
DAPrompt: Deterministic Assumption Prompt Learning
for Event Causality Identification

Abstract

Event Causality Identification (ECI) aims at001
determining whether there is a causal relation002
between two event mentions. Conventional003
prompt learning designs a prompt template to004
first predict an answer word and then maps005
it to the final decision. Unlike conventional006
prompts, we argue that predicting an answer007
word may not be a necessary prerequisite for008
the ECI task. Instead, we can first make a deter-009
ministic assumption on the existence of causal010
relation between two events and then evalu-011
ate its rationality to either accept or reject the012
assumption. The design motivation is to try013
the most utilization of the encyclopedia-like014
knowledge embedded in a pre-trained language015
model. In light of such considerations, we pro-016
pose a deterministic assumption prompt learn-017
ing model, called DAPrompt, for the ECI task.018
In particular, we design a simple determinis-019
tic assumption template concatenating with the020
input event pair, which includes two masks as021
predicted events’ tokens. We use the proba-022
bilities of predicted events to evaluate the as-023
sumption rationality for the final event causality024
decision. Experiments on the EventStoryLine025
corpus and Causal-TimeBank corpus validate026
our design objective in terms of significant per-027
formance improvements over the state-of-the-028
art algorithms.029

1 Introduction030

Event Causality Identification (ECI) is to detect031

whether there exists a causal relation between two032

event mentions in a document. Fig. 1 illustrates an033

example of event mention and causality annotations034

in an accident topic document in the widely used035

Event StoryLine Corpus (ESC), in which eleven036

event pairs are annotated with causal relation, in-037

cluding both the intra-sentence and cross-sentence038

causalities. The ECI task is to identify a causal039

relation between two event mentions. Causality040

identification is of great importance for many Natu-041

ral Language Processing (NLP) applications, such042

as question answer (Sui et al., 2022), information043

extraction (Xiang and Wang, 2023), and etc.044

Some recent deep learning-based methods de-045

sign sophisticated neural models to learn a kind of046

contextual semantic representation for each event,047

Figure 1: Illustration of event causality annotation for
an accident topic document in the ESC corpus. Event
mentions are annotated as one or more words in a raw
sentence, and causal relation annotations can exist in
intra-sentence or cross-sentence event mentions.

such as the Rich Graph Convolutional Network 048

(RichGCN) (Phu and Nguyen, 2021), Event Rela- 049

tional Graph Transformer (ERGO) (Chen et al., 050

2022), Graph-based Event Structure Induction 051

model (GESI) (Fan et al., 2022). Although these 052

graph neural networks can effectively learn contex- 053

tual semantics as events’ or event pairs’ represen- 054

tations, they have ignored to utilize some external 055

commonsense knowledge, like earthquake causes 056

tsunami, to augment causality detection. 057

External knowledge bases can be employed to 058

provide external causal knowledge for augmenting 059

causality identification. For example, the Concept- 060

Net (Speer et al., 2017) contains abundant graph- 061

structured knowledge, in which each node repre- 062

sents a concept and each edge corresponds to a se- 063

mantic relation between concepts. Liu et al. (2020) 064

and Cao et al. (2021) both use such knowledge 065

triplets in the ConceptNet to boost representation 066

learning. Moreover, the FrameNet knowledge 067

base (Baker et al., 1998), as well as the Word- 068

Net (Miller, 1995) and VerbNet (Schuler, 2006) lex- 069

ical knowledge base have also been used to obtain 070

external causal knowledge for the ECI task (Zuo 071

et al., 2021a, 2020). 072

Although external knowledge bases can provide 073

abundant information, how to extract appropriate 074

knowledge triplets for the ECI task is not easy to im- 075

plement, not to mention their encoding and fusion 076

into task-specific events’ representations. Recently, 077
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the pre-train, prompt, and predict paradigm (Liu078

et al., 2023) (viz., prompt learning) based on a Pre-079

trained Language Model (PLM) has been success-080

fully applied in many NLP tasks. The successes081

can be contributed to the task transformation via082

carefully designed templates and answers, so as to083

well utilizing the encyclopedic linguistic and event084

causal knowledge embedded within a PLM during085

model training.086

For the ECI task, the basic idea of prompt learn-087

ing is to design a prompt template such as (... <e1>088

[MASK] <e2> ...), and an answer space such as089

{cause, so, not caused, ...}. The template090

as a sentence is input into a PLM to output the091

mask token representation for its classification to092

an answer word, which is then further mapped into093

a causal relation. The recent DPJL model (Shen094

et al., 2022) designs such a prompt template to-095

gether with two derivative templates to augment096

representation learning for the mask token, which097

just achieved the new state-of-the-art performance098

of the intra-sentence event causality identification099

on the commonly used ESC corpus (Caselli and100

Vossen, 2017).101

We argue that the performance of such a con-102

ventional prompt learning is heavily dependent on103

the designed prompt templates and selected answer104

words. On the one hand, the manually-designed105

templates could be sensitive to its consisting words,106

as even synonyms (especially nouns/adj. words)107

could have subtle semantic differences that may im-108

pact on template quality. So a good template might109

need to try different combinations of composing110

synonyms. On the other hand, it is still a kind111

of implicit inference task that transforms the ECI112

task into the prediction and mapping of some pre-113

selected answer word in the PLM vocabulary. As114

each answer word may also be kind of synonyms115

and with subtle semantic differences, it is often a116

big workload for selecting answers.117

Unlike conventional prompts, we argue that pre-118

dicting an answer word may not be a necessary119

prerequisite for the ECI task. Instead, we can first120

assume that a causal relation does exist between121

two input events and then evaluate the rationality of122

such an assumption by directly predicting the input123

events. As such, we do not need to search for a124

well-designed prompt template as well as carefully125

selected answer words. Furthermore, predicting the126

input events from the raw sentences could better127

utilize a PLM for its powerful capability of learn-128

ing contextual semantic representations, as well as129

utilizing some encyclopedic linguistic and event 130

causal knowledge embedded within a PLM. 131

Motivated from such considerations, we propose 132

a novel deterministic assumption prompt learning 133

model, called DAPrompt, for the ECI task. Specifi- 134

cally, we first design a simple deterministic assump- 135

tion template which includes two mask tokens for 136

predicting the input events. We concatenate the two 137

raw event sentences and the assumption template 138

as an input sentence into a PLM. The objective 139

is to predict the input events via the two masks 140

for evaluating the rationality of the deterministic 141

causal assumption. If the likelihood of correctly 142

predicting the input events is larger than a deci- 143

sion threshold, then we accept the assumption and 144

identify the existence of a causal relation. Exper- 145

iment results show that our proposed DAPrompt 146

significantly outperforms the state-of-the-art algo- 147

rithms, in terms of much higher F1 score in all 148

intra-sentence, cross-sentence, and overall event 149

causality identifications1. 150

2 Related Work 151

Graph-based Causality Identification: The 152

graph-based approaches first construct a graph and 153

model the ECI as either a graph-based node clas- 154

sification or edge prediction problem. Some have 155

applied graph neural networks for learning event 156

node representations from document-level contex- 157

tual semantics (Phu and Nguyen, 2021; Cao et al., 158

2021; Fan et al., 2022). For example, Phu and 159

Nguyen (2021) models diverse connections in be- 160

tween words of a document, like positional connec- 161

tion, syntactic dependency and etc., for the graph 162

construction. They use a graph convolutional net- 163

work to learn the event mention nodes’ representa- 164

tions, and identify causalities through event node 165

pair classification. 166

Instead of node classification, some studies for- 167

malize the ECI task as a graph-based edge pre- 168

diction problem (Zhao et al., 2021; Chen et al., 169

2022). For example, Zhao et al. (2021) initialize 170

event nodes’ embeddings from a document-level 171

encoder based on the PLM, and use a graph in- 172

ference mechanism to update the graph for causal 173

edge prediction. Chen et al. (2022) build an event 174

relational graph where each node denotes a pair 175

of events and propose a graph transformer model 176

to capture potential causal chains among nodes. 177

These approaches, however, only exploit contex- 178

1Source codes will be released after the anonymous review.
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Figure 2: Illustration of our DAPrompt model.

tual and semantic information in a document for179

causal relation classification.180

Knowledge-boosted Causality Identification:181

As those existing knowledge bases store a large182

amount of structured information, some studies di-183

rectly exploit them for data expansion and augmen-184

tation in model training (Zuo et al., 2020, 2021b).185

Besides data expansion, some studies try to dis-186

cover the causal patterns from external knowledge187

bases to implement a kind of knowledgeable event188

causality inference (Liu et al., 2020; Zuo et al.,189

2021a; Cao et al., 2021). For example, Liu et190

al. (2020) propose to mine a kind of event-agnostic191

and context-specific patterns from the ConceptNet192

to enhance the ability of their model for previously193

unseen cases. Cao et al. (2021) encode some graph-194

structured knowledge from the ConceptNet, includ-195

ing descriptive graph knowledge and relational path196

knowledge, and performs event causality reasoning197

based on these induced knowledge.198

Prompt Learning Paradigm: With the emer-199

gence of large-scale PLMs like the BERT (Devlin200

et al., 2019), RoBERTa (Liu et al., 2019), and etc.,201

the prompt learning has become a new paradigm202

for many NLP tasks, which uses the probability203

of text in PLMs to perform a prediction task and204

has achieved promising results (Seoh et al., 2021;205

Wang et al., 2021; Xiang et al., 2022). A few stud-206

ies have applied the prompt learning via designing207

appropriate prompt templates (Shen et al., 2022;208

Liu et al., 2020). For example, Shen et al. (2022)209

use a masked language model as main prompt to210

predict the causality between event pair. They fur-211

ther design two derivative prompt task to leverage212

potential causal knowledge in PLM for explicit213

causality identification based on the causal cue214

word detection. Liu et al. (2020) use an event men-215

tion masking generalization mechanism to encode216

some event causality patterns for causal relation217

reasoning. 218

The proposed DAPrompt is also based on prompt 219

learning paradigm, but it designs a novel prompt- 220

ing style of first deterministic assumption and next 221

rationality evaluation. 222

3 The Proposed DAPrompt Model 223

We first make a deterministic assumption on the 224

existence of causal relation between two events in a 225

document. Our DAPrompt identifies event causal- 226

ity by evaluating the rationality of a determinis- 227

tic assumption. Specifically, we design a prompt 228

template for a deterministic assumption to predict 229

two input events, and use the probabilities of the 230

correctly predicted events to determine whether to 231

accept or reject the assumption, so as to making a 232

final decision on event causality. Fig. 2 illustrates 233

the proposed DAPrompt model. 234

3.1 Prompt Templatize 235

The full prompt template T contains two con- 236

structed sentences T1 and T2 that are concatenated 237

with a [SEP] token as the input sentence to a 238

PLM. 239

The T1, called the event sentence, is designed 240

for predicting two virtual event tokens (VETs) 241

<E1> and <E2>, each representing one of the input 242

events. The design consideration is from the fact 243

that the event mentions in different raw sentences 244

usually consist of much different vocabulary words, 245

not to mention having different lengths. We need to 246

simplify and regulate their representations. We ad- 247

mit that using only two virtual tokens to represent 248

diverse events is a bold attempt. Yet it provides 249

an efficient way to link input events with the mask 250

tokens in our assumption template. 251

We note that although event mentions are nor- 252

mally annotated by a few words of a raw sentence, 253

their representation learning should include the full 254
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sentence for better capturing contextual semantics.255

Let S1 = (v1, ..., [e1, ..., em], ..., vn) denote one256

raw sentence containing the annotated event men-257

tion [e1, ..., em], where vis and ejs are all vocabu-258

lary words. We insert the VET <E1> and </E1>259

before and after [e1, ..., em] respectively to trans-260

form a raw sentence. The event sentence T1 con-261

sists of a prefix token [CLS] and the two trans-262

formed sentences. Note that if two event mentions263

are within one raw sentence, we directly insert the264

VET tokens into the raw sentence to construct T1.265

Fig. 2 illustrates such an example of T1 with one266

raw sentence containing two event mentions.267

The T2 is our assumption template, which de-268

signs a deterministic statement of the causal rela-269

tion between two mask tokens, that is,270

T2 = There is a causal relation between [MASK1]271

and [MASK2].272

The two mark tokens are used to respectively pre-273

dict the virtual event tokens. Let V denote the274

PLM vocabulary. The mask token [MASK1] is275

used to predict a word from V ′
1 = V ∪ {E1},276

and the [MASK2] is used to predict a word from277

V ′
2 = V ∪ {E2}. Recall that a virtual event token278

is used to represent one event mention. So if both279

mask tokens can be correctly predicted as the corre-280

sponding virtual event token, then the deterministic281

causal assumption can be accepted, that is, there282

does exist a causal relation between the two events.283

The assumption template is suffixed with a separate284

[SEP] token.285

3.2 Answer Prediction286

We predict a mask token as one of the words in287

the enriched PLM vocabulary V ′. Two Masked288

Language Model (MLM) classifiers are adopted289

each for estimating the probability of a mask token290

as a vocabulary word:291

P ([MASK] = v ∈ V ′ | T ). (1)292

Note that the two MLM classifiers are initially iden-293

tical, which is pre-trained by the PLM. They will294

be separately fine-tuned during our model train-295

ing. In each MLM classifier, a softmax layer is296

applied on the prediction scores of all words for297

the probability normalization.298

We are mainly interested in the following two299

probabilities: P1([MASK1] = <E1> | T ) and300

P2([MASK2] = <E2> | T ). Each can be regarded301

as the likelihood of an input event appearing in the302

deterministic assumption template and will be used 303

in our rationality evaluation. 304

3.3 Rationality Evaluation 305

We use the sum of P1 and P2 as a joint decision 306

variable for rationality evaluation of the determin- 307

istic assumption, that is, 308

f(T ) =

{
Accept, if P1 + P2 ≥ ρ

Reject, if P1 + P2 < ρ
(2) 309

where ρ is the joint decision threshold and ρ ∈ 310

[0, 2] as P1, P2 ∈ [0, 1]. If P1 + P2 ≥ ρ, which 311

suggests that the two masks are much likely to be 312

the input events, then we accept the deterministic 313

assumption of the existence of a causal relation 314

between two events; Otherwise, we reject the as- 315

sumption and the two input events are not with a 316

causal relation. We note that we use a simple sum 317

operation for f(T ), as we have no prior knowledge 318

about which event is harder to predict. 319

3.4 Training Strategy 320

In the training phase, we use the <E1> and <E2> 321

token as the positive label, if there is indeed a 322

causal relation between two input events; While 323

the virtual word <None> initialized by all other 324

words is used as negative label for both [MASK] 325

token prediction, if the causal relation assumption 326

is incorrect. We tune the PLM parameters as well 327

as the two MLM classifier parameters based on 328

these labels, and compute a cross entropy loss as a 329

MLM classifier loss L1 (L2): 330

L = − 1

K

K∑
k=1

y(k) log(ŷ(k)) + λ∥θ∥2, (3) 331

where y(k) and ŷ(k) are the answer label and pre- 332

dicted answer of the k-th training instance, re- 333

spectively. λ and θ are the regularization hyper- 334

parameters. The overall loss of our DAPrompt is 335

as follows: 336

LDAPropmt = L1 + L2. (4) 337

We use the AdamW optimizer (Loshchilov and 338

Hutter, 2019) with L2 regularization for model 339

training. 340

4 Experiments Settings 341

4.1 Datasets 342

EventStoryLine (Caselli and Vossen, 2017) con- 343

tains 22 topics and 258 documents from various 344
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news web-sites. There are in total 5,334 event345

mentions in the ECS dataset. A total number of346

5,655 event pairs are annotated with causal rela-347

tions, among which 1,770 causal relations are from348

intra-sentence event pairs and 3,855 causal rela-349

tions are from cross-sentence event pairs. Follow-350

ing the standard data splitting (Gao et al., 2019), we351

use the last two topics as the development set, and352

conduct 5-fold cross-validation on the remaining353

20 topics. The average results of precision, recall,354

and F1 score are adopted as performance metrics.355

Causal-TimeBank (Mirza and Tonelli, 2014)356

contains 184 documents from English news arti-357

cles and 7,608 annotated event pairs. A total of358

318 event pairs are annotated with causal relations,359

among which 300 causal relations are from intra-360

sentence event pairs and only 18 causal relations361

are from cross-sentence event pairs. Following the362

standard data splitting (Liu et al., 2020), we employ363

a 10-fold cross-validation evaluation and the aver-364

age results of precision, recall, and F1 score are365

adopted as performance metrics. Following (Phu366

and Nguyen, 2021), we only conduct intra-sentence367

event causality identification experiments on CTB,368

as the number of cross-sentence event causal pairs369

is quite small.370

4.2 Competitors371

We compare our DAPrompt with the following372

competitors: ILP (Gao et al., 2019) uses inte-373

ger linear programming to identify causal rela-374

tions; RichGCN (Phu and Nguyen, 2021) uses375

a graph convolutional network to learn a docu-376

ment context-augmented representation of event-377

pairs; GESI (Fan et al., 2022) builds an event378

co-reference graph, ERGO (Chen et al., 2022)379

builds an event relational graph, CHEER (Chen380

et al., 2023) builds a heterogeneous event inter-381

action graph and SENDIR (Yuan et al., 2023)382

constitutes a reasoning chain to identify event383

causal relations; KnowDis (Zuo et al., 2020),384

KnowMMR (Liu et al., 2020), LearnDA (Zuo et al.,385

2021b) and ECLEP (Pu et al., 2023) all use exter-386

nal knowledge to mine some event causality pat-387

terns; CauSeRL (Zuo et al., 2021a) adopts a con-388

trastive strategy to transfer learned external causal389

statements; LSIN (Cao et al., 2021) uses a graph390

induction model learn external structural and rela-391

tional knowledge; DPJL (Shen et al., 2022) lever-392

ages two derivative prompt tasks to identify causal-393

ity; CF-ECI (Mu and Li, 2023) estimates context-394

keywords bias and event-pairs bias for causality395

counterfactual reasoning. 396

4.3 Parameter Setting 397

We implement the PLM models with their 768- 398

dimension base version provided by the Hugging- 399

Face transformers2 (Wolf et al., 2020), and run Py- 400

Torch 3 framework with CUDA on NVIDIA GTX 401

3090 GPUs. We set the mini-batch size to 16, the 402

learning rate to 1e-5, the determine threshold ρ to 403

0.6, and all trainable parameters are randomly ini- 404

tialized from normal distributions. As the positive 405

and negative samples are unbalanced, we adopt a 406

random negative sampling with probability of 0.2 407

on the training dataset. 408

5 Results and Analysis 409

5.1 Overall Results 410

Table 1 and Table 2 compare the overall perfor- 411

mance between our DAPrompt and the competi- 412

tors on both ESC and CTB corpus. The competitors 413

in Table 1 have reported all intra-sentence, cross- 414

sentence, and overall results on ESC dataset; While 415

the competitors in Table 2 has only reported the 416

intra-sentence results on ESC dataset, respectively. 417

The first observation is that the ILP cannot obvi- 418

ously outperform the other competitors in Table 1. 419

This might be attributed to the use of some graph- 420

based neural networks, operating on the document- 421

level graph structure with large-scale trainable pa- 422

rameters to augment event representation learning. 423

Indeed, graph-based neural networks have been 424

proven to be effective for many NLP tasks (Piao 425

et al., 2022). We can also observe that the im- 426

provement of intra-sentence causality identifica- 427

tion is more significant than that of cross-sentence. 428

This might be attributed to the use of pre-trained 429

language model for event node encoding, which 430

can capture the semantic interaction between two 431

events in a sentence. 432

The second observation is that the DPJL adopt- 433

ing the prompt learning paradigm can significantly 434

outperform the other competitors in Table 2. The 435

outstanding performance can be attributed to the 436

task transformation for directly predicting a PLM 437

vocabulary word, other than fine-tuning a down- 438

stream task-specific neural model upon a PLM. 439

Although these competitors have used some kind 440

of extra knowledge, such as lexicon knowledge 441

and relational knowledge, from large-scale external 442

2https://github.com/huggingface/transformers
3pytorch.org
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Causal-TimeBank EventStoryLine

Model
Intra-Sentence Intra-Sentence Cross-Sentence Overall

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
ILP (NAACL, 2019) - - - 38.8 52.4 44.6 35.1 48.2 40.6 36.2 49.5 41.9
RichGCN (NAACL, 2021) 39.7 56.5 46.7 49.2 63.0 55.2 39.2 45.7 42.2 42.6 51.3 46.6
GESI (SIGIR, 2022) - - - - - 50.3 - - 49.3 - - 49.4
ERGO (COLING, 2022) 62.1 61.3 61.7 57.5 72.0 63.9 51.6 43.3 47.1 48.6 53.4 50.9
CHEER (ACL, 2023) 56.4 69.5 62.3 56.9 69.6 62.6 45.2 52.1 48.4 49.7 53.3 51.4
SENDIR (ACL, 2023) 65.2 57.7 61.2 65.8 66.7 66.2 33.0 90.0 48.3 37.8 82.8 51.9
Our DAPrompt 66.3 67.1 65.9 64.5 73.6 68.5 59.9 59.3 59.0 61.4 63.7 62.1

Table 1: Overall results of comparison models for event causality identification on both ESC and CTB corpus.

Model
Causal-TimeBank EventStoryLine
P R F1 P R F1

KnowDis (COLING,2020) 42.3 60.5 49.8 39.7 66.5 49.7
KnowMMR (IJCAI,2020) 36.6 55.6 44.1 41.9 62.5 50.1
CauSeRL (ACL,2021) 43.6 68.1 53.2 41.9 69.0 52.1
LSIN (ACL,2021) 51.5 56.2 53.7 47.9 58.1 52.5
LearnDA (ACL,2021) 41.9 68.0 51.9 42.2 69.8 52.6
DPJL (COLING,2022) 63.6 66.7 64.6 65.3 70.8 67.9
CF-ECI (ACL,2023) 50.5 59.9 54.8 47.1 66.4 55.1
ECLEP (ACL,2023) 50.6 63.4 56.3 49.3 68.1 57.1
Our DAPrompt 66.3 67.1 65.9 64.5 73.6 68.5

Table 2: Comparison of intra-sentence prediction results
on the ESC and CTB corpus.

knowledge bases, the prompt learning model can443

better enjoy the encyclopedic linguistic knowledge444

embedded in a PLM during the model training.445

Finally, our DAPrompt (using DeBERTa as446

the PLM) has achieved significant performance447

improvements over all competitors in terms of448

much higher F1 score with all intra-sentence, cross-449

sentence, and overall event causality identification450

on both ESC and CTB datasets. We attribute its451

outstanding performance to our task transformation452

of evaluating the rationality of a deterministic as-453

sumption: We do not need to predict an unknown454

relation between events, no matter what kind of re-455

lations could be. Instead, we only need to evaluate456

the causal rationality via a deterministic assump-457

tion between two input events.458

Decision Threshold: To examine the effective-459

ness of different decision threshold strategies, we460

conduct experiments on both individual threshold461

and joint threshold with different threshold val-462

ues. The joint threshold strategy is that we use a463

joint decision variable P1+P2 and a joint decision464

threshold ρ. The individual threshold strategy is465

that we use two individual decision thresholds ρ1466

and ρ2 for P1 and P2, respectively. If P1 ≥ ρ1 and467

P2 ≥ ρ2, we accept the deterministic assumption468

that a causal relation exists between two events.469

Fig. 3 (a) plots the performance of our470

DAPrompt (DeBERTa) using individual decision471

threshold in rationality evaluation on the ESC cor- 472

pus. Each corner of the radar map represents a de- 473

cision threshold ratio for two events, and the closer 474

a point to the corner, the better performance of 475

identifying event causality. It can be observed that 476

DAPrompt achieves the best performance when 477

the discrimination threshold is set equally for both 478

events, i.e. (0.5/0.5); While DAPrompt suffers 479

from an imbalance discrimination threshold setting, 480

such as (0.1/0.9), (0.9/0.1), and etc. This indicates 481

that the rationality of both events may be signif- 482

icant for identifying the causal relation between 483

them. As we have no prior knowledge about the 484

importance of each event, we simply sum their 485

probabilities for rationality evaluation. 486

(a) Individual thresholds (Event-1/Event-2)

(b) Joint thresholds

Figure 3: Performance comparison between using indi-
vidual threshold and joint threshold on the ESC corpus.

Fig. 3 (b) compares the overall performance 487

of DAPrompt (DeBERTa) between using equal 488

individual decision threshold and the joint deci- 489

sion threshold on the ESC corpus. It can be ob- 490
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(a) F1 Score (b) Precision (c) Recall

Figure 4: Performance comparison of using different decision thresholds on the ESC corpus.

served that DAPrompt achieves nearly the same F1491

score within a large range of the decision thresh-492

old (the range [0.2, 1.0] in the figure) using these493

two kinds of decision threshold settings. Yet the494

performance of DAPrompt using equal individual495

decision threshold cannot outperform the joint de-496

cision threshold when the decision threshold is set497

in the range of [1.0, 1.8]. This can be attributed to498

the flexibility of using a joint decision threshold,499

allowing two events to be identified as having a500

causal relation, even if one event has slightly lower501

rationality but the other event has higher rational-502

ity. For such considerations, we adopt the joint503

decision threshold in our DAPrompt.504

Fig. 4 plots the performance of our DAPrompt505

against using different joint decision thresholds506

in rationality evaluation on the ESC corpus. We507

can observe that our DAPrompt achieves the best508

overall performance in terms of the F1 score when509

the discrimination threshold is set to 0.6. Yet the510

overall performance does not change much within511

a large range of the decision threshold (the range512

[0.2, 1.0] in the figure). This suggests the wide513

applicability of our model for its not much sensitive514

to the decision threshold.515

We can also observe from Fig. 4 that our516

DAPrompt suffers from either a very large or very517

small value of the discrimination threshold. Indeed,518

a small decision threshold relaxes the requirement519

for correctly predicting the input events, which thus520

admits too many assumed causal relations to be ac-521

cepted. As such, the recall is high yet the precision522

is small. By contrast, a large decision threshold523

tightens the event prediction requirement, which524

only allows those event predictions with high con-525

fidence to accept a deterministic assumption. As526

such, the precision is high yet the recall is small.527

From our experiments, we suggest to take an empir-528

ical setting around 0.6 for the decision threshold.529

5.2 Ablation Study 530

Pre-trained Language Model: In the prompt 531

learning, using different PLMs may impact on the 532

task performance. Table 3 compares the results 533

of our proposed DAPrompt on the ESC corpus 534

adopting the most representative PLMs, including 535

BERT (Devlin et al., 2019) proposed by Google, 536

RoBERTa (Liu et al., 2019) proposed by Facebook, 537

ERNIE (Sun et al., 2019) proposed by Baidu, and 538

DeBERTa (He et al., 2021) proposed by Microsoft. 539

Model Intra- Cross- Overall
DAPrompt (BERT) 68.1 58.5 61.6
DAPrompt (RoBERTa) 68.3 58.1 61.3
DAPrompt (ERNIE) 68.1 56.9 60.7
DAPrompt (DeBERTa) 68.5 59.0 62.1

Table 3: Experiment results of using different PLM.

We can observe that our DAPrompt with all 540

four PLMs has achieved better performance than 541

the competitors. Even most of the competitors have 542

used an advanced PLM like RoBERTa and BERT, 543

to train an elaborate downstream task model or by 544

adopting the prompt learning paradigm. This again 545

validates the design objective of our deterministic 546

assumption prompt learning, which pre-assumes 547

the existence causal relation and next evaluates the 548

assumption rationality, other than directly predict- 549

ing the existence of causal relation between two 550

events. We can also observe that using different 551

PLMs do result in some performance variations and 552

finally the DAPrompt (DeBERTa) has achieved 553

the best performance. As such, we implement the 554

remaining ablation experiments with DeBERTa. 555

Conventional Prompt Learning: To compare 556

our DAPrompt with conventional prompt model, 557

we conduct experiments on a conventional prompt 558

model with different prompt designs for ablation 559

study. Prompt is a conventional prompt model 560

with discrete template and some answer words for 561
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Causal-TimeBank EventStoryLine

Model
Intra-Sentence Intra-Sentence Cross-Sentence Overall

P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
Prompt 52.1 51.4 51.2 63.9 66.8 65.1 52.9 46.0 48.9 56.7 52.5 54.2
Prompt + VA 58.7 51.7 54.2 59.9 73.2 65.7 49.9 52.3 50.3 53.3 58.8 55.3
Prompt + CT 58.2 51.7 53.4 61.7 69.8 64.8 53.3 50.7 49.7 56.1 56.7 54.7
Prompt + VA + CT 55.9 56.4 55.9 62.0 70.3 65.5 52.5 50.8 51.0 55.7 56.9 55.8
DAPrompt w/ SiM 60.7 57.1 58.6 56.6 56.3 55.7 57.3 54.8 55.7 57.3 55.1 55.7
DAPrompt w/ ShM 64.6 59.1 61.3 59.4 75.1 66.0 56.2 65.1 59.5 57.3 68.2 61.6
DAPrompt w/ ET 22.3 12.1 14.6 60.5 42.7 49.6 39.2 38.6 38.6 44.3 39.9 41.7
DAPrompt full (ours) 66.3 67.1 65.9 64.5 73.6 68.5 59.9 59.3 59.0 61.4 63.7 62.1

Table 4: Experiment results of ablation study on both ESC corpus and CTB corpus.

prediction. Prompt+Virtual Answer (VA) uses562

virtual answer words in the conventional prompt563

model. Prompt+Continuous Template (CT) uses564

continuous template in the conventional prompt565

model. Prompt+VA+CT uses both virtual answer566

words and continuous template in the conventional567

prompt model568

The first group of Table 4 presents the results569

using conventional prompt learning models. It is570

observed that the Prompt cannot outperform the571

Prompt+VA and Prompt+CT that use more repre-572

sentative virtual answer words for prediction and573

continuous template for automatically prompt tem-574

plate searching, respectively. The Prompt+VA+CT575

combining both the virtual answer and continuous576

template achieves better performance compare with577

the other conventional prompt models.578

Although these conventional prompt learning579

models have employed some advanced techniques,580

viz. the virtual answer and continuous template,581

they still cannot outperform our DAPrompt learn-582

ing. This again validates our new design style of583

deterministic assumption first and rationality eval-584

uation next, rather than the conventional style of585

predicting an answer word first and mapping it to586

some relation.587

Module ablation study: To examine the effec-588

tiveness of different modules in our DAPrompt,589

we design the following ablation study. DAPrompt590

w/ Single Mask (SiM) uses one mask with an591

event mention to predict the other event for ratio-592

nality evaluation. DAPrompt w/ Shared MLM593

(ShM) uses one MLM head for answer prediction594

of two masks. DAPrompt w/ Event Tokens (ET)595

uses the probability of predicted event mention for596

rationality evaluation.597

The second group of Table 4 presents the results598

of ablation modules. We observe that none of them599

can outperform the full DAPrompt model. This,600

however, is not unexpected. The DAPrompt w/ 601

Sim misses one event’s rationality for causality 602

assumption evaluation; While the causal relation 603

is between two events, thus both rationalities of 604

two predicted events are useful for the assumption 605

evaluation. The DAPrompt w/ ShM ignores the 606

impact between two event predictions with one 607

MLM classifier. 608

Besides, the inferior performance of the 609

DAPrompt w/ ET may be attributed to the large 610

number of different event description words in the 611

dataset, leading to an unbalance answer label set 612

and inadequate training process. From our statis- 613

tics, the 5,334 and 6,813 annotated event mentions 614

in ESC and CTB corpus are described by totally 615

1,656 and 2,045 different words or phrases respec- 616

tively, and some of them contain very few instances. 617

On the other hand, this also validates our design of 618

using virtual event tokens of <E1> and <E2> to 619

for events’ representations. 620

6 Conclusion 621

This paper has designed a novel style of prompt 622

learning for event casualty identification, that is, 623

first deterministic assumption and next rationality 624

evaluation, with the considerations of how to best 625

utilize the encyclopedia-like knowledge embedded 626

in a language model. We first assume the exis- 627

tence of causal relation between events and design 628

a deterministic assumption template concatenating 629

with the input event pair to predict event’ tokens. 630

We next use the probabilities of correctly predicted 631

input events to evaluate the assumption rationality 632

for the final event causality decision. Experiments 633

on the ESC and CTB corpus validate our design 634

objective in terms of significant performance im- 635

provements over all competitors and achieving the 636

new state-of-the-art performance. 637
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Limitation638

• Considering the input length constraint of PLMs,639

the prompt template only contains event sentences;640

While the document-level semantics are not fused641

into the assumption evaluation for the ECI task.642

• For fair comparison with the competitors, our643

DAPrompt does not identify the direction of event644

causalities. We will investigate this in future work.645

Ethics Statement646

This paper has no particular ethic consideration.647
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