
Under review as submission to TMLR

Learning to Rank Features to Enhance Graph Neural Net-
works for Graph Classification

Anonymous authors
Paper under double-blind review

Abstract

A common strategy to enhance the predictive performance of graph neural networks (GNNs)
for graph classification is to extend input graphs with node- and graph-level features. How-
ever, identifying the optimal feature set for a specific learning task remains a significant
challenge, often requiring domain-specific expertise. To address this, we propose a gen-
eral two-step method that automatically selects a compact, informative subset from a large
pool of candidate features to improve classification accuracy. In the first step, a GNN is
trained to estimate the importance of each feature for a given graph. In the second step, the
model generates feature rankings for the training graphs, which are then aggregated into a
global ranking. A top-ranked subset is selected from this global ranking and used to train
a downstream graph classification GNN. Experiments on real-world and synthetic datasets
show that our method outperforms various baselines, including models using all candidate
features, and achieves state-of-the-art results on several benchmarks.

1 Introduction

Graph neural networks (GNNs) (see, e.g., Hamilton, 2020) are widely used for learning from graph-structured
data, especially in node and graph classification tasks. However, standard GNNs are limited by the expres-
sive power of the 1-dimensional Weisfeiler-Leman test (Morris et al., 2019), which restricts their ability to
distinguish certain non-isomorphic graphs. This limitation is particularly problematic in practical learning
scenarios where structural differences are also task-relevant. A common strategy to address this issue is to
enrich GNNs with additional feature information. This is especially crucial for graph classification, the focus
of this work, where effective graph representations depend on both node- and graph-level features. Yet, the
success of this approach strongly depends on the relevance and quality of the features provided.

Merely supplying GNNs with a large set of task-independent features does not guarantee improved per-
formance.

CQbo
Since GNNs treat all input features as potentially relevant, their implicit feature extraction

mechanisms cannot fully eliminate the negative influence of irrelevant or redundant features on generaliza-
tion. In particular, such features may dominate and distort message passing, leading to degraded quality
of learned representations. This issue becomes especially critical in graph classification, where global rep-
resentations aggregate information from many nodes, amplifying the negative effect of noisy or irrelevant
features. For example, in molecular property prediction, only a subset of atomic descriptors typically influ-
ences activity (Ponzoni et al., 2019).

Existing methods for incorporating additional features typically rely on predefined static feature sets (Barceló
et al., 2021; Bouritsas et al., 2023; Cui et al., 2022; Duong et al., 2019), which require substantial domain
expertise and often fail to generalize across datasets.

CQbo
More recent work on dynamic feature selection for GNN

node classification (Naik et al., 2024) offers more flexibility but focuses on local graph patterns, neglecting
global features crucial for graph-level tasks. The recent work of Alkhoury et al. (2025) proposes a feature-
ranking GNN that learns to select relevant features for node classification on unseen graphs, improving
accuracy and reducing computational cost. However, it is limited to node classification and cannot be
directly extended to graph classification, where global feature selection is essential.

1

Under review as submission to TMLR

These gaps reveal that while GNNs possess implicit feature extraction capabilities, they remain sensitive
to noisy and irrelevant features and lack principled mechanisms for targeted, data-driven feature selection
at the graph level.

CQbo
To overcome these limitations, we propose a general framework that automates feature

selection through a dedicated GNN architecture, jointly identifying informative local and global features
during representation learning. Our approach enhances graph classification performance beyond what is
possible via implicit feature extraction alone, offering a new perspective on how explicit feature selection in
GNNs can improve predictive accuracy while reducing training and inference time.

Building upon the framework of Alkhoury et al. (2025), we present an automatic and scalable feature
selection method for graph classification. Our method proceeds in two major steps. First, given a set of
training graphs, we sample a small, random subset of the data and compute all features from a universal
pool for each graph in this subset, resulting in feature vectors of uniform dimensionality. These vectors,
along with their corresponding class labels, are then used for feature ranking. To generate these rankings,
we considered three different approaches: random forests, support vector machines, and local explanation
methods from explainable AI. Among them, random forests consistently delivered the most reliable feature
rankings. Following the framework of Alkhoury et al. (2025), we then train a feature-ranking GNN (FR-
GNN) using the original graphs and their feature rankings. This enables the FR-GNN to predict feature
importance for all remaining graphs in the training set without the need to compute any features. The
local rankings are aggregated into a single global ranking, which is then applied to all training graphs in the
second step and to unseen graphs later during class prediction.

In the second step, the top K features from the global ranking are selected and computed for all training
graphs. A graph classification GNN (GC-GNN) is then trained using these graphs, augmented with only the
K selected features. Since both feature selection and ranking rely on a small subset of data and a limited
number of features, the overall process remains computationally feasible.

To assess the effectiveness of our approach, we conducted experiments on both real-world and synthetic
datasets, utilizing 124 local and global graph features as well as three GNN architectures (GCN (Kipf &
Welling, 2016), GAT (Velickovic et al., 2018), and GraphSAGE (Hamilton et al., 2017)), and compared our
method to three baseline approaches.

On the real-world datasets, using only the top six features selected by our method (K = 6), the trained
GC-GNN consistently outperformed the baseline that used no features, demonstrating the importance of
incorporating features. Furthermore, our method surpassed the baseline that used all 124 features by an
average margin of 7%, suggesting that including irrelevant or redundant features can lead to overfitting
and degrade performance. Additionally, it consistently outperformed GC-GNNs trained on six randomly
selected features, indicating that the features chosen by our method are genuinely informative rather than
selected by chance. Notably, for the real-world datasets where state-of-the-art (SOTA) algorithm results are
publicly available (together with code), our method either outperforms or achieves comparable predictive
performance.

To further evaluate robustness, we generated synthetic graphs using various random graph models with
increasing classification difficulty. This was achieved by attaching graph motifs (graphlets) and defining
target classes through logical formulas of varying complexity, where literals indicate the presence or absence
of specific motifs. Our method consistently outperformed the baselines that used no features or random
features, even on the most challenging tasks. While the baseline using all features achieved high accuracy
(≥ 95%) on synthetic data, our method using just six selected features often performed slightly better. In one
particularly complex case involving four classes defined by nested logical conditions, the all-feature baseline
outperformed our approach; however, increasing our selection to the top 20 features (K = 20) narrowed
the performance gap. This result confirms that our method remains competitive even as task complexity
increases.

The rest of the paper is organized as follows. Section 2 overviews the related work. Section 3 describes the
proposed method. The experimental results are reported in Section 4. Finally, in Section 5 we conclude and
mention some problems for future work.

2

Under review as submission to TMLR

2 Related Work CQbo

Research on graph classification spans a wide spectrum of approaches, from substructure-based kernels to
deep neural architectures. A central challenge across these methods is the identification of informative
features while minimizing redundancy and noise. Since our framework focuses on effective feature ranking
and selection, we concentrate on methods most relevant to this aspect of graph classification. We organize
related work into five categories and discuss how our approach differs from each.

Substructure and Graphlet-Based Methods A common approach to graph classification relies on
graph kernels, such as the graphlet kernel (Shervashidze et al., 2009), which measures graph similarity by
counting small subgraphs (graphlets). While polynomial-time enumeration is feasible for small graphs, it
becomes computationally prohibitive for large ones. To address this limitation, efficient subgraph estimation
techniques have been proposed, such as graphlet counts approximation without full enumeration (Rossi
et al., 2018). More recently, the Substructure Assembling Network (SAN) (Yang et al., 2022) learns graph
representations by hierarchically composing local substructures with a recurrent unit and soft attention
mechanism, enabling the construction of discriminative graph-level features. Our method differs from these
approaches in two key aspects. First, rather than exhaustively enumerating or estimating substructures, we
rank and select a compact subset of candidate features without computing them across the entire training
data, substantially reducing overhead. Second, our candidate feature set extends beyond substructures to
include global graph properties and statistical summaries of node features, providing a richer and more
versatile feature space for graph classification.

Feature Selection and Noise Reduction Real-world graphs often exhibit noise, sparsity, and redundant
connections (Dai et al., 2022), making it difficult to extract meaningful patterns. Several approaches have
been proposed to to mitigate the effects of noise or irrelevant information. For example, Fu et al. (2020);
Ma et al. (2021) present theoretical frameworks interpreting GNN aggregation as a graph signal denoising
process, suggesting that GNNs smooth node features to reduce noise. ES-GNN (Guo et al., 2024) explicitly
distinguishes relevant from irrelevant edges to prevent the propagation of uninformative connections. Unlike
these works, our method filters and ranks features prior to GNN training, achieving both computational
efficiency and improved predictive accuracy. In fact, our experiments show that using the full feature set
degrades performance, underscoring that GNNs alone cannot fully suppress the influence of irrelevant or
redundant features.

Dual-Network Architectures Several works employ dual-network architectures to jointly address feature
selection and classification. For example, Akyol et al. (2021) use two GNNs within a variational autoencoder
for action recognition and prediction, while Maurya et al. (2023) propose a Dual-Net GNN for node classi-
fication, where one network selects node features for the other. Similarly, DualNetGO (Chen & Luo, 2024)
alternates between selector and classifier networks for protein function prediction, starting from randomly
combined features. Our approach also adopts two GNNs, but with key differences: (i) it operates at the
graph-level rather than for node classification, (ii) the feature ranking and classification stages are explicitly
decoupled, simplifying optimization, and (iii) instead of relying on random initialization or domain-specific
heuristics, it integrates a feature ranking stage to begin with a compact and relevant feature set.

Graph Representation Learning and Pooling Other approaches learn graph-level representations
without explicit feature selection. Fei & Huan (2008) identify frequent subgraphs based on spatial distribution
consistency, whereas we use subgraph counts as explicit features. HGP-SL (Zhang et al., 2019) combines
hierarchical graph pooling with structure learning, implicitly refining the graph topology via learned node
importance scores. In contrast, our method follows a feature-driven strategy: we rank and select informative
graph-level features prior to training using an interpretable model, namely random forests. Cui et al.
(2022) investigate the impact of hand-crafted features on GNN performance but without ranking or selecting
features, unlike our approach.

GNN-Based Feature Ranking Learning A closely related recent work by Alkhoury et al. (2025)
proposes a framework to improve predictive performance in node classification by identifying important
features using a random forest-based selection mechanism. In contrast, our approach focuses on graph
classification and explores both node-level and graph-level features, requiring entirely different techniques.

3

Under review as submission to TMLR

Figure 1: High-level overview of the FR-GNN training step (top) and the GC-GNN training step (bottom).

In particular, while the feature-ranking GNN classifier in (Alkhoury et al., 2025) is trained on synthetic
datasets designed to exhibit structural diversity, our method operates directly on the training graphs of
the target dataset, ensuring that the resulting feature ranking reflects the specific patterns relevant to the
classification task at hand. Another key difference lies in the aggregation strategy: whereas their method
produces a separate feature ranking for each input graph (as needed for node classification), our approach
aggregates feature importance scores across all training graphs, resulting in a dataset-level feature ranking
suitable for graph classification.

3 The Method

This section presents our method1 for automatically selecting a compact subset of features from a large
pool of candidates, with the goal of improving the predictive performance of a GC-GNN using the selected
additional features. Our method consists of two steps (see Fig. 1 for a schematic overview of the process).

(Step 1) Training a Feature Ranking GNN (FR-GNN): Given a set of training graphs Dtrain, we
first select a small random set DFR ⊆ Dtrain, compute a feature ranking for each graph in DFR using
random forests, and train an FR-GNN on these graphs and their corresponding feature rankings.
This enables the FR-GNN to learn to predict feature importance rankings for unseen graphs.

(Step 2) Training a Graph Classification GNN (GC-GNN): We then take the remaining training
data DGC = Dtrain \ DFR, use the trained FR-GNN to predict a feature ranking for each graph in
DGC, and aggregate these individual rankings into a global ranking. The top K features from this
global ranking are then selected, computed for all graphs in DGC, and used to augment them with
corresponding feature vectors of length K. A GC-GNN is subsequently trained on these augmented
graphs to classify unseen graphs using only the most informative features.

We discuss these two steps in detail in Sections 3.2 and 3.3 below. Before that, in Section 3.1, we first discuss
the types of candidate graph-level features used in our experimental evaluation.

3.1 Candidate Features

The success of our approach depends, among other factors, on the appropriate selection of a universal
pool of candidate features. This pool is not tailored to a specific task. Instead, it should capture a broad
range of global graph statistics and structural properties, which can either be intrinsic to the graph or
derived by aggregating node-level features. Capturing such structural properties is crucial for the quality
of the trained model, especially when graphs from the same target class are expected to share common

1Code is available at anonymous.4open.science/r/GraphClassificationRankingFeatures-E381.

4

https://anonymous.4open.science/r/GraphClassificationRankingFeatures-E381

Under review as submission to TMLR

Table 1: Overview of the 124 features used in the experiments, grouped into three categories: graphlets,
aggregated node features, and global graph properties.

Category Description
Graphlet Features (62) 31 count features and 31 binary indicator features for all connected,

non-isomorphic subgraphs (graphlets) of 2-5 nodes, plus the hexagon
Aggregated Node Features (56) Statistics (mean, std, skewness, kurtosis) for degree, centrality

measures (eigenvector, closeness, harmonic, and betweenness),
largest first coloring, number of edges within egonet, node clique
number, number of cliques, clustering coefficient, square
clustering coefficient, pagerank, hubs, core number

Global Graph Properties (6) number of nodes, number of edges, diameter, avg. and std. of
path length, random feature

patterns that distinguish them from graphs of other classes. Aggregating node-level features into graph-level
representations allows us to embed graphs into a common feature space, thereby facilitating effective graph
classification.

Graphlet Features These features are computed directly over the entire graph and are used in both binary
and counting forms. They encode the presence (binary form) or frequency (counting form) of small
subgraphs, known as graphlets, such as, for example, triangles or 4-cliques. The counts of these
graphlets capture how often characteristic structural patterns appear as subgraphs, providing highly
indicative information about the graph’s properties and potentially capturing structural differences
between graphs from different classes.

Aggregated Node Features In contrast to graphlets, aggregated node features (e.g., node degree, be-
tweenness centrality) are computed at the node level before being summarized to form graph-level
features. To derive graph-level features from a particular node feature for a graph G, we compute
statistical summaries characterizing the feature’s distribution across all nodes of G. Specifically, we
use the following four descriptive statistics for aggregation: (1) mean, (2) standard deviation, (3)
skewness, defined by n

(n−1)(n−2)
∑n

i=1
(

xi−x̄
s

)3
, measuring the asymmetry of the distribution, and

(4) kurtosis, defined as 1
n

∑n
i=1

(
xi−x̄

s

)4−3, quantifying the peakedness or flatness of the distribution
relative to the normal distribution. Here, n denotes the number of nodes in G, xi the node feature
value for node i, x̄ the mean of the node feature values, and s their standard deviation.

Global Graph Properties These graph-level features provide high-level summaries of a graph’s connec-
tivity and topology. Examples of such global properties include the number of nodes and the average
shortest path length.

Altogether, these three feature types yield 124 candidate features (see Table 1). Given the diversity of
graph datasets, the importance of these features can vary significantly across graphs. The key challenge is
to automatically identify a small subset for the task at hand that is most informative for the majority of
training graphs.

3.2 Step 1: Training the FR-GNN Model

The first step of our method (see Algorithm 1 and the top part of Fig. 1) begins by selecting a random subset
DFR ⊆ Dtrain. In the experiments reported in Section 4, we consistently used 10% of the graphs in Dtrain.

For each graph in DFR, the method computes all features from the pool C of candidate features. Node-level
features are then aggregated into graph-level representations, as described in Section 3.1. In this way, each
graph is mapped to a feature vector of dimension |C| (see the top-left matrix in Fig. 1 and lines 1–2 of Alg. 1).

5

Under review as submission to TMLR

Algorithm 1 Learning Feature Ranking GNN
Input: set DFR of labeled graphs, candidate feature set C
Output: FR-GNN model ΦFR

1: for all G ∈ DFR do
2: compute the feature vector x⃗G defined by C for G

3: D ← ∅
4: for all G ∈ DFR do
5: GG = {G′ : G′ ∈ DFR and Class(G′) ̸= Class(G)}
6: for i = 1, . . . , t do
7: select a number k uniformly at random from {3, 4, 5}
8: select a random subset G′ of GG with |G′| = k
9: train a random forest Fi for the training set {(x⃗G, +)} ∪ {(x⃗G′ ,−) : G′ ∈ G′}

10: compute a ranking πG,i of C from their “importance” in Fi

11: compute an aggregated ranking πG of C from {πG,1, . . . , πG,t}
12: add (G, πG) to D
13: ΦFR ← learn a a feature ranking GNN model from D
14: return ΦFR

To compute a feature ranking specific to each graph in DFR, we adopt a binary classification strategy based
on random forests (see the top-right feature ranking matrix in Fig. 1 and lines 5–11 of Algorithm 1). More
precisely, for all G ∈ DFR, we sample a set of graphs from DFR that have a different target label than G.
In our experiments, the number of these graphs randomly varies between 3 and 5. This sampling strategy
ensures that the random forest learns to distinguish between graphs with different target labels, facilitating
the identification of discriminative features. The training data for the random forest classifier consists of
the graph-level feature vectors extracted from the sampled graphs, where the feature vector of G is assigned
the label ‘+’, and those of the other graphs are assigned the label ‘–’. A random forest classifier with T
trees (T = 128 in the experiments) is then trained on this data, using

√
|C| candidate features at each split.

Feature importance scores are computed using the Gini gain, which measures the total reduction in node
impurity due to splits on that feature, normalized over all trees in the forest.

To ensure robustness, this procedure is repeated t times (t = 10 in the experiments), each time with a newly
sampled set of graphs from DFR. The final ranking πG for graph G is obtained by aggregating the importance
scores across the t independent runs, resulting in a feature ranking for G (see the top-right matrix in Fig. 1,
which contains the individual rankings for each graph).

This process is repeated for all graphs in DFR, producing a dataset, denoted D in the algorithm, that consists
of training examples of the form (G, πG) for all G ∈ DFR, where πG is the feature ranking computed for G
as described above. The algorithm then trains an FR-GNN on D and returns the resulting model ΦFR (see
lines 13–14 of Algorithm 1 and the top-right box in Fig. 1).

Remark During preliminary experiments, we observed that the feature importance vectors produced by
random forests often contain many values close to zero. These low scores can introduce unnecessary com-
plexity into the ΦFR model. To address this, we introduce a dynamic thresholding strategy that adaptively
identifies and removes low-importance features, retaining only those that make a clear contribution to the
classification task. Specifically, for each graph, the feature importance values are first sorted in ascending
order. We then compute the differences between consecutive values, defined as ∆i = fi+1− fi. If ∆i exceeds
the importance value fi itself, we set fi and all smaller values to zero. This adaptive mechanism effectively
filters out features whose contribution is negligible, eliminating the need for a manually defined threshold.
The remaining non-zero values correspond to features that exhibit a sufficiently sharp increase in importance
relative to the preceding values, signaling their discriminative potential. These final rankings are then used
as input to the ΦFR model.

6

Under review as submission to TMLR

3.3 Step 2: Training the GC-GNN Model

Given the feature learning model ΦFR obtained in the previous step, we apply it to each graph G in the
subset DGC = Dtrain \ DFR to obtain a predicted feature ranking for G. These individual rankings are then
aggregated to derive a global ranking of the candidate features. From this aggregated ranking, the top-K
features are selected and subsequently computed for the graphs in DGC. We again stress that this is the
step where the benefits of our method become apparent: it computes only the top-K features from the pool
C for each training graph in DGC, rather than calculating all features in C. Using the training set formed
by the labeled graphs in DGC, augmented with these top-K features, the method trains a GC-GNN model
to classify unseen graphs (see the bottom pipeline in Fig. 1). If the training graphs in Dtrain are originally
associated with node-level features, these features are used throughout the process and aggregated in the
same way as the node-level features in C (see Section 3.1).

4 Experimental Evaluation

In this section, we experimentally evaluate the performance of the proposed method using real-world bench-
mark and synthetic datasets. The experiments are designed to address the following research questions:

(Q1) To what extent do features improve the predictive performance of GNNs for graph classification? If
they do, how much improvement can be expected?

(Q2) How does the predictive performance of GC-GNN using the feature set selected by our method compare
to using all features in the pool? How robust is this performance as the classification task becomes
increasingly difficult?

(Q3) Are the K features selected by our method genuinely relevant to the learning task, or does a randomly
selected subset of K features perform similarly?

4.1 Datasets

To address the above questions, we conducted experiments on a diverse collection of real-world and synthetic
datasets. This section provides a detailed description of the datasets used.

Real-World Datasets To evaluate our method, we selected a diverse set of nine real-world graph classifica-
tion benchmarks spanning the domains of molecular chemistry, bioinformatics, and computer vision. For the
molecular datasets, we considered MUTAG (Debnath et al., 1991; Kriege & Mutzel, 2012), BZR (Sutherland
et al., 2003), DHFR (Sutherland et al., 2003), COX2 (Sutherland et al., 2003), NCI1 and NCI-H23H (Wale
et al., 2008; Kim et al., 2025; Shervashidze et al., 2011), PTCMM and PTCFR (Helma et al., 2001; Kriege
& Mutzel, 2012). These datasets consist of graphs where nodes represent atoms and edges denote chemical
bonds, with target labels indicating biological activity. Specifically, MUTAG, BZR, DHFR, and COX2 focus
on classifying molecules based on mutagenicity, activity against the benzodiazepine receptor, enzyme inhi-
bition, and cyclooxygenase-2 activity, respectively. NCI1 targets activity against human non-small cell lung
cancer, while PTCMM and PTCFR predict rodent carcinogenicity in male mice and female rats, respec-
tively. The PROTEINS dataset (Borgwardt et al., 2005; Dobson & Doig, 2003) from bioinformatics consists
of protein structures, where nodes represent secondary structure elements and edges denote spatial proximity
between them. The classification task in PROTEINS is to distinguish enzymes from non-enzymes. Finally,
the MSRC9 dataset (Neumann et al., 2016) from computer vision, derived from image segmentation, repre-
sents segmented images as graphs, with nodes and edges corresponding to superpixel relationships, and labels
indicating object classes. We

CQbo
additionally evaluated our method on three social network datasets: Reddit-

Binary, Reddit-Multi-5K, and Reddit-Multi-12K (Yanardag & Vishwanathan, 2015). In these datasets, nodes
represent users, and an edge is created between two nodes if one responded to the other’s comment. The
task in Reddit-Binary is to classify each discussion graph as either a question/answer-based community or a
discussion-based community. In Reddit-Multi-5K and Reddit-Multi-12K, the goal is to predict the subreddit
category to which each discussion graph belongs. The three Reddit datasets, together with NCI-H23H, will

7

Under review as submission to TMLR

also be used to investigate the scalability of our algorithm. Dataset statistics are summarized in Table 2 in
Appendix B.

Synthetic Datasets To evaluate our method’s ability to detect structural features defining target classes, we
conducted experiments on synthetic graph datasets with known ground truth. For each learning problem
defined below, we generated four datasets, each with 600 connected base graphs from one of four standard
random graph models: Barabási–Albert (BA) (Barabási & Albert, 1999), Erdős–Rényi (ER) (Erdős & Rényi,
1959), Watts–Strogatz (WS) (Watts & Strogatz, 1998), and Power-Law (PL) cluster (Holme & Kim, 2002).

We defined the target classes using four distinct graphlet motifs: the 4-clique (G8), the path v1 − v2 − v3 −
v4− v5 on five vertices with chords v1v4 and v2v5 (G20), the house graph (G21), and the hexagon (G30) (see
Fig. 8 in Appendix A). They

Mk5k
are pairwise topologically incomparable (i.e., none is subgraph isomorphic to

any another), and the base graphs to which they are subsequently attached were generated to exclude all of
them. Furthermore, the graphlets were attached in such a way that each graph satisfies exactly one class
condition.

This
Mk5k

design ensures that the presence of the graphlets acts as a discriminative signal rather than a background
artifact. The four motifs are explicitly included in the candidate feature set, and the logical formulas
defining each target class depend exclusively on the presence and interaction or absence of these motifs. This
setup enables us to construct a hierarchy of graph classes through logical formulas of increasing structural
complexity, all grounded in these four motifs. Importantly, it provides a controlled testbed for systematically
evaluating the sensitivity and expressiveness of our feature selection mechanism. Specifically, if our method
fails to distinguish classes that differ only in the combination of these known motifs, its limitations are
revealed in a precise and interpretable manner.

For each base graph type, we considered five learning tasks, with target classes defined by the following
logical formulas (Gi below denotes the absence of motif Gi):

Φ1 : (Class = c1 ⇐⇒ G8 ∧G20 ∧G21) ∧
(Class = c2 ⇐⇒ G8 ∧G20 ∧G21) ∧
(Class = c3 ⇐⇒ G8 ∧G20 ∧G21) ∧
(Class = c4 ⇐⇒ G8 ∧G20 ∧G21) (1)

Φ2 : (Class = c1 ⇐⇒ G8 ∧G20 ∧G21) ∧
(Class = c2 ⇐⇒ G8 ∧G20 ∧G21) ∧
(Class = c3 ⇐⇒ G8 ∧G20 ∧G21) (2)

Φ3 : (Class = c ⇐⇒ G8 ∧G20 ∧G21) ∧
(Class = c ⇐⇒ G8 ∨G20 ∨G21) (3)

Φ4 : (Class = c0 ⇐⇒ G8 ∧G20 ∧G21) ∧
(Class = c1 ⇐⇒ (G8 ∧G20 ∧G21) ∨ (G8 ∧G20 ∧G21) ∨ (G8 ∧G20 ∧G21)) ∧
(Class = c2 ⇐⇒ (G8 ∧G20 ∧G21) ∨ (G8 ∧G20 ∧G21) ∨ (G8 ∧G20 ∧G21)) ∧
(Class = c3 ⇐⇒ G8 ∧G20 ∧G21) (4)

Φ5 : (Class = c1 ⇐⇒ (G8 ∨G20) ∧G21 ∧G30) ∧
(Class = c2 ⇐⇒ (G8 ∨G20 ∨G21) ∧G30) ∧
(Class = c3 ⇐⇒ G21 ∧G30) ∧
(Class = c4 ⇐⇒ G8 ∧G20 ∧ ((G21 ∧G30) ∨ (G21 ∧G30))) (5)

In Φ1, the four classes are pairwise disjoint and determined by the presence of exactly one motif or none,
corresponding to a one-hot encoding over the three motifs. Φ2 defines three classes, each by the presence of
exactly two motifs, making the problem more challenging due to feature overlaps. Φ3 is a concept learning

8

Under review as submission to TMLR

task where the target class requires the presence of all three motifs, highlighting the difficulty for random
forests with the Gini index, which evaluates features individually and is therefore less sensitive to feature
interactions. In Φ4, four classes are defined by the presence of exactly i motifs (i = 0, 1, 2, 3). Φ5 introduces
a fourth motif and higher logical formula depth, testing robustness as class definitions become more complex.

4.2 Experimental Setting

For the experiments, we use three widely adopted GNN architectures: Graph Convolution Networks
(GCN) (Kipf & Welling, 2016), Graph Attention Networks (GAT) (Velickovic et al., 2018), and Graph-
SAGE (Hamilton et al., 2017). The dataset is split such that 10% of the graphs are used to train the
FR-GNN, while the remaining 90% are further divided 70/30 for training and testing the GC-GNN. We re-
port the average accuracy over 5 independent runs. For feature ranking, for each graph G ∈ DFR, k ∈ {3, 4, 5}
graphs with different labels are sampled. Feature importance is computed via a random forest with 128 trees
and

√
|C| features per split.

All GNN models are optimized using Adam, with hyperparameters selected via grid search (learning rate of
0.005, dropout rate of 0.5). Experiments are run on an AMD Ryzen 9 5950X 16-core CPU @ 3.40GHz with
125 GB of memory. The PyTorch Geometric library (Fey & Lenssen, 2019) is used for data handling.

For all experiments, except those involving synthetic data with target classes defined by Eq. (5), we consis-
tently used K = 6, i.e., selected the top six features. (We discuss the rationale for this choice in Sect. 4.3.1.)
To address questions Q1–Q3, we compare the proposed method, denoted as T-6 (short for “top 6”), against
three baselines: F-0: using no features (Q1), F-C: using all features (Q2), and R-6: using six features selected
at random from C (Q3). We refer to these as the “no-feature”, “all-feature”, and “random-feature” baselines,
respectively.

4.3 Experimental Results

The results are presented as grouped bar charts in Figs. 2 and 3, and in Fig. 9 in Appendix A, for the
synthetic and real-world datasets, across all three GNN architectures.

Answer to Q1: The results on the synthetic data provide a clear answer to this question (see Fig. 2 and
Tables 4, 5, and 6 in Appendix B): baselines that utilize all features (F-C), or even just six randomly
selected features (R-6), significantly outperform the baseline that uses no features (F-0). Across the
synthetic experiments, we observe improvements of up to 80% for F-C and up to 70% for R-6 relative
to F-0.
The results for real-world datasets are more mixed (see Fig. 3 and Table 3 in Appendix B). For all
three GNN architectures, F-0 is outperformed by both F-C and R-6 on some datasets (e.g., MUTAG),
while on others (e.g., DHFR), it actually outperforms the other two baselines. These results suggest
that using either too many features or a small number of randomly selected features can, in some
cases, diminish predictive performance.
Furthermore, our method T-6 consistently outperforms F-0 across all real-world and synthetic
datasets and all three GNN architectures, with average improvements of about at least 50% on
the synthetic and about 14.2% for GCN, 15.8% for GAT, and 14.5% for GraphSAGE on the real-
world datasets. On DHFR, where all three GNNs using no features perform better than when
using either all or six random features, T-6 achieves a 6% improvement over F-0 with GCN. The
improvement is even more dramatic on MUTAG, where T-6 outperforms F-0 by around 23% with
GAT.
In summary, our answer to question Q1 is conditionally affirmative: features can substantially
enhance predictive performance, as long as they are not overly numerous or randomly selected.

Answer to Q2: The accuracy results in Fig. 3 (see also Table 3 in Appendix B) clearly show that T-6
consistently outperforms F-C on real-world datasets across all three GNN architectures. Specifically,
our method achieves average accuracies of 74.8% (GCN), 73.9% (GAT), and 75.1% (GraphSage)
across 13 real-world benchmarks, compared to F-C’s accuracies of 67.6% (GCN), 66.4% (GAT),

9

Under review as submission to TMLR

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

GCN

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

GAT

BA ER WS PL BA ER WS PL BA ER WS PL BA ER WS PL

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

1 2 3 4

GraphSAGE

F-0 F-C R-6 T-6

Figure 2: Grouped bar charts summarizing model performance on the synthetic datasets for the four clas-
sification tasks Φ1–Φ4. The top, middle, and bottom panels correspond to GCN, GAT, and GraphSAGE,
respectively. Within each panel, datasets are grouped by task, and for each dataset, four color-coded bars
represent the variants F-0, F-C, R-6, and T-6.

and 69.0% (GraphSage). This corresponds to average improvements of 7.2%, 7.4%, and 6.2%,
respectively. The most significant improvement, around 20% across all GNN architectures, was
observed on the Proteins dataset. These results support our conjecture that too many features can
lead to overfitting.
In contrast, on synthetic datasets (see Fig. 2 and Tables 4 and 5 in Appendix B), F-C achieves at least
90% accuracy on all five problems (Φ1–Φ5), across all four types of random graphs. Remarkably, for
Φ1–Φ4, the six features selected by our method perform at least as well as F-C, which attains nearly
96% accuracy, and sometimes even improve upon these results by up to 2%.
However, for Φ5 (see Fig. 9 and Table 5 in the Appendix), which involves four classes and more
complex logical formulas, our method with six features achieves lower predictive performance than
F-C. Nevertheless, as the number of selected features increases, the performance difference becomes
negligible (see the comparison between F-C and T20).
In summary, GC-GNNs using the six features selected by our method consistently outperform those
using all features on real-world datasets, demonstrating improved accuracy and reduced overfitting.
On synthetic datasets, our method matches or exceeds the performance of using all features for
simpler tasks and remains robust, with only a negligible performance gap as task complexity and
the number of selected features increase.

Answer to Q3: Regarding the question of whether the six features selected by our method (T-6) are
genuinely relevant to the learning task, we compared the accuracy results obtained by T-6 with
those obtained using six features selected uniformly at random from the candidate pool. A closer
look at Figs. 3 and 2 (see, also, Tables 3–5) reveals that T-6 consistently outperforms R-6 across
all datasets and all three GNNs. In particular, on the real-world datasets, T-6 outperforms R-6 on
average by 10.2% (GCN), 12.2% (GAT), and 12.3% (GraphSAGE). In some cases, the difference is
dramatic (e.g., R-6 achieves 52.5% (GCN) on Proteins, while T-6 achieves 80%).

10

Under review as submission to TMLR

40

60

80

100

Ac
cu

ra
cy

 (%
)

GCN

40

60

80

100

Ac
cu

ra
cy

 (%
)

GAT

MUTAG MSRC9 PTCMM PTCFR BZR COX2 Proteins NCI1
40

60

80

100

Ac
cu

ra
cy

 (%
)

GraphSAGE

F-0 F-C R-6 T-6 SOTA

Figure 3: Grouped bar charts summarizing the results from Table 3 in Appendix B for the real-world datasets
across three GNN architectures (top: GCN, middle: GAT, bottom: GraphSAGE). Each panel presents the
accuracies across five variants — F-0, F-C, R-6,T-6, and the reproduced SOTA results, shown as color-coded
bars.

In summary, based on these results, we can provide a clear affirmative answer to Q3: The feature
set returned by our method is genuinely relevant to the learning task and not selected by chance.

4.3.1 Further Results on the Real-World Data

We now present and discuss additional results obtained on the real-world benchmark datasets.

Comparison to SOTA Results To
CQbo

contextualize the predictive performance of our approach, we compared
it against existing SOTA results on the same real-world datasets. Specifically, we included only results that
were published in peer-reviewed conference or journal papers, with publicly available code that could be
executed on the corresponding datasets. Of the 13 benchmark datasets, eight met these criteria. For each
of these eight datasets, we ran the respective algorithm and reported both the accuracy published in the
literature and the accuracy achieved upon re-execution of the authors’ code. In total, three recent algorithms
(Akyol et al., 2021; Vincent-Cuaz et al., 2022; Wen et al., 2024) attained SOTA performance on at least one
of these eight datasets.

On
CQbo

three of the eight datasets, our approach either outperforms or matches the accuracy reported in the
literature within 2% (see the upper table in Table 3 in Appendix B). However, when comparing against
results reproduced using the authors’ publicly available code2, our approach outperforms or closely matches
the reproduced results (within 2%) on all eight datasets (including MUTAG, Proteins, NCI1 (Vincent-Cuaz
et al., 2022), MSRC9 (Akyol et al., 2021), and PTCMM, PTCFR, BZR, and COX2 (Wen et al., 2024)).

Statistical Significance We evaluated the statistical significance of the observed differences in predictive
performance between T-6 and the three baselines (F-0, F-C, and R-6) on the real-world datasets. For this
purpose, we first applied the Kruskal-Wallis test. The null hypothesis (i.e., no performance differences) was

2github.com/gamzeakyol/GNet for (Akyol et al., 2021), github.com/cedricvincentcuaz/TFGW for (Vincent-Cuaz et al.,
2022), and github.com/TaoWen0309/TTG-NN for (Wen et al., 2024)

11

https://github.com/gamzeakyol/GNet
https://github.com/cedricvincentcuaz/TFGW
https://github.com/TaoWen0309/TTG-NN

Under review as submission to TMLR

0 1 2 3 4 5 6 7 8 9 1050
60
70
80
90

100

K

A
cc

ur
ac

y
(%

)

0 25 50 75 100 125 150 175 200
 Triangles Count Values

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Class 0
Class 1

Figure 4: Left: Model accuracy of the top K features selected by our method for different values of K on two
datasets: MUTAG (blue) and PTCMM (green), along with the average accuracy across all datasets using
GCN (red). Right: Kernel density estimation (KDE) plots of the top-ranked feature for MUTAG (triangle
count), showing the distribution of feature values across the two graph classes.

rejected at α = 0.01 (99% confidence level) with p = 0.0016, indicating strong evidence of performance
variation across the methods. Given this result, we proceeded with Dunn’s post-hoc test (Dunn, 1961) with
Holm adjustment to identify pairwise differences. We found that T-6 significantly outperforms R-6 at the
99% confidence level, and achieves statistically significant improvements over both F-0 and F-C at the 95%
confidence level. Thus, the improvements by T-6 are not only consistent but also statistically significant.

Choice of K All experimental results presented in this paper, except those for the problems defined by Φ5,
were obtained using K = 6. This value was selected by computing the average accuracy for all values of
K = 1, . . . , 10 and choosing the value (i.e., 6) that yielded the highest average performance. In Fig. 4 (left),
we present not only the overall average accuracies but also the accuracy results for different K values on
the MUTAG and PTCMM datasets. While the optimal value of K is 6 for MUTAG, it is 5 for PTCMM.
We note that K can alternatively be selected automatically for each dataset individually, by using a small
validation subset of the training data and choosing the smallest value of K that yields the highest predictive
performance on this subset.

a3BA
Notice that, regardless of the technique used to select the optimal value of K

(e.g., via a validation set using Bayesian optimization), the following steps need to be performed only once:
computing all features in C for the graphs in DFR, training the random forest and the FR-GNN model, and
predicting the feature ranking for the graphs in DGC. Moreover, each feature considered for any value of
K must only be computed once for the graphs in DGC. In contrast, the GC-GNN model must be retrained
from scratch for every value of K considered by the algorithm.

Feature Analysis To further validate our feature selection approach, we conducted a qualitative analysis of
several top-ranked features identified by our method for the real-world datasets. Specifically, we examined
the distributions of these features across graph classes using kernel density estimation (KDE), which allowed
us to assess their discriminative power: The selected features exhibit meaningful and class-discriminative
patterns. As an illustrative example, in the MUTAG dataset, the triangle count emerged as one of the
top-ranked features (see Fig. 4, right). The KDE plot shows that class 1 graphs consistently exhibit higher
triangle counts, suggesting that the triangle graphlet structure is a strong indicator of mutagenic activity
and is effectively captured by our selection method.

Empirical Runtime and Accuracy
Mk5k

Figure 5 presents the total runtime per dataset for both the all-feature
baseline and our top-K feature selection method (note the logarithmic scale on the y-axis). The datasets
are sorted in ascending order according to the product of the number of graphs and the average number of
edges.
While the runtime improvement is mixed across the first nine datasets, a clear advantage emerges for NCI-
H23H (which contains many small graphs) and for the three Reddit datasets (which comprise increasing
numbers of large graphs). For these four datasets, where the runtime of the all-feature baseline becomes
particularly critical, our approach demonstrates a pronounced benefit. Specifically, it achieves up to a 90%
reduction in total wall-clock time while simultaneously improving classification accuracy. The improvement
is most pronounced for Reddit-Multi-12K, where the all-feature baseline required more than 557 hours,

12

Under review as submission to TMLR

PTC
MM

PTC
FR

MUTA
G

BZR
COX2

MSR
C9

DHFR NCI1

PR
OTE

INS

NCI-H
23

H

Re
dd

it-B
ina

ry

Re
dd

it-M
ult

i-5
K

Re
dd

it-M
ult

i-1
2K

101

102

103

104

105

106

To
ta

l R
un

tim
e

(s
ec

on
ds

, l
og

 sc
al

e) Full Features Setting
Top-K Features Setting

Figure 5: Total wall-clock runtime for each of the 13 benchmark datasets on both variants: the all-feature
baseline and the proposed top-K method. Datasets are sorted in ascending size, defined as (number of
graphs) × (average number of edges). The three large Reddit datasets, containing much larger graphs,
are shown separately on the right and sorted by number of graphs to demonstrate scalability. Note the
logarithmic scale on the y-axis.

101 102 103 104 105 106

Runtime (seconds, log scale)

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Accuracy vs. Runtime

All-Feature
Top-K Features

Datasets
PTCMM
PTCFR
MUTAG
BZR
COX2
MSRC9
DHFR
NCI1
PROTEINS
NCI-H23H
Reddit-Binary
Reddit-Multi-5K
Reddit-Multi-12K

Figure 6: Accuracy–runtime comparison across 13 benchmark datasets. Each dataset is represented by a
unique color, with circles denoting the all-feature baseline and triangles the proposed Top-K method. Dashed
lines connect paired results for the same dataset. The x-axis shows total wall-clock runtime in seconds (log
scale) and the y-axis shows classification accuracy.

whereas our approach completed the task in approximately 57 hours.
Importantly, this considerable reduction in computational time does not come at the expense of predictive
performance; our method maintains, and in several cases improves, the classification accuracy compared to
the all-feature baseline. The relationship between accuracy and total runtime is illustrated in Fig. 6. Our
method achieves significantly lower runtimes on large-scale datasets while preserving or enhancing predictive
performance. On smaller benchmarks, the feature ranking phase introduces a minor computational overhead;
however, this cost is negligible compared to the consistent improvements in classification accuracy achieved
by our method.

Runtime Analysis
CQbo

We now analyze the runtime required by our approach. Specifically, we compare the total
time of the all-feature baseline (TC) to that of our method (TK), and then proceed to compare the inference
times of the two approaches.

Recall that the training data, Dtrain, is partitioned into two subsets: DFR and DGC, where DFR (respectively,
DGC) is used to train the FR-GNN (respectively, GC-GNN). Let FK denote the set of K features selected

13

Under review as submission to TMLR

by our method. The total training time for each approach can be expressed by

TC = TGC-GNN(Dtrain, C)
TK = TFR-GNN(DFR, C) + TGC-GNN(DGC, FK) .

Here, TGC-GNN(Dtrain, C) denotes the time required to compute all features in C for all graphs in Dtrain
(T(α1)), plus the time to train a GC-GNN using Dtrain with the resulting feature vectors (T(α2)). The term
TFR-GNN(DFR, C) in TK consists of the runtime of the following steps: Computing all features in C for all
graphs in DFR (T(β1)), training a random forest on the computed feature vectors and calculating a feature
ranking for all graphs in DFR (T(β2)), and training the FR-GNN on DFR with the associated feature rankings
(T(β3)). Finally, TGC-GNN(DGC, FK) in TK includes the time to predict a feature ranking for each graph
in DGC using the FR-GNN model (T(γ1)), the time to determine the top K features from these predicted
rankings (T(γ2)), the time required to compute the K features in FK for all graphs in DGC (T(γ3)), and the
time to train a GC-GNN using the resulting feature vectors (T(γ4)).

It follows that our approach achieves superior runtime performance compared to the all-feature baseline
whenever TC > TK , that is, if

T(α1) + T(α2) > T(β1) + T(β2) + T(β3) + T(γ1) + T(γ2) + T(γ3) + T(γ4) . (6)

Using T(α2) ≈ T(β3) + T(γ4) (follows from Blakely et al. (2021)) and the notation

T = T(β2) + T(γ1) + T(γ2) ,

(6) implies

T(α1) > T + T(β1) + T(γ3) . (7)

Consider the case that

T ≤ T(β1) + T(γ3) . (8)

Then (7) holds if

T(α1) > 2 (T(β1) + T(γ3)) . (9)

Assuming that the average runtime to compute a feature from C for a graph in Dtrain equals that for features
from FK in DGC and for features from C in DFR, (9) can be expressed by

|C| · |Dtrain| · T̄f > 2
(
|C| · |DFR| · T̄f + K · |DGC| · T̄f

)
,

which, in turn, holds whenever

|DGC|
|Dtrain|

>
|C|

2(|C| −K) (10)

because Dtrain is the disjoint union of DFR and DGC.

In summary, under the above assumption, our approach achieves a better runtime than the all-feature
baseline whenever both inequalities (8) and (10) hold. Specifically, (8) requires that the total time to (i)
train the random forest, (ii) compute a feature ranking for each graph in DFR, (iii) predict feature rankings
for all graphs in DGC using the FR-GNN model, and (iv) select the top K features from these predicted

14

Under review as submission to TMLR

rankings is no greater than the time needed to compute all features for all graphs in DFR plus the time to
compute the K features in FK for all graphs in DGC.

In Fig. 7(a), we present the three runtime terms from (8) for each real-world benchmark dataset analyzed in
our experiments. Of the 13 datasets considered, (8) is satisfied by five: MSRC9, NCI-H23H, Reddit-Binary,
Reddit-Multi-5K, and Reddit-Multi-12K. For these datasets, our approach is faster than the all-feature
baseline (see Fig. 5), in accordance with (9), given that |DGC|

|Dtrain| ≈ 0.86 and |C|
|C|−K ≈ 1.05 in all experiments.

Notably, the four computationally expensive datasets (i.e., those requiring at least 1,000 seconds) are among
this group, and the speed-up for the three Reddit datasets is at least one order of magnitude (note the
log-scale on the y-axis).

We finish our runtime analysis by noting that our approach consistently offers an advantage in terms of
inference time. Specifically, for each graph to be classified, it requires computing only K features from the
full candidate set C. This is particularly important for applications in which the GC-GNN model must be
applied to a (potentially very) large number of graphs.

Scalability
CQbo

To assess scalability, we extended our experimental evaluation to include four larger benchmarks:
Reddit-Binary, Reddit-Multi-5K, Reddit-Multi-12K, and NCI-H23H, with dataset statistics summarized in
Table 2 in Appendix B. The three Reddit datasets each comprise graphs of similar size, whereas the average
graph size in NCI-H23H is approximately one order of magnitude smaller.
We first investigate how our approach scales with increasing average graph size. For the Reddit datasets,
which all contain large graphs, the per-graph runtime of the all-feature baseline ranges from 168 to 208
seconds, while our method achieves 17 to 21 seconds per graph—an order-of-magnitude reduction. On the
large NCI-H23H dataset, containing many small graphs, both methods yield very low per-graph runtimes
(0.07 seconds for the baseline vs. 0.04 seconds for our method), but our method remains more efficient.
Thus, for our method, increasing the average graph size by one order of magnitude results in a roughly
two-order-of-magnitude increase in per-graph runtime.
This behavior is expected, since the candidate feature set includes computationally expensive operations
(e.g., graphlet counts). A closer examination of Fig. 7 confirms that, for the three Reddit datasets, the time
required to compute the full feature set for the graphs in DFR dominates the total runtime.
When considering only the three Reddit datasets, which contain graphs of similar size, the per-dataset
computational time scales linearly with the number of graphs. Indeed, the per-graph computational time
is nearly equal for these datasets (Reddit-Binary: 19.40 sec, Reddit-Multi-5K: 21.31 sec, Reddit-Multi-12K:
17.22 sec). This indicates that increasing database cardinality alone does not significantly affect the per-
graph computational effort.
In summary, the primary determinant of per-graph runtime is the average graph size. This implies that for
(very) large graphs, the time complexity of computing a candidate feature should be quasilinear in the number
of vertices.

4.3.2 Further Results on the Synthetic Data

Other Feature Ranking Approaches We evaluated the performance of three methods: random forests (RF),
support vector machines (SVM) (Cortes & Vapnik, 1995), and neural networks coupled with the LIME local
explainer (Ribeiro et al., 2016) (NN+LIME), in identifying key graphlet features across the five learning
problems Φ1–Φ5 defined in Section 4.1. RF consistently identified the three key graphlets (G8, G20, and
G21) among the top-ranked features for the problems defined by Φ1–Φ4. Notably, other features, such as
the total number of cliques and the node clique number, were also frequently selected as important. Upon
investigation, we found these features to be semantically aligned with the identified graphlets, particularly
since G8 corresponds to a 4-clique. SVM exhibited similar, though slightly less consistent, behavior, with the
key graphlets appearing lower in the ranking compared to RF. In contrast, NN+LIME could not consistently
identify the relevant graphlets. For problem Φ5, all three methods struggled to consistently rank the four
relevant graphlets among the top features. However, RF demonstrated comparatively stronger performance,
as the four features associated with Φ5 were ranked higher than by SVM and NN+LIME.

15

Under review as submission to TMLR

PTC
MM

PTC
FR

MUTA
G

BZR
COX2

MSR
C9

DHFR NCI1

PR
OTE

INS

NCI-H
23

H

Re
dd

it-B
ina

ry

Re
dd

it-M
ult

i-5
K

Re
dd

it-M
ult

i-1
2K

0

20

40

60

80

100
Ru

nt
im

e
Co

m
po

sit
io

n
(%

)

FR-GNN Feature Computation (1)
Top K Features Computing (3)
T = (2) + (1) + (2)

PTC
MM

PTC
FR

MUTA
G

BZR
COX2

MSR
C9

DHFR NCI1

PR
OTE

INS

NCI-H
23

H

Re
dd

it-B
ina

ry

Re
dd

it-M
ult

i-5
K

Re
dd

it-M
ult

i-1
2K

0

20

40

60

80

100

Ru
nt

im
e

Co
m

po
sit

io
n

(%
)

FR-GNN Feature Computation (1)
Top K Features Computing (3)
RF Training (2)
FR-GNN Training (3)
GC-GNN Training (4)

(a) Inequality Terms Runtime Breakdown (b) Full Runtime Breakdown

Figure 7: Normalized percentage breakdown of running time per dataset. The stacked bars show the relative
contribution of different computational components. (a) Breakdown corresponding to the terms defined in
inequality (8). (b) Full decomposition of the end-to-end pipeline, including all components.

We also compared the runtime of these three algorithms. NN+LIME required the longest training time,
followed by RF, while SVM was the fastest but less accurate in identifying the most informative features.
Since accuracy was our primary concern, we chose RF for all subsequent experiments.

The Count-Based Problem We also explored a learning problem (denoted Φ6) where the class label was
determined by the number of graphlets from G8, G20, and G21 present in the graph. Specifically, graphs
containing at most one motif from this set were assigned to class 0, those containing two to four motifs
to class 1, and graphs with five or more motifs to class 2. The results exhibited behavior similar to that
observed in learning problems Φ1–Φ4 (see Fig. 9 and Table 6 in the Appendix).

5 Concluding Remarks

We have proposed a method that automatically selects a small subset of relevant features from a large pool of
candidate features to improve the predictive performance of GNNs for graph classification. Our experimental
results on nine benchmark datasets and three GNN architectures clearly demonstrate that: (1) incorporating
node features can significantly enhance predictive performance compared to vanilla GNNs, (2) to prevent
overfitting, it is crucial to select a small, informative subset of features from a large candidate pool rather
than using all available features, and (3) the features selected by our method are genuinely relevant to the
learning task, rather than being chosen by chance.

We also evaluated the relevance of the selected features in a more controlled and precise setting. Specifically,
we generated synthetic base graphs and defined target classes using logical formulas of increasing complexity,
based on the presence or absence of a small set of motifs. Our results show that the approach can accurately
identify relevant features and successfully learn these classification tasks. However, as the complexity of the
formulas increases, more features must be selected to maintain high accuracy.

While our method demonstrates effective feature selection for improving GNN-based graph classification,
several promising avenues remain for future exploration. First, scaling the approach to handle very large
graphs is a natural next step. In our experiments, the FR-GNN was trained separately for each dataset. We
also explored training a single, global FR-GNN across all datasets. Although this global model led to GC-
GNNs with higher average accuracy than the three baselines, its performance gains were less pronounced than
those achieved by individually trained FR-GNNs. Thus, another question is how to adapt and extend our
approach to train a global FR-GNN that can produce task-specific GC-GNNs with predictive performance at
least comparable to those reported here. Additionally, investigating the robustness of our method to noisy
or adversarial features, developing theoretical guarantees for feature subset optimality,

a3BA
and establishing

bounds on generalization error or subset optimality would further deepen the understanding and reliability

16

Under review as submission to TMLR

of our approach. Finally, it would be useful to modify the method to account for feature computation time,
selecting the most informative features with the smallest cumulative runtime.

Broader Impact Statement CQbo

Our framework automates feature subset selection for graph classification by choosing a small, task-specific
subset from a user-defined universe of candidate features. This improves predictive performance and reduces
feature computation time. However, the method does not scale well to very large graphs, limiting applicability
in such settings. The key ethical consideration is in defining the universal candidate feature set, which
requires careful design by domain experts to avoid bias and ensure relevance. Transparent reporting and
validation are necessary, especially for sensitive or high-stakes applications. By balancing expert knowledge,
automation, and efficiency, our approach supports responsible and interpretable AI for graph-structured
data.

References
Gamze Akyol, Sanem Sariel, and Eren Erdal Aksoy. A variational graph autoencoder for manipulation

action recognition and prediction. In 2021 20th International Conference on Advanced Robotics (ICAR),
pp. 968–973. IEEE, 2021.

Fouad Alkhoury, Tamás Horváth, Christian Bauckhage, and Stefan Wrobel. Improving graph neural networks
through feature importance learning. Machine Learning, 114(8):178, 2025. ISSN 1573-0565. doi: 10.1007/
s10994-025-06815-z. URL https://doi.org/10.1007/s10994-025-06815-z.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):
509–512, 1999.

Pablo Barceló, Floris Geerts, Juan L. Reutter, and Maksimilian Ryschkov. Graph neural networks with local
graph parameters. In 35th Annual Conference on Neural Information Processing Systems (NeurIPS), pp.
25280–25293, 2021.

Derrick Blakely, Jack Lanchantin, and Yanjun Qi. Time and space complexity of graph convolutional
networks. Accessed on: Dec, 31:2021, 2021.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and Hans-
Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):i47–i56, 2005.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph neural
network expressivity via subgraph isomorphism counting. IEEE Trans. Pattern Anal. Mach. Intell., 45
(1):657–668, 2023.

Zhuoyang Chen and Qiong Luo. Dualnetgo: a dual network model for protein function prediction via effective
feature selection. Bioinformatics, 40(7):btae437, 2024.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297, 1995. doi:
10.1007/BF00994018. URL https://doi.org/10.1007/BF00994018.

Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. On positional and structural node features for graph neural net-
works on non-attributed graphs. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pp. 3898–3902, 2022.

Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. Towards robust graph neural networks for noisy graphs
with sparse labels. In Proceedings of the fifteenth ACM international conference on web search and data
mining, pp. 181–191, 2022.

17

https://doi.org/10.1007/s10994-025-06815-z
https://doi.org/10.1007/BF00994018

Under review as submission to TMLR

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin Hansch.
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation
with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34(2):786–797, 1991.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without alignments.
Journal of molecular biology, 330(4):771–783, 2003.

Olive Jean Dunn. Multiple comparisons among means. Journal of the American statistical association, 56
(293):52–64, 1961.

Chi Thang Duong, Thanh Dat Hoang, Ha The Hien Dang, Quoc Viet Hung Nguyen, and Karl Aberer. On
node features for graph neural networks. arXiv preprint arXiv:1911.08795, 2019.

P. Erdős and A. Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 6:290–297, 1959.

Hongliang Fei and Jun Huan. Structure feature selection for graph classification. In Proceedings of the 17th
ACM conference on Information and knowledge management, pp. 991–1000, 2008.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. CoRR,
abs/1903.02428, 2019.

Guoji Fu, Yifan Hou, Jian Zhang, Kaili Ma, Barakeel Fanseu Kamhoua, and James Cheng. Understanding
graph neural networks from graph signal denoising perspectives. arXiv preprint arXiv:2006.04386, 2020.

Jingwei Guo, Kaizhu Huang, Rui Zhang, and Xinping Yi. Es-gnn: Generalizing graph neural networks
beyond homophily with edge splitting. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

William L. Hamilton. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, San Rafael, 2020.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, pp. 1024–1034, 2017.

Christoph Helma, Ross D. King, Stefan Kramer, and Ashwin Srinivasan. The predictive toxicology challenge
2000–2001. Bioinformatics, 17(1):107–108, 2001.

Petter Holme and Beom Jun Kim. Growing scale-free networks with tunable clustering. Physical review E,
65(2):026107, 2002.

S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu,
L. Zaslavsky, J. Zhang, and E. E. Bolton. Pubchem 2025 update. nucleic acids res., 2025. PubChem.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. CoRR,
abs/1609.02907, 2016.

Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. arXiv preprint
arXiv:1206.6483, 2012.

Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A unified view on graph neural net-
works as graph signal denoising. In Proceedings of the 30th ACM international conference on information
& knowledge management, pp. 1202–1211, 2021.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Feature selection: Key to enhance node classification
with graph neural networks. CAAI Transactions on Intelligence Technology, 8(1):14–28, 2023.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler
and Leman go neural: Higher-order graph neural networks. In The 33rd AAAI Conference on Artificial
Intelligence, pp. 4602–4609, 2019.

18

https://doi.org/10.1093/nar/gkae1059

Under review as submission to TMLR

Harish Naik, Jan Polster, Raj Shekhar, Tamás Horváth, and György Turán. Iterative graph neural network
enhancement via frequent subgraph mining of explanations. CoRR, abs/2403.07849, 2024.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation kernels: effi-
cient graph kernels from propagated information. Machine learning, 102:209–245, 2016.

Ignacio Ponzoni, Víctor Sebastián-Pérez, María J Martínez, Carlos Roca, Carlos De la Cruz Pérez, Fiorella
Cravero, Gustavo E Vazquez, Juan A Páez, Mónica F Díaz, and Nuria E Campillo. Qsar classification
models for predicting the activity of inhibitors of beta-secretase (bace1) associated with alzheimer’s disease.
Scientific Reports, 9(1):9102, 2019. doi: 10.1038/s41598-019-45522-3. URL https://www.nature.com/
articles/s41598-019-45522-3.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you? explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1135–1144. ACM, 2016.

Ryan A Rossi, Rong Zhou, and Nesreen K Ahmed. Estimation of graphlet counts in massive networks. IEEE
transactions on neural networks and learning systems, 30(1):44–57, 2018.

Nino Shervashidze, SVN Vishwanathan, Thomas Petri, Kurt Mehlhorn, and Karsten M Borgwardt. Efficient
graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp. 488–495. PMLR,
2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Jeffrey J Sutherland, Lee A O’brien, and Donald F Weaver. Spline-fitting with a genetic algorithm: A
method for developing classification structure- activity relationships. Journal of chemical information and
computer sciences, 43(6):1906–1915, 2003.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In 6th International Conference on Learning Representations, ICLR 2018.
OpenReview.net, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas Courty. Template based
graph neural network with optimal transport distances. Advances in Neural Information Processing Sys-
tems, 35:11800–11814, 2022.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical compound
retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393(6684):
440–442, 1998.

Tao Wen, Elynn Chen, and Yuzhou Chen. Tensor-view topological graph neural network. In International
Conference on Artificial Intelligence and Statistics, pp. 4330–4338. PMLR, 2024.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Yaming Yang, Ziyu Guan, Wei Zhao, Weigang Lu, and Bo Zong. Graph substructure assembling network
with soft sequence and context attention. IEEE Transactions on Knowledge and Data Engineering, 35(5):
4894–4907, 2022.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang. Hierarchical
graph pooling with structure learning. arXiv preprint arXiv:1911.05954, 2019.

A Appendix: Figures

19

https://www.nature.com/articles/s41598-019-45522-3
https://www.nature.com/articles/s41598-019-45522-3
https://openreview.net/forum?id=rJXMpikCZ

Under review as submission to TMLR

Figure 8: The four graphlets used in our experiments. They are pairwise incomparable (i.e., none is subgraph
isomorphic to another).

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

GCN

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

GAT

BA ER WS PL BA ER WS PL

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

5 6

GraphSAGE

F-0 F-C R-6 T-6 T-10 T-20

Figure 9: Grouped bar charts summarizing the results from Table 5 and Table 6 in Appendix B for the
classification tasks Φ5 (left) and the count-based learning problem Φ6 across three GNN architectures (top:
GCN, middle: GAT, bottom: GraphSAGE).

20

Under review as submission to TMLR

B Appendix: Tables

Table 2: Summary of datasets used in our experiments. For each dataset, we provide the number of graphs,
average nodes and edges per graph, number of node attributes, and number of graph classes.

dataset #graphs avg. #nodes avg. #edges #attributes #classes
MUTAG 188 17.90 39.60 7 2
BZR 405 35.75 38.36 53 2
DHFR 756 42.43 44.54 53 2
COX2 467 41.22 43.45 35 2
NCI1 4110 29.87 32.30 37 2
PTCMM 336 13.97 14.32 20 2
PTCFR 351 14.56 15.00 19 2
Proteins 1113 39.10 145.60 3 2
MSRC9 221 40.58 97.94 10 8
NCI-H23H 40 353 46.67 48.69 0 2
Reddit-Binary 2000 429.63 497.75 0 2
Reddit-Multi-5K 4999 508.52 594.87 0 5
Reddit-Multi-12K 11 929 391.41 456.89 0 11

21

Under review as submission to TMLR

Table 3: Classification accuracy (%) on real-world datasets using GCN, GAT, and GraphSAGE architectures.
Results are shown for our method (T-6) and the baselines (F-0, F-C, and R-6). The best result per dataset
within each GNN architecture is indicated by ✓ (GCN), † (GAT), and ‡ (GraphSAGE); the overall best
result per dataset across all three architectures is highlighted by a box. SOTA results from the literature
are provided for each dataset (second-to-last row of the upper table). Specifically, MUTAG, Proteins and
NCI1 results from (Vincent-Cuaz et al., 2022), MSRC9 from (Akyol et al., 2021), PTCMM, PTCFR, BZR,
and COX2 from (Wen et al., 2024). Only peer-reviewed conference and journal publications have been
considered. Where possible, we reproduced results using the authors’ code (last row of the upper table).
The bottom table reports results for datasets where reproducing the SOTA results was not possible.

MUTAG MSRC9 PTCMM PTCFR BZR COX2 Proteins NCI1
GCN
F-0 77.0±1.1 88.7±5.3 50.0±4.7 66.7±3.7 80.7±1.1 77.7±2.2 65.5±4.9 60.2±0.6
F-C 82.5±2.2 92.5±3.5 60.1±4.7 60.0±3.8 81.9±0.9 81.1±1.5 59.5±9.3 62.3±1.1
R-6 77.6±1.3 89.2±4.6 60.8±5.9 52.5±3.2 79.4±0.9 75.5±1.4 52.5±8.8 59.4±0.3
T-6 90.5±1.1 ✓ 96.3±1.8 ✓ 65.0±2.4✓ 67.5±2.6✓ 86.9±0.9✓ 82.2±3.2✓ 80.0±5.7 ✓ 68.0±1.1✓

GAT
F-0 65.9±5.6 87.5±3.5 61.7±2.3 62.5±2.4 79.4±2.7 75.6±1.8 57.5±4.9 56.9±1.9
F-C 81.1±3.6 90.0±7.1 60.0±9.4 55.0±7.6 83.1±4.4 81.1±3.3 55.7±9.9 59.1±1.7
R-6 74.7±1.3 85.0±0.2 63.1±0.3 57.5±3.3 82.5±2.4 73.3±2.5 53.7±9.8 54.9±5.8
T-6 88.9±1.8† 96.2±5.3† 67.6±3.5 † 70.0±3.2 † 89.4±0.9† 84.5±1.2† 74.5±2.1† 64.2±3.4†

GraphSAGE
F-0 78.5±3.3 91.2±1.7 60.3±5.1 52.5±4.5 81.9±6.2 80.1±4.4 62.1±0.1 64.2±1.1
F-C 87.2±0.7 91.7±1.0 61.6±2.3 57.5±1.9 89.3±4.4 82.2±2.2 54.7±9.3 69.0±0.4
R-6 79.7±1.6 88.7±5.3 56.6±0.8 60.0±0.9 86.2±1.7 76.6±1.4 48.5±6.3 63.0±0.7
T-6 90.4±1.4‡ 95.0±1.1‡ 64.1±1.2‡ 65.0±1.4‡ 95.0±1.2 ‡ 85.5±2.4 ‡ 74.0±2.8‡ 75.1±0.5 ‡

SOTA Results
reported (paper) results 96.4±3.3 95.4 74.1±4.6 73.2±3.9 87.4±2.6 86.7±3.4 82.9±2.7 88.1±2.5

reproduced (our run) results 88.2±1.5 90.9±3.4 69.1±2.1 65.3±2.0 84.1±1.7 80.8±1.3 73.8±4.7 75.2±0.8

DHFR NCI-H23H Reddit-Binary Reddit-Multi-5K Reddit-Multi-12K
GCN

F-0 79.5±0.3 50.9 ± 1.3 49.8 ± 2.4 19.1 ± 1.4 21.8 ± 2.1
F-C 66.9±2.6 98.5 ± 0.8 66.9 ± 1.9 36.4 ± 2.5 30.1 ± 1.4
R-6 76.9±0.9 91.8 ± 2.6 61.7 ± 4.5 40.8 ± 3.7 22.0 ± 3.3
T-6 85.9±0.5 ✓ 99.2 ± 0.7 ✓ 73.3 ± 2.0✓ 48.7 ± 2.1 ✓ 31.2 ± 2.2 ✓

GAT
F-0 70.9±9.1 51.1 ± 2.1 46.2 ± 1.4 19.3 ± 1.1 20.5 ± 1.8
F-C 61.6±7.5 98.6 ± 1.0 72.5 ± 2.4 37.4 ± 2.6 28.4 ± 1.6
R-6 60.3±4.0 68.2 ± 4.6 67.7 ± 3.7 37.2 ± 3.0 23.5 ± 2.7
T-6 75.3±1.3† 99.1 ± 0.9† 73.3 ± 2.8 † 46.9 ± 2.1† 30.5 ± 1.4†

GraphSAGE
F-0 77.1±5.0 50.8 ± 1.6 49.5 ± 2.9 19.7 ± 1.5 20.7 ± 1.9
F-C 66.2±5.3 98.6 ± 1.2 73.2 ± 2.0 35.8 ± 2.7 29.5 ± 2.0
R-6 74.3±0.8 64.3 ± 3.8 66.4 ± 3.5 29.2 ± 4.5 23.4 ± 2.4
T-6 79.6±6.6‡ 99.1 ± 0.8‡ 80.5 ± 2.7 ‡ 42.6 ± 1.6‡ 31.0 ± 1.5‡

22

Under review as submission to TMLR

Table 4: Classification accuracy (%) of the four classification tasks defined by Eq. (1)–(4) on synthetic
datasets generated using four graph models: Barabási–Albert (BA), Erdős–Rényi (ER), Watts–Strogatz
(WS), and the Power-Law (PL) Cluster. Bold indicates the best result per graph model within each GNN
architecture, while underlining highlights the overall best performance for each task.

GCN GAT GraphSAGE
F-0 F-C R-6 T-6 F-0 F-C R-6 T-6 F-0 F-C R-6 T-6

Φ1 defined by Eq. (1)
BA 18.2±7.1 100±0.0 86.1±1.2 100±0.0 19.9±6.4 100±0.0 80.3±1.1 100±0.0 22.4±5.3 100±0.0 70.6±2.1 100±0.0
ER 24.3±2.4 100±0.0 88.5±2.8 100±0.0 24.3±3.2 98.9±0.3 82.1±2.5 100±0.0 24.1±1.6 100±0.0 87.0±2.5 100±0.0
WS 27.6±7.8 100±0.0 82.2±6.4 100±0.0 25.4±6.9 100±0.0 96.2±1.1 100±0.0 26.3±4.5 100±0.0 84.1±4.1 100±0.0
PL 24.3±3.5 96.2±0.8 42.1±9.9 98.3±1.2 17.3±2.3 98.2±1.0 69.8±5.6 98.1±0.3 21.8±3.2 95.9±0.9 55.3±3.2 97.3±1.1

Φ2 defined by Eq. (2)
BA 29.1±2.1 100±0.0 69.0±7.7 100±0.0 27.8±3.6 100±0.0 40.1±4.8 100±0.0 29.1±2.4 100±0.0 73.6±3.3 100±0.0
ER 20.8±11.3 100±0.0 61.8±3.6 100±0.0 33.3±7.4 100±0.0 82.3±2.7 100±0.0 32.8±5.6 100±0.0 90.5±3.9 100±0.0
WS 28.9±4.2 100±0.0 87.4±4.8 100±0.0 29.7±2.1 100±0.0 72.2±2.3 100±0.0 34.2±3.9 100±0.0 76.3±3.2 100±0.0
PL 31.7±1.7 100±0.0 88.1±1.3 100±0.0 27.3±1.8 100±0.0 73.6±1.3 100±0.0 17.3±2.1 100±0.0 84.2±1.7 100±0.0

Φ3 defined by Eq. (3)
BA 46.2±2.1 98.2±0.6 80.1±5.7 100±0.0 45.9±1.8 100±0.0 89.4±4.5 100±0.0 46.3±2.7 99.0±0.1 77.0±2.5 100±0.0
ER 48.3±3.5 100±0.0 73±0.7 100±0.0 42.2±3.2 99.1±0.2 86.1±3.6 100±0.0 51.5±2.4 100±0.0 72.8±2.9 100±0.0
WS 46.7±1.7 98.3±0.7 79.1±2.1 100±0.0 48.2±2.2 99.0±0.2 71.9±3.2 100±0.0 48.6±3.9 100±0.0 71.9±3.0 100±0.0
PL 40.9±1.9 99.1±0.2 66.2±1.6 100±0.0 47.8±3.7 100±0.0 82.8±2.8 100±0.0 46.4±1.6 100±0.0 77.8±2.4 100±0.0

Φ4 defined by Eq. (4)
BA 17.8±1.4 94.8±1.1 62.8±3.6 100±0.0 22.0±1.3 97.4±0.2 52.7±2.9 100±0.0 23.3±3.1 95.0±0.8 58.7±6.3 100±0.0
ER 18.8±8.4 97.7±0.4 66.6±3.5 100±0.0 22.8±1.5 98.0±0.1 65.0±3.1 100±0.0 25.2±2.0 97.1±1.1 72.9±4.1 100±0.0
WS 22.9±5.3 97.1±0.6 63.9±2.7 100±0.0 24.9±2.1 96.6±0.3 71.3±2.6 100±0.0 26.8±2.1 97.2±0.5 67.3±2.9 100±0.0
PL 30.9±2.1 96.2±1.3 72.1±1.9 100±0.0 29.4±2.3 98.2±0.2 73.1±2.1 99.1±0.2 29.1±3.1 98.2±0.2 73.2±2.3 100±0.0

23

Under review as submission to TMLR

Table 5: Classification accuracy (%) of the classification task defined by Eq. (5) on synthetic datasets
generated using four graph models: Barabási–Albert (BA), Erdős–Rényi (ER), Watts–Strogatz (WS), and
Power-Law (PL) Cluster. Bold indicates the best result per graph model within each GNN architecture,
while underlining highlights the overall best performance.

Φ5 defined by Eq. (5)
BA ER WS PL

GCN
F-0 20.2±3.4 21.1±4.1 19.8±2.7 20.8±2.3
F-C 99.2±0.1 98.3±0.2 100±0.0 89.9±0.2
R-6 73.4±4.7 86.9±2.9 70.1±3.9 55.3±2.4
T-6 86.2±2.3 82.8±3.4 85.3±2.1 90.2±1.1
T-10 91.9±1.1 90.7±1.3 91.3±1.4 99.2±0.3
T-20 98.1±0.2 96.4±0.7 100±0.0 100 ±0.0

GAT
F-0 23.1±3.2 29.2±3.1 27.4±1.6 17.7±1.9
F-C 89.9±0.4 96.5±0.2 100±0.0 96.6±0.4
R-6 48.8±3.1 77.8±1.4 72.2±1.6 64.3±2.7
T-6 84.9±2.6 85.2±1.8 88.3±2.0 90.1±1.7
T-10 94.1±1.5 92.8±1.3 88.9±1.6 97.8±0.3
T-20 99.2±0.2 96.7±0.2 100±0.0 100±0.0

GraphSAGE
F-0 20.7±2.0 18.3±2.6 27.2±1.4 23.1±1.5
F-C 100±0.0 97.2±0.6 100±0.0 100±0.0
R-6 50.8±2.6 84.6±2.9 73.8±3.1 68.8±2.0
T-6 90.4±2.5 91.1±3.1 90.3±2.8 90.0±1.1
T-10 93.0±1.2 92.8±2.7 94.9±0.7 89.7±0.2
T-20 99.2±0.2 93.4±1.4 100±0.0 100±0.0

Table 6: Classification accuracy (%) of the count-based learning problem on synthetic datasets generated
using four graph models: Barabási–Albert (BA), Erdős–Rényi (ER), Watts–Strogatz (WS), and Power-
Law (PL) Cluster. Bold indicates the best result per graph model within each GNN architecture, while
underlining highlights the overall best performance.

Φ6 (the count-based problem)
BA ER WS PL

GCN
F-0 45.3±1.7 50.1±3.3 44.7±1.9 78.3±3.5
F-C 100±0.0 100±0.0 100±0.0 100±0.0
R-6 78.3±2.9 74.8±1.8 61.7±2.0 93.3±2.1
T-6 96.7±1.1 100±0.0 100±0.0 100±0.0

GAT
F-0 44.7±2.6 50.3±1.4 43.3±1.9 48.3±1.5
F-C 100±0.0 100±0.0 98.3±0.5 98.3±0.4
R-6 67.5±4.4 82.5±2.1 78.3±0.9 86.7±1.5
T-6 96.7±1.2 100±0.0 100±0.0 100±0.0

GraphSAGE
F-0 43.3±1.7 45.0±1.3 44.8±1.4 43.3±2.8
F-C 98.3±0.3 100±0.0 100±0.0 98.3±0.2
R-6 81.7±3.5 77.5±1.7 95±1.2 93.3±1.5
T-6 98.4±1.3 100±0.0 100±0.0 100±0.0

24

Under review as submission to TMLR

Table 7: Classification accuracy (%) on real-world datasets using GCN, GAT, and GraphSAGE architectures.
Results are reported for our target-aware feature ranking method (T-6) and its universal variant (U) which
is jointly trained on graphs from multiple domains. Values marked with ✓ indicate the highest accuracy for
each dataset and architecture.

MUTAG MSRC9 PTCMM PTCFR BZR COX2 DHFR Proteins NCI1
GCN

TA 90.5✓ 96.3✓ 65.0 67.5 86.9 82.2✓ 85.9✓ 80.0✓ 68.0✓
U 85.7 89.7 73.3✓ 70.0✓ 92.5✓ 80.0 76.2 65.0 63.1

GAT
TA 88.9✓ 96.2✓ 67.6✓ 70.0✓ 89.4✓ 84.5✓ 75.3✓ 74.5✓ 64.2✓
U 71.4 88.5 61.7 55.0 75.0 72.2 60.0 65.2 59.7

GraphSAGE
TA 90.4✓ 95.0✓ 64.1✓ 65.0✓ 95.0✓ 85.5✓ 79.6 74.0✓ 75.1✓
U 83.3 89.7 57.7 62.5 82.5 78.7 83.7✓ 67.0 68.2

25

	Introduction
	Related Work CQbo
	The Method
	Candidate Features
	Step 1: Training the FR-GNN Model
	Step 2: Training the GC-GNN Model

	Experimental Evaluation
	Datasets
	Experimental Setting
	Experimental Results
	Further Results on the Real-World Data
	Further Results on the Synthetic Data

	Concluding Remarks
	Appendix: Figures
	Appendix: Tables

