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ABSTRACT

Large language models (LLMs) have emerged as effective action policies for se-
quential decision-making (SDM) tasks due to their extensive prior knowledge.
However, this broad yet general knowledge is often insufficient for specific
decision-making tasks with limited task-related data, making it challenging to ef-
ficiently adapt LLMs to specific SDM tasks. To address this challenge, we pro-
pose a memory-driven self-improvement framework that combines LLM general
prior knowledge with a compact memory of domain-specific experiences. Mem-
ory retains past interactions and associated Q-values, thereby capturing decision-
relevant knowledge that facilitates accurate value estimation and informs the LLM
prior refinement. The refined LLM prior, in turn, generates higher-reward tra-
jectories that further enrich memory, forming a natural self-improvement frame-
work where memory and LLM prior mutually reinforce each other. Experiments
show that our memory-driven approach significantly outperforms both traditional
RL and LLM-based baselines, e.g., improving performance by over 40% on in-
distribution tasks and over 75% when generalized to unseen tasks in ALFWorld.

1 INTRODUCTION

Sequential decision-making (SDM) has a wide range of real-world applications, including robotics
Polydoros & Nalpantidis (2017); Brunke et al. (2022); Rana et al. (2023), autonomous driving
Naranjo et al. (2005); Song et al. (2022), and human–AI interaction Granter et al. (2017); Li et al.
(2019); McTear (2022). Natural language plays a crucial role in many SDM tasks, either in purely
language-based settings Granter et al. (2017); Jannala (2025); Jin et al. (2024) or as a tool for un-
derstanding and describing the environment Ma et al. (2024a); Wang et al. (2025). Large language
models (LLMs), with their broad prior knowledge, demonstrate strong zero-shot reasoning capabili-
ties, making them promising candidates for action policies in such text-based SDM tasks. However,
when deployed in specialized domains, their general knowledge is often insufficient for reliable
decision-making Yan et al. (2025); Jannala (2025).

To adapt LLM action policies into the target domains, three main approaches have been explored.
The first is prompt-based methods, which utilize human-crafted prompts Yao et al. (2022; 2024) or
incorporate historical interactions Shinn et al. (2024); Christianos et al. (2023) to provide more task-
specific information. However, these prompt-engineering methods heavily depend on the quality
of the prompts and the reasoning capabilities of the LLMs. The second approach is fine-tuning,
which includes supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT). SFT
typically requires substantial high-quality decision-making data Zhou et al. (2024), while on-policy
RLFT methods Carta et al. (2023); Tan et al. (2024) suffer from poor sample efficiency Abdolmaleki
et al. (2018); Chen et al. (2023). The third pipeline performs RL with fixed LLM priors, using LLMs
either to narrow the action search space Yan et al. (2025) or to design reward functions Kwon et al.
(2023); Klissarov et al. (2023) that promote efficient exploration. However, these methods remain
highly sensitive to the capability of the LLM priors in fulfilling such roles.

Considering these limitations, we propose a memory-driven self-improvement framework for text-
based SDM. To combine the benefits of LLM general knowledge with task-specific interactions, a
memory-driven action policy with LLM prior is designed, where the LLM prior generates action
candidates, and memory-driven value estimation guides more precise action posterior selection. In
practice, the framework forms a closed loop with two mutually reinforcing roles as illustrated in
Figure 1: Role 1: Memory-driven value estimation, which converts informative interactions into
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LLM action
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generate action
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Figure 1: Motivation and overview of our memory-driven self-improvement framework for text-
based SDM. Left: existing approaches (prompt-engineering, fine-tuning, and RL with LLM priors)
struggle under sparse signals and domain-specific data. Right: Our framework introduces two com-
plementary roles: (1) memory-driven value estimation, which enables efficient exploration, and
(2) LLM prior refinement, which biases action generation toward high-quality candidates; together
forming a self-improvement loop that resists scarce experience and enables efficient adaptation.

compact memory representations. By retrieving semantically similar past experiences, the model
can make non-parametric value estimates for action candidates and enable informed exploration
choices. Role 2: Memory-driven LLM prior refinement, which periodically updates the LLM’s
decision prior using historical state-action pairs and their Q-values stored in memory. This refine-
ment biases the LLM prior toward generating high-quality actions, effectively narrowing the search
space and improving the convergence rate. Overall, the informative memory table provides a reliable
foundation for LLM prior refinement, while the refined LLM prior leads to higher-quality actions
that further enrich the memory, thus naturally constructing a self-improvement framework. This
mutual reinforcement enables scalable and efficient adaptation to target SDM tasks.

In summary, our main contributions are as follows:

1. We propose a memory-driven self-improvement framework for text-based SDMs and leverage
the Expectation-Maximization (EM) to provide a unified formulation and practical implementation.

2. We introduce a memory-driven value estimation approach that utilizes LLMs’ representation
capabilities and retrieval techniques to achieve meaningful, non-parametric Q-value estimation.

3. We present a memory-driven policy optimization method that defines a powerful action policy
as the combination of LLM priors and memory-based Q-estimation, and uses experiences stored in
memory to refine the LLM prior.

4. Experimental results on ALFWorld and Overcooked demonstrate that memory-driven value esti-
mation achieves superior sample efficiency, while LLM prior refinement proves crucial for further
expanding the capabilities of LLM-based action policies.

2 PRELIMINARY

Textual Markov Decision Processes. A Markov Decision Process (MDP) is defined as
⟨S,A,P,R, γ⟩, where S is the state space, A is the action space, P : S × A → S is the tran-
sition function, R : S × A → R is the reward function, and γ ∈ (0, 1) is the discount factor.
Particularly, note that rt denotes the reward received at time step t. In this work, we focus on textual
MDP, where both states and actions are represented in natural language, i.e., S,A ⊆ V∗, with V
denoting the vocabulary. Textual MDPs present unique challenges, as the state and action spaces
can be combinatorially large, and policies must operate over inherently discrete, structured, and
semantically rich representations of language.

Q-learning for MDPs A prominent paradigm for solving MDPs with discrete action spaces is Q-
learning, where the Q-function Q(s, a) is learned to rank and select actions. For each state–action

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

pair (s, a), the Q-function, defined as Q(s, a) = Eπ

[∑
i≥t γ

i−tri | s, a
]
, represents the expected

cumulative reward obtained by starting from (s, a) and following policy π thereafter. The DQN
algorithm (Mnih, 2013) is a classic instance of Q-learning that maps state–action embeddings to
scalar Q-values and trains the Q-network via temporal-difference (TD) learning. Blundell et al.
(2016) introduces Episodic Control(EC), a memory-based Q-learning method that leverages retrieval
techniques and informative state representations to enable non-parametric Q-value estimation.

Control as Inference. Control-as-Inference framework (Levine, 2018) formulates the solution of
MDPs from a probabilistic inference perspective. An optimality random variable O is introduced,
where O = 1 indicates achieving a successful trajectory and O = 0 otherwise. The objective is to
maximize the likelihood of achieving a successful trajectory from each state s, which is identical to
maximizing the evidence lower bound (ELBO):

log p(O=1|s) ≥ Eq(a|s)[log p(O=1|s, a)]−DKL(q(a|s)∥p(a|s))≜ELBO, (1)

where p(a|s) is the prior action distribution, q(a|s) is the variational distribution, and p(O = 1|s, a)
is the likelihood that the trajectory will achieve optimality given the current state-action pair (s, a).
Abdolmaleki et al. (2018) assume that the optimality likelihood is proportional to Q-value: p(O =
1|s, a) ∝ exp(Q(s, a)/τ). This probabilistic formulation offers both conceptual flexibility and
methodological richness, while also naturally accommodating the integration of LLMs as sources of
prior knowledge (Yan et al., 2025).

3 MEMORY-DRIVEN VALUE ESTIMATION WITH LLM PRIORS

In this section, we present a memory-driven approach to Q-value estimation that leverages LLM-
based semantic representations. By explicitly exploiting LLM representations through retrieval tech-
niques, our method builds upon the well-established episodic control (EC) (Blundell et al., 2016)
to enable non-parametric Q-value estimation. Specifically, our method maintains a memory table
M storing Q-values for visited state–action pairs, which is continuously updated during online ex-
ploration. At inference time, actions are selected through memory queries. The framework is thus
defined by two core operations: memory update and memory query.

Algorithm 1 Memory-Driven Q-learning (Mem-Q)
Input: Embedding function fLLM, empty memory table

M = ∅.
Output: Updated memory table M.
1: for each episode do
2: for t = 1, 2, 3, . . . , T do
3: Obtain all feasible actions Ast for current st.t
4: Estimate the return Q̂ for each a ∈ Ast via Eq. 3.
5: Select action at using the ϵ-greedy strategy.
6: Execute action at, receive reward rt+1, and ob-

serve the next state st+1.
7: end for
8: for t = T, T − 1, . . . , 1 do
9: Write and update memory table M via Eq. 2.

10: end for
11: end for

Memory update. A memory table M
is constructed to store information about
previously visited state-action pairs (s, a).
Specifically, it includes the natural lan-
guage descriptions of (s, a), the corre-
sponding vectorized embeddings f(s, a),
and the associated Q-values Q(s, a). The
Q-values stored in memory M are then
updated according to:

Q(st, at)←
{
Rt, if (st, at) /∈M,

max{Q(st, at), Rt}, otherwise,
(2)

where Rt =
∑

i≥t γ
i−tri represents a

Monte Carlo estimate of the cumulative
discounted reward (i.e., the return-to-go).

Memory query. Given the memory M
and the current state st, the policy is then determined using the kernel-based Q-value estimator
Q̂, which is defined as

Q̂(st, a)=
∑

i∈NM (f(st,a))

wiQ(s(i), a(i)), wi =
k(h, hi)∑

j∈NM
k(h, hj)

, h = f(st, a), hi = f(s(i), a(i)), (3)

where NM (f(st, a)) denotes the M nearest neighbors of f(st, a), and the inverse distance kernel
is used with k(h, hj) = 1

∥h−hj∥2
2+δ

, which measures similarity in the embedding space. With the

estimated Q-values Q̂, action selection can be carried out using the ϵ-greedy strategy, analogous to
the approach in DQN (Mnih, 2013).
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Figure 2: Results of memory-drive Q-learning on
Overcooked. Left: effect of the number of retrieved
(s, a) pairs for value estimation; Right: effect of dif-
ferent LLMs on representations.

Vectorized Memory Query with LLM Pri-
ors. While conceptually simple, the effec-
tiveness of the proposed memory-driven Q-
learning critically depends on the choice of
embedding function f . Inspired by the re-
cent success of Retrieval Augmented Gener-
ation (RAG) (Wiratunga et al., 2024), which
demonstrates the ability of LLMs to yield
semantically rich vectorized representations,
we leverage LLM-based embeddings for
(s, a) pairs to enhance retrieval quality and
improve value estimation. Specifically, we
adopt the encoder of the LLM to be the embedding function fLLM. The overall memory-driven
decision-making procedure with LLM embedding function is summarized in Algorithm 1, referred
as Memory-Driven Q-learning(Mem-Q). It is noteworthy that Blundell et al. (2016) proposes a sim-
ilar approach, episodic control, but it operates based solely on state similarity. This requires main-
taining |A| separate memory tables, one for each feasible action a ∈ A, thereby restricting the
method to small and enumerable action spaces while ignoring semantic similarity between actions.

In Figure 2, we evaluate the Mem-Q in Overcooked (Tan et al., 2024), a textual decision-making
task. It shows that our Mem-Q significantly outperforms DQN. The ablation study on the retrieval
size M , introduced in Eq. 3, shows that incorporating more similar (s, a) embeddings in the kernel-
based Q estimation leads to faster convergence, which may be attributed to the more accurate value
estimation using more meaningful representations (Han et al., 2023). Furthermore, larger LLMs,
which capture richer semantic structures, consistently yield stronger performance.

4 MEMORY-DRIVEN POLICY OPTIMIZATION WITH LLM PRIORS

The success of memory-driven Q-learning highlights a key insight: combining the capabilities of
LLMs with experience storage can substantially enhance the efficiency of RL algorithms. Motivated
by this, we propose a memory-driven action policy that uses the LLM prior to narrow the action
search space, and leverage memory to further refine the LLM prior with domain-specific knowledge,
thereby improving sample efficiency.

4.1 MEMORY-DRIVEN POLICY WITH LLM PRIORS

A straightforward approach to incorporating LLMs into the action policy is through a probabilistic
inference framework (Li et al., 2024), wherein the policy is cast as the posterior distribution:

pθ(a|s,O = 1) ∝ p(O = 1|s, a)pLLMθ
(a|s), (4)

where pLLMθ
(a|s) is the LLM prior parametrized by θ and p(O = 1|s, a) denotes the likelihood of

optimality1, which can be estimated using Q-value, as described in Eq 3. Therefore, the memory-
driven policy can be conducted using self-normalized importance sampling as follows:

• Sample K candidate actions from the LLM prior: CK(s)={a1, . . . , aK}, ak∼pLLMθ
(·|s).

• For each action candidate ak, approximate the optimality likelihood using the kernal-based
Q-value estimator Q̂(s, ai) according to Eq 3.

• Select an action via: a ∼ Multinormial
(
exp(Q̂(s, a1)/τ)/

∑
k exp(Q̂(s, ak)/τ)

)
.

Although conceptually straightforward, this method is sensitive to the specification of the LLM
prior pθ. A poorly aligned prior may bias the candidate set toward suboptimal actions, thereby
degrading policy performance. To overcome this limitation, the following section introduces a prin-
cipled optimization procedure based on the Expectation–Maximization framework, which refines
the memory-driven policy by adaptively optimizing the underlying LLM priors.

1Notably, the likelihood exhibits no explicit parametric dependence, as the proposed memory-driven Q-
learning framework is inherently non-parametric.
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Algorithm 2 Memory-Driven Expectation Maximization (Mem-EM) with LLM Prior Refinement

Input: LLM action prior pLLMθ
, memory tableM = ∅

Output: Refined LLM prior pLLMθ
and memory tableM

1: for episode i = 1 to N do
2: for step t = 1, 2, . . . , T do
3: Sample action candidates from LLM prior CK(st) ∼ pLLMθ

(·|st).
4: Estimate Q-values Q̂(st, a) for a ∈ CK(st) via Eq. 3.
5: Select action a ∼ Multinormial(exp(Q̂(s, a1)/τ)/

∑
k exp(Q̂(s, ak)/τ)).

6: Execute at, observe reward rt+1 and next state st+1

7: end for
8: for step t = T down to 1 do
9: Write and update memory tableM via Eq. 2.

10: end for
11: if i reaches update interval then
12: Refine LLM prior pLLMθ

using stored (s, a) pairs fromM via Eq. 7.
13: end if
14: end for
Note: Orange text highlights LLM-guided exploration steps that differ from the Mem-Q in Algorithm 1; green
text indicates prior refinement operations.

4.2 OPTIMIZING MEMORY-DRIVEN POLICY WITH EXPECTATION MAXIMIZATION

To optimize the memory-driven policy with the LLM prior and the likelihood estimation involved,
we adopt the Expectation–Maximization (EM) algorithm. Starting from an arbitrary initialization
θ0, the EM procedure performs the following iterative update:

θk+1 = argmax
θ

Epθk
(a,s|O=1) [log p(O = 1|s, a) + log pLLMθ

(a|s)] . (5)

By construction, the EM update can be interpreted as maximizing the ELBO in Eq. 1. In practice,
however, the expectation in Eq. 5 is analytically intractable. To address this challenge, we employ an
on-policy E-step for likelihood expectation approximation and a memory-driven off-policy E-step
for prior expectation approximation, followed by maximization based on these tractable estimates.

Expectation Step. In the E-step, a simple yet tractable approach for the expectation approximation
is the Monte Carlo (MC) estimation. Concretely, for the current state s, we draw an action from the
posterior a ∼ pθ(a|s,O = 1), which can be approximated using importance sampling introduced in
Sec. 4.1. For the likelihood expectation term in Eq. 5, the likelihood is assumed to be proportional
to the Q value, and one can directly apply the kernel-based Q value estimation in Eq. 3.

However, for the LLM prior expectation term, such an “on-policy” approach is inefficient, since
LLMs typically involve a very large number of parameters, and a limited set of MC samples is
insufficient to provide reliable gradient estimates for subsequent M-step. Consequently, we con-
sider importance sampling approximation using examples stored in the memory table to explore and
exploit the posterior distribution effectively, thereby yielding a robust “off-policy” estimate of the
expectation. Specifically, we employ self-normalized importance sampling (SNIS) to estimate the
LLM prior expectation as follows:

Epθ(a,s|O=1) [log pLLMθ
(a|s)] = Eq(s,a)

[
pθ(a, s|O = 1)

q(s, a)
log pLLMθ

(a|s)
]

≈
∑
i

w(s(i), a(i))∑
j w(s

(j), a(j))
log pLLMθ

(a(j)|s(j)), (s, a) ∼ q(s, a)

where w(s, a) =
p(O=1|a,s)pLLMθ

(a,s)

q(s,a) denotes the importance weight. While the proposal q(s, a)
offers substantial flexibility, the statistical efficiency of SNIS is highly sensitive to its choice: sub-
optimal proposals yield high-variance importance weights, thereby impeding effective state–action
exploration. In theory, the optimal proposal, which leads to zero variance, is q(s, a) ∝ p(O =
1|a, s)pLLMθ

(a, s). While intractable, empirically, the memory tableM provides a practical basis

5
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for designing the proposal distribution q(s, a), as it stores state-action pairs accumulated from pre-
vious posterior samples. We thus adopt a uniform distribution over the memory table M as the
proposal, providing an empirical approximation to the posterior. Specifically, the importance weight
can be approximated as:

w(s, a) =
p(O = 1|a, s)pLLMθ

(a, s)

q(s, a)
≈ p(O = 1|a, s)q(a, s)

q(s, a)
∝ exp(Q(s, a)/τ) (6)

where we further use the proposal q(s, a), which is the emperical distribution of the memory table
M, to approximate the joint LLM prior pLLMθ

(s, a). Although heuristic, this approximation is
empirically found to stabilize training. Intuitively, at iteration k, the optimal LLM prior coincides
with the posterior from the previous step, pθk(a|s,O = 1), as suggested by Eq. 5. Hence, the
intractable LLM prior can be approximated by the empirical distribution q(s, a), functioning as a
moving average of the posterior. This approach eliminates the need for repeated LLM queries to
estimate the prior, thereby reducing computational cost and improving training efficiency.

Maximization Step. In the M-step, we maximize the expectation in Eq. 5, which involves the
optimality likelihood p(O = 1 | s, a) and the LLM prior pLLMθ

. To maximize the expectation of the
non-parametric likelihood, we update the memory according to Eq. 2 using the sample drawn from
the posterior. For optimizing the LLM prior, building on the memory-driven expectation estimation,
we apply the following memory-based reweighted training objective:

θk+1 = argmin
θ

∑
(s,a)∼M

[
exp(Q(s, a)/τ)∑

(s′,a′)∼M exp(Q(s′, a′)/τ)
log pLLMθ

(a|s)

]
. (7)

We summarize the detailed training procedure in Algorithm 2. It is noteworthy that memory-driven
Q estimation and memory-driven policy optimization interact in a bootstrapping manner. Specifi-
cally, the memory-driven Q estimation module continuously refines the non-parametric estimate of
the optimality likelihood, which in turn provides more accurate feedback for updating the LLM prior.
Conversely, the improved LLM prior constrains the action search space toward high-quality candi-
dates, thereby accelerating convergence and improving the sample efficiency of memory-driven Q
estimation. This closed-loop interaction establishes a self-improvement cycle, where the two com-
ponents iteratively enhance one another, leading to progressively stronger policies.

Although both from the probabilistic inference aspect to solve decision-making tasks, our memory-
driven self-improvement framework is highly different from previous control as inference works.
Specifically, traditional control-as-inference methods like MPO (Abdolmaleki et al., 2018) rely on
sampling from and estimating the action policy over the entire action space, limiting their adaptabil-
ity to complex scenarios such as ALFWorld(Shridhar et al., 2020) with huge and state-varying action
spaces. In contrast, our method leverages the LLM prior to generating K action candidates and then
uses memory-driven Q-estimation to select the best action. This mechanism enables our method to
adapt to complex unstructured action space settings. Furthermore, this Q-value guided action policy
effectively narrows down the executable exploration space, enabling efficient exploration.

5 EXPERIMENTS

In this section, we design experiments to validate the effectiveness of our memory-driven self-
improvement framework.

5.1 ENVIRONMENTS

We consider two textual decision-making tasks:
Overcooked The textual Overcooked environment (Tan et al., 2024) benchmarks the ability of
taking a sequence of actions to deliver dishes. We consider two Overcooked tasks: Over-
cooked(Tomato), which requires delivering a dish of chopped tomato, and Overcooked(Salad),
which requires delivering a salad containing chopped tomato and lettuce. The feasible actions vary
with state changes, and the maximum number of feasible actions for one state is 8. Besides the
reward of 1 for successfully delivering a dish, this environment also provides the following reward
shaping: +0.2 for correctly chopping an ingredient, +1 terminal reward for successfully delivering
the correct dish, -0.1 for delivering any incorrect item, and -0.001 for each time step.

6
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Figure 3: Results of comparison with baselines. We plot the mean and standard error of the cu-
mulative reward. The dashed line represents directly prompting the LLM prior to generating ac-
tions given state information, with the corresponding LLM version specified. The ‘×’ markers for
Mem-EMw/ tune indicate the time steps when the LLM prior is fine-tuned.

ALFWorld (Shridhar et al., 2020) is a popular and complex decision-making benchmark for navi-
gating and completing tasks within rooms. Both observations and actions are textual, and the action
space consists of high-level plans such as ”go to a room” that can be understood using LLMs’ prior
knowledge. The action space is finite but large, with varying feasible action sets for each state, and
the maximum possible admissible action space for one step reaches up to 50, making exploration
from scratch challenging. This benchmark contains thousands of subtasks, making it convenient for
testing generalization performance on unseen tasks. We consider two classes of ALFWorld tasks:
ALFWorld(pick) and ALFWorld(examine). There are no auxiliary rewards except for a reward of
1.0 for reaching the final goal.

5.2 BASELINES

We compare against the following baselines:
LLM prior: We first assess the ability of LLMs to solve decision-making tasks in a zero-shot man-
ner, without relying on deliberately designed prompts.
DQN-based methods: We compare against DQN and its variant DQN-prior Yan et al. (2025),
which performs deep Q-learning within a narrowed sub-action space generated by LLM priors.
Our memory-driven algorithms: Mem-Q (Algorithm 1) leverages language models’ embedding ca-
pabilities and the kernel-based value estimation to perform non-parametric Q-learning.
Mem-EM (Algorithm 2) formulates decision-making as an EM procedure that integrates memory-
driven Q-value estimation with LLM prior refinement. We consider two variants: Mem-EMw/ tune
fine-tunes the LLM prior using examples from the memory table at regular intervals, and
Mem-EMw/o tune uses the fixed LLM prior without fine-tuning.

Experimental Settings We use Qwen2.5-3B (Team, 2024) or Qwen2.5-7B as the LLM prior for our
main experiments. The retrieval size M is set to 20, and the number of action candidates K is set to
5 or 10. The fixed BERT-base (Devlin et al., 2019) model is used to obtain semantic representations
of state–action pairs. Detailed hyperparameter settings are provided in the Appendix 10.

5.3 RESULTS

Comparison with Baselines. The comparison results of baselines are shown in Figure 3. These
results demonstrate that Mem-EMw/ tune outperforms all other baselines, remarkably achieving over
40% improvement on complex ALFWorld environments. We observe that memory-based Mem-Q
significantly outperforms DQN on Overcooked, and memory-based Mem-EMw/o tune achieves com-
parable or better performance than DQN-prior, demonstrating that the memory-driven approaches
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Table 1: Results on the generalization ability of ALFWorld(Pick). All trainable models are trained
with K = 5 action candidates, and their performance is evaluated using different values of K.

Baseline Unseen Tasks Seen Tasks
K=5 K=10 K=15 K=20 K=5 K=10 K=15 K=20

LLM 0.19 0.1
LLM + QDQN-Prior 0.16 0.19 0.14 0.22 0.6 0.70 0.70 0.65
LLM + QMem-EMw/tune 0.22 0.27 0.35 0.22 0.65 0.80 0.85 0.65
LLMMem-EMw/tune 0.59 0.85
LLMMem-EMw/tune +QDQN-Prior 0.59 0.54 0.46 0.46 0.90 0.85 0.90 0.75
LLMMem-EMw/tune +QMem-EMw/tune 0.81 0.65 0.62 0.68 0.95 0.95 1.00 0.95

provide satisfactory value estimation and improve sample efficiency. However, for the complex
ALFWorld, where both state and action spaces are extremely large, neither DQN nor Mem-Q alone
can solve the task, highlighting the necessity of incorporating LLM priors.

By leveraging LLM priors to generate valuable action candidates, the baselines DQN-Prior and
Mem-EMw/o tune consistently outperform their vanilla counterparts (DQN and Mem-Q) that explore
the full original action space. Nevertheless, since pretrained LLMs lack task-specific knowledge,
fixed LLM priors inherently limit performance and may even degrade it. For example, in the Over-
cooked (Salad) task with Qwen2.5-3B and K = 10 candidate actions, incorporating the prior actu-
ally degrades performance. This suggests that Qwen2.5-3B cannot construct a reliable sub-action
space that consistently includes the optimal action for each state, due to its insufficient domain
knowledge and decision-making capability.

Importantly, results show that Mem-EMw/ tune substantially outperforms Mem-EMw/o tune on ALF-
World and Overcooked (Salad) with the 3B model. This demonstrates that our memory-driven
policy optimization effectively integrates domain-specific knowledge into the LLM prior, thereby
improving its decision-making ability. Furthermore, as illustrated in the ALFWorld experiments,
the EM-based framework Mem-EMw/ tune requires only six time LLM tuning throughout training,
with LoRA Hu et al. (2021) used for parameter-efficient fine-tuning. This keeps the computational
overhead tolerable while yielding significant performance improvements.

Generalization Ability. The generalization ability evaluation results on ALFWorld(Pick) are shown
in Table 1. We evaluate the generalization ability of the finetuned LLM policy and the Q-value esti-
mators including the Q-network in and the memory-driven Q-estimator defined in Eq. 3. In general,
we consider the components below and their combinations: the pretrained Qwen2.5-7B, denoted as
LLM; the Q network trained with DQN-Prior, denoted as QDQN-Prior; the fine-tuned LLM follow-
ing Mem-EMw/ tune, denoted as LLMMem-EMw/ tune ; and the Q estimator of Mem-EMw/ tune, denoted
as QMem-EMw/ tune

. For example, the Mem-EMw/tune generates a refined LLM and a memory table of
(s, a,Q) tuples. The LLMMem-EMw/tune uses the refined LLM to directly generate a single action for
execution. The LLMMem-EMw/tune+QMem-EMw/tune

uses the refined LLM to generate K action candidates
and then selects one action based on value estimation following the memory table.

The results show that while all methods perform well on seen tasks, the Q-estimators achieve only
modest improvements over the pretrained LLM on unseen tasks. This exposes the generalization
limitations of Q-estimators, which are constrained by the BERT-base representations despite being
effective on seen tasks. In contrast, LLM fine-tuning shows superior generalization ability on unseen
tasks, demonstrating the necessity of LLM prior refinement. Combining the fine-tuned LLM with
the memory-based Q-estimator further improves performance, achieving a over 75% performance
gain than the pretrained LLM.

On unseen tasks, the phenomenon of the better performance of LLMMem-EMw/ tune +QMem-EMw/ tune
with

K = 5 (following the training setting) compared to larger K may stem from the introduction of low-
quality, noisy samples from the tail distribution of the refined LLM prior. Specifically, the refined
LLM has distilled domain-specific decision-making knowledge and is capable of generating high-
quality actions when K = 5. However, when K is increased, less relevant or noisy action candidates
are more likely to be sampled from the refined LLM prior’s low-probability tail. This inclusion of
noisy actions, combined with the inherent generalization limitations of the value estimation model,
degrades the final policy performance. Overall, these results indicate that K=5 balances sufficient
exploration coverage with high-quality action candidates.
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Figure 4: Ablation study results. (a) Effect of the number of action candidates K generated by the
LLM. The ‘×’ markers indicate the time steps when the LLM-prior is updated. (b) Impact of the
LLM fine-tuning interval, where n denotes that the LLM policy is fine-tuned every n episodes. (c)
Influence of the memory table capacity N , where at most N (s, a) pairs are stored, with the least-
recently-used (LRU) strategy applied for replacement.

5.4 ABLATION STUDIES

The ablation study results are shown in Figure 4, where we analyze the following aspects:
Effect of the number of action candidates. Figure 4(a) illustrates the impact of the number of
action candidates K for Mem-EMw/ tune. Our method with K = 5 or 10 significantly outperforms
the setting with K = 1, indicating that it benefits from both (1) LLM fine-tuning that incorporates
domain-specific knowledge stored in the memory table, and (2) Q-value guided posterior action sam-
pling. It is worth noting that the case of Mem-EMw/ tune with K = 1 resembles an actor–critic RL
setting, where the action policy samples trajectories and the critic model is trained with environment
returns to guide the policy learning. These results highlight the superiority of our EM-based training
framework over traditional actor–critic RL framework. This superiority is achieved because, in our
approach, the policy is treated as a prior, while sampling is performed from the action posterior and
guided by memory-driven value estimation, jointly resulting in higher sample efficiency.
Effect of the LLM prior update interval. Fig. 4(b) examines the effect of the fine-tuning interval
n, where the LLM prior is updated every n episodes. Results show that Mem-EMw/ tune is robust to
the update interval and does not require frequent fine-tuning to achieve strong performance.
Effect of memory capacity. Figure 10 shows the effect of memory table capacity N on Overcooked
(Salad). In this environment, the total number of possible (s, a) pairs is approximately 1000. Re-
markably, Mem-Q with only N = 100 entries already outperforms DQN, and configurations with
N = 200 or 500 achieve performance comparable to N = 1000, which stores all possible pairs.
This demonstrates that, by simply using a least-recently-used (LRU) replacement strategy to retain
crucial (s, a) pairs, memory-driven Q estimation remains robust to memory capacity.

6 RELATED WORK

LLM Priors in Decision-Making Recent works leverage LLMs to enhance sequential decision-
making (SDM) in three main ways: action generation, value estimation, and reward function design.
First, LLMs can act as the action policy, generating satisfactory actions either through deliberate
prompting Yao et al. (2022); Shinn et al. (2024) or RL-based fine-tuning Carta et al. (2023); Tan
et al. (2024). Second, LLMs can serve as the value function to guide the search. Examples include
reasoning-path search Wang et al. (2022); Yao et al. (2023) and Monte Carlo Tree Search guided
by LLM evaluations Hao et al.; Wan et al. (2024). In addition, LLMs can be fine-tuned to act as
process or outcome reward models with detailed explanations Lightman et al. (2023); McAleese
et al. (2024); Wang et al. (2024b). Third, LLMs are used to generate reward signals for RL, either
directly by prompting with historical interactions Kwon et al. (2023) or by producing executable
reward code for continuous-control tasks Yu et al. (2023); Ma et al. (2024b).
Memory-based Decision-Making Episodic Control (EC) Blundell et al. (2016) and its extensions
Pritzel et al. (2017); Li et al. (2023) represent a classic family of memory-based methods. These
approaches maintain |A| separate memory tables, one for each feasible action, and apply kernel-
based estimation over state representations. Yet, EC relies solely on state similarity and ignores
semantic relationships among actions. Off-policy methods such as DQN Mnih (2013) and SAC
Haarnoja et al. (2018) can also be viewed as memory-based RL, with the replay buffer serving
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as memory. Yan et al. (2024) further combine DQN with LLM embeddings, but their approach
compresses stored experiences into Q-networks that map high-dimensional embeddings to scalar
values, potentially discarding semantic information and limiting sample efficiency. More recently,
memory-based methods have been integrated with LLMs under the retrieval-augmented generation
(RAG) paradigm Zhou et al. (2025); Wang et al. (2024a). These approaches retrieve relevant cases to
enhance LLM outputs via in-context learning Han et al. (2023), but they primarily focus on one-step
tasks such as question answering Wiratunga et al. (2024) or high-level planning Zhou et al. (2025).
By contrast, our work applies retrieval techniques to sequential decision-making, and explicitly
incorporates domain-specific memory to refine LLM-based policies.

7 CONCLUSIONS

In this work, we propose a memory-driven self-improvement framework for decision-making tasks.
The framework consists of two mutually reinforcing components: memory-driven value estimation
and memory-driven LLM prior refinement. The memory-driven value estimation approach main-
tains historical interactions and their Q-values, performing non-parametric value estimation through
retrieval of similar representations. Building on the EM formulation, we design a practical and sta-
ble memory-driven LLM prior refinement algorithm, which adapts task-specific knowledge into the
LLM prior by learning from the memory table. The explicit use of memory in these two components
encourages efficient exploration. Experimental results show that our EM-based self-improvement
framework delivers substantial performance gains while avoiding extensive fine-tuning. In this work,
we focus on text-based decision-making with discrete but enumerable action spaces. For future re-
search, we plan to extend our framework to handle scenarios with free-form or infinite action spaces
and to incorporate vision–language models, thereby enabling broader applications.
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8 ADDITIONAL EXPLAINATION ON MEMORY-DRIVEN VALUE ESTIMATION

In the main paper, we presented memory-driven Q-learning estimation without training. Here, we
explore an alternative approach that involves tuning the embedding function. As described above,
we use the BERT-base model as the embedding function fθ, which can be further fine-tuned by
minimizing the distance between the predicted Q-value and the Monte Carlo estimate:

ℓ = −(Q̂θ(st, a)− yt)
2,

where yt =
∑T

i=t γ
i−trt. The results of fine-tuning the BERT embedding model are shown in

Figure 5. We observe that our model, both with and without fine-tuning, outperforms DQN-Prior.
All three baselines use the LLM prior to narrow the action search space, and fine-tuning versus
keeping the BERT embedding model fixed yields similar performance.
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Figure 5: Ablation study on finetuning the embedding model bert.

9 ADDITIONAL EXPLANATION OF PROBABILISTIC INFERENCE

In this section, we briefly review the Expectation–Maximization (EM) algorithm. We start by intro-
ducing the evidence lower bound (ELBO) for the log-likelihood:

log pθ(O = 1|s) =
∑
a

log pθ(O = 1|s, a)pθ(a|s) (8)

=
∑
a

log

[
qϕ(a|s)

pθ(O = 1|s, a)pθ(a|s)
qϕ(a|s)

]
(9)

≥Eqϕ(a|s)[log pθ(O = 1|s, a)]−DKL(qϕ(a|s)∥pθ(a|s)) ≜ ELBO(ϕ, θ) (10)
In variational inference, maximizing the likelihood can be reformulated as the following two-step
optimization:

ϕk+1 ← argmax
ϕ

ELBO(ϕ, θk) (11)

θk+1 ← argmax
θ

ELBO(ϕk+1, θ). (12)

It can be shown that when qϕk+1
= pθk(a|s,O = 1), the ELBO attains its maximum value, which

coincides with the true log-likelihood:
Epθ(a|s,O=1)[log pθ(O = 1|s, a)]−DKL(pθ(a|s,O = 1)∥pθ(a|s)) (13)

=Epθ(a|s,O=1) log

[
pθ(a,O = 1|s)
pθ(a|s,O = 1)

]
(14)

=Epθ(a|s,O=1) log

[
pθ(a|s,O = 1)pθ(O = 1|s)

pθ(a|s,O = 1)

]
(15)

=Epθ(a|s,O=1)[log pθ(O = 1|s)] (16)

= log pθ(O = 1|s). (17)
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Thus, EM maximizes the following objective:

θk+1 = argmax
θ

Epθk
(a|s,O=1)[log pθ(O = 1|s, a)]−DKL(pθk(a|s,O = 1)∥pθ(a|s), (18)

which is equivalent to

θk+1 = argmax
θ

Epθk
(a,s|O=1) [log pθ(O = 1|s, a) + log pθ(a|s)] . (19)

Although this optimization is generally intractable, in the E-step one can approximate the expecta-
tion using Monte Carlo estimation, followed by the M-step to update the parameter θ. Finally, since
the ELBO lower bounds the log-likelihood, each EM iteration guarantees monotonic improvement
log pθk+1

(O = 1|s) ≥ log pθk(O = 1|s).

10 DETAILED EXPERIMENTAL SETTINGS

10.1 ENVIRONMENTS

Examples of observations and admissible actions for ALFWorld and Overcooked are shown below:

For ALFWorld(Pick)

Observation: Task: Your task is to: put some knife on sidetable. Current observation:You
open the drawer 2. The drawer 2 is open. In it, you see nothing..
Admissible actions You are allowed to take the following actions: close drawer 2, examine
drawer 2, go to cabinet 1, go to cabinet 2, go to cabinet 3, go to cabinet 4, go to coffeema-
chine 1, go to countertop 1, go to drawer 1, go to drawer 3, go to drawer 4, go to drawer
5, go to drawer 6, go to drawer 7, go to drawer 8, go to fridge 1, go to garbagecan 1, go to
microwave 1, go to sidetable 1, go to sinkbasin 1, go to stoveburner 1, go to stoveburner 2,
go to stoveburner 3, go to stoveburner 4, go to toaster 1, inventory, look.

For Overcooked(Salad)

Observation: There are two fixed cutting boards in the room. You notice a tomato and an
onion on the different tables. Currently you are carrying an unchopped lettuce in hand. To
serve the dish of a bowl only containing chopped tomato and lettuce, what action should you
take next?
Admissible actions You are allowed to take the following actions: ’pick up the tomato’,
’pick up the lettuce’, ’pick up the onion’, ’take the empty bowl’, ’put the lettuce on the first
cutting board’, ’put the lettuce on the second cutting board’, ’serve the dish’, ’chop nothing

10.2 LLM PRIOR IMPLEMENTATION

Following Yan et al. (2024), we use the LLM prior to generate K action candidates by sampling K
free-form outputs in parallel from the LLM, given the current state and all admissible actions. These
outputs are then mapped to executable actions via a simple rule-based projectionP . Mathematically,
this can be described as: a ∼ pLLM(· | st)←→ o ∼ LLM(· | st), a = P(o), whereP is a rule-based
mapping that selects the most frequently occurring action in the LLM output o.

An Example of LLM output and rule-based mapping is given as:
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For ALFWorld(Pick) from Qwen2.5 7B

Input: Task: Your task is to: put some alarmclock on desk. Current observation:You turn
on the desklamp 1.. You are allowed to take the following actions: examine desk 1, examine
keychain 3, go to bed 1, go to drawer 1, go to drawer 2, go to drawer 3, go to drawer 4, go
to drawer 5, go to dresser 1, go to garbagecan 1, inventory, look, put keychain 3 in/on desk
1, use desklamp 1.
Please select an action from the admissible actions. Please just output the selected action:
LLM Output to Action: 1: put keychain 3 in/on desk→ put keychain 3 in/on desk
2: examine keychain 3→ examine keychain 3
3: I will choose ”put keychain 3 in/on desk”→ put keychain 3 in/on desk
4: You just picked up the desklamp 1→ Randomly select an action, since no feasible action
appears in the output
5: use desklamp 1→ use desklamp 1
We map the LLM’s output to an executable action using a simple rule-based method, ex-
tracting the executable actions directly from the LLM’s output.

10.3 COMPUTATIONAL RESOURCES AND HYPERPARAMETERS

Our experiments are conducted on a single machine equipped with eight 48 GB A6000 GPUs,
using PyTorch 2.1 with CUDA 12.4. Tables 2, 3, 4, and 5 report the main hyperparameters of our
algorithms. For the likelihood, we approximate it as p(O = 1 | s, a) ∝ exp(Q(s, a)/τ), where the
hyperparameter τ is used in two contexts: (1) value-function-guided action posterior selection, and
(2) reweighting the log-likelihood during LLM prior fine-tuning, as shown in Eq. 7. In practice, we
tune these two parameters separately and denote them as τ1 and τ2, respectively. The horizon and
memory capacity of environments are shown in Table 6.

Table 2: The hyperparameters on Overcooked(Tomato )
Baselines Learning Rate Epochs Batch Size Update Frequency τ1 τ2 K γ

Mem-EMw/ tune 5e-4 3 16 10 0.1 0.5 5 0.8

Table 3: The hyperparameters on Overcooked(Salad)
Baselines Learning Rate Epochs Batch Size Update Frequency τ1 τ2 K γ

Mem-EMw/ tune 5e-4 3 16 10 0.1 0.5 10 0.8

Table 4: The hyperparameters on ALFWorld(Pick)
Baselines Learning Rate Epochs Batch Size Update Frequency τ1 τ2 K γ

Mem-EMw/ tune 5e-4 3 16 100 0.1 0.2 5 0.9

Table 5: The hyperparameters on ALFWorld(Examine)
Baselines Learning Rate Epochs Batch Size Update Frequency τ1 τ2 K γ

Mem-EMw/ tune 5e-4 3 16 100 0.1 0.5 10 0.9

11 ADDITIONAL RESULTS

11.1 ADDITIONAL BASELINES

To further demonstrate the sample efficiency of our memory-driven self-improvement framework,
we compare our method with the policy-based LLM-tuning approach PPO (Tan et al., 2024). In
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ALFWorld(Pick) ALFWolrd(Examine) Cook(Tomato) Cook(Salad)
Horizon 60 60 15 30

Memory Capacity 100 1000 15000 15000

Table 6: Maximium horizon and memory capacity of environments.
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Figure 6: Additional Results of comparison with PPO. We plot the mean and standard error of
the cumulative reward. The dashed line represents directly prompting the LLM prior to generating
actions given state information, with the corresponding LLM version specified. The ‘×’ markers for
Mem-EMw/ tune and PPO indicate the time steps when the LLM prior is fine-tuned. The baselines in
each subfigure are run on the identical foundation LLM, which is explicitly noted in the legend.

this baseline, the LLM acts as the action policy and is fine-tuned following the PPO algorithm. As
shown in Figure 6, although both methods involve fine-tuning LLMs, our Mem-EMw/tune signifi-
cantly outperforms PPO thanks to the memory storage and value-guided action policy as described
in Sec. 4.1.

We also compare with a memory-based LLM agent Memorybank (Zhong et al., 2024), for which
previous state-action pairs are stored in memory, and the LLM makes decisions based on retrieved
state-relevant memory. Although both our Mem-EMw/tune and MemoryBank involve memory for
previous experiences, our Mem-EMw/tune outperforms MemoryBank on Overcooked(Tomato). The
key difference lies in how memory is utilized: our method uses memory for value estimation and
LLM prior refinement combined with a value-guided action policy, whereas MemoryBank simply
uses retrieved memory as additional decision context for the LLM. On the more complex ALFWorld
environment, we retrieved K=20 similar (s,a) pairs as input context to enhance the decision-making
ability of the original LLMs (the same setting as our Mem-EM method). As shown in Figure 6, the
Memorybank baseline, which uses retrieval memory as an enhanced prompt, performs significantly
worse than our Mem-EM approach, which utilizes memory for value estimation and efficient search
guidance. Furthermore, the Memorybank with Qwen2.5-3B performs similarly to the original base
model, only showing better results when scaled up to Qwen2.5-7B. This clearly indicates that the
effectiveness of the Memorybank method is highly limited by the foundation model size.
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Figure 7: Additional Results on VirtualHome. We plot the mean and standard error of the cu-
mulative reward. The dashed line represents directly prompting the LLM prior to generating ac-
tions given state information, with the corresponding LLM version specified. The ‘×’ markers for
Mem-EMw/ tune and PPO indicate the time steps when the LLM prior is fine-tuned.

Without Finetune Finetuned
Qwen2.5-3B 0.05 0.85
Qwen2.5-7B 0.10 0.88
LLaMA3-8B 0.0 0.83

Table 7: Results of fine-tuning different LLMs on ALFWorld(Pick). All models are fine-tuned with
the same hyperparameters: learning rate of 5e-4, LoRA rank of 16, and 5 epochs.

11.2 ADDITIONAL BENCHMARK

To further verify the effectiveness of our framework, we consider an additional text-based bench-
mark, VirtualHome (Puig et al., 2018), which is widely used to evaluate LLM-based decision-
making (Tan et al., 2024; Wen et al., 2024). Following prior work, we consider the food preparation
task, which requires the agent to complete the task within 4 rooms. The reward is sparse, i.e., the
agent receives a reward of 1 only upon completing the target and 0 otherwise. The action space
consists of up to 10 possible actions. As shown in Figure 7, due to the sparse reward signal, DQN
and Mem-Q are unable to successfully explore. Methods that involve LLMs can incorporate LLM
prior knowledge into the exploration process, thus performing better than the LLM-free DQN and
Mem-Q baselines. In addition, our Mem-EM demonstrates superior sample efficiency and is more
robust than PPO and DQN-Prior.

11.3 TESTING THE FRAMEWORK WITH DIFFERENT FOUNDATION LLMS

To validate the effectiveness of our method across different foundation LLMs, we fine-tune three
models: Qwen2.5-3B, Qwen2.5-7B, and LLaMA3-8B. We use the memory table obtained by
performing Mem-EMw/tune with Qwen2.5-7B on ALFWorld(Pick), collecting approximately 6,000
(s, a,Q) tuples. The three LLMs are then fine-tuned using our proposed LLM prior refinement ob-
jective function (Eq. 7) with this memory table. As shown in Table 7, our LLM fine-tuning objective
is adaptable to different LLMs, which demonstrates that the memory gathered using Qwen2.5-7B
can be easily distilled into both the smaller model Qwen2.5-3B and a model with a different archi-
tecture, LLaMA3-8B.

11.4 COMPUTATION RESOURCE REQUIREMENTS

Table 8 shows computation costs for the baselines in ALFWorld(Pick) with Qwen2.5-3B. Our
method achieves significant performance gains over PPO and DQN-Prior while maintaining sim-
ilar training time and GPU usage requirements as the previous best-performing method, PPO.
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PPO DQN DQN-Prior Mem-EMw/ tune Mem-EMw/o tune
Performance 0.62 0 0.38 0.93 0.55

Training Time 11.05h / 12.07h 11.20h 13.57h
GPU usage 13661M / 8991M 15823M 8013M

Memory table size / / / 7100 7554
Memory CPU usage / / / 57.42MB 61.12MB

Inference Time(query 1000 times)/minutes 3.40 / 3.59 5.28 8.16

Table 8: Computational Resource on ALFWorld(Pick) with Qwen2.5-3B.
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Figure 8: Ablation on the exploration hyperparameter τ1 of Mem-EMw/o tune on the Over-
cooked(Tomato) with Qwen2.5-3B.
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Figure 9: Ablation on the exploration hyperparameter discount factor γ of our memory-based Q
estimator Mem-Q on the Overcooked(Tomato).

11.5 ADDITIONAL RESULTS ON THE HYPERPARAMETER TUNING

Ablation on exploration trade-off hyperparameter We have conducted an experiment on
the exploration trade-off hyperparameter τ1. Specifically, we tuned this hyperparameter of our
Mem-EMw/o tune on Overcooked(Tomato) with Qwen2.5-3B. As shown in Figure 8, the hyperpa-
rameter τ1 is not as sensitive as we imagined, and the algorithm fails to learn only under the setting
of τ1 = 0.001, which is extremely greedy and poor for exploration.

Ablation on discount factor γ We conduct an ablation study on the discount factor γ using Over-
cooked(Salad) with dense rewards. As shown in Figure 9, our Mem-Q demonstrates robustness to
different values of γ.

Additional ablation on the memory table capacity We conduct an ablation study on the mem-
ory table capacity of Mem-EMw/tune on Overcooked(Salad) with Qwen2.5-7B As shown in Figure
10, our Mem-EMw/tune demonstrates robustness to limited memory capacity. This robustness is
attributed to the LLM’s role in reducing the exploration space, allowing the model to converge ef-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 50 100 150
Episodes

0.4

0.0

0.4

0.8

1.2

Re
wa

rd

Overcooked (Salad)

Qwen2.5 7B
DQN
Mem-Q 1000
200
500
1000

Figure 10: Ablation on the memory table capacity of Mem-EMw/tune on Overcooked(Salad) with
Qwen2.5-7B.

fectively with only 200 memory items, despite a total of approximately 1,000 possible state-action
pairs in the environment.

LLM USAGE STATEMENT

In this work, we used large language models (LLMs) to assist with writing and polishing the
manuscript. Specifically, LLMs were employed to improve the grammar, clarity, and overall read-
ability of the text. All scientific content, ideas, and experimental results were generated and verified
by the authors. The use of LLMs was limited strictly to language editing, and no LLMs were used
to generate research content, data analysis, or experimental results.
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