
Accepted as a workshop paper at ICLR Neural Compression Workshop 2021

UNIVERSAL RATE-DISTORTION-PERCEPTION REPRE-
SENTATIONS FOR LOSSY COMPRESSION

George Zhang
University of Toronto
gq.zhang@mail.utoronto.ca

Jun Chen
McMaster University
chenjun@mcmaster.ca

Ashish Khisti
University of Toronto
akhisti@ece.utoronto.ca

ABSTRACT

In the context of lossy compression, Blau & Michaeli (2019) adopt a mathematical
notion of perceptual quality and define the rate-distortion-perception function,
generalizing the classical rate-distortion tradeoff. We consider the notion of (ap-
proximately) universal representations in which one may fix an encoder and vary
the decoder to (approximately) achieve any point along the perception-distortion
tradeoff. We show that the penalty for fixing the encoder is zero in the Gaussian
case, and give bounds in the case of arbitrary distributions, under MSE distortion
and W 2

2 (·, ·) perception losses. In principle, a small penalty refutes the need to
design an end-to-end system for each particular objective. We provide experimental
results on MNIST and SVHN to suggest that there exist practical constructions that
suffer only a small penalty, i.e. machine learning models learn representation maps
which are approximately universal within their operational capacities.

1 INTRODUCTION

A lossy compression system consists of an encoder producing a low-rate representation of a source
and a decoder reconstructing an approximation. Unlike lossless compression, the decoder in a lossy
compression system has flexibility in how it would like to reconstruct the source. It is conventional to
optimize for the reconstruction minimizing some distortion measure between the original and the
reconstruction such as mean squared error, PSNR or SSIM/MS-SSIM (Wang et al., 2003; 2004).
Accordingly, lossy compression algorithms are analyzed through rate-distortion theory, wherein the
objective is to minimize the amount of distortion for a given rate. However, low distortion is not
necessarily synonymous with high perceptual quality; indeed, deep learning based image compression
has inspired works in which authors have noted that increased perceptual quality may come at the
cost of increased distortion (Blau & Michaeli, 2018; Agustsson et al., 2019). This culminated in the
work of (Blau & Michaeli, 2019) who propose the rate-distortion-perception theoretical framework.

The main idea was to introduce a third perception axis which more closely mimics what humans
would deem to be visually pleasing. Unlike distortion, judgement of perceptual quality is inherently
no-reference; indeed, the mathematical proxy for perceptual quality is defined by a constraint between
the source and reconstruction distributions. Leveraging generative adversarial networks (Goodfellow
et al., 2014) in the training procedure has made such a task possible for complex data-driven settings,
with efficacy even at very low rates (Tschannen et al., 2018). Naturally, this induces a tradeoff
between optimizing for perceptual quality and optimizing for distortion. But in designing a lossy
compression system, one may wonder where exactly this tradeoff lies: is the objective tightly coupled
with optimizing the representations generated by the encoder, or can most of this tradeoff be achieved
by simply changing the decoding scheme?

Our contributions are as follows. We prove that there is no loss in fixing the representation map
across the perception-distortion tradeoff for the Gaussian distribution, then provide a bound on the
penalty incurred for arbitrary source distributions. We perform experiments on MNIST and SVHN to
demonstrate that learned representation maps can be approximately universal within their operational

1



Accepted as a workshop paper at ICLR Neural Compression Workshop 2021

(a)

0 0.5 1 1.5 2
Distortion Loss (MSE)

0

0.2

0.4

0.6

0.8

1

P
er

ce
p
ti
on

L
os

s
(W

2 2
)

R = 0:00
R = 0:08
R = 0:25
R = 0:60
R = 2:00

Rate (bits)

(b)
Figure 1: (a) R(D,P ) for a standard Gaussian source X . (b) Perception-distortion cross-sections
across multiple rates. The tension between perception and distortion is most visible at low rates.
Perception-distortion universality of Gaussian sources implies the existence of a universal representa-
tion which can be decoded to achieve any point along a perception-distortion curve.

rate-distortion-perception tradeoffs. This has important practical implications as flexibility is a highly
desirable property in designing representations. It may not be plausible to design an entire end-to-end
system for each potential objective in advance; our results show that representations from universal
encoders are reusable across a family of lossy compression objectives without much loss.

2 UNIVERSAL REPRESENTATIONS

The process of quantizing a source X ∼ pX leads to imperfect reconstruction as measured by some
distortion function ∆ : R → R. Minimizing an appropriate choice of ∆(·, ·) should cause the
output to look more like the input as perceived by humans. This methodology however does not
explicitly capture how the distribution of the reconstructions compares to the distribution of the
source, which Blau & Michaeli (2019) argue is a better proxy for what humans would perceive to
be natural (disregarding the original source image). Accordingly, the conventional rate-distortion
function is augmented with some ”distance” between probability measures d(·, ·) as follows1.
Definition 1. The information rate-distortion-perception function for a source X ∼ pX is defined as

R(D,P ) = min
pX̂|X

I(X; X̂)

s.t. E[∆(X, X̂)] ≤ D, d(pX , pX̂) ≤ P.
Popular choices for d(·, ·) include Wasserstein distances due to their empirical success, which we will
assume henceforth unless otherwise stated. We first give a solution to the Gaussian case to provide an
example of a distribution with the perception-distortion universality property.
Theorem 1. For X ∼ N (µX , σ

2
X), the rate-distortion-perception function under squared error

distortion and squared W2 distance is achieved by some X̂ jointly Gaussian with X and is given by

R(D,P ) =


1
2 log

σ2
X(σX−

√
P )2

σ2
X(σX−

√
P )2−(

σ2
X

+(σX−
√
P )2−D

2 )2

if
√
P < σX −

√
|σ2
X −D|,

max{ 12 log
σ2
X

D , 0} if
√
P ≥ σX −

√
|σ2
X −D|.

Due to joint Gaussianity of (X, X̂), this expression admits the equivalent form

R(D,P ) =
1

2
log

σ2
X

E[(X − E[X|X̂])2]
, (1)

which describes the rate-distortion-perception function in terms of the minimum mean squared error
estimator for X given X̂ . In principle, different (D,P ) pairs are associated with different encoding
schemes for X . One may use (1) to show that different (D,P ) pairs associated with the same R can
be achieved by linearly scaling the representation X̂ produced by a single encoder. This representation

1We assume some rudimentary properties about ∆(·, ·) and d(·, ·) given in the appendix.
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Figure 2: Schematic of the universal model. A single encoder f is trained with an initial tradeoff
λ and has weights frozen. Subsequently other decoders {gi} are trained for different λi using the
representations z produced by f . Separate critic networks {hi} are trained along with each decoder
to promote perceptual quality. The top decoder places most weight on distortion loss whereas the
bottom decoder places most weight on perception loss. This reduces the blurriness but produces a
less faithful reconstruction of the original. Perception losses are estimated using the critics {hi} by
replacing the expectations in Equation (2) with test samples.

is universal in the sense that it can achieve optimality across all perception and distortion tradeoffs
for a given rate; to move between the points, it is sufficient to modify only the decoding scheme.

It turns out that general distributions satisfy an approximate version of universality. Let X ∼ pX be
a source and X̂(1) be an optimal representation in the conventional rate-distortion framework (i.e.,
I(X; X̂(1)) = R(D1, P1), E[(X − X̂(1))2] ≤ D1 for some D1 ∈ (0, σ2

X) and P1 =∞).

Theorem 2. (Approximate universality for general sources) Under MSE and W 2
2 (·, ·), X̂(1) can

meet distortion constraint D2 = 2D1 and any perception constraint P2 via suitable decoding.

This result implies that the optimal representation in the conventional rate-distortion sense can be
transformed to meet any perception constraint possibly with a distortion penalty of no more than
2D1 −D2. It is worth noting that this special case gives rise to Theorem 2 (R(D,∞) ≥ R(2D, 0))
in Blau & Michaeli (2019). Namely, the numerical connection between R(D,∞) and R(2D, 0) is a
manifestation of the existence of approximately universal representations.

3 EXPERIMENTAL RESULTS

The rate-distortion-perception tradeoff was observed in the context of GAN-enhanced image compres-
sion (Blau & Michaeli, 2019), while training an entire model for each desired setting over distortion
and perception. In practice, it is undesirable to develop an entire system from scratch for each
objective. Our theoretical results have already established a bound on the loss of optimality for using
universal representations. We provide experimental evidence to show that the loss is small in practice.

Concretely, in an end-to-end model the encoder and decoder are trained jointly for an objective
so as to utilize the flexibility in learning a representation map whereas in a universal model, the
representation map is fixed so only the decoder can be trained. The encoder for a universal model
may be re-used across many models and be designed separately from the decoders; we refer to it as a
universal encoder. The architecture used in the experiments is a stochastic autoencoder augmented
with a Wasserstein GAN and follows closely the design of (Blau & Michaeli, 2019).

The task of generating both the end-to-end and universal models is broken into two stages. The initial
stage trains an end-to-end model, consisting of an encoder f producing latent representation z = f(x)
and decoder g producing reconstruction x̂ = g(z). Here f incorporates both the deterministic
quantized encoding step and the addition of stochastic noise u to support high perceptual quality.
In practice, the quantized versions of the representations are used for compression then u can be
added before decoding. For the distortion metric we use MSE and for the perception metric we use
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Figure 3: (a) MNIST. (b) SVHN. Rate-distortion-perception tradeoffs along various rates. Points
with black outline are losses reported for the end-to-end encoder-decoder pairs trained jointly for a
particular perception-distortion objective. The other points are the losses for universal models, in
which decoders are trained over a frozen encoder optimized for small P (MNIST: λ = 0.015, SVHN:
λ = 0.002). Universal model performance is very close to performance of end-to-end models across
all tradeoffs {λi}. Example images are provided in the supplementary.

Wasserstein-1 distance. The objective is a weighted sum between the terms given by

L = E[‖X − X̂‖2] + λW1(pX , pX̂),

for some initial λ to be chosen. W1 is estimated using the Kantorovich-Rubinstein dual form
W1(pX , pX̂) = max

h∈F
E[h(X)]− E[h(g(f(X)))]. (2)

Here, F is the set of all bounded 1-Lipschitz functions. In practice, we use a critic network as h and
the Lipschitz condition is approximated with a gradient penalty (Gulrajani et al., 2017). Optimization
alternates between minimizing f, g with h fixed and maximizing h with f, g fixed. In essence, g is
optimized for both low distortion and high perception, so it acts as both a decoder and a generator.

Afterwards, the encoders of end-to-end models can be used to construct universal models. To do the
latter, we freeze the parameters of f and introduce a new decoder g1 and critic h1 trained to minimize

L1 = E[‖X − X̂1‖2] + λ1W1(pX , pX̂1
),

where λ1 is a different tradeoff parameter and pX̂1
is the distribution induced by pushing X through

g1 ◦ f . The rest of the training procedure follows that of the first stage. This is repeated over many
different parameters {λi} to generate a tradeoff curve.

Figure 3 shows rate-distortion-perception curves at multiple rates on MNIST and SVHN. Note that
the rate for each individual curve is fixed through using the same quantizer across all models. The
rates are chosen to be low so that the tension between distortion and perception is most visible. Points
outlined in black are losses for end-to-end models, while the other points correspond to the universal
models sharing an encoder. The universal models are able to achieve a tradeoff which is very close to
the end-to-end models (with outputs that are visually comparable).

For any fixed rate, decreasing the perception loss P reduces the output blur, but the reconstruction is
less faithful to the original input. As noted by (Blau & Michaeli, 2019), this is especially evident at
very low rates in which the compression system appears to act as a generative model. However, this
does not necessarily come at the expense of the representation map learned by the encoder, i.e. the
embeddings generated by an encoder trained for small P can also be used to produce a low-distortion
reconstruction by training a new decoder. Conversely, training a decoder to produce reconstructions
with high perceptual quality on top of an encoder trained only for distortion loss is also possible as
the decoder is sufficiently expressive to act purely as a generative model.

4 DISCUSSION

The use of deep generative models in data compression has highlighted the tradeoff between optimiz-
ing for low distortion and high perceptual quality. With a suitable encoding scheme, we have shown
that modifying the decoder is sufficient to achieve this tradeoff in practice. Future directions include
one-shot theoretical analysis, and employing the scheme to high-resolution images and videos.
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A THEORETICAL RESULTS

Definition 1. Let ∆(·, ·) be a non-negative distortion measure satisfying ∆(x, y) = 0 if and only
if x = y, and d(·, ·) be a (non-negative) divergence between probability measures, likewise with
d(p, q) = 0 if and only if p = q. The information rate-distortion-perception function for a source
X ∼ pX is defined as

R(D,P ) = min
pX̂|X

I(X; X̂)

s.t. E[∆(X, X̂)] ≤ D, d(pX , pX̂) ≤ P.
We let R(D) = R(D,∞) denote the conventional rate-distortion function. We assume the use
of MSE distortion loss and squared Wasserstein-2 perception loss in the theoretical results unless
otherwise stated. Recall that

W 2
2 (pX , pX̂) = inf E[‖X − X̂‖2],

where the infimum is over all joint distributions of (X, X̂) with marginals pX and pX̂ . When pX and
pX̂ are both Gaussian, W 2

2 (pX , pX̂) = (µX − µX̂)2 + (σX − σX̂)2.

A.1 PROOF OF THEOREM 1

Theorem 1. For X ∼ N (µX , σ
2
X), the rate-distortion-perception function under squared error

distortion and squared W2 distance is achieved by some X̂ jointly Gaussian with X and is given by

R(D,P ) =


1
2 log

σ2
X(σX−

√
P )2

σ2
X(σX−

√
P )2−(

σ2
X

+(σX−
√
P )2−D

2 )2

if
√
P < σX −

√
|σ2
X −D|,

max{ 12 log
σ2
X

D , 0} if
√
P ≥ σX −

√
|σ2
X −D|.

We first restate a useful result from estimation theory. Let X̂ be a random variable with E[X̂] = µX̂ ,
Var(X̂) = σ2

X̂
and Cov(X, X̂) = θ. Let X̂G be a random variable jointly Gaussian with X with the

same first and second order statistics as X̂ .
Lemma 1. Given µX̂ , σ2

X̂
, and θ, we have that

E[(X − E[X|X̂G])2] ≥ E[(X − E[X|X̂])2].

Proof of Theorem 1. We shall show that there is no loss of optimality in assuming that X̂ is jointly
Gaussian with X . It is clear that E[(X − X̂)2] = E[(X − X̂G)2], as the first and second order
statistics are all given. Moreover, since every coupling of pX and pX̂ induces a Gaussian coupling of
pX and pX̂G with the same covariance, it follows that

W 2
2 (pX , pX̂) ≥W 2

2 (pX , pX̂G).

Finally, we have

I(X; X̂) = h(X)− h(X|X̂)

≥ h(X)− h(X − E[X|X̂])

(a)
≥ h(X)− 1

2
log(2πeE[(X − E[X|X̂])2])

(b)
≥ h(X)− 1

2
log(2πeE[(X − E[X|X̂G])2])

= h(X)− h(X − E[X|X̂G]))

(c)
= h(X)− h(X|X̂G)

= I(X; X̂G),

6
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where (a) is because the Gaussian distribution maximizes differential entropy for a given variance, (b)
follows from Lemma 1 and (c) is because the estimation error is independent of X̂G. Thus, it suffices
to solve the problem

R(D,P ) = min
pX̂G|X

I(X; X̂G)

s.t. E[(X − X̂G)2] ≤ D, W 2
2 (pX , pX̂G) ≤ P.

Note that
E[(X − X̂G)2] = (µX − µX̂)2 + σ2

X + σ2
X̂
− 2θ,

so there is no loss of optimality in assuming µX̂ = µX . Accordingly,

I(X; X̂G) =
1

2
log

σ2
Xσ

2
X̂

σ2
Xσ

2
X̂
− θ2

,

W 2
2 (pX , pX̂G) = (σX − σX̂)2.

When
√
P < σX −

√
|σ2
X −D|, both P and D are active, and consequently we have σ2

X̂
=

(σX −
√
P )2 and θ =

σ2
X+σ2

X̂
−D

2 . Noting that the other case is simply the solution to R(D), this
concludes the proof.

Remark. The proof of Theorem 1 can be easily modified to handle to the case d(pX , pX̂) =

KL(pX , pX̂), where KL(pX , pX̂) =
∫
pX̂(x) log

pX̂(x)

pX(x)dx is the KL-divergence between pX and pX̂ .
Note that given (µX̂ , σ

2
X̂

), KL(pX , pX̂) is minimized when pX̂ is a Gaussian distribution. Given pX ,
one may see that there is a one-to-one correspondence between

KL(pX , pX̂G) =
σ2
X̂
− σ2

X

2σ2
X

+
1

2
log

σ2
X

σ2
X̂

,

W 2
2 (pX , pX̂G) = (σX − σX̂)2

which implies the rate-distortion-perception functions under KL(pX , ·) and W 2
2 (pX , ·) also share a

one-to-one correspondence in P .
Remark. One may see that the Gaussian distribution is universally representable as follows. Let X̂1

and X̂2 be the induced outputs associated with (D1, P1) and (D2, P2), respectively. Note that we
have equality of first moments, E[X] = E[E[X|X̂1]] = E[E[X|X̂2]]. Since X is jointly Gaussian
with X̂1, it follows from standard facts that (a) E[X|X̂1] is independent of the estimation error
X − E[X|X̂1], and (b) E[X|X̂1] is a linear function of X̂1 (and thus is itself Gaussian). The same is
true for X̂2. Furthermore, after simplifying R(D1, P1) = R(D2, P2) we get that

E[(X − E[X|X̂1])2] = E[(X − E[X|X̂2])2]. (3)

One may expand (3) and apply (a) to obtain equality of the cross terms, i.e. E[XE[X|X̂1]] =

E[XE[X|X̂2]]. Plugging this back into (3) shows that E[E[X|X̂1]2] = E[E[X|X̂2]2]. Since Gaus-
sians are uniquely parameterized by their first and second moments, (X,E[X|X̂1]) and (X,E[X|X̂2])

must be identically distributed. From (b), E[X|X̂1] and E[X|X̂2] are linear in X̂1 and X̂2, respec-
tively, so X̂1 and X̂2 must themselves be linearly related.

A.2 PROOF OF THEOREM 2

Recall thatX ∼ pX is an information source and X̂(1) is an optimal representation in the conventional
rate-distortion framework (i.e., I(X; X̂(1)) = R(D1, P1) and E[(X − X̂(1))2] ≤ D1 for some
D1 ∈ (0, σ2

X) and P1 =∞).
Theorem 2. (Approximate universality for general sources) Via suitable decoding, representation
X̂(1) can meet distortion constraint D2 = 2D1 and any perception constraint P2.

7
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In fact, we first prove the following more general result. Representation X̂(1) can meet distortion
constraint D2 + δD and perception constraint P2 for any (D2, P2), where δD = D1 − D2 +
infp

X̂(2) :d(pX ,pX̂(2) )≤P2
W 2

2 (pX̂(1) , pX̂(2)).

Proof of Theorem 2. Let X̂(2) be an arbitrary representation jointly distributed with (X, X̂(1)) such
that X − X̂(1) − X̂(2) form a Markov chain and E[(X̂(1) − X̂(2))2] = W 2

2 (pX̂(1) , pX̂(2)). Note that
X̂(2) can be obtained from X̂(1) via a determinstic/stochastic transformation. We have

E[(X − X̂(2))2]
(a)
= E[(X − X̂(1))2] + E[(X̂(1) − X̃(2))2]

≤ D1 +W 2
2 (pX̂(1) , pX̂(2)),

where (a) is because X̂(1) = E[X|X̂(1)] almost surely and the MMSE estimation error is orthogonal
to any function of X̂(1). Minimizing W 2

2 (pX̂(1) , pX̂(2)) subject to the constraint d(pX , pX̂(2)) ≤ P2

finishes the proof.

Observe that

inf
p
X̂(2) :d(pX ,pX̂(2) )≤P2

W 2
2 (pX̂(1) , pX̂(2)) ≤W 2

2 (pX̂(1) , pX) ≤ D1,

because we may choose X(2) to have the same distribution as X . This yields the original statement.

B EXPERIMENTAL DETAILS

Training lasted 30 epochs for MNIST and 80 epochs for SVHN, and alternates between training the
encoder and decoder with the critic fixed and training the critic with the encoder and decode fixed.
The learning rate was decayed by a factor of 5 after 20 epochs for MNIST, and likewise after 25
epochs for SVHN. All models were trained with the Adam optimizer. The batch size used was 64.
Training a single model takes about 30 minutes and 100 minutes for MNIST and SVHN, respectively.
All training was performed on an RTX 2070 GPU.

The architectures used for the experiments are given as follows. Here each row represents a group of
layers. Noise is added for stochasticity after the output of the encoder. d denotes the latent dimension
and L the number of quantization levels per dimension, with R = d logL used to upper bound the
true rate (for MNIST, we found that this was within 15% of optimality). The quantizer performs hard
nearest-neighbour quantization on the forward pass and uses a soft relaxation given by Equation (3)
in (Mentzer et al., 2018) during the backward pass. The bin centers for quantization are spaced evenly
in [−1, 1] for each dimension. The type of compression systems are denoted by E for end-to-end and
U for (perception-distortion) universal. We found the results to be robust against model architectures
when equipped with hyperparameters with good training performance. Moreover, we found that
using universal encoders trained with larger λ performed best in practice, though using small λ is
nearly as effective also.

B.1 MNIST

The universality experiments build off of the encoders produced by the end-to-end experiments of the
same rate with λ = 0.015.

Table 1: Network and quantizer settings for MNIST for models shown in Figure 3(a).

System R d L
E+U 4.75 3 3
E+U 6 3 4
E+U 8 4 4
E+U 10 5 4

8
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Table 2: The tradeoff coefficients used across all rates in each experiment for MNIST.

System Tradeoff coefficients
E (Figure 3(a)) λ = 0, 0.0033, 0.005, 0.0066, 0.008,

0.01, 0.011, 0.013, 0.015
U (Figure 3(a)) λi = 0, 0.0025, 0.004, 0.005, 0.006,

0.008, 0.009, 0.01, 0.011, 0.013

Table 3: Model architectures for MNIST. l-ReLU denotes Leaky ReLU.

Encoder
Input

Flatten
Linear, BatchNorm2D, l-ReLU
Linear, BatchNorm2D, l-ReLU
Linear, BatchNorm2D, l-ReLU
Linear, BatchNorm2D, l-ReLU

Linear, BatchNorm2D, Tanh
Quantizer

Decoder
Input

Linear, BatchNorm1D, l-ReLU
Linear, BatchNorm1D, l-ReLU

Unflatten
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, Sigmoid

Critic
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Linear

Table 4: Hyperparameters used for training MNIST models across all rates, including for univer-
sal/refining encoders. α is the learning rate, (β1, β2) are the parameters for Adam, and λGP is the
gradient penalty coefficient.

α β1 β2 λGP
Encoder 10−2 0.5 0.9 10
Decoder 10−2 0.5 0.9 10

Critic 2× 10−4 0.5 0.9 10

B.2 SVHN

The experiments are similar to MNIST, with the main difference being in the encoder architecture.
The universality experiments build off of the encoders produced by the end-to-end experiments of the
same rate with λ = 0.002.

Table 5: Network and quantizer settings for SVHN for models shown in Figure 3(b).

System R d L
E+U 30 10 8
E+U 45 15 8
E+U 60 20 8

Table 6: The tradeoff coefficients used across all rates in each experiment for SVHN.

System Tradeoff coefficients
E (Figure 3(b)) λ = 0, 0.00025, 0.0005, 0.00075, 0.001,

0.00125, 0.0015, 0.002
U (Figure 3(b)) λi = 0, 0.0003, 0.0005, 0.0008, 0.001,

0.0012, 0.0017
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Table 7: Model architectures for SVHN.

Encoder
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Flatten
Linear, Tanh

Quantizer

Decoder
Input

Linear, BatchNorm1D, l-ReLU
Linear, BatchNorm1D, l-ReLU

Unflatten
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, l-ReLU
ConvT2D, BatchNorm2D, Sigmoid

Critic
Input

Conv2D, l-ReLU
Conv2D, l-ReLU
Conv2D, l-ReLU

Linear

Table 8: Hyperparameters used for training. α is the learning rate, (β1, β2) are the parameters for
Adam, and λGP is the gradient penalty coefficient.

α β1 β2 λGP
Encoder 10−4 0.5 0.999 10
Decoder 10−4 0.5 0.999 10

Critic 10−4 0.5 0.999 10

B.3 EXPERIMENTAL SAMPLES

As the emphasis on perception loss λi increases, the output blurriness is reduced, but the reconstruc-
tion is less faithful to the original (in extreme cases even changing the identity of the digit). The
visual quality of both the end-to-end and universal models are on average comparable for each λi.
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Figure 4: Outputs of selected universal and end-to-end models on MNIST (R = 4.75).
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Figure 5: Outputs of selected universal and end-to-end models on SVHN (R = 60).
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