

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEMORY-DRIVEN SELF-IMPROVEMENT FOR DECISION MAKING WITH LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have emerged as effective action policies for sequential decision-making (SDM) tasks due to their extensive prior knowledge. However, this broad yet general knowledge is often insufficient for specific decision-making tasks with limited task-related data, making it challenging to efficiently adapt LLMs to specific SDM tasks. To address this challenge, we propose a memory-driven self-improvement framework that combines LLM general prior knowledge with a compact memory of domain-specific experiences. Memory retains past interactions and associated Q-values, thereby capturing decision-relevant knowledge that facilitates accurate value estimation and informs the LLM prior refinement. The refined LLM prior, in turn, generates higher-reward trajectories that further enrich memory, forming a natural self-improvement framework where memory and LLM prior mutually reinforce each other. Experiments show that our memory-driven approach significantly outperforms both traditional RL and LLM-based baselines, e.g., improving performance by over 40% on in-distribution tasks and over 75% when generalized to unseen tasks in ALFWorld.

1 INTRODUCTION

Sequential decision-making (SDM) has a wide range of real-world applications, including robotics Polydoros & Nalpantidis (2017); Brunke et al. (2022); Rana et al. (2023), autonomous driving Naranjo et al. (2005); Song et al. (2022), and human–AI interaction Granter et al. (2017); Li et al. (2019); McTear (2022). Natural language plays a crucial role in many SDM tasks, either in purely language-based settings Granter et al. (2017); Jannala (2025); Jin et al. (2024) or as a tool for understanding and describing the environment Ma et al. (2024a); Wang et al. (2025). Large language models (LLMs), with their broad prior knowledge, demonstrate strong zero-shot reasoning capabilities, making them promising candidates for action policies in such text-based SDM tasks. However, when deployed in specialized domains, their general knowledge is often insufficient for reliable decision-making Yan et al. (2025); Jannala (2025).

To adapt LLM action policies into the target domains, three main approaches have been explored. The first is prompt-based methods, which utilize human-crafted prompts Yao et al. (2022; 2024) or incorporate historical interactions Shinn et al. (2024); Christianos et al. (2023) to provide more task-specific information. However, these prompt-engineering methods heavily depend on the quality of the prompts and the reasoning capabilities of the LLMs. The second approach is fine-tuning, which includes supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT). SFT typically requires substantial high-quality decision-making data Zhou et al. (2024), while on-policy RLFT methods Carta et al. (2023); Tan et al. (2024) suffer from poor sample efficiency Abdolmaleki et al. (2018); Chen et al. (2023). The third pipeline performs RL with fixed LLM priors, using LLMs either to narrow the action search space Yan et al. (2025) or to design reward functions Kwon et al. (2023); Klissarov et al. (2023) that promote efficient exploration. However, these methods remain highly sensitive to the capability of the LLM priors in fulfilling such roles.

Considering these limitations, we propose a **memory-driven self-improvement** framework for text-based SDM. To combine the benefits of LLM general knowledge with task-specific interactions, a memory-driven action policy with LLM prior is designed, where the LLM prior generates action candidates, and memory-driven value estimation guides more precise action posterior selection. In practice, the framework forms a closed loop with two mutually reinforcing roles as illustrated in Figure 1: **Role 1: Memory-driven value estimation**, which converts informative interactions into

Figure 1: Motivation and overview of our memory-driven self-improvement framework for text-based SDM. Left: existing approaches (prompt-engineering, fine-tuning, and RL with LLM priors) struggle under sparse signals and domain-specific data. Right: Our framework introduces two complementary roles: (1) memory-driven value estimation, which enables efficient exploration and (2) LLM prior refinement, which biases action generation toward high-quality candidates; together forming a self-improvement loop that resists scarce experience and enables efficient adaptation.

compact memory representations. By retrieving semantically similar past experiences, the model can make non-parametric value estimates for action candidates and enable informed exploration choices. **Role 2: Memory-driven LLM prior refinement**, which periodically updates the LLM’s decision prior using historical state-action pairs and their Q-values stored in memory. This refinement biases the LLM prior toward generating high-quality actions, effectively narrowing the search space and improving the convergence rate. Overall, the informative memory table provides a reliable foundation for LLM prior refinement, while the refined LLM prior leads to higher-quality actions that further enrich the memory, thus naturally constructing a self-improvement framework. This mutual reinforcement enables scalable and efficient adaptation to target SDM tasks.

In summary, our main contributions are as follows:

1. We propose a **memory-driven self-improvement framework** for text-based SDMs and leverage the Expectation-Maximization (EM) to provide a unified formulation and practical implementation.
2. We introduce a **memory-driven value estimation** approach that utilizes LLMs’ representation capabilities and retrieval techniques to achieve meaningful, non-parametric Q-value estimation.
3. We present a **memory-driven policy optimization** method that defines a powerful action policy as the combination of LLM priors and memory-based Q-estimation, and uses experiences stored in memory to refine the LLM prior.
4. Experimental results on ALFWorld and Overcooked demonstrate that memory-driven value estimation achieves superior sample efficiency, while LLM prior refinement proves crucial for further expanding the capabilities of LLM-based action policies.

2 PRELIMINARY

Textual Markov Decision Processes. A Markov Decision Process (MDP) is defined as $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$, where \mathcal{S} is the state space, \mathcal{A} is the action space, $\mathcal{P} : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$ is the transition function, $\mathcal{R} : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is the reward function, and $\gamma \in (0, 1)$ is the discount factor. Particularly, note that r_t denotes the reward received at time step t . In this work, we focus on textual MDP, where both states and actions are represented in natural language, i.e., $\mathcal{S}, \mathcal{A} \subseteq \mathcal{V}^*$, with \mathcal{V} denoting the vocabulary. Textual MDPs present unique challenges, as the state and action spaces can be combinatorially large, and policies must operate over inherently discrete, structured, and semantically rich representations of language.

Q-learning for MDPs A prominent paradigm for solving MDPs with discrete action spaces is Q-learning, where the Q-function $Q(s, a)$ is learned to rank and select actions. For each state-action

pair (s, a) , the Q-function, defined as $Q(s, a) = \mathbb{E}_\pi \left[\sum_{i \geq t} \gamma^{i-t} r_i \mid s, a \right]$, represents the expected cumulative reward obtained by starting from (s, a) and following policy π thereafter. The DQN algorithm (Mnih, 2013) is a classic instance of Q-learning that maps state-action embeddings to scalar Q-values and trains the Q-network via temporal-difference (TD) learning. Blundell et al. (2016) introduces Episodic Control(EC), a memory-based Q-learning method that leverages retrieval techniques and informative state representations to enable non-parametric Q-value estimation.

Control as Inference. Control-as-Inference framework (Levine, 2018) formulates the solution of MDPs from a probabilistic inference perspective. An optimality random variable \mathcal{O} is introduced, where $\mathcal{O} = 1$ indicates achieving a successful trajectory and $\mathcal{O} = 0$ otherwise. The objective is to maximize the likelihood of achieving a successful trajectory from each state s , which is identical to maximizing the evidence lower bound (ELBO):

$$\log p(\mathcal{O}=1|s) \geq \mathbb{E}_{q(a|s)}[\log p(\mathcal{O}=1|s, a)] - D_{\text{KL}}(q(a|s) \| p(a|s)) \triangleq \text{ELBO}, \quad (1)$$

where $p(a|s)$ is the prior action distribution, $q(a|s)$ is the variational distribution, and $p(\mathcal{O} = 1|s, a)$ is the likelihood that the trajectory will achieve optimality given the current state-action pair (s, a) . Abdolmaleki et al. (2018) assume that the optimality likelihood is proportional to Q-value: $p(\mathcal{O} = 1|s, a) \propto \exp(Q(s, a)/\tau)$. This probabilistic formulation offers both conceptual flexibility and methodological richness, while also naturally accommodating the integration of LLMs as sources of prior knowledge (Yan et al., 2025).

3 MEMORY-DRIVEN VALUE ESTIMATION WITH LLM PRIORS

In this section, we present a memory-driven approach to Q-value estimation that leverages LLM-based semantic representations. By explicitly exploiting LLM representations through retrieval techniques, our method builds upon the well-established episodic control (EC) (Blundell et al., 2016) to enable non-parametric Q-value estimation. Specifically, our method maintains a memory table \mathcal{M} storing Q-values for visited state-action pairs, which is continuously updated during online exploration. At inference time, actions are selected through memory queries. The framework is thus defined by two core operations: **memory update** and **memory query**.

Memory update. A memory table \mathcal{M} is constructed to store information about previously visited state-action pairs (s, a) . Specifically, it includes the natural language descriptions of (s, a) , the corresponding vectorized embeddings $f(s, a)$, and the associated Q-values $Q(s, a)$. The Q-values stored in memory \mathcal{M} are then updated according to:

$$Q(s_t, a_t) \leftarrow \begin{cases} R_t, & \text{if } (s_t, a_t) \notin \mathcal{M}, \\ \max\{Q(s_t, a_t), R_t\}, & \text{otherwise,} \end{cases} \quad (2)$$

where $R_t = \sum_{i \geq t} \gamma^{i-t} r_i$ represents a Monte Carlo estimate of the cumulative discounted reward (i.e., the return-to-go).

Memory query. Given the memory \mathcal{M} and the current state s_t , the policy is then determined using the kernel-based Q-value estimator \hat{Q} , which is defined as

$$\hat{Q}(s_t, a) = \sum_{i \in \mathcal{N}_M(f(s_t, a))} w_i Q(s^{(i)}, a^{(i)}), \quad w_i = \frac{k(h, h_i)}{\sum_{j \in \mathcal{N}_M(f(s_t, a))} k(h, h_j)}, \quad h = f(s_t, a), \quad h_i = f(s^{(i)}, a^{(i)}), \quad (3)$$

where $\mathcal{N}_M(f(s_t, a))$ denotes the M nearest neighbors of $f(s_t, a)$, and the inverse distance kernel is used with $k(h, h_j) = \frac{1}{\|h - h_j\|_2^2 + \delta}$, which measures similarity in the embedding space. With the estimated Q-values \hat{Q} , action selection can be carried out using the ϵ -greedy strategy, analogous to the approach in DQN (Mnih, 2013).

Figure 2: Results of memory-drive Q-learning on Overcooked. Left: effect of the number of retrieved (s, a) pairs for value estimation; Right: effect of different LLMs on representations.

While conceptually simple, the effectiveness of the proposed memory-driven Q-learning critically depends on the choice of embedding function f . Inspired by the recent success of Retrieval Augmented Generation (RAG) (Wiratunga et al., 2024), which demonstrates the ability of LLMs to yield semantically rich vectorized representations, we leverage LLM-based embeddings for (s, a) pairs to enhance retrieval quality and improve value estimation. Specifically, we adopt the encoder of the LLM to be the embedding function f_{LLM} . The overall memory-driven decision-making procedure with LLM embedding function is summarized in Algorithm 1, referred as Memory-Driven Q-learning(Mem-Q). It is noteworthy that Blundell et al. (2016) proposes a similar approach, episodic control, but it operates based solely on state similarity. This requires maintaining $|\mathcal{A}|$ separate memory tables, one for each feasible action $a \in \mathcal{A}$, thereby restricting the method to small and enumerable action spaces while ignoring semantic similarity between actions.

In Figure 2, we evaluate the Mem-Q in Overcooked (Tan et al., 2024), a textual decision-making task. It shows that our Mem-Q significantly outperforms DQN. The ablation study on the retrieval size M , introduced in Eq. 3, shows that incorporating more similar (s, a) embeddings in the kernel-based Q estimation leads to faster convergence, which may be attributed to the more accurate value estimation using more meaningful representations (Han et al., 2023). Furthermore, larger LLMs, which capture richer semantic structures, consistently yield stronger performance.

4 MEMORY-DRIVEN POLICY OPTIMIZATION WITH LLM PRIORS

The success of memory-driven Q-learning highlights a key insight: combining the capabilities of LLMs with experience storage can substantially enhance the efficiency of RL algorithms. Motivated by this, we propose a **memory-driven action policy** that uses the LLM prior to narrow the action search space, and leverage memory to further refine the LLM prior with domain-specific knowledge, thereby improving sample efficiency.

4.1 MEMORY-DRIVEN POLICY WITH LLM PRIORS

A straightforward approach to incorporating LLMs into the action policy is through a probabilistic inference framework (Li et al., 2024), wherein the policy is cast as the posterior distribution:

$$p_{\theta}(a|s, \mathcal{O} = 1) \propto p(\mathcal{O} = 1|s, a)p_{\text{LLM}_{\theta}}(a|s), \quad (4)$$

where $p_{\text{LLM}_{\theta}}(a|s)$ is the LLM prior parametrized by θ and $p(\mathcal{O} = 1|s, a)$ denotes the likelihood of optimality¹, which can be estimated using Q-value, as described in Eq 3. Therefore, the memory-driven policy can be conducted using self-normalized importance sampling as follows:

- Sample K candidate actions from the LLM prior: $\mathcal{C}^K(s) = \{a_1, \dots, a_K\}$, $a_k \sim p_{\text{LLM}_{\theta}}(\cdot|s)$.
- For each action candidate a_k , approximate the optimality likelihood using the kernel-based Q-value estimator $\widehat{Q}(s, a_i)$ according to Eq 3.
- Select an action via: $a \sim \text{Multinomial} \left(\exp(\widehat{Q}(s, a_1)/\tau) / \sum_k \exp(\widehat{Q}(s, a_k)/\tau) \right)$.

Although conceptually straightforward, this method is sensitive to the specification of the LLM prior p_{θ} . A poorly aligned prior may bias the candidate set toward suboptimal actions, thereby degrading policy performance. To overcome this limitation, the following section introduces a principled optimization procedure based on the Expectation–Maximization framework, which refines the memory-driven policy by adaptively optimizing the underlying LLM priors.

¹Notably, the likelihood exhibits no explicit parametric dependence, as the proposed memory-driven Q-learning framework is inherently non-parametric.

216 **Algorithm 2** Memory-Driven Expectation Maximization (Mem-EM) with LLM Prior Refinement

217 **Input:** LLM action prior p_{LLM_θ} , memory table $\mathcal{M} = \emptyset$
 218 **Output:** Refined LLM prior p_{LLM_θ} and memory table \mathcal{M}
 219 1: **for** episode $i = 1$ to N **do**
 220 2: **for** step $t = 1, 2, \dots, T$ **do**
 221 3: Sample action candidates from LLM prior $\mathcal{C}^K(s_t) \sim p_{\text{LLM}_\theta}(\cdot | s_t)$.
 222 4: Estimate Q-values $\hat{Q}(s_t, a)$ for $a \in \mathcal{C}^K(s_t)$ via Eq. 3.
 223 5: Select action $a \sim \text{Multinomial}(\exp(\hat{Q}(s, a_1)/\tau) / \sum_k \exp(\hat{Q}(s, a_k)/\tau))$.
 224 6: Execute a_t , observe reward r_{t+1} and next state s_{t+1}
 225 7: **end for**
 226 8: **for** step $t = T$ down to 1 **do**
 227 9: Write and update memory table \mathcal{M} via Eq. 2.
 228 10: **end for**
 229 11: **if** i reaches update interval **then**
 230 12: Refine LLM prior p_{LLM_θ} using stored (s, a) pairs from \mathcal{M} via Eq. 7.
 231 13: **end if**
 232 14: **end for**

233 **Note:** Orange text highlights LLM-guided exploration steps that differ from the Mem-Q in Algorithm 1; green
 234 text indicates prior refinement operations.

235
236 4.2 OPTIMIZING MEMORY-DRIVEN POLICY WITH EXPECTATION MAXIMIZATION
237

238 To optimize the memory-driven policy with the LLM prior and the likelihood estimation involved,
 239 we adopt the Expectation–Maximization (EM) algorithm. Starting from an arbitrary initialization
 240 θ_0 , the EM procedure performs the following iterative update:
 241

$$242 \theta_{k+1} = \arg \max_{\theta} \mathbb{E}_{p_{\theta_k}(a, s | \mathcal{O}=1)} [\log p(\mathcal{O}=1 | s, a) + \log p_{\text{LLM}_\theta}(a | s)]. \quad (5)$$

$$243$$

244 By construction, the EM update can be interpreted as maximizing the ELBO in Eq. 1. In practice,
 245 however, the expectation in Eq. 5 is analytically intractable. To address this challenge, we employ an
 246 on-policy E-step for likelihood expectation approximation and a memory-driven off-policy E-step
 247 for prior expectation approximation, followed by maximization based on these tractable estimates.
 248

249 **Expectation Step.** In the E-step, a simple yet tractable approach for the expectation approximation
 250 is the Monte Carlo (MC) estimation. Concretely, for the current state s , we draw an action from the
 251 posterior $a \sim p_\theta(a | s, \mathcal{O}=1)$, which can be approximated using importance sampling introduced in
 252 Sec. 4.1. For the likelihood expectation term in Eq. 5, the likelihood is assumed to be proportional
 253 to the Q value, and one can directly apply the kernel-based Q value estimation in Eq. 3.

254 However, for the LLM prior expectation term, such an “on-policy” approach is inefficient, since
 255 LLMs typically involve a very large number of parameters, and a limited set of MC samples is
 256 insufficient to provide reliable gradient estimates for subsequent M-step. Consequently, we con-
 257 sider importance sampling approximation using examples stored in the memory table to explore and
 258 exploit the posterior distribution effectively, thereby yielding a robust “off-policy” estimate of the
 259 LLM prior expectation as follows:
 260

$$261 \mathbb{E}_{p_\theta(a, s | \mathcal{O}=1)} [\log p_{\text{LLM}_\theta}(a | s)] = \mathbb{E}_{q(s, a)} \left[\frac{p_\theta(a, s | \mathcal{O}=1)}{q(s, a)} \log p_{\text{LLM}_\theta}(a | s) \right]$$

$$262 \approx \sum_i \frac{w(s^{(i)}, a^{(i)})}{\sum_j w(s^{(j)}, a^{(j)})} \log p_{\text{LLM}_\theta}(a^{(j)} | s^{(j)}), \quad (s, a) \sim q(s, a)$$

$$263$$

$$264$$

265 where $w(s, a) = \frac{p(\mathcal{O}=1 | a, s) p_{\text{LLM}_\theta}(a, s)}{q(s, a)}$ denotes the importance weight. While the proposal $q(s, a)$
 266 offers substantial flexibility, the statistical efficiency of SNIS is highly sensitive to its choice: sub-
 267 optimal proposals yield high-variance importance weights, thereby impeding effective state–action
 268 exploration. In theory, the optimal proposal, which leads to zero variance, is $q(s, a) \propto p(\mathcal{O}=1 | a, s) p_{\text{LLM}_\theta}(a, s)$. While intractable, empirically, the memory table \mathcal{M} provides a practical basis
 269

270 for designing the proposal distribution $q(s, a)$, as it stores state-action pairs accumulated from pre-
 271 previous posterior samples. We thus adopt a uniform distribution over the memory table \mathcal{M} as the
 272 proposal, providing an empirical approximation to the posterior. Specifically, the importance weight
 273 can be approximated as:

$$274 \quad w(s, a) = \frac{p(\mathcal{O} = 1 | a, s) p_{\text{LLM}_\theta}(a, s)}{q(s, a)} \approx \frac{p(\mathcal{O} = 1 | a, s) q(a, s)}{q(s, a)} \propto \exp(Q(s, a) / \tau) \quad (6)$$

$$275$$

$$276$$

277 where we further use the proposal $q(s, a)$, which is the empirical distribution of the memory table
 278 \mathcal{M} , to approximate the joint LLM prior $p_{\text{LLM}_\theta}(s, a)$. Although heuristic, this approximation is
 279 empirically found to stabilize training. Intuitively, at iteration k , the optimal LLM prior coincides
 280 with the posterior from the previous step, $p_{\theta_k}(a | s, \mathcal{O} = 1)$, as suggested by Eq. 5. Hence, the
 281 intractable LLM prior can be approximated by the empirical distribution $q(s, a)$, functioning as a
 282 moving average of the posterior. **This approach eliminates the need for repeated LLM queries to**
 283 **estimate the prior, thereby reducing computational cost and improving training efficiency.**

284 **Maximization Step.** In the M-step, we maximize the expectation in Eq. 5, which involves the
 285 optimality likelihood $p(\mathcal{O} = 1 | s, a)$ and the LLM prior p_{LLM_θ} . To maximize the expectation of the
 286 non-parametric likelihood, we update the memory according to Eq. 2 using the sample drawn from
 287 the posterior. For optimizing the LLM prior, building on the memory-driven expectation estimation,
 288 we apply the following memory-based reweighted training objective:

$$289 \quad \theta_{k+1} = \arg \min_{\theta} \sum_{(s, a) \sim \mathcal{M}} \left[\frac{\exp(Q(s, a) / \tau)}{\sum_{(s', a') \sim \mathcal{M}} \exp(Q(s', a') / \tau)} \log p_{\text{LLM}_\theta}(a | s) \right]. \quad (7)$$

$$290$$

$$291$$

292 We summarize the detailed training procedure in Algorithm 2. It is noteworthy that memory-driven
 293 Q estimation and memory-driven policy optimization interact in a bootstrapping manner. Specifi-
 294 cally, the memory-driven Q estimation module continuously refines the non-parametric estimate of
 295 the optimality likelihood, which in turn provides more accurate feedback for updating the LLM prior.
 296 Conversely, the improved LLM prior constrains the action search space toward high-quality candi-
 297 dates, thereby accelerating convergence and improving the sample efficiency of memory-driven Q
 298 estimation. This closed-loop interaction establishes a self-improvement cycle, where the two com-
 299 ponents iteratively enhance one another, leading to progressively stronger policies.

300 **Although both from the probabilistic inference aspect to solve decision-making tasks, our memory-
 301 driven self-improvement framework is highly different from previous control as inference works.**
 302 Specifically, traditional control-as-inference methods like MPO (Abdolmaleki et al., 2018) rely on
 303 sampling from and estimating the action policy over the entire action space, limiting their adaptabil-
 304 ity to complex scenarios such as ALFWORLD (Shridhar et al., 2020) with huge and state-varying action
 305 spaces. In contrast, our method leverages the LLM prior to generating K action candidates and then
 306 uses memory-driven Q-estimation to select the best action. This mechanism enables our method to
 307 adapt to complex unstructured action space settings. Furthermore, this Q-value guided action policy
 308 effectively narrows down the executable exploration space, enabling efficient exploration.

310 5 EXPERIMENTS

311 In this section, we design experiments to validate the effectiveness of our memory-driven self-
 312 improvement framework.

314 5.1 ENVIRONMENTS

316 We consider two textual decision-making tasks:

317 **Overcooked** The textual Overcooked environment (Tan et al., 2024) benchmarks the ability of
 318 taking a sequence of actions to deliver dishes. We consider two Overcooked tasks: Over-
 319 cooked(Tomato), which requires delivering a dish of chopped tomato, and Overcooked(Salad),
 320 which requires delivering a salad containing chopped tomato and lettuce. The feasible actions vary
 321 with state changes, and the maximum number of feasible actions for one state is 8. Besides the
 322 reward of 1 for successfully delivering a dish, this environment also provides the following reward
 323 shaping: +0.2 for correctly chopping an ingredient, +1 terminal reward for successfully delivering
 the correct dish, -0.1 for delivering any incorrect item, and -0.001 for each time step.

Figure 3: Results of comparison with baselines. We plot the mean and standard error of the cumulative reward. The dashed line represents directly prompting the LLM prior to generating actions given state information, with the corresponding LLM version specified. The ‘ \times ’ markers for $\text{Mem-EM}_{\text{w/ tune}}$ indicate the time steps when the LLM prior is fine-tuned.

ALFWorld (Shridhar et al., 2020) is a popular and complex decision-making benchmark for navigating and completing tasks within rooms. Both observations and actions are textual, and the action space consists of high-level plans such as “go to a room” that can be understood using LLMs’ prior knowledge. The action space is finite but large, with varying feasible action sets for each state, and the maximum possible admissible action space for one step reaches up to 50, making exploration from scratch challenging. This benchmark contains thousands of subtasks, making it convenient for testing generalization performance on unseen tasks. We consider two classes of ALFWorld tasks: ALFWorld(pick) and ALFWorld(examine). There are no auxiliary rewards except for a reward of 1.0 for reaching the final goal.

5.2 BASELINES

We compare against the following baselines:

LLM prior: We first assess the ability of LLMs to solve decision-making tasks in a zero-shot manner, without relying on deliberately designed prompts.

DQN-based methods: We compare against **DQN** and its variant **DQN-prior** Yan et al. (2025), which performs deep Q-learning within a narrowed sub-action space generated by LLM priors.

Our memory-driven algorithms: **Mem-Q** (Algorithm 1) leverages language models’ embedding capabilities and the kernel-based value estimation to perform non-parametric Q-learning.

Mem-EM (Algorithm 2) formulates decision-making as an EM procedure that integrates memory-driven Q-value estimation with LLM prior refinement. We consider two variants: **Mem-EM**_{w/ tune} fine-tunes the LLM prior using examples from the memory table at regular intervals, and **Mem-EM**_{w/o tune} uses the fixed LLM prior without fine-tuning.

Experimental Settings We use Qwen2.5-3B (Team, 2024) or Qwen2.5-7B as the LLM prior for our main experiments. The retrieval size M is set to 20, and the number of action candidates K is set to 5 or 10. The fixed BERT-base (Devlin et al., 2019) model is used to obtain semantic representations of state-action pairs. Detailed hyperparameter settings are provided in the Appendix 10.

5.3 RESULTS

Comparison with Baselines. The comparison results of baselines are shown in Figure 3. These results demonstrate that $\text{Mem-EM}_{\text{w/ tune}}$ outperforms all other baselines, remarkably achieving over 40% improvement on complex ALFWorld environments. We observe that memory-based Mem-Q significantly outperforms DQN on Overcooked, and memory-based $\text{Mem-EM}_{\text{w/o tune}}$ achieves comparable or better performance than DQN-prior, demonstrating that the memory-driven approaches

378 Table 1: Results on the generalization ability of ALFWorld(Pick). All trainable models are trained
 379 with $K = 5$ action candidates, and their performance is evaluated using different values of K .

380 Baseline	381 Unseen Tasks				382 Seen Tasks			
	383 K=5	384 K=10	385 K=15	386 K=20	387 K=5	388 K=10	389 K=15	390 K=20
381 LLM	382 0.19				383 0.1			
382 LLM + Q _{DQN} -Prior	383 0.16	384 0.19	385 0.14	386 0.22	387 0.6	388 0.70	389 0.70	390 0.65
383 LLM + Q _{Mem-EM_{w/tune}}	384 0.22	385 0.27	386 0.35	387 0.22	388 0.65	389 0.80	390 0.85	391 0.65
384 LLM _{Mem-EM_{w/tune}}	385 0.59				386 0.85			
385 LLM _{Mem-EM_{w/tune}} + Q _{DQN} -Prior	386 0.59	387 0.54	388 0.46	389 0.46	390 0.90	391 0.85	392 0.90	393 0.75
386 LLM _{Mem-EM_{w/tune}} + Q _{Mem-EM_{w/tune}}	387 0.81	388 0.65	389 0.62	390 0.68	391 0.95	392 0.95	393 1.00	394 0.95

390 provide satisfactory value estimation and improve sample efficiency. However, for the complex
 391 ALFWorld, where both state and action spaces are extremely large, neither DQN nor Mem-Q alone
 392 can solve the task, highlighting the necessity of incorporating LLM priors.

393 By leveraging LLM priors to generate valuable action candidates, the baselines DQN-Prior and
 394 Mem-EM_{w/o tune} consistently outperform their vanilla counterparts (DQN and Mem-Q) that explore
 395 the full original action space. Nevertheless, since pretrained LLMs lack task-specific knowledge,
 396 fixed LLM priors inherently limit performance and may even degrade it. For example, in the Over-
 397 cooked (Salad) task with Qwen2.5-3B and $K = 10$ candidate actions, incorporating the prior actu-
 398 ally degrades performance. This suggests that Qwen2.5-3B cannot construct a reliable sub-action
 399 space that consistently includes the optimal action for each state, due to its insufficient domain
 400 knowledge and decision-making capability.

401 Importantly, results show that Mem-EM_{w/tune} substantially outperforms Mem-EM_{w/o tune} on ALF-
 402 World and Overcooked (Salad) with the 3B model. This demonstrates that our memory-driven
 403 policy optimization effectively integrates domain-specific knowledge into the LLM prior, thereby
 404 improving its decision-making ability. Furthermore, as illustrated in the ALFWorld experiments,
 405 the EM-based framework Mem-EM_{w/tune} requires only six time LLM tuning throughout training,
 406 with LoRA Hu et al. (2021) used for parameter-efficient fine-tuning. This keeps the computational
 407 overhead tolerable while yielding significant performance improvements.

408 **Generalization Ability.** The generalization ability evaluation results on ALFWorld(Pick) are shown
 409 in Table 1. We evaluate the generalization ability of the finetuned LLM policy and the Q-value esti-
 410 mators including the Q-network in and the memory-driven Q-estimator defined in Eq. 3. In general,
 411 we consider the components below and their combinations: the pretrained Qwen2.5-7B, denoted as
 412 **LLM**; the Q network trained with DQN-Prior, denoted as **Q_{DQN}-Prior**; the fine-tuned LLM follow-
 413 ing Mem-EM_{w/tune}, denoted as **LLM_{Mem-EM_{w/tune}}**; and the Q estimator of Mem-EM_{w/tune}, denoted
 414 as **Q_{Mem-EM_{w/tune}}**. For example, the **Mem-EM_{w/tune}** generates a refined LLM and a memory table of
 415 (s, a, Q) tuples. The **LLM_{Mem-EM_{w/tune}}** uses the refined LLM to directly generate a single action for
 416 execution. The **LLM_{Mem-EM_{w/tune}} + Q_{Mem-EM_{w/tune}}** uses the refined LLM to generate K action candidates
 417 and then selects one action based on value estimation following the memory table.

418 The results show that while all methods perform well on seen tasks, the Q-estimators achieve only
 419 modest improvements over the pretrained LLM on unseen tasks. This exposes the generalization
 420 limitations of Q-estimators, which are constrained by the BERT-base representations despite being
 421 effective on seen tasks. In contrast, LLM fine-tuning shows superior generalization ability on unseen
 422 tasks, demonstrating the necessity of LLM prior refinement. Combining the fine-tuned LLM with
 423 the memory-based Q-estimator further improves performance, achieving a over 75% performance
 424 gain than the pretrained LLM.

425 On unseen tasks, the phenomenon of the better performance of **LLM_{Mem-EM_{w/tune}} + Q_{Mem-EM_{w/tune}}** with
 426 $K = 5$ (following the training setting) compared to larger K may stem from the introduction of low-
 427 quality, noisy samples from the tail distribution of the refined LLM prior. Specifically, the refined
 428 LLM has distilled domain-specific decision-making knowledge and is capable of generating high-
 429 quality actions when $K = 5$. However, when K is increased, less relevant or noisy action candidates
 430 are more likely to be sampled from the refined LLM prior’s low-probability tail. This inclusion of
 431 noisy actions, combined with the inherent generalization limitations of the value estimation model,
 432 degrades the final policy performance. Overall, these results indicate that K=5 balances sufficient
 433 exploration coverage with high-quality action candidates.

Figure 4: Ablation study results. (a) Effect of the number of action candidates K generated by the LLM. The ‘ \times ’ markers indicate the time steps when the LLM-prior is updated. (b) Impact of the LLM fine-tuning interval, where n denotes that the LLM policy is fine-tuned every n episodes. (c) Influence of the memory table capacity N , where at most N (s, a) pairs are stored, with the least-recently-used (LRU) strategy applied for replacement.

5.4 ABLATION STUDIES

The ablation study results are shown in Figure 4, where we analyze the following aspects:

Effect of the number of action candidates. Figure 4(a) illustrates the impact of the number of action candidates K for Mem-EM_{w/tune}. Our method with $K = 5$ or 10 significantly outperforms the setting with $K = 1$, indicating that it benefits from both (1) LLM fine-tuning that incorporates domain-specific knowledge stored in the memory table, and (2) Q-value guided posterior action sampling. It is worth noting that the case of Mem-EM_{w/tune} with $K = 1$ resembles an actor-critic RL setting, where the action policy samples trajectories and the critic model is trained with environment returns to guide the policy learning. These results highlight the superiority of our EM-based training framework over traditional actor-critic RL framework. This superiority is achieved because, in our approach, the policy is treated as a prior, while sampling is performed from the action posterior and guided by memory-driven value estimation, jointly resulting in higher sample efficiency.

Effect of the LLM prior update interval. Fig. 4(b) examines the effect of the fine-tuning interval n , where the LLM prior is updated every n episodes. Results show that Mem-EM_{w/tune} is robust to the update interval and does not require frequent fine-tuning to achieve strong performance.

Effect of memory capacity. Figure 10 shows the effect of memory table capacity N on Overcooked (Salad). In this environment, the total number of possible (s, a) pairs is approximately 1000. Remarkably, Mem-Q with only $N = 100$ entries already outperforms DQN, and configurations with $N = 200$ or 500 achieve performance comparable to $N = 1000$, which stores all possible pairs. This demonstrates that, by simply using a least-recently-used (LRU) replacement strategy to retain crucial (s, a) pairs, memory-driven Q estimation remains robust to memory capacity.

6 RELATED WORK

LLM Priors in Decision-Making Recent works leverage LLMs to enhance sequential decision-making (SDM) in three main ways: action generation, value estimation, and reward function design. First, LLMs can act as the action policy, generating satisfactory actions either through deliberate prompting Yao et al. (2022); Shinn et al. (2024) or RL-based fine-tuning Carta et al. (2023); Tan et al. (2024). Second, LLMs can serve as the value function to guide the search. Examples include reasoning-path search Wang et al. (2022); Yao et al. (2023) and Monte Carlo Tree Search guided by LLM evaluations Hao et al.; Wan et al. (2024). In addition, LLMs can be fine-tuned to act as process or outcome reward models with detailed explanations Lightman et al. (2023); McAleese et al. (2024); Wang et al. (2024b). Third, LLMs are used to generate reward signals for RL, either directly by prompting with historical interactions Kwon et al. (2023) or by producing executable reward code for continuous-control tasks Yu et al. (2023); Ma et al. (2024b).

Memory-based Decision-Making Episodic Control (EC) Blundell et al. (2016) and its extensions Pritzel et al. (2017); Li et al. (2023) represent a classic family of memory-based methods. These approaches maintain $|\mathcal{A}|$ separate memory tables, one for each feasible action, and apply kernel-based estimation over state representations. Yet, EC relies solely on state similarity and ignores semantic relationships among actions. Off-policy methods such as DQN Mnih (2013) and SAC Haarnoja et al. (2018) can also be viewed as memory-based RL, with the replay buffer serving

486 as memory. Yan et al. (2024) further combine DQN with LLM embeddings, but their approach
487 compresses stored experiences into Q-networks that map high-dimensional embeddings to scalar
488 values, potentially discarding semantic information and limiting sample efficiency. More recently,
489 memory-based methods have been integrated with LLMs under the retrieval-augmented generation
490 (RAG) paradigm Zhou et al. (2025); Wang et al. (2024a). These approaches retrieve relevant cases to
491 enhance LLM outputs via in-context learning Han et al. (2023), but they primarily focus on one-step
492 tasks such as question answering Wiratunga et al. (2024) or high-level planning Zhou et al. (2025).
493 By contrast, our work applies retrieval techniques to sequential decision-making, and explicitly
494 incorporates domain-specific memory to refine LLM-based policies.

495

496 7 CONCLUSIONS

497

498 In this work, we propose a memory-driven self-improvement framework for decision-making tasks.
499 The framework consists of two mutually reinforcing components: memory-driven value estimation
500 and memory-driven LLM prior refinement. The memory-driven value estimation approach main-
501 tains historical interactions and their Q-values, performing non-parametric value estimation through
502 retrieval of similar representations. Building on the EM formulation, we design a practical and sta-
503 ble memory-driven LLM prior refinement algorithm, which adapts task-specific knowledge into the
504 LLM prior by learning from the memory table. The explicit use of memory in these two components
505 encourages efficient exploration. Experimental results show that our EM-based self-improvement
506 framework delivers substantial performance gains while avoiding extensive fine-tuning. In this work,
507 we focus on text-based decision-making with discrete but enumerable action spaces. For future re-
508 search, we plan to extend our framework to handle scenarios with free-form or infinite action spaces
509 and to incorporate vision–language models, thereby enabling broader applications.

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES

541

542 Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
543 tin Riedmiller. Maximum a posteriori policy optimisation. *arXiv preprint arXiv:1806.06920*,
544 2018.

545 Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
546 Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. *arXiv preprint
547 arXiv:1606.04460*, 2016.

548 Lukas Brunke, Melissa Greeff, Adam W Hall, Zhaocong Yuan, Siqi Zhou, Jacopo Panerati, and
549 Angela P Schoellig. Safe learning in robotics: From learning-based control to safe reinforcement
550 learning. *Annual Review of Control, Robotics, and Autonomous Systems*, 5(1):411–444, 2022.

551

552 Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
553 Oudeyer. Grounding large language models in interactive environments with online reinforcement
554 learning. In *International Conference on Machine Learning*, pp. 3676–3713. PMLR, 2023.

555 Xing Chen, Dongcui Diao, Hechang Chen, Hengshuai Yao, Haiyin Piao, Zhixiao Sun, Zhiwei Yang,
556 Randy Goebel, Bei Jiang, and Yi Chang. The sufficiency of off-policyness and soft clipping: Ppo
557 is still insufficient according to an off-policy measure. In *Proceedings of the AAAI Conference on
558 Artificial Intelligence*, volume 37, pp. 7078–7086, 2023.

559

560 Filippos Christianos, Georgios Papoudakis, Matthieu Zimmer, Thomas Coste, Zhihao Wu, Jingxuan
561 Chen, Khyati Khandelwal, James Doran, Xidong Feng, Jiacheng Liu, Zheng Xiong, Yicheng
562 Luo, Jianye Hao, Kun Shao, Haitham Bou-Ammar, and Jun Wang. Pangu-agent: A fine-tunable
563 generalist agent with structured reasoning, 2023.

564 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
565 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
566 the North American chapter of the association for computational linguistics: human language
567 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

568 Scott R Granter, Andrew H Beck, and David J Papke Jr. Alphago, deep learning, and the future of
569 the human microscopist. *Archives of pathology & laboratory medicine*, 141(5):619–621, 2017.

570

571 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
572 maximum entropy deep reinforcement learning with a stochastic actor. In *International Confer-
573 ence on Machine Learning (ICML)*, pp. 1861–1870. PMLR, 2018.

574 Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. Explaining emergent in-context learning as kernel
575 regression. *arXiv preprint arXiv:2305.12766*, 2023.

576

577 Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
578 Hu. Reasoning with language model is planning with world model. In *The 2023 Conference on
579 Empirical Methods in Natural Language Processing*.

580 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
581 et al. Lora: Low-rank adaptation of large language models. In *International Conference on
582 Learning Representations*, 2021.

583 Sai Dhanush Jannala. *Chess LLM Arena: A Framework for Evaluating Strategic Decision-Making
584 in Large Language Models*. PhD thesis, Dublin, National College of Ireland, 2025.

585

586 Xuanfa Jin, Ziyang Wang, Yali Du, Meng Fang, Haifeng Zhang, and Jun Wang. Learning to discuss
587 strategically: A case study on one night ultimate werewolf. *Advances in Neural Information
588 Processing Systems*, 37:77060–77097, 2024.

589

590 Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
591 Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
592 feedback. *arXiv preprint arXiv:2310.00166*, 2023.

593 Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. In *The Eleventh International Conference on Learning Representations*, 2023.

594 Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
 595 *arXiv preprint arXiv:1805.00909*, 2018.
 596

597 Kenneth Li, Samy Jelassi, Hugh Zhang, Sham M Kakade, Martin Wattenberg, and David Brand-
 598 fonbrener. Q-probe: A lightweight approach to reward maximization for language models. In
 599 *International Conference on Machine Learning*, pp. 27955–27968. PMLR, 2024.

600 Zhuo Li, Derui Zhu, Yujing Hu, Xiaofei Xie, Lei Ma, Yan Zheng, Yan Song, Yingfeng Chen, and
 601 Jianjun Zhao. Neural episodic control with state abstraction. *arXiv preprint arXiv:2301.11490*,
 602 2023.

603

604 Ziming Li, Julia Kiseleva, and Maarten De Rijke. Dialogue generation: From imitation learning to
 605 inverse reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*,
 606 volume 33, pp. 6722–6729, 2019.

607 Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
 608 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. *arXiv preprint*
 609 *arXiv:2305.20050*, 2023.

610

611 Weiyu Ma, Qirui Mi, Yongcheng Zeng, Xue Yan, Runji Lin, Yuqiao Wu, Jun Wang, and Haifeng
 612 Zhang. Large language models play starcraft ii: Benchmarks and a chain of summarization ap-
 613 proach. *Advances in Neural Information Processing Systems*, 37:133386–133442, 2024a.

614 Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
 615 man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
 616 coding large language models. In *The Twelfth International Conference on Learning Representa-
 617 tions*, 2024b.

618 Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Tre-
 619 bacz, and Jan Leike. Llm critics help catch llm bugs. *arXiv preprint arXiv:2407.00215*, 2024.

620

621 Michael McTear. *Conversational ai: Dialogue systems, conversational agents, and chatbots*.
 622 Springer Nature, 2022.

623

624 Volodymyr Mnih. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*,
 625 2013.

626

627 José Eugenio Naranjo, Carlos González, Ricardo García, Teresa de Pedro, and Rodolfo E Haber.
 628 Power-steering control architecture for automatic driving. *Ieee transactions on intelligent trans-
 629 portation systems*, 6(4):406–415, 2005.

630

631 Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-based reinforcement learning:
 632 Applications on robotics. *Journal of Intelligent & Robotic Systems*, 86(2):153–173, 2017.

633

634 Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
 635 Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In *International
 636 conference on machine learning*, pp. 2827–2836. PMLR, 2017.

637

638 Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Tor-
 639 rralba. Virtualhome: Simulating household activities via programs. In *Proceedings of the IEEE
 640 conference on computer vision and pattern recognition*, pp. 8494–8502, 2018.

641

642 Krishan Rana, Ming Xu, Brendan Tidd, Michael Milford, and Niko Sünderhauf. Residual skill
 643 policies: Learning an adaptable skill-based action space for reinforcement learning for robotics.
 644 In *Conference on Robot Learning*, pp. 2095–2104. PMLR, 2023.

645

646 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 647 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 648 Systems*, 36, 2024.

649

650 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 651 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. *arXiv
 652 preprint arXiv:2010.03768*, 2020.

648 Qingyuan Song, Weiping Fu, Wen Wang, Yuan Sun, Denggui Wang, and Jincao Zhou. Quantum
 649 decision making in automatic driving. *Scientific reports*, 12(1):11042, 2022.
 650

651 Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
 652 comes from practice: Aligning large language models with embodied environments via reinforce-
 653 ment learning. In *The Twelfth International Conference on Learning Representations*, 2024.

654 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2, 2024.
 655

656 Ziyu Wan, Xidong Feng, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
 657 Jun Wang. Alphazero-like tree-search can guide large language model decoding and training. In
 658 *Forty-first International Conference on Machine Learning*, 2024.

659 Chengrui Wang, Qingqing Long, Meng Xiao, Xunxin Cai, Chengjun Wu, Zhen Meng, Xuezhi Wang,
 660 and Yuanchun Zhou. Biorag: A rag-llm framework for biological question reasoning. *arXiv*
 661 *preprint arXiv:2408.01107*, 2024a.

662 Jiaqi Wang, Enze Shi, Huawei Hu, Chong Ma, Yiheng Liu, Xuhui Wang, Yincheng Yao, Xuan Liu,
 663 Bao Ge, and Shu Zhang. Large language models for robotics: Opportunities, challenges, and
 664 perspectives. *Journal of Automation and Intelligence*, 4(1):52–64, 2025.

665 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
 666 Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In *Pro-
 667 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 668 1: Long Papers)*, pp. 9426–9439, 2024b.

669 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 670 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 671 *arXiv preprint arXiv:2203.11171*, 2022.

672 Muning Wen, Ziyu Wan, Jun Wang, Weinan Zhang, and Ying Wen. Reinforcing llm agents via policy
 673 optimization with action decomposition. *Advances in Neural Information Processing Systems*, 37:
 674 103774–103805, 2024.

675 Nirmalie Wiratunga, Ramitha Abeyratne, Lasal Jayawardena, Kyle Martin, Stewart Massie,
 676 Ikechukwu Nkisi-Orji, Ruvan Weerasinghe, Anne Liret, and Bruno Fleisch. Cbr-rag: case-based
 677 reasoning for retrieval augmented generation in llms for legal question answering. In *Inter-
 678 national Conference on Case-Based Reasoning*, pp. 445–460. Springer, 2024.

679 Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An efficient end-
 680 to-end training approach for zero-shot human-ai coordination. *Advances in Neural Information
 681 Processing Systems*, 36, 2024.

682 Xue Yan, Yan Song, Xidong Feng, Mengyue Yang, Haifeng Zhang, Haitham Bou Ammar, and Jun
 683 Wang. Efficient reinforcement learning with large language model priors. In *The Thirteenth
 684 International Conference on Learning Representations*, 2025.

685 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 686 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 687 2022.

688 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
 689 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *arXiv*
 690 *preprint arXiv:2305.10601*, 2023.

691 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 692 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
 693 vances in Neural Information Processing Systems*, 36, 2024.

694 Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
 695 Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humprik, et al. Language
 696 to rewards for robotic skill synthesis. In *Conference on Robot Learning*, pp. 374–404. PMLR,
 697 2023.

702 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
703 language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial*
704 *Intelligence*, volume 38, pp. 19724–19731, 2024.

705

706 Huichi Zhou, Yihang Chen, Siyuan Guo, Xue Yan, Kin Hei Lee, Zihan Wang, Ka Yiu Lee, Guchun
707 Zhang, Kun Shao, Linyi Yang, et al. Agentfly: Fine-tuning llm agents without fine-tuning llms.
708 *arXiv preprint arXiv:2508.16153*, 2025.

709

710 Runlong Zhou, Simon Du, and Beibin Li. Reflect-rl: Two-player online rl fine-tuning for lms.
711 In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
(Volume 1: Long Papers), pp. 995–1015, 2024.

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 8 ADDITIONAL EXPLANATION ON MEMORY-DRIVEN VALUE ESTIMATION
757

758 In the main paper, we presented memory-driven Q-learning estimation without training. Here, we
759 explore an alternative approach that involves tuning the embedding function. As described above,
760 we use the BERT-base model as the embedding function f_θ , which can be further fine-tuned by
761 minimizing the distance between the predicted Q-value and the Monte Carlo estimate:

$$762 \quad \ell = -(\hat{Q}_\theta(s_t, a) - y_t)^2, \\ 763$$

764 where $y_t = \sum_{i=t}^T \gamma^{i-t} r_t$. The results of fine-tuning the BERT embedding model are shown in
765 Figure 5. We observe that our model, both with and without fine-tuning, outperforms DQN-Prior.
766 All three baselines use the LLM prior to narrow the action search space, and fine-tuning versus
767 keeping the BERT embedding model fixed yields similar performance.

781 Figure 5: Ablation study on finetuning the embedding model bert.
782
783784 9 ADDITIONAL EXPLANATION OF PROBABILISTIC INFERENCE
785

786 In this section, we briefly review the Expectation–Maximization (EM) algorithm. We start by introducing the evidence lower bound (ELBO) for the log-likelihood:

$$787 \quad \log p_\theta(\mathcal{O} = 1|s) = \sum_a \log p_\theta(\mathcal{O} = 1|s, a) p_\theta(a|s) \quad (8)$$

$$788 \quad = \sum_a \log \left[q_\phi(a|s) \frac{p_\theta(\mathcal{O} = 1|s, a) p_\theta(a|s)}{q_\phi(a|s)} \right] \quad (9)$$

$$789 \quad \geq \mathbb{E}_{q_\phi(a|s)} [\log p_\theta(\mathcal{O} = 1|s, a)] - D_{\text{KL}}(q_\phi(a|s) \| p_\theta(a|s)) \triangleq \text{ELBO}(\phi, \theta) \quad (10)$$

790 In variational inference, maximizing the likelihood can be reformulated as the following two-step
791 optimization:

$$792 \quad \phi_{k+1} \leftarrow \arg \max_{\phi} \text{ELBO}(\phi, \theta_k) \quad (11)$$

$$793 \quad \theta_{k+1} \leftarrow \arg \max_{\theta} \text{ELBO}(\phi_{k+1}, \theta). \quad (12)$$

794 It can be shown that when $q_{\phi_{k+1}} = p_{\theta_k}(a|s, \mathcal{O} = 1)$, the ELBO attains its maximum value, which
795 coincides with the true log-likelihood:

$$800 \quad \mathbb{E}_{p_\theta(a|s, \mathcal{O} = 1)} [\log p_\theta(\mathcal{O} = 1|s, a)] - D_{\text{KL}}(p_\theta(a|s, \mathcal{O} = 1) \| p_\theta(a|s)) \quad (13)$$

$$801 \quad = \mathbb{E}_{p_\theta(a|s, \mathcal{O} = 1)} \log \left[\frac{p_\theta(a, \mathcal{O} = 1|s)}{p_\theta(a|s, \mathcal{O} = 1)} \right] \quad (14)$$

$$802 \quad = \mathbb{E}_{p_\theta(a|s, \mathcal{O} = 1)} \log \left[\frac{p_\theta(a|s, \mathcal{O} = 1) p_\theta(\mathcal{O} = 1|s)}{p_\theta(a|s, \mathcal{O} = 1)} \right] \quad (15)$$

$$803 \quad = \mathbb{E}_{p_\theta(a|s, \mathcal{O} = 1)} [\log p_\theta(\mathcal{O} = 1|s)] \quad (16)$$

$$804 \quad = \log p_\theta(\mathcal{O} = 1|s). \quad (17)$$

810 Thus, EM maximizes the following objective:
 811

$$812 \quad \theta_{k+1} = \arg \max_{\theta} \mathbb{E}_{p_{\theta_k}(a|s, \mathcal{O}=1)} [\log p_{\theta}(\mathcal{O}=1|s, a)] - D_{\text{KL}}(p_{\theta_k}(a|s, \mathcal{O}=1) \| p_{\theta}(a|s)), \quad (18)$$

815 which is equivalent to
 816

$$818 \quad \theta_{k+1} = \arg \max_{\theta} \mathbb{E}_{p_{\theta_k}(a, s|\mathcal{O}=1)} [\log p_{\theta}(\mathcal{O}=1|s, a) + \log p_{\theta}(a|s)]. \quad (19)$$

820 Although this optimization is generally intractable, in the E-step one can approximate the expectation
 821 using Monte Carlo estimation, followed by the M-step to update the parameter θ . Finally, since
 822 the ELBO lower bounds the log-likelihood, each EM iteration guarantees monotonic improvement
 823 $\log p_{\theta_{k+1}}(\mathcal{O}=1|s) \geq \log p_{\theta_k}(\mathcal{O}=1|s)$.
 824

826 10 DETAILED EXPERIMENTAL SETTINGS

829 10.1 ENVIRONMENTS

832 Examples of observations and admissible actions for ALFWorld and Overcooked are shown below:

834 For ALFWorld(Pick)

836 **Observation:** Task: Your task is to: put some knife on sidetable. Current observation: You
 837 open the drawer 2. The drawer 2 is open. In it, you see nothing..

838 **Admissible actions** You are allowed to take the following actions: close drawer 2, examine
 839 drawer 2, go to cabinet 1, go to cabinet 2, go to cabinet 3, go to cabinet 4, go to coffeemachine 1,
 840 go to countertop 1, go to drawer 1, go to drawer 3, go to drawer 4, go to drawer 5, go to drawer 6,
 841 go to drawer 7, go to drawer 8, go to fridge 1, go to garbagecan 1, go to microwave 1, go to
 842 sidetable 1, go to sinkbasin 1, go to stoveburner 1, go to stoveburner 2, go to stoveburner 3,
 843 go to stoveburner 4, go to toaster 1, inventory, look.

845 For Overcooked(Salad)

847 **Observation:** There are two fixed cutting boards in the room. You notice a tomato and an
 848 onion on the different tables. Currently you are carrying an unchopped lettuce in hand. To
 849 serve the dish of a bowl only containing chopped tomato and lettuce, what action should you
 850 take next?

851 **Admissible actions** You are allowed to take the following actions: 'pick up the tomato',
 852 'pick up the lettuce', 'pick up the onion', 'take the empty bowl', 'put the lettuce on the first
 853 cutting board', 'put the lettuce on the second cutting board', 'serve the dish', 'chop nothing'

856 10.2 LLM PRIOR IMPLEMENTATION

858 Following Yan et al. (2024), we use the LLM prior to generate K action candidates by sampling K
 859 free-form outputs in parallel from the LLM, given the current state and all admissible actions. These
 860 outputs are then mapped to executable actions via a simple rule-based projection \mathcal{P} . Mathematically,
 861 this can be described as: $a \sim p_{\text{LLM}}(\cdot | s_t) \longleftrightarrow o \sim \text{LLM}(\cdot | s_t)$, $a = \mathcal{P}(o)$, where \mathcal{P} is a rule-based
 862 mapping that selects the most frequently occurring action in the LLM output o .
 863

An Example of LLM output and rule-based mapping is given as:

864
865

For ALFWorld(Pick) from Qwen2.5 7B

866
867
868
869
870

Input: Task: Your task is to: put some alarmclock on desk. Current observation: You turn on the desklamp 1.. You are allowed to take the following actions: examine desk 1, examine keychain 3, go to bed 1, go to drawer 1, go to drawer 2, go to drawer 3, go to drawer 4, go to drawer 5, go to dresser 1, go to garbagecan 1, inventory, look, put keychain 3 in/on desk 1, use desklamp 1.

871

Please select an action from the admissible actions. Please just output the selected action:

872

LLM Output to Action: 1: put keychain 3 in/on desk → put keychain 3 in/on desk

873

2: examine keychain 3 → examine keychain 3

874

3: I will choose "put keychain 3 in/on desk" → put keychain 3 in/on desk

875

4: You just picked up the desklamp 1 → Randomly select an action, since no feasible action appears in the output

876

5: use desklamp 1 → use desklamp 1

877

We map the LLM's output to an executable action using a simple rule-based method, extracting the executable actions directly from the LLM's output.

878

879

880

881

10.3 COMPUTATIONAL RESOURCES AND HYPERPARAMETERS

882

883

884

885

886

887

888

Our experiments are conducted on a single machine equipped with eight 48 GB A6000 GPUs, using PyTorch 2.1 with CUDA 12.4. Tables 2, 3, 4, and 5 report the main hyperparameters of our algorithms. For the likelihood, we approximate it as $p(\mathcal{O} = 1 | s, a) \propto \exp(Q(s, a)/\tau)$, where the hyperparameter τ is used in two contexts: (1) value-function-guided action posterior selection, and (2) reweighting the log-likelihood during LLM prior fine-tuning, as shown in Eq. 7. In practice, we tune these two parameters separately and denote them as τ_1 and τ_2 , respectively. The horizon and memory capacity of environments are shown in Table 6.

889

890

891

Table 2: The hyperparameters on Overcooked(Tomato)

Baselines	Learning Rate	Epochs	Batch Size	Update Frequency	τ_1	τ_2	K	γ
Mem-EM _{w/ tune}	5e-4	3	16	10	0.1	0.5	5	0.8

892

893

894

895

896

Table 3: The hyperparameters on Overcooked(Salad)

Baselines	Learning Rate	Epochs	Batch Size	Update Frequency	τ_1	τ_2	K	γ
Mem-EM _{w/ tune}	5e-4	3	16	10	0.1	0.5	10	0.8

897

898

899

900

901

902

Table 4: The hyperparameters on ALFWorld(Pick)

Baselines	Learning Rate	Epochs	Batch Size	Update Frequency	τ_1	τ_2	K	γ
Mem-EM _{w/ tune}	5e-4	3	16	100	0.1	0.2	5	0.9

903

904

905

906

907

908

Table 5: The hyperparameters on ALFWorld(Examine)

Baselines	Learning Rate	Epochs	Batch Size	Update Frequency	τ_1	τ_2	K	γ
Mem-EM _{w/ tune}	5e-4	3	16	100	0.1	0.5	10	0.9

909

910

911

912

913

11 ADDITIONAL RESULTS

914

915

916

917

To further demonstrate the sample efficiency of our memory-driven self-improvement framework, we compare our method with the policy-based LLM-tuning approach PPO (Tan et al., 2024). In

	ALFWorld(Pick)	ALFWolrd(Examine)	Cook(Tomato)	Cook(Salad)
Horizon	60	60	15	30
Memory Capacity	100	1000	15000	15000

Table 6: Maximum horizon and memory capacity of environments.

Figure 6: Additional Results of comparison with PPO. We plot the mean and standard error of the cumulative reward. The dashed line represents directly prompting the LLM prior to generating actions given state information, with the corresponding LLM version specified. The ‘ \times ’ markers for Mem-EM_{w/tune} and PPO indicate the time steps when the LLM prior is fine-tuned. [The baselines in each subfigure are run on the identical foundation LLM, which is explicitly noted in the legend.](#)

this baseline, the LLM acts as the action policy and is fine-tuned following the PPO algorithm. As shown in Figure 6, although both methods involve fine-tuning LLMs, our Mem-EM_{w/tune} significantly outperforms PPO thanks to the memory storage and value-guided action policy as described in Sec. 4.1.

We also compare with a memory-based LLM agent Memorybank (Zhong et al., 2024), for which previous state-action pairs are stored in memory, and the LLM makes decisions based on retrieved state-relevant memory. Although both our Mem-EM_{w/tune} and MemoryBank involve memory for previous experiences, our Mem-EM_{w/tune} outperforms MemoryBank on Overcooked(Tomato). The key difference lies in how memory is utilized: our method uses memory for value estimation and LLM prior refinement combined with a value-guided action policy, whereas MemoryBank simply uses retrieved memory as additional decision context for the LLM. On the more complex ALFWolrd environment, we retrieved K=20 similar (s,a) pairs as input context to enhance the decision-making ability of the original LLMs (the same setting as our Mem-EM method). As shown in Figure 6, the Memorybank baseline, which uses retrieval memory as an enhanced prompt, performs significantly worse than our Mem-EM approach, which utilizes memory for value estimation and efficient search guidance. Furthermore, the Memorybank with Qwen2.5-3B performs similarly to the original base model, only showing better results when scaled up to Qwen2.5-7B. This clearly indicates that the effectiveness of the Memorybank method is highly limited by the foundation model size.

Figure 7: Additional Results on VirtualHome. We plot the mean and standard error of the cumulative reward. The dashed line represents directly prompting the LLM prior to generating actions given state information, with the corresponding LLM version specified. The ‘ \times ’ markers for Mem-EM_{w/ tune} and PPO indicate the time steps when the LLM prior is fine-tuned.

	Without Finetune	Finetuned
Qwen2.5-3B	0.05	0.85
Qwen2.5-7B	0.10	0.88
LLaMA3-8B	0.0	0.83

Table 7: Results of fine-tuning different LLMs on ALFWorld(Pick). All models are fine-tuned with the same hyperparameters: learning rate of 5e-4, LoRA rank of 16, and 5 epochs.

11.2 ADDITIONAL BENCHMARK

To further verify the effectiveness of our framework, we consider an additional text-based benchmark, VirtualHome (Puig et al., 2018), which is widely used to evaluate LLM-based decision-making (Tan et al., 2024; Wen et al., 2024). Following prior work, we consider the food preparation task, which requires the agent to complete the task within 4 rooms. The reward is sparse, i.e., the agent receives a reward of 1 only upon completing the target and 0 otherwise. The action space consists of up to 10 possible actions. As shown in Figure 7, due to the sparse reward signal, DQN and Mem-Q are unable to successfully explore. Methods that involve LLMs can incorporate LLM prior knowledge into the exploration process, thus performing better than the LLM-free DQN and Mem-Q baselines. In addition, our Mem-EM demonstrates superior sample efficiency and is more robust than PPO and DQN-Prior.

11.3 TESTING THE FRAMEWORK WITH DIFFERENT FOUNDATION LLMs

To validate the effectiveness of our method across different foundation LLMs, we fine-tune three models: Qwen2.5-3B, Qwen2.5-7B, and LLaMA3-8B. We use the memory table obtained by performing Mem-EM_{w/tune} with Qwen2.5-7B on ALFWorld(Pick), collecting approximately 6,000 (s, a, Q) tuples. The three LLMs are then fine-tuned using our proposed LLM prior refinement objective function (Eq. 7) with this memory table. As shown in Table 7, our LLM fine-tuning objective is adaptable to different LLMs, which demonstrates that the memory gathered using Qwen2.5-7B can be easily distilled into both the smaller model Qwen2.5-3B and a model with a different architecture, LLaMA3-8B.

11.4 COMPUTATION RESOURCE REQUIREMENTS

Table 8 shows computation costs for the baselines in ALFWorld(Pick) with Qwen2.5-3B. Our method achieves significant performance gains over PPO and DQN-Prior while maintaining similar training time and GPU usage requirements as the previous best-performing method, PPO.

	PPO	DQN	DQN-Prior	Mem-EM _{w/tune}	Mem-EM _{w/o tune}
Performance	0.62	0	0.38	0.93	0.55
Training Time	11.05h	/	12.07h	11.20h	13.57h
GPU usage	13661M	/	8991M	15823M	8013M
Memory table size	/	/	/	7100	7554
Memory CPU usage	/	/	/	57.42MB	61.12MB
Inference Time(query 1000 times)/minutes	3.40	/	3.59	5.28	8.16

Table 8: Computational Resource on ALFWorld(Pick) with Qwen2.5-3B.

Figure 8: Ablation on the exploration hyperparameter τ_1 of $\text{Mem-EM}_{\text{w/o tune}}$ on the Overcooked(Tomato) with Qwen2.5-3B.Figure 9: Ablation on the exploration hyperparameter discount factor γ of our memory-based Q estimator Mem-Q on the Overcooked(Tomato).

11.5 ADDITIONAL RESULTS ON THE HYPERPARAMETER TUNING

Ablation on exploration trade-off hyperparameter We have conducted an experiment on the exploration trade-off hyperparameter τ_1 . Specifically, we tuned this hyperparameter of our $\text{Mem-EM}_{\text{w/o tune}}$ on Overcooked(Tomato) with Qwen2.5-3B. As shown in Figure 8, the hyperparameter τ_1 is not as sensitive as we imagined, and the algorithm fails to learn only under the setting of $\tau_1 = 0.001$, which is extremely greedy and poor for exploration.

Ablation on discount factor γ We conduct an ablation study on the discount factor γ using Overcooked(Salad) with dense rewards. As shown in Figure 9, our Mem-Q demonstrates robustness to different values of γ .

Additional ablation on the memory table capacity We conduct an ablation study on the memory table capacity of $\text{Mem-EM}_{\text{w/tune}}$ on Overcooked(Salad) with Qwen2.5-7B. As shown in Figure 10, our $\text{Mem-EM}_{\text{w/tune}}$ demonstrates robustness to limited memory capacity. This robustness is attributed to the LLM’s role in reducing the exploration space, allowing the model to converge ef-

Figure 10: Ablation on the memory table capacity of $\text{Mem-EM}_{\text{w/tune}}$ on Overcooked(Salad) with Qwen2.5-7B.

fectively with only 200 memory items, despite a total of approximately 1,000 possible state-action pairs in the environment.

LLM USAGE STATEMENT

In this work, we used large language models (LLMs) to assist with writing and polishing the manuscript. Specifically, LLMs were employed to improve the grammar, clarity, and overall readability of the text. All scientific content, ideas, and experimental results were generated and verified by the authors. The use of LLMs was limited strictly to language editing, and no LLMs were used to generate research content, data analysis, or experimental results.