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Abstract: We introduce Cloth-Splatting, a method for estimating 3D states of

cloth from RGB images through a prediction-update framework. Cloth-Splatting

leverages an action-conditioned dynamics model for predicting future states and

uses 3D Gaussian Splatting to update the predicted states. Our key insight is that

coupling a 3D mesh-based representation with Gaussian Splatting allows us to

define a differentiable map between the cloth’s state space and the image space.

This enables the use of gradient-based optimization techniques to refine inaccurate

state estimates using only RGB supervision. Our experiments demonstrate that

Cloth-Splatting not only improves state estimation accuracy over current baselines

but also reduces convergence time by ∼ 85 %. Code and videos available at: kth-

rpl.github.io/cloth-splatting.

Keywords: 3D State Estimation, Gaussian Splatting, Vision-based Tracking, De-

formable Objects
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Figure 1: Cloth-Splatting state estimation of a real-world cloth. We introduce Cloth-Splatting, a 3D state
estimation method for cloth from sparse RGB observations that combines Graph Neural Network (GNN) with
Gaussian Splatting (GS). Given an initial sequence of 3D mesh predictions from the GNN (left), Cloth-Splatting
(right) updates it using RGB observations, achieving state-of-the-art 3D tracking performance for deformables.

1 Introduction

Teaching robots to fold, drape, or manipulate deformable objects such as cloths is fundamental to

unlock a variety of applications ranging from healthcare to domestic and industrial environments [1].

While considerable progress has been made in rigid-object manipulation, manipulating deformables

poses unique challenges, including infinite-dimensional state spaces, complex physical dynamics,

and state estimation of self-occluded configurations [2]. Specifically, the problem of state estimation

has led existing works on visual manipulation to either rely exclusively on 2D images, overlooking

the cloth’s 3D structure [3, 4, 5], or to use 3D representations that neglect valuable information in

RGB observations [6, 7, 8].

Prior work on cloth state estimation often relies on 3D particle-based representations derived from

depth sensors, including graphs [9, 10] and point clouds [11]. While point clouds effectively cap-

ture the object’s observable state, they lack comprehensive structural information [6]. Alternative
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approaches rely on Graph Neural Networks (GNNs) trained on simulated data to predict graph rep-

resentations using action-conditioned cloth dynamics [7, 8, 12]. However, these representations

require online fine-tuning to bridge the sim-to-real gap. Using depth information to supervise the

refinement of the cloth’s 3D state estimates involves time-consuming simulation-based optimization

techniques, as it lacks visual clues such as texture [13]. How to leverage RGB observations, which

contain such information, remains an open problem.

We propose Cloth-Splatting, a method to estimate 3D states of cloth from RGB supervision by

combining GS [14] with an action-conditioned dynamics model. The key idea of our method is

to represent the 3D state of the cloth as a mesh and create a differentiable mapping between the

cloth state space and the observation space using GS. This is achieved by populating the mesh faces

with 3D Gaussians and expressing their positions relative to the mesh vertices. Given this, we can

address the problem of estimating the 3D state of the cloth using a prediction-update framework

akin to Bayesian filtering. Starting with a previous state estimate and a known robotic action, Cloth-

Splatting predicts the next state using a learned dynamics model of the cloth. This prediction is

then updated using RGB observations, leveraging the rendering loss provided by GS, allowing the

refinement of the state estimate using visual clues such as texture and geometry.

We experimentally evaluate the 3D state estimation of cloth in simulated and real-world environ-

ments. Results show that Cloth-Splatting outperforms all 2D and 3D baseline tracking techniques,

being 57% more accurate and∼ 85% faster than the best-performing baseline. We further showcase

how refining mesh-based representations enables closed-loop manipulation of cloths. Together, the

results suggest that tracking deformable objects using only RGB observations is feasible, efficient,

and accurate. The contributions of this work are 1) a mesh-constrained object-centric extension of

GS; 2) a vision-supervised 3D state estimation for cloth with action-conditioned dynamics priors,

and 3) experiments that suggest successful sim-to-real transfer.

2 Related Work

Cloth Manipulation. Manipulating cloth in robotics involves tasks like folding, smoothing, lifting,

and inserting objects into deformable bags [15, 3, 4, 5]. Manipulation approaches can be categorized

into model-free methods, mapping cloth states or sensory data to actions [16, 17, 18], and model-

based methods, utilizing cloth models to devise manipulation strategies [19, 13, 20]. Model-based

approaches often rely on 3D representations focusing on optimizing pick-and-place actions. How-

ever, optimizing manipulation between pick and place in a closed-loop manner is crucial for han-

dling planning errors and object variability [21, 22, 23, 24, 6], but remains underexplored, largely

due to the challenges of real-world cloth state estimation [13]. Our work addresses this gap, enabling

feedback-loop manipulations using graph representations.

Cloth State Estimation. Cloth state estimation is a well-studied area in robotics, computer vision,

and computer graphics [25, 26]. While vision-based methods for 2D and 3D cloth state estimation

have been developed for static observations of cloths lying flat on a surface [27, 28, 29, 30], tracking

these estimates over time is challenging due to the complex non-linear dynamics of deformables. A

first solution to this problem proposes a self-supervised method that leverages an action-conditioned

dynamics model of the cloth and test-time optimization to refine 3D state representations from point

cloud observation [13]. However, this method requires aligning real-world states with simulated

ones and disregards informative feedback provided by RGB observations. Unlike previous methods,

our work refines the 3D cloth states using RGB feedback. This is made possible by a differentiable

GS map linking 3D states to image observations.

Vision-based tracking. Tracking points in 2D image space over time is a widely studied problem

[31, 32, 33, 34, 35]. However, 3D visual trackers [36, 37] have gained popularity more recently,

as they better address the occlusion challenges inherent in 2D tracking. Extensions of NeRF [38]

to non-static scenes [39, 40, 41, 42], already allow to track the 3D motion of dynamic scene con-

tent, but often lack applicability to real-world scenarios [43]. 3D Gaussian Splatting [14] based

methods, like Dynamic 3D Gaussians (DynaGS) [44], track by explicitly modeling the position and
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covariance of each Gaussian over time. In contrast, 4DGS [45] learns a continuous deformation

field to track Gaussian displacements. MD-Splatting [46] builds on 4DGS for cloth tracking using

a shadow network and physics-inspired regularization. DeformGS [47] extends on MD-Splatting

by learning object-centric masks, and simplifying the regularization terms. However, these meth-

ods require dense observations (at least 50 cameras for MD-Splatting and DeformGS) and involve

computationally costly per-scene optimizations (see Fig. 4).

Mesh-constrained GS. Similar to Cloth-Splatting, several methods combine meshes and 3D Gaus-

sians for deformable object representation [48, 49, 50]. However, like PhysGaussian [51], they rely

on explicitly modeled dynamics and lack refinement with visual observations, limiting their tracking

capabilities.

3 Problem Formulation

The problem addressed in this paper is estimating the 3D state of a cloth Mt+1 at time t + 1 given

the observations Y1:t+1 and the agent’s actions a1:t. The state of the cloth is represented as an aug-

mented mesh Mt = (Vt, V̇t, Et), where Vt ∈ R
N×3 are the vertices positions, V̇t ∈ R

N×3 are the

velocity of the vertices, and Et ∈ Z
L×2
+ the edges. Only Vt and V̇t are estimated while the edges Et,

that form a triangular mesh structure for connectivity, remain constant, i.e., E0 = E1 = · · · = Et.

The observations Yt+1 =
{

I
0
t+1, . . . , I

K
t+1

}

are a set of K multi-view RGB images Ik
t+1 ∈ R

w×h×3

with unique camera matrices P = {P0, . . . , PK} where P
k ∈ R

4×4. The actions at ∈ R
3 are

Cartesian end-effector velocities.

We reframe this estimation problem as a Bayesian filtering problem, where the goal is to infer the

joint posterior distribution p(Mt+1|Y1:t+1,a1:t) recursively over time with a general prediction-

update framework. The prediction step is assumed to have access to a transition probability function

p(Mt+1|Mt,at), which allows to compute a prior p(Mt+1|Y1:t,a1:t) of the state of the system at

time t+ 1:

p(Mt+1|Y1:t,a1:t) =

∫

p(Mt+1|Mt,at)p(Mt|Y1:t,a1:t−1)dMt, (1)

provided the history of observations Y1:t+1 and the agent’s actions a1:t. Given a new observation

Yt+1, the update of the prior estimate is proportional to the product of the measurement likelihood

p(Yt+1|Mt+1) and the predicted state. Thus, the joint posterior distribution is obtained as follows:

p(Mt+1|Y1:t+1,a1:t) =
1

η
p(Yt+1|Mt+1)p(Mt+1|Y1:t,a1:t), (2)

where η is a normalization constant, ensuring that the posterior distribution integrates to 1. The state

estimation problem then reduces to solving (2).

4 Method

Solving the problem of cloth 3D state estimation through a prediction-update framework requires

modeling two key components: the transition probability function p(Mt+1|Mt,at) for the predic-

tion step and the measurement likelihood p(Yt+1|Mt+1) for the update step.

To handle the non-trivial deformable objects dynamics, we approximate the transition probability

function with a deterministic GNN fθθθ parameterized by θθθ, which is described in more detail in

Section 4.1. This GNN allows us to predict the state of the cloth at time t+ 1, denoted as M̂t+1.

For the update step, we model the measurement likelihood p(Yt+1|Mt+1) using a measurement

model h(Yt+1|Mt+1), which maps the predicted state M̂t+1 to the predicted observation Ŷt+1.

The likelihood is then expressed as a function of the measurement error ||Yt+1 − Ŷt+1||
2
2. Still,

modeling the highly non-linear measurement model h that maps from the state space of the cloth

to the image space is challenging. The key insight of our work is to approximate the measurement

model using GS, such that Yt+1 ≈ hGS(Mt+1,P). Details on hGS are provided in Section 4.2.
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Figure 2: Overview of Cloth-Splatting. We estimate the 3D state of the cloth through a prediction-update

framework. We use a GNN to approximate the transition function that estimates the next state M̂t+1 given
an action at and the state Mt . We then employ our proposed mesh-constrained GS as a measurement model

hGS to obtain an estimate of the observation Ỹt+1 given the current refined state M̃t+1 = M̂t+1 + δM̂t+1.

The differentiability of GS allows us to iteratively optimize the update δM̂t+1 of the state estimate via the

photometric consistency loss between the ground-truth observation Yt+1 and the rendered state Ỹt+1.

By combining the transition model fθθθ and the measurement model hGS, we create a differentiable

mapping between the cloth’s state space and the observation space. This allows us to obtain the

updated state M̃t+1 via gradient-based optimization by minimizing the measurement error in the

observation space:

Lobs = ||Yt+1 − hGS(M̃t+1,P)||22, (3)

as described in Section 4.3.

An overview of the full method is visualized in Fig 2, showing the prediction-update framework

proposed in this work.

4.1 State Prediction

We model the cloth’s action-conditioned transition function fθθθ using a GNN parameterized by θθθ
that is designed to effectively handle the mesh structure and complex cloth dynamics [9]. The input

to the GNN consists of the last m states of the mesh Mt−m:t and the external robot action at. To

condition the GNN to the action, we assume the grasped particle is rigidly attached to the gripper,

directly updating its position and velocity, similar to Wang et al. [52]. This constraint allows fθθθ to

dynamically predict the next state of the cloth M̂t+1 = fθθθ(Mt−m:t,at) by propagating the effects

of actions across the graph structure. Specifically, the network predicts the acceleration of each

node, which we integrate using a forward-Euler integrator to compute the next velocity and position

of each vertex. We train fθθθ on a one-step Mean Squared Error (MSE) loss between the predicted

and ground-truth meshes.

4.2 Mesh-constrained GS

We utilize GS as the measurement model Ŷt+1 = hGS(M̂t+1,P), where hGS is a differentiable map

between the mesh representation and the image space.

Background. GS synthesises images by projecting the centersµµµ and covariances Σ of 3D Gaussians

to the image plane and then uses α-blending to aggregate their colors c to pixel colors. To enforce

the covariance matrix Σ to be positive and semi-definite, GS decompose it into a rotation R and

scale S for each Gaussian:

Σ = RSS
T
R

T. (4)

Given the camera matrix P, the covariance matrix can be projected into image space as:

Σ
′ = JPΣP

T
J

T, (5)
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where J is the Jacobian of the affine approximation of the projective transformation. During render-

ing, the color cp of a pixel is computed by blending N ordered Gaussians overlapping the pixel:

c
p =

∑

i∈N

ciαi

i−1
∏

j=1

(1− αj), (6)

where ci is the color of each Gaussian and αi is given by evaluating the projected 2D Gaussian with

covariance multiplied with the learned opacity of each Gaussian.

Mesh-constrained GS. To connect GS to the mesh representation, we assign each Gaussian to a

face of the initial mesh. The mean position µµµ of each Gaussian is then defined in linear barycentric

coordinates:

µ = b1v
1 + b2v

2 + b3v
3, (7)

where v
1,v2,v3 ∈ V are the vertices of the assigned face and b1 + b2 + b3 = 1. The rotation

R of the Gaussian is then expressed relative to the assigned face. During a mesh deformation,

the parameters of the Gaussians and the barycentric coordinates remain constant and represent the

cloth’s time-invariant appearance.

4.3 State Update

The goal of the state update is to improve the state prediction M̂t+1 based on the observation Yt+1

such that the updated state M̃t+1 minimizes the measurement error (Eq. 3).

One option to refine the state would be to directly optimize the transition function fθθθ so it yields

M̃t+1 as an improved state estimate. However, fθθθ requires recursive roll-out for estimating future

states. Coupled with the internal propagations of the GNN, this can lead to vanishing gradients.

To circumvent the previous issues, we instead define the updated state as the sum:

M̃t+1 = M̂t+1 + δM̂t+1, (8)

where δM̂t+1 = uψψψ(t + 1) is a learned residual state update parameterized by ψψψ. The residual

map uψψψ is modeled as a Multi-layer Perceptron (MLP), mapping the time to an offset from the state

prediction, and is optimized using gradient descent onLobs. Intuitively, this approach keeps the prior

estimate from the GNN fixed, refining the cloth state by minimizing the discrepancy between the

observed image and the rendered cloth state. The residual map is optimized per scene with the initial

output set close to zero. We also add the regularization loss Lreg = LSSIM + Liso + Lmagn, where

LSSIM is the Structural Similarity Index Measure (SSIM) loss [53], Liso ensures an As-Rigid-As-

Possible (ARAP) behavior [54, 13] in the cloth, and Lmagn minimizes overall motion for numerical

stability. Details on the regularization and the mesh-constrained GS can be found in the Appendix.

5 Experimental Evaluation

The primary objective of the experiments is to evaluate how fast and accurate Cloth-Splatting can

estimate 3D cloth states from RGB images compared to other baselines. We further ablate different

components of our method, provide qualitative results, and demonstrate the feasibility of using

Cloth-Splatting for robotic cloth manipulation in both simulated and real-world scenarios.

5.1 Experimental Set-up

Dataset Generation. Due to the lack of ground-truth states in real-world scenarios, we generated a

synthetic dataset composed of 75 different scenes to conduct quantitative evaluations. We included

three different object categories: TOWEL, SHORTS, and TSHIRT with five mesh variations of each

object and five different trajectories per variation. The mesh variations were generated following

Lips et al. [55]. Each trajectory consists of random interactions with the cloths, performed using

the NVIDIA Flex simulator [56, 57]. We recorded RGB-D images from 4 different camera views

for each scene and time step, where the depth is only used for the baseline methods. We used
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Blender [58] to render photo-realistic scenes. We further record robot actions and ground-truth

cloth states.

Action-conditioned learned dynamics and mesh initialization. We implemented the action-

conditioned models using the Graph Network Simulator (GNS) architecture proposed in [9], which

consists of a GNN with a node encoder, a processor, and a decoder. The input to the model is a

mesh reconstructed from a 3D point cloud of the cloth at t = 0. We use Delaunay triangulation

to reconstruct the mesh [59]. The point cloud can be obtained from either depth observations or

multi-view stereo reconstructions [60]. We trained the model exclusively on the TOWEL object and

split the dataset into a training, validation, and test set.

Gaussian Splatting and Residual Model. For initialization, two randomly parameterized Gaus-

sians are positioned on each face of the mesh, by sampling their barycentric coordinates from the

distribution N (1/3, 0.05) and normalizing them so that they add up to 1. To model the appearance

of the cloth, we first optimize the Gaussians using observations from t = 0 and the measurement

loss Lobs without regularization for the first 1.5k iterations. Subsequently, we jointly optimize the

Gaussians and the residual network for an additional 5.5k – 6.5k iterations for learning the residual

deformation and previously unseen parts of the cloth, such as a differently colored backside.

Update. We implement two different update procedures. The ITERATIVE update predicts one step

ahead, refines the prediction with GS, and then uses the refined state as input to the GNN for the

next prediction. In contrast, ROLLOUT predicts future states by unrolling the GNN over the entire

trajectory and then refines all states simultaneously with GS, resulting in a faster overall runtime.

We apply ROLLOUT in the tracking experiments and ITERATIVE in the manipulation experiments. A

runtime and accuracy comparison between the approaches is provided in the appendix.

5.2 Quantitative Results

To quantify the tracking performance, we use: median trajectory error (MTE) [61], which measures

the distance between the estimated cloth and ground-truth tracks; position accuracy (δ) [33], which

measures the percentage of tracks within the pre-defined distance thresholds 10, 20, 40, 80, and

160 mm to the ground truth; and the survival rate, which assesses the average number of frames

until the tracking error exceeds a predefined threshold [61], which we set to 50 mm.

We compare Cloth-Splatting to the following baselines: Dynamic 3D Gaussians (DynaGS) [44],

which separately models the positions and rotations of each Gaussian; and MD-Splatting [46], which

extends GS by projecting non-metric Gaussians into a metric space to track deformable objects

better. We also include the unrefined GNN predictions to establish a performance baseline, as well

as a 2D tracking method obtained by evaluating RAFT [62] on all views and then reporting only the

trajectories from the view with the lowest MTE. We denote this as RAFT-Oracle as it has access to

the ground-truth cloth state to select the best-performing view.

5.2.1 Comparative Tracking Evaluation

We assess the tracking accuracy of Cloth-Splatting across the 75 synthetic scenes against the base-

lines. The results in Table 1 show Cloth-Splatting outperforms the next best baseline MD-Splatting

by 9.66 % in MTE on average, while also having the best overall position accuracy δavg and sur-

vival rate. All methods show a varying performance between the different scenes, with all methods

consistently being the worst on SHORTS which contain the largest, self-occluded deformation of the

cloth with an example shown in Fig. 3. Analysing the unrefined GNN predictions shows a competi-

tive performance, even on the shapes which are out-of-distribution from the training data, indicating

that the GNN generalizes across different geometries.

5.2.2 Model Ablation

We report ablation studies on the mesh-constrained component of Cloth-Splatting in Table 2 on a

SHORTS scene. In the following, we refer to each ablation by the corresponding identifier, eq. (A1).
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Table 1: Quantitative evaluation. Comparison of Cloth-Splatting and the baselines in tracking quality. We
report the mean and the standard deviation per metric (µ± σ) and mark the best result bold.

Metric Method SHORTS TOWEL TSHIRT Mean

3D MTE
↓ [mm]

RAFT-Oracle [35] 26.511 ± 33.854 17.951 ± 12.523 8.062 ± 14.990 18.324 ± 23.821

DynaGS [44] 15.987 ± 17.972 7.352 ± 3.265 9.574 ± 4.324 10.924 ± 11.246

MD-Splatting [46] 7.043 ± 9.265 1.755 ± 2.711 2.109 ± 2.907 3.635 ± 6.235

GNN 17.388 ± 15.824 9.157 ± 7.292 14.826 ± 12.295 13.853 ± 12.674

Cloth-Splatting 4.928 ± 5.240 1.703 ± 1.213 3.159 ± 2.818 3.284 ± 3.722

3D δavg
↑

RAFT-Oracle [35] 0.660 ± 0.166 0.661 ± 0.114 0.744 ± 0.133 0.683 ± 0.143

DynaGS [44] 0.773 ± 0.141 0.829 ± 0.076 0.808 ± 0.083 0.804 ± 0.105

MD-Splatting [46] 0.816 ± 0.098 0.870 ± 0.059 0.855 ± 0.082 0.847 ± 0.083

GNN 0.720 ± 0.128 0.791 ± 0.076 0.731 ± 0.141 0.747 ± 0.121

Cloth-Splatting 0.851 ± 0.075 0.879 ± 0.057 0.858 ± 0.080 0.862 ± 0.072

Survial
rate
↑

RAFT Oracle [35] 0.666 ± 0.170 0.734 ± 0.119 0.752 ± 0.132 0.715 ± 0.145

DynaGS [44] 0.795 ± 0.154 0.860 ± 0.072 0.850 ± 0.092 0.835 ± 0.113

MD-Splatting [46] 0.869 ± 0.085 0.910 ± 0.059 0.881 ± 0.082 0.887 ± 0.077

GNN 0.771 ± 0.138 0.860 ± 0.081 0.770 ± 0.138 0.800 ± 0.128

Cloth-Splatting 0.917 ± 0.067 0.927 ± 0.059 0.888 ± 0.084 0.910 ± 0.072

Table 2: Model ablation.

Ablation
3D MTE

[mm]

(A1) Only GNN 21.552
(A2) No GNN 16.135
(A3) No Lreg 15.772
(A4) No Rt 10.799
(A5) 1 view 16.525
(A6) 2 views 9.535
(A7) 3 views 9.004

Full (4 views) 8.923

Using the state predictions of the GNN without the GS update (A1)

results in a high tracking error, likely due to the previously unob-

served shape of the cloth. Similarly, using Cloth-Splatting without

the GNN (A2) and relying only on the initial mesh state for initial-

ization leads to poor tracking accuracy, as the model must learn the

entire deformation just from visual observations. Additionally, re-

moving the regularization terms (A3) significantly reduces accuracy

as it fails to enforce cloth structural properties. Consequently, parts of

the cloth stretch into unnatural states to satisfy the visual observations

rather than maintaining the underlying shape. Interestingly, reducing

the number of camera views (A6, A7) does not degrade the perfor-

mance as much as other ablations, although we experience a larger

drop in performance for a monocular setup (A5).

5.2.3 Time Ablation

To quantify how the cloth model prior affects convergence time, we compare the MTE of Cloth-

Splatting to the best-performing baseline throughout their training durations. The experiments were

performed on an NVIDIA 4090 GPU and an Intel i9-14900K processor. Fig. 4 shows that Cloth-

Splatting achieves faster convergence times than the MD-Splatting and overall lower tracking error.

The efficiency of Cloth-Splatting not only reduces computational costs but also enables faster adap-

tation to new scenarios, making it a more practical choice for real-world online applications.

5.3 Qualitative Results

We present simulated qualitative rendering and tracking results in Fig. 3 and compare these to MD-

Splatting. Both methods capture the underlying dynamics of the scene. Nevertheless, the tracking

results of MD-Splatting are negatively influenced by occasional tracking of visual artifacts. Al-

though high-quality renderings are not the goal of Cloth-Splatting, the results show that the general

visual appearance of the observed cloth is reproduced faithfully.

To showcase the transferability of Cloth-Splatting to the real world, we qualitatively evaluate the

tracking of a real cloth folded by a 7-DOF Franka Emika Panda robot, observed by 3 extrinsically

calibrated RealSense d435 from which we only collect RGB images. Fig. 1 shows qualitative real

world results for Cloth-Splatting and the GNN predictions. While the GNN predictions partially pre-

dict the correct mesh structure, they suffer from compounding errors from the roll-out predictions.

Subsequently, Cloth-Splatting successfully updates the mesh to better model the cloth shape.
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(a) Cloth-Splatting (b) MD-Splatting

Figure 3: Qualitative results (sim). Tracking
and rendering results on SHIRT (top) and SHORTS

(bottom) scenes.
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Figure 4: Time ablation. Convergence times
of Cloth-Splatting and MD-Splatting on a SHORTS

scene. The offset to the y-axis arises from the GNN
predictions (1.36 s) and the 3D Gaussian initialization
(26.55 s).

5.4 Robotic Manipulation Use Case

Table 3: Manipulation results We re-
port the mean and standard deviation
of the MSE computed between the fi-
nal cloth state and the goal state. Re-
sults are presented in units of 10−3.

Method TOWEL TSHIRT

FIXED 2.2 ± 0.4 2.4 ± 0.4

MPC-OL 1.8 ± 2.1 7.3 ± 5.2

MPC-CS (us) 0.6 ± 0.6 1.2 ± 0.8

MPC-ORACLE 0.4 ± 0.2 0.8 ± 0.5

We further showcase that our state estimation process en-

ables closed-loop optimization of folding trajectories using

graph state representations. We focus on the half-folding task

from Garcia-Camacho et al. [63], optimizing the trajectory be-

tween predefined pick-and-place positions. Our method re-

fines the cloth’s state estimate during each re-planning step,

using model-predictive control (MPC) for planning and Cloth-

Splatting for refinements (MPC-CS). We compare against a

baseline using a predefined linear trajectory (Fixed), an open-

loop (MPC-OL) baseline, and an oracle baseline (OL-ORACLE)

with ground-truth state access. A detailed planning framework

is presented in Algorithm 2 in the Appendix. The results in Table 3 show that our method outper-

forms all baselines, achieving results comparable to those of the oracle, underscoring the effective-

ness of our method in refining state estimates for model-based closed-loop manipulation. Qualitative

results for simulation and real-world manipulations can be found in Appendix F.

6 Conclusions

We introduced Cloth-Splatting, an approach for 3D state estimation of cloths using RGB supervi-

sion. Cloth-Splatting integrates an action-conditioned cloth dynamics model with Gaussian Splat-

ting to enhance the accuracy of 3D state representations based solely on RGB feedback using sparse

(3-4) camera views. We experimentally validated the quality of these estimates and showcased the

computational efficiency of our framework. These advancements position Cloth-Splatting as a more

practical choice for real-world applications compared to existing baselines.

Limitations. While Cloth-Splatting shows significant improvements over the baselines, its speed is

still insufficient for real-time applications. Additionally, the need for a calibrated multi-camera set-

up may present challenges in real-world scenarios, although scalable computer vision techniques

for calibration, such as those in Dust3r [60], can help mitigate this issue. Since Cloth-Splatting

assumes a static visual appearance, dynamic appearance changes, such as shadows or changing

lighting conditions, can occasionally lead to the tracking of visual artifacts. Furthermore, the initial

mesh initialization requires occlusion-free observations of the cloth. To address this limitation, re-

cent advances in template-based reconstruction [64] of crumpled cloth present a promising direction

for future research.
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A Cloth-Splatting Implementation

A.1 Action-Conditioned Dynamics Architecture and Training

The action-conditioned dynamics model builds on the GNS architecture [9], which consists of three

parts: encoder, processor, and decoder. The encoder consists of two MLPs, ϕp and ϕe, which map

vertices and edge features into latent embeddings hi and gjk respectively. The processor comprises

L = 15 Graph Network (GN) blocks with residual connections that propagate the information

throughout the mesh. Each GN block includes an edge update MLP, a vertice update MLP, and a

global update MLP. The decoder is an MLP ψ that outputs acceleration for each point: ẍi = ψ(hLi ),
which we use to update the position of each vertice of the cloth mesh via Euler integration.

The input vertice features consist of past k = 3 velocities and the vertice type. The vertice type

is a binary flag used to distinguish grasped vertices from non-grasped vertices. The edge features

include the distance vector (vj − vk) and its norm ∥vj − vk∥. To condition the model on the actions

of the robot, we update the velocity of the pick point based on the robot’s action before giving the

state of the cloth in input to the network. This facilitates the propagation of the actions throughout

the GNS to predict future states.

We train the action-conditioned dynamics on towel objects, using the mean-squared error between

predicted and simulator-obtained accelerations for 200 epochs using Adam [65].

A.2 Mesh-constrained Gaussian Splatting

Orientation estimation The orientation of the Gaussian R depends on the orientation of the as-

sociated face R
F and the static orientation of the Gaussian on the face R

′, resulting in R = R
F
R

′.

We estimate the face orientation R
F in a deformed mesh via a vector registration between the initial

positions of the face vertices vi0 and the positions in the deformed state v
i
t. This can be formulated

as an optimization problem

min
RF

∑

i={1,2,3}

||RF
v
i
0 − v

i
t||

2, (9)

which we solve using the RoMa toolbox [66]. During the optimization of the barycentric coordi-

nates, we permit them to take on negative values, which would locate the Gaussian outside of the

assigned face. This approach enables us to detect, when a Gaussian should get assigned to a different

face, with the barycentric coordinates then being relative to the vertices of that new face.

Optimization For the mesh-constrained Gaussian Splatting, we build on the original Gaussian

Splatting procedure, with the main modification that we constrain the Gaussian positions on the

surface of a pre-defined mesh as described in the 4.2. Details of Gaussian Splatting, such as the

pruning, densification, and regular resetting of opacities, remain unchanged. Nevertheless, in order

to keep the number of 3D Gaussians low, we increase the required opacity for Gaussians to not be

pruned, since we can assume that there are no transparent parts on the reconstructed cloth. Therefore,

a normal reconstruction of the appearance of cloth only requires about 4k Gaussians.

We observe that when the Gaussians are optimized over the whole range of training, the visual ap-

pearance and the tracking degrades. For example, the Gaussian position on the mesh starts to fit the

deformed appearance instead of the residual dynamics model learning the proper offset. Therefore,

the learning rates of the Gaussians’ attributes (color, position, scale, . . . ) are annealed over the first

6k iterations and afterward frozen so only the residual dynamics model is optimized.

A.3 Residual dynamics model

We implement the residual dynamics model as a 3-layer ReLU MLP with a width of 256. The input

to the MLP is a scalar value in the range [0, 1], corresponding to the normalized time step, which is

encoded with the sinusoidal frequency encoding also used in NeRF [38], using 6 frequencies. The

output size is 3×N , with N being the number of vertices in the mesh.
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We randomly initialize weights and biases of the output layer with a zero-centered normal distribu-

tion with a covariance of 0.0001, to start with a residual close to zero.

A.4 Regularization

As discussed in Section 4.3, we learned the state updated by adding the following regularization

losses: Lreg = LSSIM + Liso + Lmagn, where LSSIM is the SSIM loss [53], Liso ensures neighboring

vertices in the cloth maintain a constant distance, and Lmagn minimizes overall motion.

The isometric loss:

Liso =

T−1
∑

t=0

N−1
∑

i=0

∑

N (vt,i)

|d(vt,i, vt,j)− d(vt+1,i, vt+1,j)| (10)

ensures that the neighbouring vertices N (vt,i) of vt,i maintain a constant distance from time t to

t+ 1.

The structural similarity index measure loss (SSIM) [67] is estimated for windows of the images

and goes beyond the purely per-pixel color loss and also considers color gradients within the pixels

local neighborhood. The loss between two windows w an v can be estimated with:

LSSIM (v, w) =
(2µvµw + c1)(2σvw + c

p
2)

(µ2
v + µ2

w + c1)(σ2
v + σ2

w + c2)
, (11)

where µ is the mean color of each window, σ2 the color (co-)variances, and c1 and c2 are constants

to stabilize the loss.

The motion loss:

Lmagn =
T−1
∑

t=0

N−1
∑

i=0

||vt,i − vt+1,i||
2
2 (12)

encourages to learn a solution with the smallest possible motion per vertice, which we found neces-

sary to prevent instabilities during training.

B Synthetic Data

The synthetic dataset consists of meshes representing three types of cloth objects: TSHIRT, SHORTS,

and TOWEL. We procedurally generate meshes with random configurations, sizes, and overall shapes

for each category based on the methods detailed in [55]. Post-generation, the meshes are deformed

using NVIDIA Flex [56, 57] with random manipulation trajectories.

The manipulation trajectories are constructed using quadratic Bézier curves with three control

points. Specifically, the pick and place locations represent the primary control points, which we ran-

domly selected on the cloth particles. The third control point, positioned midway between the pick

and place points, was set to a random height within the range [0.05, 0.15] cm. Additionally, this con-

trol point was randomly tilted between [−π/4, π/4] rad around the axis formed by the pick and place

points to add variability in the manipulation trajectories. We finally discretized the manipulation

trajectory into a series of small displacements depending on the gripper velocity, ∆x1, . . . ,∆xT ,

ensuring:

xpick +

T
∑

i=1

∆xi = xplace,

randomly sampling the gripper velocity in the interval [0.5, 2] cm/s.

To bridge the simulation-to-reality gap, we rendered the complete manipulation trajectory using

Blender [58].
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(a) Towel: flat. (b) Shorts: flat. (c) T-shirt: flat.

(d) Towel: deformed. (e) Shorts: deformed. (f) T-shirt: deformed.

Figure 5: Example of synthetic images generated for the objects considered in our experiments (towel, shorts,
t-shirt). For each object, we show the flat (top row) and the deformed (bottom row) states, rendered with
Blender.

C Real-world Set-up and Data Collection

The real-world set-up is shown in Fig. 6. We used 3 calibrated RealSense d435 cameras to collect

RGB observations of the environment. We utilized one rectangular cloth for the experiments, also

visualized in Fig. 6. The robot used for the experiments was a Franka-Emika Panda robot. We em-

ployed a Cartesian position controller to execute a folding trajectory, which was randomly generated

using the same procedure as the simulated data. We assumed prior knowledge of the pick and place

locations and that the cloth was already in a grasped configuration.

We recorded RGB observations from all three cameras throughout the manipulation process. Depth

observations were additionally captured at t = 0 to initialize the cloth mesh for dynamics pre-

dictions. At each timestep, segmentation and video tracking modules pre-trained on Grounding-

DINO [68] and Segment Anything (SAM) [69] were used to generate masks of the cloth and the

gripper, respectively, using the prompts “cloth” and “robot gripper.” These masks were subsequently

tracked over time using the video tracker XMEM [70].

D Time-comparison between ITERATIVE and ROLLOUT updates

For the tracking part application of our method, we predict future states by unrolling the GNN for

the full trajectory length and then refine all states via GS. In the following, we refer to this version of

our method as ROLLOUT. A second option is to predictH-steps ahead, refine these steps with GS, and

then use the latest refined states to update the input of the GNN for the next H predictions. We will

refer to this option as ITERATIVE. While ROLLOUT has the potential to be faster than ITERATIVE, it

suffers from a larger error accumulation during the rollout of the GNN, which may negatively affect

overall tracking performance. This experiment aims to evaluate the trade-off between iteratively

updating the GNN input and the overall time of execution.

In Table 4, we present the tracking and execution time results over a single TOWEL scene. For the

ITERATIVE method, we report the results for predicting 1, 2, 4, or 8 steps ahead before updating
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Figure 6: Overview of experimental set-up.

the GNN input with the refined states. ROLLOUT predicts and updates the full 16 timesteps of the

scene jointly. Training parameters are the same for both methods, with the difference that we up-

date the predictions ITERATIVE for 1000 iterations per prediction-update step, while we update the

predictions from ROLLOUT directly 6000 iterations.

We can observe that doubling the number of prediction steps approximately halves the total time

of ITERATIVE. The results clearly show the trade-off between tracking quality and time. Since one

of our objectives was to improve the speed of computation, we chose to present in the paper the

tracking results of the ROLLOUT method, as it offers a significant speed advantage while maintaining

sufficient accuracy.

Table 4: Comparison of ITERATIVE and ROLLOUT versions of Cloth-Splatting.

ITERATIVE ROLLOUT

prediction steps H 1 2 4 8 16

3D MTE [mm] ↓ 0.767 0.890 0.819 1.170 5.328

3D δavg ↑ 0.893 0.891 0.893 0.867 0.753

Survival rate ↑ 0.937 0.950 0.947 0.907 0.776

Time [min] ↓ 53:35 30:14 15:53 9:32 2:12

E Robustness Against Initialization Error

One of the assumptions of our method is to have access to an initial estimate of the mesh of the cloth

at time t = 0. However, this estimate is prone to error due to sensor noise or approximation errors.

To assess the robustness of our method to errors in mesh initialization, we selected a simulated

towel and applied several augmentations to its initial mesh: TRANS, ROT, SCALING, NOISE and

all combined TRSN. For each augmentation, we randomly sampled 10 different values. Given a

cloth size of 0.2 × 0.2[m2], we sampled x and y translations within [−0.05, 0.05], z translations

16



within [−0.003, 0.003], yaw rotations within [−30,+30] degrees, random scaling coefficients within

[0.8, 1.2], and additive random noise sampled from a multivariate Gaussian distribution with zero

mean and 0.005 variance. These augmentations were applied to the initial mesh before being used

to unroll the GNN. We then refined the predictions with our method and evaluated the tracking

performance as in the previous section.

Building on this initial analysis, we expanded our evaluation by introducing a variation of the exper-

iment that tests our method’s ability to refine mesh initialization based on observations of the cloth’s

initial state. In this extended approach, we first refined the augmented mesh with our method using

observations at time t = 0. Following this, we unrolled the GNN using the refined initial mesh.

Lastly, we refined the predictions with our method and evaluated the tracking performance.

The results of these experiments are presented in Table 5. While the tracking error is the lowest on

the error-free initialization, our method is still able to achieve comparable tracking accuracy despite

the inaccurate mesh initialization. Refining the initial mesh state resulted in a modest improvement

overall. However, it was crucial in preventing two initializations with ROT augmentations from

producing tracking performance so poor that the evaluation script could not generate valid metrics

(highlighted with † in the Table. 5).

This brings us to the conclusion that, while an error on the initialization has a negative influence

on the tracking quality, Cloth-Splatting remains capable of sufficiently tracking the cloth and is

therefore not significantly limited by this factor.

Table 5: Tracking with initialization error: We report the tracking metrics as mean per augmentation type
and include the error free initialization as Ref.

Metric Refined
Augmentation

Ref
TRANS ROT SCALING NOISE TRSN Mean

3D MTE
↓ [mm]

No 3.346 2.598† 2.998 2.482 3.595 2.961
2.193

Yes 3.123 2.887 2.763 2.859 3.394 2.953

3D δavg
↑

No 0.819 0.825† 0.823 0.826 0.815 0.822
0.835

Yes 0.824 0.826 0.828 0.825 0.820 0.825

Survival
↑

No 0.865 0.871† 0.867 0.869 0.864 0.867
0.887

Yes 0.871 0.872 0.875 0.870 0.866 0.872
†: Two augmentations had to be excluded since their tracking performance was too insufficient to estimate the

metrics.

F Manipulation Experiment Beyond State Estimation

In this experiment, we demonstrate both in simulation and in the real world that our state estimation

process enables closed-loop optimization of folding trajectories using graph state representations.

We focus on the benchmarking half-folding task introduced in [63], where the objective is to fold a

cloth in half. We assume pick-and-place positions to be given a-priori, and we aim to optimize the

folding trajectory between these two. This task is particularly challenging with only one gripper,

as a predefined linear trajectory between the pick and place positions does not result in an accu-

rate fold. We illustrate this in Figure 7 (right - Fixed), where we show that folding by executing

a predefined fixed trajectory between the pick and the place locations results in a poor fold. We

refer to this manipulation as Fixed baseline. This scenario, common in model-based cloth manip-

ulation, underscores the importance of optimizing the folding trajectory beyond the pick-and-place

locations to achieve the desired goal. To address this, we optimize the trajectory in a closed-loop

manner, planning from a sequence of random actions using our prediction-update framework along

with model-predictive control (MPC). During each re-planning step, we obtain the refined state es-

timate of the cloth using our method. The algorithm describing the state refinement is presented in

Alg. 1, while an overview of the planning algorithm is presented in 2. We refer to this manipulation

approach as (MPC-CS).
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Algorithm 1: Cloth-Splatting - State refinement.

Result: Refined state M̃t+1.

Input: Estimated state: M̂t+1, New observation: Yt+1, Measurement model: hGS , Camera
matrices: P, Epochs: E.

1 δM̂t+1 ← 0

2 M̃t+1 ← M̂t+1 + δM̂t+1

3 for e← 0 to E do

4 Ỹt+1 ← hGS(M̃t+1,P)

5 Lobs ← ||Yt+1 − Ỹt+1||
2
2 ▷ Eq. (3)

6 δM̂t+1 ∝ ∇Lobs
7 M̃t+1 ← M̂t+1 + δM̂t+1

8 end

Simulation: We consider one TOWEL and one TSHIRT to test our method on variations of cloth

types. The success is evaluated by calculating the mean-squared error (MSE) between the desired

goal state and the final state of the cloth. We compare MPC-CS against the following baselines: the

FIXED baseline previously introduced, an open-loop (MPC-OL) baseline that plans the best actions

in an open-loop fashion, and an oracle baseline that has access to the ground truth state of the cloth

at each time step (OL-ORACLE). We repeat the folding task 10 times per method and report the re-

sults in Table 6. Our method outperforms all baselines, achieving results comparable to those of

the oracle. Additionally, we present qualitative results of the final fold achieved by each method in

Fig. 7 and Fig. 8 for the towel and the t-shirt respectively. These results underscore the effective-

ness of our method in refining state estimates for model-based closed-loop manipulation. Although

the planning is not fast enough to be executed in real-time, this is the first approach to showcase

closed-loop manipulation with graph representations, underscoring the relevance of our proposed

state estimation method.

Real world: We evaluate our method, MPC-CS, on real-world half-folding, comparing it against two

baselines: FIXED and the open-loop MPC-OL. Unlike the simulation experiments, we lack ground-

truth meshes for this evaluation. Figure 9 presents qualitative results for each method, with the

final outcome depicted at Time 4. It is evident that the FIXED baseline, which does not optimize

the folding trajectory, and the MPC-OL baseline, which operates in an open-loop manner, both fail

to produce satisfactory folds. In contrast, our method successfully refines the mesh estimate and re-

plans the fold, resulting in a superior final outcome. This experiment demonstrates the applicability

of our state estimation method in manipulation tasks.
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Algorithm 2: Closed-loop manipulation with Cloth-Splatting iterative update.

Result: Optimized folding actions a∗0:T .
Input: Initial observation: Y0, Initial cloth point cloud: PC0, Camera matrices P, Pick and

place positions: {xpick, xplace} , Goal state: Mg , Transition function: fθ, Measurement
model: hGS , Planning Horizon: T , Prediction Horizon: H , Number of action
candidates: N , Initial control sequence a0:H , Control variance: Σ

1 M0 ← Mesh Initialization({PC0})

2 M̃0 ←M0

3 Initialize Gaussian baricenters ← hGS(M0,P)
4 for t← 1 to T do
5 for n← 1 to N do
6 a

n
t:t+H ← N (at:t+H ,Σ) ▷ Sample candidates

7 M̂t ← M̃t ▷ Refined state as input
8 for h← t to t+H do

9 M̂h+1 ← fθ(M̂h,a
n
h) ▷ Model rollout

10 J h(anh)← ||M̂h+1 −Mg||
2
2 ▷ Cost function

11 end

12 J n(ant:t+H)←
∑t+H
h=t J

h(anh)
13 end
14 a∗t:t+H ← argmin

n∈{1,...,N}
J n(ant:t+H)

15 Execute a∗t
16 Yt+1 ← New observation

17 M̃t+1 ← CS(M̂a∗

t+1,Yt+1, hGS ,P) ▷ Cloth-Splatting - Alg.(1)

18 end

Table 6: Comparison of different manipulation strategies. Each method is tested 10 times, and we report the
mean and standard deviation of the MSE computed between the final state and the goal state. Results are
presented in units of 10−3.

Metric Object FIXED MPC-OL MPC-CS (us) MPC-ORACLE

MSE TOWEL 2.2± 0.4 1.8± 2.1 0.6± 0.6 0.4± 0.2
MSE TSHIRT 2.4± 0.4 7.3± 5.2 1.2± 0.8 0.8± 0.5
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START

GOAL

(a) FIXED (b) MPC-OL

(c) MPC-CS (d) MPC-ORACLE

Figure 7: Qualitative results of the half folding for different manipulation strategies.

START

GOAL

(a) FIXED (b) MPC-OL

(c) MPC-CS (d) MPC-ORACLE

Figure 8: Qualitative results of the half folding for different manipulation strategies.
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Time 1 Time 2 Time 3 Time 4

(a) FIXED

(b) MPC-OL

(c) MPC-CS

Figure 9: Qualitative results of the manipulation outcomes for the methods (a) FIXED, (b) MPC-OL, and (c)
MPC-CS are presented. Each method is illustrated at four distinct time points during execution, with the final
fold shown at Time 4. Best viewed with zoom.
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