
Can large language models reason about causal
relationships in multimodal time series data?

Abstract

Large Language Models (LLMs) have demonstrated promise in transforming the
ways that individuals synthesis and interact with large amounts of information.
However, current LLMs are limited in their ability to provide explanations about
causal relationships in data. In this paper, we investigate the ability of LLMs
to answer queries related to causal relationships within time series data. We
generate synthetic datasets based on three distinct directed acyclic graphs (DAGs)
representing causal relationships among time series variables. Initially, we use
abstract variable names in the analysis and later assign real-world meanings to
these variables to align with the DAG structures. Using in-context learning, we
present the relationships of these variables to the LLM in the prompt and evaluate
how effectively the LLMs identify the variables that caused specific observations
in an outcome variable.

1 Introduction

Large language models (LLMs) have demonstrated immense promise in summarization and distil-
lation. There has been recent interest in exploring how LLMs can be used to analyze and provide
interpretations of time series data [5, 8]. For example, a person may want to use an LLM as a tool
to answer questions about their wearable data. While there has been work building LLMs agents to
interface with time series data [8, 11], an open question is how reliable LLM interpretations of causal
patterns in the data are.

For example, consider a individual with diabetes who uses multiple wearable devices to manage their
disease. They may want to ask questions about their data, such as inquiring about why their blood
glucose was out of range at a given time point. An ideal LLM chatbot for diabetes would be equipped
to answer questions about causal relationships in the data and provide a response that integrates
the patient’s data from their activity monitor and insulin pump. However, there is currently limited
work exploring the limits and best practices for eliciting LLM explanations of causal relationships in
time series data. In this paper, we explore the ability of LLMs to respond to queries about causal
relationships in time series data.

Our work has four primary objectives:

1. Investigate how LLMs can answer questions regarding known causal relationships in time
series data.

2. Determine whether an LLM can explain what caused an observed change in an output
variable of interest using in-context learning.

3. Evaluate the causal reasoning abilities of state-of-the-art LLMs in scenarios where variables
have abstract names versus real names.

4. Evaluate the performance of different ways of presenting data to an LLM.
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Figure 1: DAGs of causal relationships used to build synthetic datasets.

The goal of this work is to assess the causal reasoning abilities of common state-of-the-art LLMs
to explain causal relationships between multi-modal time series data. We also make our code and
synthetic datasets public, to serve as a benchmark for the community.

Recent work on causality and LLMS: There has been recent interest in investigating how causal
relationships are embedded in or learned through language models [4, 7, 14]. Of recent, [13]
suggested that while LLMs may perform well on causal tasks, they are not inherently causal. Another
line of work has investigated how LLMs reason [1, 9]. Other work has investigated how LLMs can
reason about causal interventions [6]. Here, the authors evaluated the performance when variables
were named with different underlying meanings, attempting to separate causal reasoning from causal
memorization. Other have been proposing solutions to incorporate causal knowledge into LLMs [2].

2 Methods

2.1 Experimental Setup Overview

In this paper, we evaluated 4 widely-used LLMs on a variety of tasks. We first created synthetic
time series datasets based on known causal relationships from three directed acyclic graphs (DAGs).
We imagined a scenario where there is an outcome variable, Y , that is of particular interest to an
individual. The task was designed to have the LLM analyze a dataset and provide an explanation
of why Y was observed, given known relationships between Y and other variables. We presented
different datasets from different scenarios to an LLM where it was prompted to identify the direct
cause and indirect of changes in an outcome variable. We evaluated how well LLMs can identify
these variables.

Initially, variables were be presented with abstract names. In a followup experiment, the variables
were reassigned to real-world meanings to align with DAG structures. We also tested different ways
to present that data to the LLM and how the performance changed when the relationships were not
given to the LLM in the prompt.

2.2 Data Generation

We generated synthetic datasets with 4 different time series variables across 30 time unites. In our
setup, we denoted the variable of interest as Y . We called the three other variables U1, U2, U3. We
derived the datasets based on 3 different causal configurations. These are shown in Figure 1. We
explore 3 different frameworks. Below, we describe the data generation process based on the three
DAGs. In each synthetic dataset, we included the 4 variables and generate sequences of length 30.

A

Y [t] = U1[t] ∗ 2 + U2[t] ∗ 2 + U3[t] ∗ 2 (1)
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Figure 2: Examples Time Series Data: Baseline represents scenario where Y has step response
without any cause from any input variables. Scenario 1 occurs when U1 has a step response. Scenario
2 occurs when U2 has a step response and Scenario 2 occurs when U3 has a step response.

B

U3[t] = U1[t− 2] ∗ 2 + U2[t− 2] ∗ 2 (2)

Y [t] = U3[t− 2] ∗ 2 (3)

C

U2[t] = U1[t− 2] ∗ 2 (4)

U3[t] = U2[t− 2] ∗ 2 (5)

Y [t] = U3[t] ∗ 2 (6)

Scenario Descriptions

For each DAG, we generated datasets based on 6 different scenarios. All variables were either zero
for the duration of the time period unless or had a randomly occurring impulse at time r. We tested a
baseline case, where none of the input variables have an observable effect on Y , but Y has an effect.
We then tested 3 scenarios, Scenario 1, Scenario 2, and Scenario 3, in which an impulse response
occurred, as given in Eq. 7, for U1, U2, and U3, respectively. Scenario 4 and Scenario 5 were
designed as an edge case to try to trick the LLM. In these scenarios, U2 had an impulse that did not
affect Y by the definitions given. In Scenario 4, the impulse occurred more than 2 time units before
Y , and in Scenario 5, the impulse occurred after Y .

δ[t− r]− δ[t− (r + 1)], r ∼ Uniform(0, 25) (7)

Tasks and Prompts

The goal of our work was simply to understand if LLMs can decribe causal explanations in time series
data. Accordingly, the primary outcome we measure is how well the model answers the following
two questions:

1. Direct Cause Which of U1, U2, U3 directly caused Y to be non-zero?

2. Indirect Cause Which of U1, U2, U3 indirectly caused Y to be non-zero?

We separated the direct and indirect cause to better understand whether the LLM was incorporating
information from the DAG. The direct causes of Y were only the variables that shared an edge
with Y in the DAG. The baseline prompt had four main componts: instructions, descriptions of the
relationships, the task, and the data. Figure 3 shows the components of the prompts.
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Figure 3: Baseline Prompt Components

2.3 Experiment Workflow

We evaluate 4 different open-source large language models. We evaluate two widelyused open-source
models, gpt-4 [10] and llama3.1-405b [12], and two open-source efficient models gpt-4o-mini [10]
and gemma2-27b [3]. Each model was tested on the same scenarios.

2.4 Additional Experiments

Assessment using realistic variables: In a subsequent analysis, we changed the variable names to
represent things with real meanings. We did this to understand if known associations embedded in
each LLM affect performance, positively or negatively. This approach was similar to the one done in
[6], where authors evaluated performance differences with variables named differently. Below we
describe how the variables were changed in the prompt.

1. DAG A: We rename Y to be risk of cardiovascular event, U1 to be exercise, US to be
caffeine, U3 to be stress.

2. DAG B: We rename Y to be risk of cardiovascular event, U1 to be heart rate, U2 to be
caffeine, U3 to be exercise.

3. DAG C: We rename Y to be risk of cardiovascular event, U1 to be heart rate, U2 to be
caffeine, U3 to be coffee consumption.

Assessment of alternative data formats: We also investigated how the data format of the time series
data affected the results. The baseline case as shown in Figure 3 included the raw time series data
in the prompt. We tested an alternative format of the data where the data was transformed into a
linguistic summary.

Linguistic Data Representation Example:
U1 observed all zero values, U2 observed Value: 1.0 at Time: 7, U3 observed all
zero values, and Y observed Value: 2.0 at Time: 20.

Assessment of inclusion of descriptions: Lastly, we investigated how the removal of the Relation-
ships component of the prompt Figure 3 affected the results.

3 Results

Figure 4 shows the model performance of base case where the variables had synthetic names and the
prompt was structured as in Figure 3. Figure 5 shows the difference in performance when real-world
variable names are used. In Appendix A.1 and A.3, the results from changing the data format and
DAG descriptions are shown.

Variable naming effected the performance in a differential manner. For some scenarios, changing
the variable names to words with real meaning caused worse performance. In other scenarios, it
caused improved performance. We show some example responses and explanations in Figure 6 from
the experiments ran with and without the DAG explanations. In this example, without the DAG
explanation of the relationships, the LLM still answers correctly when the variables have known
meanings.
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Figure 4: Synthetic Variable Names: Heatmap showing tasks answered correctly.

Figure 5: Real-World Variable Names: Heatmap showing the difference in the correct answers of
simulations from the synthetic variables to the real-world meaning variables

Overall, the performance was poor for the tasks for scenario 4 and 5. In these scenarios, the LLM
explanations often noted that since U2 was observed to have a non-zero value, it had a cuasal effect on
Y, even though the timing difference violated the rule. Below is an example of an incorrect reasoning:

From the data provided, we can see that the Risk of cardiac event became non-zero
at the 21st time unit. Looking at the other time series, we can see that there was no
exercise during this period, so it did not directly contribute to the Risk of cardiac
event. However, there was a consumption of caffeine at the 8th time unit. According
to the relationships provided, caffeine causes the heart rate to increase by 1 after 2
time units. This means that the heart rate would have increased at the 10th time
unit. The heart rate, in turn, causes the Risk of cardiac event to increase by 2 units
at the same time. However, there is a delay of 11 time units between the increase in
heart rate and the increase in Risk of cardiac event.
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Figure 6: Example Responses and Explanations: Above shows the output of gpt-4 for scenario 2
from DAG B. The green shaded answers are correct.

4 Conclusion

In this work we assessed the ability of LLMs to answer questions about causal relationships in time
series data. We systematically evaluate 4 widely-used LLMs on synthetic data to understand the
shortcomings of causal reasoning of time series analysis.

Our main findings can be summarized below:

• Changing the variable names from arbitrary variable names to real variable names had a
differential effect on performance. In some cases, it improved performance. In other cases, it
led to the the LLM answering questions about the causal variables instead of getting answer
from the data.

• In the current framework, the LLMs often failed to properly account for the time stamps
on the data when determining the causal relationships. In Scenario 4 and Scenario 5, the
LLM often mistakenly noted a variable as being causal even when it came after the outcome
variable.

• Changing the way the data was presented to the LLM affected performance. Future work
should investigate how to best optimize how time series data is formatted for analysis by
LLMs.

This work serves as a preliminary investigation in the ability of LLMs to describe causal relationships
in time series data. Our code and synthetic data is public for the community to use as a benchmark.
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Figure 7: Synthetic Variable Names: Heatmap showing tasks answered correctly with data formatted
as linguistic summaries

A Appendix

A.1 Change in data formatting

Figures 7 and 8 show the results when the data format was changed.

A.2 Real

Figure 8: Real-World Variable Names: Heatmap showing the difference in the correct answers of
simulations from the synthetic variables to the real-world meaning variables with data formatted as
linguistic summaries

A.3 Ablation of Description of DAG

Figures 9 and 9 show the results when the DAG description was omitted from the prompt.
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Figure 9: Synthetic Variable Names: Heatmap showing tasks answered correctly with DAG explana-
tions omitted

Figure 10: Real-World Variable Names: Heatmap showing the difference in the correct answers of
simulations from the synthetic variables to the real-world meaning variables with DAG explanations
omitted
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