1

|D(t)
aug |
∑

(x,y)∈D
(t)
aug

CalcThetaGrad(x, y,θ(t))

20 θ(t+1) ← OptStep(θ(t), g
(t)
c )

21 g
(t)
o , l

(t+1)
EMA ← 1

M |D(t)|
∑

(x,y)∈D(t)

∑M
m=1 CalcGammaGrad(x, y,θ

(t+1),γ(t), l
(t)
EMA)

22 γ′(t+1) ← OptStep(γ′(t), g(t)
o )

23 t← t+ 1

24 return θ(t), γ′(t)
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Figure 7: A simple numerical experiment to validate our theoretical results. We run our algorithm on
a 2-component Gaussian mixture model where the classifier estimates the conditional distribution of
the latent variable based on samples from the mixture. We explicitly compute the optimal erasure
probability γ∗ based on our theoretical analysis, and verify that the results closely match those of
our algorithm, both with a multilayer perceptron classifier and with the ground truth conditional
latent distribution used in place of the classifier. (left) A plot of γ∗ while we sweep the ℓ2 norm
penalty coefficient λ with a fixed Gaussian component variance of σ2 = 1. For small values of λ, γ∗

saturates at 1. (right) A plot of γ∗ while we sweep σ2 and leave λ = 1. Note that γ∗ is equal to the
mutual information between the latent variable and the samples, which decreases as σ2 increases.
The mutual information is upper-bounded by the entropy of the latent variable, which is equal to
log 2 ≈ 0.7 in this case.

B.6 SIMPLE CORROBORATING NUMERICAL EXPERIMENT

Here we validate our theory with simple numerical experiments where we have explicit expressions
for the distributions under consideration and can directly calculate the optimum we expect to converge
to.

Consider a simple setting where we have Y ∼ U{0, 1} and a 1-dimensional power trace X with
pX|Y = N (Y, σ2). In this case, our distributions satisfy

pY (y) =
1
2 , (102)

pX|Y (x | y) = 1√
2πσ2

exp
(
− 1

2σ2 (x− y)2
)
, (103)

pX(x) =
∑
y

pX|Y (x | y)pY (y) = 1

2
√
2πσ2

(
exp

(
− 1

2σ2x
2
)
+ exp

(
− 1

2σ2 (x− 1)2
))

, (104)

pY |X(y | x) = pX|Y (x|y)pY (y)

pX(x) =
exp

(
− 1

2σ2 (x− y)2
)

exp
(
− 1

2σ2x2
)
+ exp

(
1

2σ2 (x− 1)2
) . (105)

Based on Proposition 1, we expect the erasure probability to converge to

γ∗ = min

{
I[Y ;X]

λ
, 1

}
. (106)

This is true regardless of our distributions whenever the power trace is 1-dimensional. While in
general the mutual information depends on distributions which are not known a priori and must be
learned from data, in our particular case of a Gaussian mixture model we can directly estimate

I[Y ;X] =
∑

y∈{0,1}

∫
R
pY (y)pX|Y (x | y)

(
log pX|Y (x | y)− log pX(x)

)
dx. (107)
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We estimate the above quantity using scipy.integrate.quad with its default settings as of scipy
version 1.14.1, and use it to compute theoretical values for our final obfuscation weight. We train
obfuscation weights using the methodology described in previous sections. We run experiments using
a multilayer perceptron with 512 hidden units and a ReLU activation as our classifier, as well as using
the known pY |X in place of the classifier. Both our obfuscation weights and multilayer perceptron
weights are optimized using torch.optim.Adam with lr=2e-4, betas=(0.9, 0.999), eps=1e-8.
We train for 80 000 minibatches with 8192 examples per minibatch and all examples sampled
independently from pX|Y pY . We exponential moving average our log-likelihood estimate when
computing gradients for the obfuscation weights, with the update rule x(t)

ema = 0.9 ·x(t−1)
ema +0.1 ·x(t).

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTS ON SYNTHETIC DATASETS

Here we present experiments done on synthetic datasets of power traces and associated AES keys.
Given that recorded power trace datasets lack ‘ground truth’ labels about which timesteps are
leaking, these experiments are an invaluable validation that the output of our technique is reasonable.
Additionally, synthetic datasets allow us to test the limits of our algorithm by varying data generation
parameters to extreme values. Refer to our code for further details: in the supplementary materials.

C.1.1 DATA GENERATION PROCEDURE

We base our synthetic power trace datasets on the Hamming weight leakage model of Mangard
et al. (2007, ch. 4). This model3 assumes that we have a device which executes a cryptographic
algorithm as a sequence of operations on data. As above, let X := (Xt : t = 1, . . . , T ) be a random
vector with range RT which encodes power consumption. Let D := (Dt : t = 1, . . . , T ) and
O := (Ot : t = 1, . . . , T ) be random vectors denoting the data and operations, respectively, where
each Dt has range {0, 1}nbits (i.e. a sequence of nbits bits) and each Ot has range [1 .. nops] for some
nbits, nops ∈ Z++. For each t ∈ [1 .. T ], we can decompose

Xt = Xdata,t +Xop,t +Xresid,t (108)

with dependency structure illustrated in the causal diagram of figure 8. Note that Xdata,t is directly
associated with the data Dt, Xop,t is directly associated with the operation Ot, and Xresid,t captures
the randomness in power consumption we would see if we were to repeatedly measure power
consumption with a fixed operation and data (e.g. due to other processes on the device independently
of the encryption process, or noise due to the thermal motion of electrons in wires).

The authors of Mangard et al. (2007) experimentally characterize the power consumption of a
cryptographic device and find that it is reasonable to approximate Xdata,t as Gaussian noise with
Dt-dependent mean, Xop,t as Gaussian noise with Ot-dependent mean, and Xresid,t as Gaussian
noise with a constant mean (which we will assume to be 0). For their device, the mean of Xdata,t is
proportional to

nbits −HammingWeight(Dt) :=

nbits∑
k=1

1−Dt,k, (109)

i.e. the number of bits of Dt which are equal to 0. Additionally, the per-Ot means of Xop,t are
approximately Gaussian-distributed.

We adopt these approximations for our experiments, though we emphasize that they are not universally-
applicable to cryptographic devices. For example, the Hamming weight dependence of the mean of
Xdata,t on Dt is due to the fact that their device ‘pre-charges’ all of its data bus lines to 1, then drains
the charge from the lines which should represent 0, thereby consuming power proportional to the
number of lines which represent 0. Many devices operate differently. Additionally, cryptographic
hardware is often explicitly designed to obfuscate the association between power consumption and
data/operations as a defense mechanism against side-channel attacks.

3Mangard et al. (2007) uses the notation Ptotal = Pop+Pdata+Pel. noise+Pconst. For clarity and consistency, we
alter the notation, consolidate Pel. noise and Pdata into a single variable, and more-explicitly define the probabilistic
nature of the variables and the associations between them.
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Figure 8: Causal diagram which shows the independence conditions between different components of
power consumption which we have assumed in our synthetic power trace dataset. Power consumption
at a time t is decomposed as Xt = Xdata,t +Xop,t +Xresid,t where Xdata,t is directly associated with
the present data Dt, Xop,t is directly associated with the present operation Ot, and Xresid,t is directly
associated with neither, and accounts for all sources of randomness in power consumption not directly
associated with the data or operation. We assume that arbitrary associations may exist between the
data and operations at different points in time. We assume that power consumption at time t+ 1 is
associated with that at time t due to the ‘inertia’ of power consumption.
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Algorithm 4: Simplified procedure for generating synthetic power trace datasets based on the
Hamming weight leakage model of Mangard et al. (2007).
Input: Dataset size N ∈ Z++,

Timesteps per power trace T ∈ Z++,
Bit count nbits ∈ Z++,
Operation count nops ∈ Z++,
1st-order leaking timestep count nlkg ∈ Z+,
Data-dependent noise variance σ2

data ∈ R+,
Operation-dependent noise variance σ2

op ∈ R+,
Residual noise variance σ2

resid ∈ R+

Output: Synthetic dataset D ⊂ RT × [1 .. 2nbits ]

1 {k(n) : n ∈ [1 .. N ]} i.i.d.∼ U ({0, 1}nbits) // cryptographic keys

2 {w(n) : n ∈ [1 .. N ]} i.i.d.∼ U ({0, 1}nbits) // plaintexts

3 {ot : t ∈ [1 .. T ]} i.i.d.∼ U([1 .. nops]) // operations

4 {x̃op,o : o ∈ [1 .. nops]} i.i.d.∼ N (0, σ2
op) // per-operation power consumption

5 xop ← (x̃op,ot : t = 1, . . . , T ) // operation-dependent power consumption

6 Tlkg ∼ U
(
[1 .. T ]
nlkg

)
// leaking timesteps, sampled w/o replacement

7 for n ∈ [1 .. N ] do
8 y(n) ← AES-SBOX(k(n) ⊕ w(n)) // sensitive variable

9 x
(n)
resid ∼ NT (0, σ

2
residI) // residual power consumption

10 for t ∈ Tlkg do
11 d

(n)
t ← y(n) // timesteps at which the sensitive variable leaks

12 for t ∈ [1 .. T ] \ Tlkg do
13 d

(n)
t ∼ U ({0, 1}nbits) // other data which we treat as random

14 for t ∈ [1 .. T ] do
15 x

(n)
data,t ← σdata(4−HammingWeight(d

(n)
t ))/

√
2 // data-dependent power

consumption

16 x(n) ← x
(n)
data + xop + x

(n)
resid // total power consumption

17 return
{
(x(n), y(n)) : n ∈ [1 .. N ]

}
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Figure 9: Multilayer perceptron architecture used for our experiments on synthetic datasets. We use
nearly the same architecture for adversarial and supervised experiments. For adversarial experiments
we feed the MLP both a noisy power trace and the noise vector, concatenated along the channel di-
mension. For supervised experiments (e.g. for computing neural network ‘interpretability’ baselines),
we simply feed the power trace to the MLP.

Countermeasure Training steps θ LR γ′ LR
Unprotected 5× 104 10−3 10−3

Random delays 5× 104 10−3 10−3

Random shuffling 5× 104 10−4 10−3

Boolean masking 2× 105 2× 10−4 10−3

Table 2: Hyperparameters used in our synthetic data experiments.

A simplified version of our data generation procedure is shown in algorithm 4. In our experiments we
have also simulated desynchronization, Boolean masking and shuffling countermeasures. We have
also explored low-pass filtering (exponentially-weighted moving averaging) the traces as a rough
approximation to the ‘inertia’ of power consumption in real devices. We omit these details for brevity
in the above algorithm, but they can be found in our code in the supplementary materials.

C.1.2 NEURAL NET ARCHITECTURE AND HYPERPARAMETERS

For all synthetic data experiments we use the simple multilayer perceptron architecture shown in
figure 9. To avoid potential overfitting effects we generate data online for these experiments. Note
that overfitting is a factor in our experiments on the finite-size real datasets. We use the dataset
settings N = ∞, T = 500, nbits = 8, nops = 32, and σ2

data = σresid = σop = 1.0. To simulate
the inertia of power rails of real hardware, we apply an exponentially-weighted moving average
x
(t)
EMA ← 0.9 · x(t−1)

EMA + x(t).

For all experiments, both γ′ and θ are trained with the AdamW optimizer with β1 = 0.9, β2 = 0.999,
and weight decay disabled. We use a minibatch size of 1024 for θ and 8× 1024 for γ′ (i.e. M = 8
in algorithm 3). Our log-likelihood EMA coefficient is set to β = 0.9. The experiment-dependent
hyperparameters are shown in table 2.

C.2 EXPERIMENTS ON RECORDED POWER TRACE DATASETS

Real-world associations between AES keys and power traces are complicated and are not completely
characterized by our simple synthetic data generation process. Thus, evaluation on datasets recorded
from real cryptographic hardware is critical. Here we present experiments done on a variety of
publicly-available power trace datasets which are commonly used in the literature of deep learning-
based side channel attacks.

C.2.1 EVALUATING PERFORMANCE WITHOUT GROUND TRUTH KNOWLEDGE ABOUT LEAKAGE

For synthetic datasets it is easy to tell whether the output of our algorithm is reasonable because
we know the points in time at which power consumption is directly affected by sensitive variables.
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However, we lack this knowledge for real datasets and in our motivating setting, which is hardware
designers seeking to understand why their cryptographic implementation leaks. Intuitively, a power
measurement is ‘more-leaky’ if it is more-useful for performing a side-channel attack. Based on
this intuition, we propose a novel performance metric based on the extent to which the leakage
value assigned to a power measurement positively correlates with the performance gain of a profiled
side-channel attack on partial power traces which includes this measurement. This metric is similar
to the evaluation methods of Masure et al. (2019) and Hettwer et al. (2020), while overcoming
limitations of both.

In Masure et al. (2019), the authors propose the Gradient Visualization techinque and evaluate its
efficacy by performing a Gaussian template attack on the ‘most-leaky’ points it has identified, with
better template attack performance indicating that the identified points were ‘leakier’. The limitation
of this approach is that while it is sensitive to true-positive leakage detection, it is not sensitive to
false-negatives.

In Hettwer et al. (2020), the authors evaluate several existing neural network attribution techniques as
ways to localize leakage. They propose several performance metrics which are all conceptually-similar
to the following: 1) Train a deep neural network to perform a side-channel attack. 2) Successively
replace individual timesteps with random noise in order of their estimated ‘leakiness’. 3) Visually
assess how the performance of the neural net changes as points are replaced. It is expected that
performance will decrease monotonically as points are replaced, and a steeper negative slope early
on indicates that ‘leakier’ points have been identified. The limitations of this approach are that it
requires visual inspection of the curves, and that because the same style of neural net is used for
both leakage localization and evaluation of the leakage assessment, there is a risk that evaluations are
biased towards types of leakage which happen to be useful to that style of neural net.

To evaluate the performance of a leakage assessment, we sort the timesteps based on their estimated
leakage and partition the sorted points into sets of 10. We fit a Gaussian mixture model (similar to a
Gaussian template attack) to each of these sets of 10 measurements and fit a Gaussian distribution
to the rank of the correct key for each power trace in the conditional distribution returned by the
model. We then compute a ‘softened’ version of the Kendall τ rank correlation coefficient between
the amount of leakage estimated for a set of points and the mean rank assigned to the correct key. It
is ‘softened’ in the sense that we compute the expected value of the difference between concordant
and discordant pair counts. See algorithm 5 for details. We use the Kendall τ correlation coefficient
because it checks only the monotonicity of a curve, rather than its shape. We model the performance
metrics as random variables because there are generally many performance evaluations which are
statistically-indistinguishable but may differ due to random change, and expectation is a natural way
to ‘downweight’ the pairs of measurements for which this the case.

C.2.2 NEURAL NET ARCHITECTURE AND HYPERPARAMETERS

For all ‘real dataset’ experiments we use a simple VGG-like CNN (Simonyan & Zis-
serman, 2015), similarly to Benadjila et al. (2020); Zaid et al. (2020) (see figure 10).
As done in the publicly-available implementation of Wouters et al. (2020), we initialize
the dense layers with torch.nn.init.xavier_uniform_ and the convolutional layers with
torch.nn.init.kaiming_uniform_. We find that this detail is critical, as networks completely fail
to generalize on some datasets when we use the default PyTorch initializations.

For all experiments, both γ′ and θ are trained with the AdamW optimizer with β1 = 0.9 and
β2 = 0.999. We set the algorithm 3 hyperparameters to M = 8 and β = 0.9. To tune hyperparameters,
we first tried learning rates in {1×10−6, 2×10−6, . . . , 7×10−6} for DPAv4 and {1×10−6, . . . , 9×
10−6} ∪ {1× 10−5, . . . , 9× 10−5} ∪ {10−4} for ASCADv1. For each of these models we tested
weight decay values of 0 and 10−2, and data augmentation via additive Gaussian input noise with
standard deviation values of 0 and 0.25. We then selected the hyperparameters which minimized the
mean correct-key rank on our validation dataset after training for 104 steps. This sweep is displayed
in figure 11 for DPAv4 and in figure 12 for ASCADv1.

For the neural net interpretation baselines, we trained a neural network with these optimal hyper-
parameters for 104 steps and early-stopped based on validation rank. For the adversarial leakage
localization experiments, we used these settings for our classifier and tuned λ and the learning rate of
γ′ ad hoc.
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Algorithm 5: Our metric for evaluating the fidelity of a leakage localization attempt. We call this
metric the Gaussian Mixture Model Performance Rank Correlation (GMM-PRC).

Input: Profiling dataset D := {(x(n), y(n)) : n ∈ [1 .. N ]} ⊂ RT × Y, attack dataset
Da := {(x(n)

a , y
(n)
a ) : n ∈ [1 .. Na]} ⊂ RT × Y, leakage assessment γ ∈ RT , order of

GMM attack m ∈ Z++.
Output: Gaussian mixture model performance rank correlation (GMM-PRC) τ ∈ [−1, 1].

1 Function PerformGMMAttack (t ∈ [1 .. T ]
m)

// Fit a Gaussian mixture model to the profiling dataset.
2 for y ∈ Y do
3 Dy ← {(x(n), y(n)) : n ∈ [1 .. N ] : y(n) = y}
4 Ny ← |Dy|
5 µy ← 1

Ny

∑
(x,y)∈Dy

xt

6 Σy ← 1
Ny−1

∑
(x,y)∈Dy

(xt − µy)(xt − µy)
⊤

// Compute the rank of the correct intermediate variable for each trace in
the attack dataset

7 for n = 1, . . . , Na do
8 for y ∈ Y do
9 u

(n)
y ← logN (x

(n)
a,t ;µy,Σy) + logNy

10 r(n) ← |{y ∈ Y : u
(n)
y ≥ u

(n)

y(n)}|
// Compute the mean and standard deviation of the rank

11 µ← 1
Na

∑Na
n=1 r

(n)

12 σ2 ← 1
Na−1

∑Na
n=1(r

(n) − µ)2

13 return µ, σ2

// Compute the statistics of the rank of the correct intermediate variable
for groups of timesteps with similar relative amount of leakage, as
estimated by the leakage localization attempt we are evaluating.

14 κ← ArgSort(γ)

15 for l = 0, . . . , ⌊ Tm⌋ − 1 do
16 tl ← κ(m·l,...,m·(l+1)−1)

17 µl, σ
2
l ← PerformGMMAttack(tl)

// Compute the expected value of the Kendall τ rank correlation coefficient
of these GMM performance statistics.

18 τ ← 0

19 for i = 1, . . . , ⌊ Tm⌋ do
20 for j = i+ 1, . . . , ⌊ Tm⌋ do
21 τ ← τ +

∫∞
0
N (x;µi − µj , σ

2
i + σ2

j ) dx

22 τ ← 2τ
⌊ T
m ⌋2+⌊ T

m ⌋
23 return τ
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Figure 10: Simple VGG-style CNN architecture used for our experiments on recorded power trace
datasets. We use nearly the same architecture for adversarial and supervised experiments. For
adversarial experiments we feed the CNN both a noisy power trace and the noise vector, concatenated
along the channel dimension. For supervised experiments (e.g. for computing neural network
‘interpretability’ baselines), we simply feed the power trace to the CNN.
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Figure 11: Performance metrics on the DPAv4 dataset for various learning rates.

Figures 13 and 14 provide detailed comparisons of the leakage assessments done by our compared
baselines. The bottom rows of these figures show the mean ± standard deviation of the rank of
the correct intermediate variable that is used to compute our GMM-PRC metric. Observe that high
GMM-PRC values in table 1 correspond to monotonically-decreasing rank in these plots.
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Figure 12: Performance metrics on the ASCADv1-fixed dataset while sweeping the learning rate.
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Figure 13: Qualitative comparison of considered methods on the DPAv4 dataset (right column: ours).
The top row shows plots of the estimated leakage of Xt vs t for each method. The bottom row shows
plots of the performance of a Gaussian mixture model-based side channel attack (lower is better), vs
the relative estimated leakage of the partition of timesteps it is trained on (solid: mean, shaded: std.
dev.). We expect the correlation to be more negative for more accurate estimated leakage values.
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Figure 14: Qualitative comparison of considered methods on the ASCADv1 (fixed key) dataset (right
column: ours). The top row shows plots of the estimated leakage of Xt vs t for each method. The
bottom row shows plots of the performance of a GMM-based side channel attack (lower is better), vs
the relative estimated leakage of the partition of timesteps it is trained on (solid: mean, shaded: std.
dev.). SNR, SOSD, and CPA are unable to detect leakage due to the Boolean masking of this dataset,
but because this dataset provides unrealistic knowledge of the random mask values, as an idealistic
baseline we show the results from targeting the mask (red) and masked sensitive variable (yellow)
separately. The orange traces in the bottom row correspond to summing these leakage assessments.
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