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Abstract

We propose a pre-training objective based on001
question answering (QA) for learning general-002
purpose contextual representations, motivated003
by the intuition that the representation of a004
phrase in a passage should encode all questions005
that the phrase can answer in context. To this006
end, we train a bi-encoder QA model, which007
independently encodes passages and questions,008
to match the predictions of a more accurate009
cross-encoder model on 80 million synthesized010
QA pairs. By encoding QA-relevant informa-011
tion, the bi-encoder’s token-level representa-012
tions are useful for non-QA downstream tasks013
without extensive (or in some cases, any) fine-014
tuning. We show large improvements over both015
RoBERTa-large and previous state-of-the-art016
results on zero-shot and few-shot paraphrase017
detection on four datasets, few-shot named en-018
tity recognition on two datasets, and zero-shot019
sentiment analysis on three datasets.020

1 Introduction021

Although masked language models build contex-022

tualized word representations, they are pre-trained023

with losses that minimize distance to uncontextual-024

ized word embeddings (Peters et al., 2018; Devlin025

et al., 2019; Liu et al., 2019). In this paper, we in-026

troduce Question Answering Infused Pre-training027

(QUIP), a new pre-training loss based on question028

answering (QA) that depends much more directly029

on context, and learns improved token-level repre-030

sentations for a range of zero- and few-shot tasks.031

Our intuition for QUIP is that the contextualized032

representation for a phrase in a passage should con-033

tain enough information to identify all the questions034

that the phrase could answer in context. For exam-035

ple, in Figure 1, the representation for Johannes036

Brahms should be similar to the representation of037

all questions it can answer, such as “Who wrote038

the violin concerto?” We anticipate that optimiz-039

ing passage representations for QA should benefit040

many downstream tasks, as question-answer pairs041

The Violin Concerto in D major, Op. 77, was 
composed by Johannes Brahms in 1878 and 
dedicated to his friend, the violinist Joseph Joachim.

What did Brahms 
write in 1878?

What was dedicated 
to Joachim?

Who was friends 
with Joachim?

Who played 
the violin?

Who wrote the 
violin concerto?

Figure 1: An overview of Question Answering Infused
Pre-training. Our model independently creates vector
representations (middle) for phrases in a passage (top)
and for synthesized questions (bottom). Our objective
encourages the vector for each phrase to have high simi-
larity with the vectors for all questions it answers.

have been used as broad-coverage meaning repre- 042

sentations (He et al., 2015; Michael et al., 2018), 043

and a wide range of NLP tasks can be cast as QA 044

problems (Levy et al., 2017; McCann et al., 2018; 045

Gardner et al., 2019), For instance, our learned 046

representations should encode whether a phrase 047

answers a question like “Why was the movie con- 048

sidered good?”, which corresponds to identifying 049

rationales for sentiment analysis. 050

We train QUIP with a bi-encoder extractive QA 051

objective. The bi-encoder model independently 052

encodes passages and questions such that the repre- 053

sentation of each phrase in a passage is similar to 054

the representation of reading comprehension ques- 055

tions answered by that phrase. To train this model, 056

we use a question generation model to synthesize 057

80 million QA examples, then train the bi-encoder 058

to match the predictions of a cross-encoder QA 059

model, which processes the passage and question 060

1



together, on these examples. Bi-encoder QA has061

been used before for efficient open-domain QA via062

phrase retrieval (Seo et al., 2018, 2019; Lee et al.,063

2020, 2021), but its lower accuracy compared to064

cross-encoder QA has previously been viewed as a065

drawback. We instead view the relative weakness066

of bi-encoder QA as an opportunity to improve067

contextual representations via knowledge distilla-068

tion, as self-training can be effective when the stu-069

dent model must solve a harder problem than the070

teacher (Xie et al., 2020). In particular, since the071

bi-encoder does not know the question when encod-072

ing the passage, it must produce a single passage073

representation that simultaneously encodes the an-074

swers to all possible questions. In contrast, while075

cross-encoder QA models are more accurate, they076

depend on a specific question when encoding a pas-077

sage; thus, they are less suited to downstream use078

cases that require contextualized representations of079

passages in isolation.080

We show that QUIP token-level representations081

are useful in a variety of zero-shot and few-shot082

learning settings, both because the representations083

directly encode useful contextual information, and084

because we can often reduce downstream tasks to085

QA. For few-shot paraphrase detection, QUIP with086

BERTScore-based features (Zhang et al., 2020)087

outperforms prior work by 9 F1 points across088

four datasets. For few-shot named entity recog-089

nition (NER), QUIP combined with an initializa-090

tion scheme that uses question embeddings im-091

proves over RoBERTa-large by 14 F1 across two092

datasets. Finally, for zero-shot sentiment analy-093

sis, QUIP with question prompts improves over094

RoBERTa-large with MLM-style prompts by 5 ac-095

curacy points across three datasets, and extracts096

interpretable rationales as a side effect. Through ab-097

lations, we show that using real questions, a strong098

teacher model, and the bi-encoder architecture are099

all crucial to the success of QUIP. We will release100

code to reproduce all results upon publication.101

2 QA Infused Pre-training102

QA Infused Pre-training (QUIP) involves pre-103

training contextual representations with a bi-104

encoder extractive QA objective. In this section,105

we introduce some notation (§2.1), then describe106

our QUIP pipeline, which consists of three steps:107

question generation (§2.2), cross-encoder teacher108

re-labeling (§2.3), and bi-encoder training (§2.4).109

2.1 Notation 110

All models operate on sequences of tokens x = 111

[x1, . . . , xL] of length L, where x1 is the special 112

beginning-of-sequence token. We learn an en- 113

coder r that maps inputs x to outputs r(x) = 114

[r(x)1, . . . , r(x)L] where each r(x)i ∈ Rd for 115

some fixed dimension d. We call r(x)i the con- 116

textual representation of the i-th token in x. 117

In extractive question answering, a model is 118

given a context passage c and question q, and must 119

output a span of c that answers the question. Typ- 120

ically, models independently predict probability 121

distributions p(astart | c, q) and p(aend | c, q) over 122

the answer start index astart and end index aend. 123

2.2 Question Generation 124

Question generation model. We train a BART- 125

large model (Lewis et al., 2020) to generate 126

question-answer pairs given context passages. The 127

model receives the passage as context and must 128

generate the answer text, then a special separator 129

token, then the question; this approach is simpler 130

than prior approaches that use separate models for 131

answer and question generation (Lewis and Fan, 132

2019; Alberti et al., 2019; Puri et al., 2020), and 133

works well in practice. 134

Training data. We train on data from the MRQA 135

2019 Shared Task (Fisch et al., 2019), which in- 136

cludes six datasets: HotpotQA (Yang et al., 2018), 137

NaturalQuestions (Kwiatkowski et al., 2019), 138

NewsQA (Trischler et al., 2017), SearchQA (Dunn 139

et al., 2017), SQuAD (Rajpurkar et al., 2016), 140

and TriviaQA (Joshi et al., 2017). These datasets 141

cover many of the text sources commonly used for 142

pre-training (Liu et al., 2019; Lewis et al., 2020), 143

namely Wikipedia (HotpotQA, NaturalQuestions, 144

SQuAD), News articles (NewsQA), and general 145

web text (SearchQA, TriviaQA). 146

Generating questions. We run our question gen- 147

eration model over a large set of passages to gen- 148

erate a large dataset of question-answer pairs. We 149

decode using nucleus sampling (Holtzman et al., 150

2020) with p = 0.6, which was chosen by man- 151

ual inspection to balance diversity with quality of 152

generated questions. We do not filter questions 153

in any way. While we observed some flaws re- 154

lated to question quality (questions were not always 155

well-formed) and diversity (for some passages, the 156

same or very similar questions were asked multi- 157

ple times), this approach nonetheless yielded good 158
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downstream results. Attempts to mitigate these159

issues, such as using a two-stage beam search to160

ensure that questions for the same passage have161

different answers, did not noticeably change our162

downstream results (see §4.8). We obtain passages163

from the same training corpus as RoBERTa (Liu164

et al., 2019), which uses four sub-domains: BOOK-165

CORPUS plus Wikipedia, CC-NEWS, OPENWEB-166

TEXT, and STORIES. For each domain, we sample167

2 million passages and generate 10 questions per168

passage, for a total of 80 million questions.1169

2.3 Teacher Re-labeling170

The answers generated by our BART model are not171

always accurate, nor are they always spans in the172

context passage. To improve the training signal,173

we relabel examples with a teacher model, as is174

common in knowledge distillation (Hinton et al.,175

2015). We use a standard cross-encoder RoBERTa-176

large model trained on the MRQA training data as177

our teacher. The model takes in the concatenation178

of the context passage c and question q and predicts179

astart and aend with two independent 2-layer multi-180

layer perceptron (MLP) heads. Let Tstart(c, q) and181

Tend(c, q) denote the teacher’s predicted probability182

distribution over astart and aend, respectively.183

2.4 Bi-encoder Training184

Finally, we train a bi-encoder model to match the185

cross-encoder predictions on the generated ques-186

tions. This objective encourages the contextual187

representation for a token to have high similarity188

(in inner product space) with the representation of189

every question that is answered by that token.190

Model. The bi-encoder model with parameters θ191

consists of of three components: an encoder r and192

two question embedding heads hstart and hend that193

map Rd → Rd. These heads will only be applied to194

beginning-of-sequence (i.e., CLS) representations;195

as shorthand, define fstart(x) = hstart(r(x)1) and196

likewise for fend. Given a context passage c and197

question q, the model predicts198

pθ(astart = i | c, q) ∝ er(c)
⊤
i fstart(q) (1)199

pθ(aend = i | c, q) ∝ er(c)
⊤
i fend(q) (2)200

In other words, the model independently encodes201

the passage and question with r, applies the start202

1We estimate that using the entire corpus with these set-
tings would generate around 900 million questions. We leave
investigation of further scaling to future work.

and end heads to the CLS token embedding for 203

q, then predicts the answer start (end) index with 204

a softmax over the dot product between the pas- 205

sage representation at that index and the output of 206

the start (end) head. We initialize r to be the pre- 207

trained RoBERTa-large model (Liu et al., 2019), 208

which uses d = 1024. hstart and hend are randomly- 209

initialized 2-layer MLPs with hidden dimension 210

1024, matching the default initialization of classifi- 211

cation heads in RoBERTa. 212

Training. For an input consisting of context c of 213

length L and question q, we train θ to minimize 214

the KL-divergence between the student and teacher 215

predictions, which is equivalent to the objective 216

−
L∑
i=1

Tstart(c, q)i log pθ(astart = i | c, q) 217

+ Tend(c, q)i log pθ(aend = i | c, q) (3) 218

up to constants that do not depend on θ. We train 219

for two epochs on the 80 million generated ques- 220

tions, which takes roughly 56 hours on 8 V100 221

GPUs, or roughly 19 GPU-days.2 For details about 222

training, see Appendix A.1. 223

3 Downstream Tasks 224

We evaluate QUIP on zero-shot paraphrase ranking, 225

few-shot paraphrase classification, few-shot NER, 226

and zero-shot sentiment analysis. We leverage the 227

improved token-level representations afforded by 228

QUIP, and in many cases also directly use QUIP’s 229

question-answering abilities. 230

3.1 Paraphrase Ranking 231

We first evaluate QUIP token-level representations 232

by measuring their usefulness for zero-shot para- 233

phrase ranking. In this task, systems must rank sen- 234

tence pairs that are paraphrases above pairs that are 235

non-paraphrases, without any task-specific train- 236

ing data. We compute similarity scores using the 237

FBERT variant of BERTScore (Zhang et al., 2020), 238

which measures cosine similarities between the rep- 239

resentation of each token in one sentence and its 240

most similar token in the other sentence. Given 241

sentences x1 and x2 of lengths L1 and L2, define 242

B(x1, x2) =
1

L1

L1∑
i=1

max
1≤j≤L2

r(x1)
⊤
i r(x2)j

∥r(x1)i∥∥r(x2)j∥
. 243

2For comparison, pre-training RoBERTa-large from
scratch took roughly 5000 GPU-days (Liu et al., 2019)
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The FBERT BERTScore is defined as the harmonic244

mean of B(x1, x2) and B(x2, x1). Zhang et al.245

(2020) showed that BERTScore with RoBERTa is246

useful for both natural language generation evalu-247

ation and paraphrase ranking. Since BERTScore248

uses token-level representations, we hypothesize249

that it should pair well with QUIP. As in Zhang250

et al. (2020), we use representations from the layer251

of the network that maximizes Pearson correlation252

between BERTScore and human judgments on the253

WMT16 metrics shared task (Bojar et al., 2016).254

3.2 Paraphrase Classification255

We next use either frozen or fine-tuned QUIP rep-256

resentations for few-shot paraphrase classification,257

rather than ranking. Through these experiments,258

we can compare QUIP with existing work on few-259

shot paraphrase classification.260

Frozen model. We train a logistic regression261

model that uses BERTScore with frozen representa-262

tions as features. For a given pair of sentences, we263

extract eight features, corresponding to BERTScore264

computed with the final eight layers (i.e., layers 17-265

24) of the network. These layers encompass the266

optimal layers for both RoBERTa-large and QUIP267

(see §4.4). Freezing the encoder is often useful in268

practice, particularly for large models, as the same269

model can be reused for many tasks (Brown et al.,270

2020; Du et al., 2020).271

Fine-tuning. For fine-tuning, we use the same272

computation graph and logistic loss function, but273

now backpropagate through the parameters of our274

encoder. For details, see Appendix A.3.275

3.3 Named Entity Recognition276

We also use QUIP for few-shot3 named entity277

recognition, which we frame as a BIO tagging task.278

Since questions in QA often ask for entities of a279

specific type, we expect QUIP representations to280

contain rich entity type information. We add a lin-281

ear layer that takes in token-level representations282

and predicts the tag for each token, and backpropa-283

gate log loss through the entire network. By default,284

the output layer is initialized randomly.285

As a refinement, we propose using question286

prompts to initialize this model. The output layer is287

parameterized by a T ×d matrix M , where T is the288

number of distinct BIO tags. The log-probability289

3Yang and Katiyar (2020) study few-shot NER assuming
data from other NER datasets is available; we assume no such
data is available, matching Huang et al. (2020).

of predicting the j-th tag for token i is proportional 290

to the dot product between the representation for 291

token i and the j-th row of M ; this resembles how 292

the bi-encoder predicts answers. Thus, we initial- 293

ize each row of M with the start head embedding 294

of a question related to that row’s corresponding 295

entity tag. For instance, we initialize the parame- 296

ters for the B-location and I-location tags 297

with the embedding for “What is a location ?” We 298

normalize the question embeddings to have unit 299

L2 norm. This style of initialization is uniquely 300

enabled by our bi-encoder QA model; it would be 301

unclear how to use a language model or a cross- 302

encoder QA model similarly. 303

3.4 Zero-shot Sentiment Analysis 304

Finally, we use QUIP for zero-shot binary senti- 305

ment analysis. We reduce sentiment analysis to QA 306

by writing a pair of questions that ask for a rea- 307

son why an item is good or bad (e.g., “Why is this 308

movie [good/bad]?”). We predict the label whose 309

corresponding question has higher similarity with 310

the QUIP representation of some token in the input. 311

This prompting strategy has the additional benefit 312

of extracting rationales, namely the span that the 313

QUIP model predicts as the answer to the question. 314

While we focus on sentiment analysis, extractive 315

rationales have been used for a wide range of NLP 316

tasks (DeYoung et al., 2020), suggesting that this 317

method could be applied more broadly. 318

More formally, let x be an input sentence and 319

(q0, q1) be a pair of questions (i.e., a prompt). For 320

label y ∈ {0, 1}, we compute a score for y as 321

S(x, y) =max
i

r(x)⊤i fstart(qy)+ 322

max
i

r(x)⊤i fend(qy). (4) 323

This formula is a straightforward way to measure 324

the extent to which some span in x looks like the 325

answer to the question qy, based on the model’s 326

pre-trained ability to perform QA. We predict 327

whichever y has the higher value of S(x, y)− Cy, 328

where Cy is a calibration constant that offsets the 329

model’s bias towards answering q0 or q1. Our in- 330

clusion of Cy is inspired by Zhao et al. (2021), 331

who recommend calibrating zero-shot and few-shot 332

models with a baseline derived from content-free 333

inputs to account for biases towards a particular 334

label. To choose Cy, we obtain a list W of the 335

ten most frequent English words, all of which con- 336

vey no sentiment, and define Cy as the mean over 337
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w ∈ W of S(w, y), i.e., the score when using w as338

the input sentence (see Appendix A.5).339

4 Experiments340

4.1 Experimental details341

Datasets. For paraphrasing, we use four datasets:342

QQP (Iyer et al., 2017), MRPC (Dolan and Brock-343

ett, 2005), PAWS-Wiki, and PAWS-QQP (Zhang344

et al., 2019). The PAWS datasets were designed to345

be challenging for bag-of-words models, and thus346

test whether our representations are truly contex-347

tual or mostly lexical. For QQP and MRPC, we use348

the few-shot splits from Gao et al. (2021) that in-349

clude 16 examples per class; for the PAWS datasets,350

we create new few-shot splits in the same man-351

ner. We report results on the development sets of352

QQP and MRPC (as test labels were not available),353

the test set of PAWS-Wiki, and the “dev-and-test”354

set of PAWS-QQP. For NER, we use two datasets:355

CoNLL 2003 (Tjong Kim Sang and De Meulder,356

2003) and WNUT-17 (Derczynski et al., 2017). We357

use the few-shot splits from Huang et al. (2020) that358

include 5 examples per entity type. All few-shot359

experiments report an average over five random360

splits and seeds, following both Gao et al. (2021)361

and Huang et al. (2020). For sentiment analysis,362

we use two movie review datasets, SST-2 (Socher363

et al., 2013) and Movie Reviews (MR; Pang and364

Lee, 2005), as well as the Customer Reviews (CR)365

dataset (Hu and Liu, 2004). We evaluate on the366

SST-2 development set and the MR and CR test367

sets made by Gao et al. (2021).368

Hyperparameter and prompt selection. Due to369

the nature of zero-shot and few-shot experiments,370

we minimize the extent to which we tune hyper-371

parameters, relying on existing defaults and pre-372

viously published hyperparameters. For few-shot373

paraphrase classification, NER, and sentiment anal-374

ysis, we developed our final method only using375

QQP, CoNLL, and SST-2, respectively, and directly376

applied it to the other datasets with no further tun-377

ing. We did measure zero-shot paraphrase ranking378

accuracy on all datasets during development of379

QUIP. For more details, see Appendix A.4.380

For NER, we used the first question prompts we381

wrote for both CoNLL and WNUT, which all fol-382

low the same format, “Who/What is a/an [entity383

type] ?” (see Appendix A.8 for all prompts). For384

sentiment analysis, we wrote six prompts (shown385

in Appendix A.10) and report mean accuracy over386

these prompts, to avoid pitfalls associated with 387

prompt tuning (Perez et al., 2021). We use the 388

same prompts for SST-2 and MR; for CR, the only 389

change we make is replacing occurrences of the 390

word “movie” with “product” to reflect the change 391

in domain between these datasets. 392

4.2 Baselines and Ablations 393

To confirm the importance of all three stages of our 394

pre-training pipeline, we compare with a number 395

of baselines and ablations. 396

No question generation. We train the bi-encoder 397

model directly on the MRQA training data (“Bi- 398

encoder + MRQA”). We also include the cross- 399

encoder teacher model trained on MRQA as a base- 400

line (“Cross-encoder + MRQA”). These settings 401

mirror standard intermediate task training (Phang 402

et al., 2018; Pruksachatkun et al., 2020). 403

No teacher. We train the bi-encoder using the 404

answer generated by the question generation model 405

(“QUIP, no teacher”). If the generated answer is 406

not a span in the passage, we consider the question 407

unanswerable and treat the span containing the CLS 408

token as the answer, as in Devlin et al. (2019). 409

Cross-encoder self-training. To test whether the 410

bottleneck imposed by the bi-encoder architec- 411

ture is crucial for QUIP, we also train a cross- 412

encoder model on our generated data (“QUIP, 413

cross-encoder student”). Since this student model 414

has the same architecture as the teacher model, we 415

train it to match the teacher’s argmax predictions, 416

a standard self-training objective (Lee, 2013). We 417

train for a comparable number of GPU-hours as 418

QUIP (see Appendix A.2 for details). 419

Unsupervised QA. We test whether QUIP re- 420

quires real QA data, or if a rough approximation 421

suffices. We thus train a bi-encoder on 80 million 422

pseudo-questions generated by applying noise to 423

sentences (“Bi-encoder + UnsupervisedQA”), as in 424

Lewis et al. (2019). 425

4.3 Bi-encoder Question Answering 426

While not our main focus, we first check that QUIP 427

improves bi-encoder QA accuracy, as shown in 428

Table 1. QUIP improves over Lee et al. (2021) 429

by 5.4 F1 on the SQuAD development set. It also 430

surpasses the reported human accuracy of 91.2 F1 431

on the SQuAD test set, as well as the best cross- 432

encoder BERT-large single model from Devlin et al. 433

(2019). QUIP greatly improves over baselines that 434
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Model EM F1

Lee et al. (2021) 78.3 86.3
Bi-encoder + UnsupervisedQA 17.4 24.9
Bi-encoder + MRQA 70.7 79.4
QUIP, no teacher 75.3 84.7
QUIP 85.2 91.7

BERT-large cross-encoder 84.2 91.1
Cross-encoder + MRQA 88.8 94.7
QUIP, cross-encoder student 89.5 94.8

Table 1: EM and F1 scores on the SQuAD develop-
ment set for bi-encoder (top) and cross-encoder (bot-
tom) models. QUIP outperforms the other bi-encoder
model baselines, and even a cross-encoder BERT-large
model. The RoBERTa cross-encoder models are better
at QA, but will underperform QUIP on non-QA tasks.

directly train on MRQA data or do not use the435

teacher model. As expected, our cross-encoder436

models are more accurate at QA; we will show that437

their representations are less useful for non-QA438

tasks than the QUIP bi-encoder. Appendix A.6439

shows results on all MRQA development datasets.440

4.4 Zero-shot Paraphrase Ranking441

We validate our approach and study the effects442

of various ablations on zero-shot paraphrase rank-443

ing. The first half of Table 2 shows WMT devel-444

opment set Pearson correlations averaged across445

six to-English datasets, as in Zhang et al. (2020),446

along with the best layer for each model. QUIP447

reaches its optimal score at a later layer (20) than448

RoBERTa-large (17), which may suggest that the449

QUIP training objective is more closely aligned450

with learning better representations than MLM.451

The rest of Table 2 shows zero-shot paraphrase452

ranking results using BERTScore. QUIP improves453

substantially over RoBERTa on all four datasets,454

with an average improvement of .076 AUROC. The455

improvement is greatest on the PAWS datasets;456

since these datasets cannot be solved by lexical fea-457

tures alone, QUIP representations must be much458

more contextualized than RoBERTa representa-459

tions. Training on Unsupervised QA data degrades460

performance compared to RoBERTa, showing that461

QUIP does not merely make word representations462

encode local context in a simple way. Training the463

bi-encoder directly on the MRQA dataset or with-464

out the teacher improves on average over RoBERTa,465

but QUIP greatly outperforms both baselines. The466

cross-encoder models also lag behind QUIP at para-467

phrase ranking, despite their higher QA accuracy.468

Thus, we conclude that having real questions, accu-469

rate answer supervision, and a bi-encoder student 470

model are all crucial to the success of QUIP. 471

4.5 Paraphrase Classification 472

Table 3 shows few-shot paraphrase classification 473

results. As we studied ablations in the previous 474

section, we focus on the comparison between QUIP 475

and non-QUIP baselines. First, we use RoBERTa- 476

large embeddings in place of QUIP in our method. 477

Second, we compare with LM-BFF (Gao et al., 478

2021), which pairs RoBERTa-large with MLM- 479

style prompts. We use LM-BFF with manually 480

written prompts and demonstrations, which was 481

their best method on QQP by 2.1 F1 and was 0.3 F1 482

worse than their best method on MRPC. QUIP used 483

as a frozen encoder is competitive with LM-BFF on 484

QQP and outperforms it by 6.1 F1 on MRPC, 11.2 485

F1 on PAWS-Wiki, and 12.1 F1 on PAWS-QQP. 486

Fine-tuning QUIP gives additional improvements 487

on three of the four datasets, and outperforms fine- 488

tuning RoBERTa by an average of 6.9 F1. 489

4.6 Named Entity Recognition 490

Table 4 shows few-shot NER results on the 491

CoNLL and WNUT datasets. QUIP improves over 492

RoBERTa-large by 11 F1 on CoNLL and 2.9 F1 on 493

WNUT when used with a randomly initialized out- 494

put layer. We see a further improvement of 4 F1 on 495

CoNLL and 7.4 F1 on WNUT when using question 496

embeddings to initialize the output layer. Using 497

the cross-encoder trained directly on QA data is 498

roughly as good as QUIP when using randomly 499

initialized output layers, but it is incompatible with 500

question embedding initialization. 501

4.7 Sentiment Analysis 502

Table 5 shows zero-shot accuracy on our three sen- 503

timent analysis datasets. We compare with zero- 504

shot results for LM-BFF (Gao et al., 2021)4 and 505

reported zero-shot results from Zhao et al. (2021) 506

using GPT-3 with Contextual Calibration (CC) on 507

SST-2. QUIP using an average prompt outperforms 508

zero-shot LM-BFF by 5.4 points, averaged across 509

the three datasets. Choosing the best prompt on 510

SST-2 and using that for all datasets improves re- 511

sults not only on SST-2 but also MR, and maintains 512

average accuracy on CR. Using the cross-encoder 513

student QA model with the same prompts leads 514

to worse performance: we hypothesize that the bi- 515

encoder bottleneck encourages QUIP to make each 516

4We tried applying our calibration strategy to LM-BFF as
well, but found that it did not improve accuracy.
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Model WMT r WMT Best Layer QQP MRPC PAWS-Wiki PAWS-QQP

RoBERTa-large .739 17 .763 .831 .698 .690
Cross-encoder + MRQA .744 16 .767 .840 .742 .731
QUIP, cross-encoder student .753 16 .769 .847 .751 .706
Bi-encoder + UnsupervisedQA .654 11 .747 .801 .649 .580
Bi-encoder + MRQA .749 15 .771 .807 .747 .725
QUIP, no teacher .726 19 .767 .831 .780 .709
QUIP .764 20 .809 .849 .830 .796

Table 2: Pearson correlation on WMT development data, best layer chosen based on WMT results, and AUROC on
zero-shot paraphrase ranking using BERTScore. QUIP outperforms all baselines on all datasets.

Model Fine-tuned? QQP MRPC PAWS-Wiki PAWS-QQP

LM-BFF (reported) Fine-tuned 69.80.8 77.80.9 - -
LM-BFF (rerun) Fine-tuned 67.10.9 76.51.5 60.70.7 50.12.8

RoBERTa-large Frozen 64.40.4 80.60.7 62.30.9 50.60.4
QUIP Frozen 68.90.2 82.60.4 71.90.5 63.01.2

RoBERTa-large Fine-tuned 64.90.7 84.40.3 65.70.3 50.90.8
QUIP Fine-tuned 71.00.3 86.60.4 75.10.2 60.91.0

Table 3: F1 scores on few-shot paraphrase classification, averaged across five training splits (standard errors in
subscripts). QUIP outperforms prior work (LM-BFF; Gao et al., 2021) as well as our own RoBERTa baselines.

Model CoNLL WNUT

Huang et al. (2020) 65.4 37.6

Standard init.
RoBERTa-large 59.02.4 39.30.6
Cross-encoder + MRQA 68.93.3 43.00.9
QUIP, cross-encoder student 63.43.3 39.41.7
Bi-encoder + UnsupervisedQA 58.22.6 26.01.0
Bi-encoder + MRQA 66.43.3 42.20.4
QUIP, no teacher 67.71.9 40.71.4
QUIP 70.02.4 42.20.5

Question prompt init.
Bi-encoder + UnsupervisedQA 62.73.3 30.40.8
Bi-encoder + MRQA 72.02.8 44.01.3
QUIP, no teacher 71.43.0 47.81.1
QUIP 74.02.4 49.60.5

Table 4: F1 scores on few-shot NER, averaged over
five training splits (standard errors in subscripts). QUIP
with question prompts performs best on both datasets.

span’s representation dissimilar to those of ques-517

tions that it does not answer, whereas the cross-518

encoder model trained only on answerable ques-519

tions handles unanswerable questions poorly (e.g.,520

“Why is it bad?” asked about a positive review).521

Table 6 shows rationales extracted from random522

SST-2 examples for which QUIP was correct with523

the best prompt for SST-2 (“What is the reason524

this movie is [good/bad]?”). To prefer shorter ra-525

tionales, we extract the highest-scoring span of526

five BPE tokens or less. The model often iden-527

tifies phrases that convey clear sentiment. Ap-528

pendix A.11 shows full examples and rationales.529

Model SST-2 MR CR

CC + GPT-3 71.6 - -
LM-BFF 83.6 80.8 79.5
QUIP (average) 87.90.6 81.90.4 90.30.2

w/ cross-enc. student 83.30.4 78.50.4 88.90.3

QUIP (tune on SST-2) 89.6 83.1 90.4

Table 5: Zero-shot accuracy on sentiment analysis.
Third and fourth rows show mean accuracy across six
prompts (standard error in subscripts). QUIP with an
average prompt outperforms prior work; using the best
prompt on SST-2 helps on all datasets.

Label Rationale

- “too slim”, “stale”, “every idea”, “wore out its welcome”, “un-
pleasant viewing experience”, “lifeless”, “plot”, “amateurishly
assembled”, “10 times their natural size”, “wrong turn”

+ “packed with information and impressions”, “slash-and-hack”,
“tightly organized efficiency”, “passion and talent”, “best films”,
“surprises”, “great summer fun”, “play equally well”, “convic-
tions”, “wickedly subversive bent”

Table 6: Rationales extracted by QUIP on ten random
examples for each label from SST-2.

4.8 Stability Analysis 530

We experimented with some design decisions that 531

did not materially affect our results. Appendix A.7 532

shows results for three such choices: including in- 533

batch negative passages (Lee et al., 2021), using the 534

argmax prediction of the teacher rather than soft 535

labels, and using beam search to generate a diverse 536

set of answers followed by one high-likelihood 537
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question per answer. We take these findings as evi-538

dence that our basic recipe is stable to many small539

changes. For question generation, we hypothesize540

that the objective of matching the cross-encoder541

teacher model encourages the bi-encoder to learn542

important features identified by the cross-encoder,543

even on questions that are not entirely well-formed.544

5 Discussion and Related Work545

We build on work in question generation and an-546

swering, pre-training, and few-shot learning.547

Question Generation. Neural question genera-548

tion has been well-studied for different purposes549

(Du et al., 2017; Du and Cardie, 2018; Zhao et al.,550

2018; Lewis and Fan, 2019; Alberti et al., 2019;551

Puri et al., 2020; Lewis et al., 2021; Bartolo et al.,552

2021). We use generated questions to learn general-553

purpose representations. We also show that a rel-554

atively simple strategy of generating the answer555

and question together with a single model can be556

effective; most prior work uses separate answer557

selection and question generation models.558

Phrase-indexed Question Answering. Phrase-559

indexed question answering is a paradigm for open-560

domain QA that retrieves answers by embedding561

questions and candidate answers in a shared embed-562

ding space (Seo et al., 2018, 2019; Lee et al., 2020).563

It requires using a bi-encoder architecture for effi-564

cient phrase retrieval. Especially related is Lee et al.565

(2021), which also uses question generation and566

a cross-encoder teacher model to improve phrase-567

indexed QA, though they focus on improving QA568

accuracy rather than transfer to other tasks. Our569

results reinforce prior observations that bi-encoder570

models are usually less accurate at QA than cross-571

encoders (see Table 1). However, the bi-encoder572

model transfers better to settings that require a con-573

textualized representation of a single passage; the574

cross-encoder instead optimizes for producing rep-575

resentations of passage-question pairs.576

Improving question answering. While we use577

QA to aid pre-training, related work aims to im-578

prove accuracy on QA. Ram et al. (2021) propose a579

span extraction pre-training objective that enables580

few-shot QA. Khashabi et al. (2020) run multi-task581

training on many QA datasets, both extractive and582

non-extractive, to improve QA accuracy.583

Learning contextual representations. Pre-584

training on unlabeled data has yields useful585

contextual representations (Peters et al., 2018; 586

Devlin et al., 2019), but further improvements 587

are possible using labeled data. Intermediate 588

task training (Phang et al., 2018) improves 589

representations by training directly on large 590

labeled datasets. Muppet (Aghajanyan et al., 2021) 591

improves models by multi-task pre-finetuning 592

on many labeled datasets. Most similar to our 593

work, He et al. (2020) uses extractive QA to 594

pre-train a BERT paragraph encoder. We use 595

question generation and knowledge distillation 596

to improve over directly training on labeled data, 597

and focus on zero- and few-shot settings. Other 598

work has used similar methods to learn sentence 599

embeddings. Reimers and Gurevych (2019) train 600

sentence embeddings for sentence similarity tasks 601

using natural language inference data. Thakur et al. 602

(2021) train a sentence embedding bi-encoder to 603

mimic the predictions of a cross-encoder model. 604

We learn token-level representations, rather than 605

a single vector for a sentence, and thus use 606

token-level supervision from extractive QA. 607

Few-shot learning. We study few-shot learning 608

without access to unlabeled data, following most 609

recent work (Brown et al., 2020; Gao et al., 2021; 610

Zhao et al., 2021). Schick and Schütze (2021) no- 611

tably propose a semi-supervised approach that uses 612

unlabeled data for knowledge distillation; this pro- 613

cess does not improve accuracy, but mainly im- 614

proves efficiency. Moreover, large-scale unlabeled 615

data may not be easily obtainable for all tasks, and 616

utilizing such data increase computation time in 617

the fine-tuning stage, so we focus on the setting 618

without unlabeled data. The aforementioned work 619

uses language models for few-shot learning by con- 620

verting tasks to language modeling problems; we 621

develop alternative methods for few-shot learning 622

that use token-level representations and question- 623

based prompts. 624

6 Conclusion 625

In this work, we pre-trained token-level contextual 626

representations that are useful for downstream few- 627

shot learning. Our key idea was to use question- 628

answer pairs to define what information should be 629

encoded in bi-encoder passage representations. We 630

showed that passage representations learned in this 631

way are useful for a variety of standard NLP tasks 632

in zero- and few-shot settings, namely paraphrase 633

detection, named entity recognition, and sentiment 634

analysis, across nine total datasets. 635
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A Appendix 1080

A.1 QUIP Details 1081

For efficiency, we process all questions for the same 1082

passage in the same batch, as encoding passages 1083

dominates runtime. We limit passages to 456 byte- 1084

pair encoding (BPE) tokens and questions to 50 so 1085
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that the concatenation can fit comfortably within1086

the 512 token context usable by the cross-encoder1087

teacher. We create passages from our unlabeled text1088

corpus by greedily selecting maximal chunks of1089

contiguous sentences that fit within the BPE token1090

limit. We pre-compute the teacher predictions Tstart1091

and Tend before bi-encoder training. To save space,1092

we sparsify these vectors by only storing the eight1093

largest predicted probabilities, treating all others as1094

0.1095

We conducted minimal hyperparameter tuning1096

for QUIP. We used a learning rate of 1 · 10−5 (de-1097

fault for most RoBERTa fine-tuning experiments5)1098

and no gradient accumulation, which we found led1099

to faster training.1100

A.2 Cross-encoder Self-training Details1101

Training is much less efficient for the cross-encoder1102

than the bi-encoder, since batching questions about1103

the same passage together does not speed up train-1104

ing, so we train for a comparable number of GPU-1105

hours (60 hours on 8 V100 GPUs).1106

A.3 Paraphrase Fine-tuning Details1107

To fine-tune our model for paraphrase classification,1108

we use two practices recommended by Mussmann1109

et al. (2020), who also train a binary classification1110

model that uses cosine similarity-based features1111

derived from fine-tuned BERT embeddings. First,1112

we disable dropout during training, as dropout arti-1113

ficially lowers all cosine similarities. Second, we1114

use a larger learning rate on the final output layer1115

than the Transformer parameters, by a factor of1116

103.1117

A.4 Downstream Task Hyperparameter1118

Details1119

For few-shot paraphrase detection with the frozen1120

model, we use Scikit-learn’s logistic regression im-1121

plementation with default settings (Pedregosa et al.,1122

2011). For fine-tuned paraphrase detection, we1123

again use a learning rate of 1 ·10−5 and train for 201124

epochs, which we found to usually be sufficient for1125

convergence on the training data. For NER, we use1126

the default hyperparameters from the Huggingface1127

transformers repository (Wolf et al., 2020),1128

with the exception of decreasing the learning rate1129

from 5 ·10−5 to 2 ·10−5, which we found improved1130

the RoBERTa baseline on CoNLL.1131

5https://github.com/pytorch/fairseq/
tree/master/examples/roberta

A.5 Sentiment Analysis Calibration 1132

To calibrate the zero-shot sentiment analysis 1133

model, we use ten content-free inputs: “the”, 1134

“be”, “to”, “of ”, “and”, “a”, “in”, “that”, “have”, 1135

and “I”. These were the top ten words listed 1136

on https://en.wikipedia.org/wiki/ 1137

Most_common_words_in_English. We 1138

only applied calibration for the main QUIP model, 1139

as we did not find calibration to improve results for 1140

either LM-BFF or the cross-encoder QA student 1141

model. 1142

A.6 Full QA results 1143

Table 7 shows EM and F1 scores on the 12 de- 1144

velopment sets from the MRQA 2019 Shared 1145

Task (Fisch et al., 2019). These are divided into 1146

6 in-domain datasets—HotpotQA (Yang et al., 1147

2018), NaturalQuestions (Kwiatkowski et al., 1148

2019), NewsQA (Trischler et al., 2017), SearchQA 1149

(Dunn et al., 2017), SQuAD (Rajpurkar et al., 1150

2016), and TriviaQA (Joshi et al., 2017)—for 1151

which corresponding training data was used to 1152

train the question generation model and teacher, 1153

and 6 out-of-domain datasets—BioASQ (Tsatsa- 1154

ronis et al., 2015), DROP (Dua et al., 2019), 1155

DuoRC (Saha et al., 2018), RACE (Lai et al., 1156

2017), RelationExtraction (Levy et al., 2017), and 1157

TextbookQA (Kembhavi et al., 2017)—for which 1158

no training data was used in the QUIP pipeline. 1159

QUIP improves over training the bi-encoder di- 1160

rectly on the MRQA data by an average of 4.4 F1 1161

on the in-domain datasets and 12.7 F1 on the out- 1162

of-domain datasets. It underperforms the cross- 1163

encoder teacher by about 5 F1 on both the in- 1164

domain and out-of-domain datasets on average. 1165

A.7 Stability Analysis 1166

We experimented with some design decisions that 1167

did not materially affect our results. Here, we re- 1168

port these findings as evidence that our basic recipe 1169

is stable to many small changes. First, we con- 1170

catenated the representations of all passages in the 1171

same batch and on the same GPU together (9 pas- 1172

sages on average), and trained the model to extract 1173

answers from this larger pseudo-document; this 1174

effectively adds in-batch negative passages, as in 1175

Lee et al. (2021). Second, we trained the model to 1176

match the argmax prediction of the teacher, rather 1177

than its soft distribution over start and end indices. 1178

Finally, we used a two-stage beam search to gen- 1179

erate questions. For a given passage, we generated 1180
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In-domain HotpotQA NaturalQ NewsQA SQuAD SearchQA TriviaQA Average

Bi-encoder + UnsupervisedQA 9.5 / 16.6 8.0 / 15.5 7.6 / 14.4 17.5 / 25.0 15.4 / 21.1 17.6 / 23.3 12.6 / 19.3
Bi-encoder + MRQA 61.0 / 77.5 64.1 / 76.4 46.1 / 61.5 70.9 / 79.6 73.8 / 79.8 63.1 / 69.0 63.2 / 74.0
QUIP, no teacher 52.9 / 68.7 57.8 / 70.8 41.8 / 58.7 75.4 / 84.8 64.5 / 71.7 71.1 / 76.1 60.6 / 71.8
QUIP 61.3 / 77.9 63.7 / 77.2 52.4 / 68.7 85.3 / 91.8 68.7 / 76.8 72.0 / 78.1 67.2 / 78.4

Cross-encoder + MRQA 66.8 / 83.0 70.5 / 82.0 58.8 / 72.9 89.1 / 94.8 78.3 / 84.6 73.4 / 79.6 72.8 / 82.8
QUIP, cross-encoder student 66.3 / 82.3 66.5 / 79.4 54.4 / 70.5 89.6 / 94.9 72.1 / 80.1 73.4 / 79.8 70.4 / 81.2

Out-of-domain BioASQ DROP DuoRC RACE RelationExt TextbookQA Average

Bi-encoder + UnsupervisedQA 15.3 / 19.2 5.9 / 9.5 14.1 / 17.4 6.5 / 11.4 12.7 / 22.1 8.9 / 13.3 10.6 / 15.5
Bi-encoder + MRQA 42.2 / 57.2 29.9 / 38.3 38.6 / 48.6 29.1 / 39.8 71.3 / 83.5 34.7 / 43.6 41.0 / 51.8
QUIP, no teacher 40.9 / 54.9 33.5 / 43.0 44.1 / 53.2 31.8 / 44.4 70.8 / 82.1 37.3 / 46.2 43.0 / 54.0
QUIP 51.3 / 67.5 46.2 / 57.1 53.0 / 63.2 39.6 / 53.4 75.5 / 86.0 50.2 / 60.0 52.6 / 64.5

Cross-encoder + MRQA 58.0 / 72.9 55.4 / 65.3 55.0 / 66.8 44.2 / 57.7 78.5 / 88.8 58.5 / 67.4 58.2 / 69.8
QUIP, cross-encoder student 57.3 / 72.6 57.5 / 68.3 56.2 / 67.5 44.8 / 58.6 79.5 / 89.1 58.4 / 67.3 59.0 / 70.6

Table 7: Exact match/F1 scores on the twelve development datasets from the MRQA 2019 shared task. The six
in-domain datasets are on top; the six out-of-domain datasets are on bottom.

Model SQuAD Paraphrase NER
F1 AUROC F1

QUIP 91.7 .821 61.8
+ concat. passages 91.7 .818 62.7
w/ hard labels 91.5 .814 62.5
w/ 2-stage beam search 91.7 .821 62.8

Table 8: SQuAD development set F1, average zero-
shot paraphrase ranking AUROC across all datasets,
and average few-shot NER F1 using question prompts
across both datasets for QUIP variants. Models shown
here are all similarly effective.

20 possible answers via beam search, chose 10 of1181

these to maximize answer diversity, then generated1182

one question for each answer with another beam1183

search. Our goal was to ensure diversity by forcing1184

questions to be about different answers, while also1185

maintaining high question quality. As shown in Ta-1186

ble 8, these choices have a relatively minor impact1187

on the results (within .007 AUROC and 1 F1 on1188

NER).1189

A.8 QA Prompts for NER1190

Table 9 shows the question prompts we use to ini-1191

tialize the NER model for CoNLL and WNUT. For1192

entity types that occur in both datasets, and for the1193

O tag, we always use the same question. We used1194

the English description of the entity type provided1195

by the dataset.1196

A.9 Full training set NER1197

Table 10 shows NER results when training on the1198

full training dataset. QUIP gives a 0.6 F1 improve-1199

ment on WNUT, but has effectively the same accu-1200

racy on CoNLL.1201

Entity type Question

Both datasets
O “What is a generic object ?”
Person “Who is a person ?”
Location “What is a location ?”

CoNLL
Organization “What is an organization ?”
Miscellaneous “What is a miscellaneous entity ?”

WNUT
Corporation “What is a corporation ?”
Product “What is a product ?”
Creative work “What is a creative work ?”
Group “What is a group ?”

Table 9: Question prompts used for the CoNLL and
WNUT NER datasets.

Model CoNLL WNUT

RoBERTa-large 92.7 57.9
QUIP, standard 92.7 58.1
QUIP, QA prompts 92.8 58.8

Table 10: F1 scores on NER, using the entire training
dataset.

A.10 Sentiment Analysis QA Prompts 1202

Table 11 shows the six prompts we use for senti- 1203

ment analysis for the movie review datasets (SST-2 1204

and MR). Each prompt consists of one question 1205

for the positive label and one for the negative la- 1206

bel. For CR, we use the same prompts except that 1207

we replace all instances of the word “movie” with 1208

“product”. 1209

A.11 Sentiment Analysis Rationales 1210

Tables 12, 13, and 14 show full examples and ratio- 1211

nales extracted by our zero-shot sentiment analysis 1212

14



# Label Question

1 + “Why is it good?”
- “Why is it bad?”

2 + “Why is this movie good?”
- “Why is this movie bad?”

3 + “Why is it great?”
- “Why is it terrible?”

4 + “What makes this movie good?”
- “What makes this movie bad?”

5 + “What is the reason this movie is good?”
- “What is the reason this movie is bad?”

6 + “What is the reason this movie is great?”
- “What is the reason this movie is terrible?”

Table 11: Question prompts used for sentiment analysis
on movie review datasets (SST-2 and MR). Prompts
used for CR are identical except for replacing “movie”
with “product”.

method for SST-2, MR, and CR, respectively. In1213

all cases, we use the prompt that led to the highest1214

accuracy on SST-2. For each dataset, we randomly1215

sample ten examples of each label for which the1216

model predicted the correct answer. We highlight1217

in bold the span of ≤ 5 BPE tokens that the model1218

predicts best answers the question associated with1219

the correct label. In some cases, the rationales cor-1220

respond to clear sentiment markers. In other cases,1221

they highlight an aspect of a movie or product that1222

is criticized or praised in the review; these could be1223

considered reasonable answers to a question like1224

“Why is this movie bad?” even if the sentiment asso-1225

ciated with them is unclear without the surrounding1226

context. In future work, it would be interesting to1227

find better ways to align the task of extractive QA1228

and with the goal of producing rationales that are1229

human-interpretable in isolation.1230
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Label SST-2 Example (rationale in bold)

-

“for starters , the story is just too slim .”
“paid in full is so stale , in fact , that its most vibrant scene is one that uses clips from brian de palma ’s scarface
.”
“( e ) ventually , every idea in this film is flushed down the latrine of heroism .”
“corpus collosum – while undeniably interesting – wore out its welcome well before the end credits rolled about
45 minutes in .”
“makes for a pretty unpleasant viewing experience .”
“while ( hill ) has learned new tricks , the tricks alone are not enough to salvage this lifeless boxing film .”
“it ’s hampered by a lifetime-channel kind of plot and a lead actress who is out of her depth .”
“dull , lifeless , and amateurishly assembled .”
“the movie is what happens when you blow up small potatoes to 10 times their natural size , and it ai n’t pretty .”
“every time you look , sweet home alabama is taking another bummer of a wrong turn .”

+

“though only 60 minutes long , the film is packed with information and impressions .”
“good old-fashioned slash-and-hack is back !”
“with tightly organized efficiency , numerous flashbacks and a constant edge of tension , miller ’s film is one of
2002 ’s involvingly adult surprises .”
“displaying about equal amounts of naiveté , passion and talent , beneath clouds establishes sen as a filmmaker
of considerable potential .”
“‘ easily my choice for one of the year ’s best films . ’”
“a delectable and intriguing thriller filled with surprises , read my lips is an original .”
“it is great summer fun to watch arnold and his buddy gerald bounce off a quirky cast of characters .”
“the film will play equally well on both the standard and giant screens .”
“for this reason and this reason only – the power of its own steadfast , hoity-toity convictions – chelsea walls
deserves a medal .”
“there ’s a wickedly subversive bent to the best parts of birthday girl .”

Table 12: Rationales (in bold) extracted by the zero-shot QUIP sentiment analysis model for SST-2. We show ten
random examples for each label on which the model made the correct prediction.

Label MR Example (rationale in bold)

-

“strangely comes off as a kingdom more mild than wild .”
“feels like the work of someone who may indeed have finally aged past his prime . . . and , perhaps more than he
realizes , just wants to be liked by the people who can still give him work .”
“watching the powerpuff girls movie , my mind kept returning to one anecdote for comparison : the cartoon in
japan that gave people seizures .”
“this is a movie so insecure about its capacity to excite that it churns up not one but two flagrantly fake
thunderstorms to underscore the action .”
“witless , pointless , tasteless and idiotic .”
“the next big thing’s not-so-big ( and not-so-hot ) directorial debut .”
“unfortunately , it’s also not very good . especially compared with the television series that inspired the movie .”
“irwin and his director never come up with an adequate reason why we should pay money for what we can get
on television for free .”
“with this new rollerball , sense and sensibility have been overrun by what can only be characterized as robotic
sentiment .”
“the video work is so grainy and rough , so dependent on being ’naturalistic’ rather than carefully lit and set up ,
that it’s exhausting to watch .”

+

“the appearance of treebeard and gollum’s expanded role will either have you loving what you’re seeing , or
rolling your eyes . i loved it ! gollum’s ’performance’ is incredible !”
“droll caper-comedy remake of " big deal on madonna street " that’s a sly , amusing , laugh-filled little gem in
which the ultimate " bellini " begins to look like a " real kaputschnik . "”
“katz uses archival footage , horrifying documents of lynchings , still photographs and charming old reel-to-reel
recordings of meeropol entertaining his children to create his song history , but most powerful of all is the song
itself”
“a thunderous ride at first , quiet cadences of pure finesse are few and far between ; their shortage dilutes the
potency of otherwise respectable action . still , this flick is fun , and host to some truly excellent sequences .”
“compellingly watchable .”
“an unbelievably fun film just a leading man away from perfection .”
“andersson creates a world that’s at once surreal and disturbingly familiar ; absurd , yet tremendously sad .”
“the invincible werner herzog is alive and well and living in la”
“you can feel the heat that ignites this gripping tale , and the humor and humanity that root it in feeling .”
“this is a terrific character study , a probe into the life of a complex man .”

Table 13: Rationales (in bold) extracted by the zero-shot QUIP sentiment analysis model for the Movie Reviews
(MR) dataset. We show ten random examples for each label on which the model made the correct prediction.
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Label CR Example (rationale in bold)

-

“i ’ve tried the belkin fm transmitter unit with it & it worked well when i set it on top of a portable radio , but was
awful trying to use in the car which is somewhat of a disappointment .”
“but the major problem i had was with the software .”
“after a week i tried to load some more songs and delete a few but the auto load didn ’t do anything but turn on
my player .”
“2 . the scroll button is n ’t the best , as it sometimes can be hard to select .”
“iriver has a better fm receiver built in , but the drawback to iriver products is they are flimsy and poorly
constructed .”
“i would imagine this is a problem with any camera of a compact nature .”
“the pictures are a little dark sometimes .”
“the depth adjustment was sloppy .”
“the instructions that come with it do n ’t explain how to make things simple .”
“my " fast forward " button works , but it takes a little extra pressure on it to make it go .”

+

“i did not conduct a rigorous test , but just took some identical shots in identical lighting with both cameras ,
and the canon won hands down .”
“as a whole , the dvd player has a sleek design and works fine .”
“i , as many others , have waited for many years for the convergence of price , features , size and ease of use to
hit that happy center point .”
“+ i had no problem using musicmatch software already on my computer to load songs and albums onto this
unit”
“apex is the best cheap quality brand for dvd players .”
“i chose this one because from what i read , it was the best deal for the money .”
“the two-times optical zoom operates smoothly and quietly , and lo and behold , a two-piece shutter-like cap
automatically slides closed over the lens when you turn the camera off .”
“this camera is perfect for the person who wants a compact camera that produces excellent photos in just about
any situation .”
“it was easy enough to remove the front plate , and there was only one way the battery could be inserted .”
“i have been very impressed with my purchase of the sd500 i bought it at the beginning of the month as the
ultimate pocket camera and have shot 300 images so far with it .”

Table 14: Rationales (in bold) extracted by the zero-shot QUIP sentiment analysis model for the Customer Reviews
(CR) dataset. We show ten random examples for each label on which the model made the correct prediction.
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