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Abstract
Learning from human feedback plays an important role in aligning generative1

models, such as large language models (LLM). However, the effectiveness of2

this approach can be influenced by adversaries, who may intentionally provide3

misleading preferences to manipulate the output in an undesirable or harmful4

direction. To tackle this challenge, we study a specific model within this problem5

domain–contextual dueling bandits with adversarial feedback, where the true6

preference label can be flipped by an adversary. We propose an algorithm namely7

robust contextual dueling bandits (RCDB), which is based on uncertainty-weighted8

maximum likelihood estimation. Our algorithm achieves an Õ(d
√
T + dC) regret9

bound, where T is the number of rounds, d is the dimension of the context, and10

0 ≤ C ≤ T is the total number of adversarial feedback. We also prove a lower11

bound to show that our regret bound is nearly optimal, both in scenarios with and12

without (C = 0) adversarial feedback. Additionally, we conduct experiments to13

evaluate our proposed algorithm against various types of adversarial feedback.14

Experimental results demonstrate its superiority over the state-of-the-art dueling15

bandit algorithms in the presence of adversarial feedback.16

1 Introduction17

Acquiring an appropriate reward proves challenging in numerous real-world applications, often18

necessitating intricate instrumentation (Zhu et al., 2020) and time-consuming calibration (Yu et al.,19

2020) to achieve satisfactory levels of sample efficiency. For instance, in training large language20

models (LLM) using reinforcement learning from human feedback (RLHF), the diverse values and21

perspectives of humans can lead to uncalibrated and noisy rewards (Ouyang et al., 2022). In contrast,22

preference-based data, which involves comparing or ranking various actions, is a more straightforward23

method for capturing human judgments and decisions. In this context, the dueling bandit model24

(Yue et al., 2012) provides a problem framework that focuses on optimal decision-making through25

pairwise comparisons, rather than relying on the absolute reward for each action.26

However, human feedback may not always be reliable. In real-world applications, human feedback27

is particularly vulnerable to manipulation through preference label flip. Adversarial feedback can28

significantly increase the risk of misleading a large language model (LLM) into erroneously prioritiz-29

ing harmful content, under the false belief that it reflects human preference. Despite the significant30

influence of adversarial feedback, there is limited existing research on the impact of adversarial31

feedback specifically within the context of dueling bandits. A notable exception is Agarwal et al.32

(2021), which studies dueling bandits when an adversary can flip some of the preference labels33

received by the learner. They proposed an algorithm that is agnostic to the amount of adversarial34

feedback introduced by the adversary. However, their setting has the following two limitations.35

First, their study was confined to a finite-armed setting, which renders their results less applicable36

to modern applications such as RLHF. Second, their adversarial feedback is defined on the whole37

comparison matrix. In each round, the adversary observes the outcomes of all pairwise comparisons38

and then decides to corrupt some of the pairs before the agent selects the actions. This assumption39
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does not align well with the real-world scenario, where the adversary often flips the preference label40

based on the information of the selected actions.41

In this paper, to address the above challenge, we aim to develop contextual dueling bandit algorithms42

that are robust to adversarial feedback. This enables us to effectively tackle problems involving43

a large number of actions while also taking advantage of contextual information. We specifically44

consider a scenario where the adversary knows the selected action pair and the true preference of45

their comparison. In this setting, the adversary’s only decision is whether to flip the preference label46

or not. We highlight our contributions as follows:47

• We propose a new algorithm called robust contextual dueling bandits (RCDB), which integrates48

uncertainty-dependent weights into the Maximum Likelihood Estimator (MLE). Intuitively, our49

choice of weight is designed to induce a higher degree of skepticism about potentially “untrust-50

worthy” feedback. The agent is encouraged to focus more on feedback that is more likely to be51

genuine, effectively diminishing the impact of any adversarial feedback.52

• We analyze the regret of our algorithm under at most C number of adversarial feedback. Our result53

consists of two terms: a C-independent term Õ(d
√
T ), which matches the lower bound established54

in Bengs et al. (2022) for uncorrupted linear contextual dueling bandits, and a C-dependent term55

Õ(dC). Furthermore, we establish a lower bound for dueling bandits with adversarial feedback,56

demonstrating the optimality of our adversarial term. Consequently, our algorithm for dueling57

bandits attains the optimal regret in both scenarios, with and without adversarial feedback.58

• We conduct extensive experiments to validate the effectiveness of our algorithm RCDB. To compre-59

hensively assess RCDB’s robustness against adversarial feedback, we evaluate its performance under60

various types of adversarial feedback and compare the results with state-of-the-art dueling bandit61

algorithms. Experimental results demonstrate the superiority of our algorithm in the presence of62

adversarial feedback, which corroborate our theoretical analysis.63

Table 1: Comparison of algorithms for robust bandits and dueling bandits.
Model Algorithm Setting Regret

Multi-layer Active Arm Elimination Race
(Lykouris et al., 2018) K-armed Bandits Õ

(
K1.5C

√
T
)

BARBAR
(Gupta et al., 2019) K-armed Bandits Õ

(√
KT +KC

)
SBE

(Li et al., 2019) Linear Bandits Õ
(
d2C/∆+ d5/∆2

)
Bandits

Robust Phased Elimination
(Bogunovic et al., 2021) Linear Bandits Õ

(√
dT + d1.5C + C2

)
Robust weighted OFUL

(Zhao et al., 2021) Linear Contextual Bandits Õ
(
dC

√
T
)

CW-OFUL
(He et al., 2022) Linear Contextual Bandits Õ

(
d
√
T + dC

)
WIWR

(Agarwal et al., 2021) K-armed Dueling Bandits Õ
(
K2C/∆min +

∑
i̸=i∗ K

2/∆2
i

)
Versatile-DBDueling Bandits (Saha and Gaillard, 2022) K-armed Dueling Bandits Õ

(
C +

∑
i ̸=i∗ 1/∆i +

√
K
)

RCDB
(Our work) Contextual Dueling Bandits Õ

(
d
√
T + dC

)
Notation. In this paper, we use plain letters such as x to denote scalars, lowercase bold letters such64

as x to denote vectors and uppercase bold letters such as X to denote matrices. For a vector x, ∥x∥265

denotes its ℓ2-norm. The weighted ℓ2-norm associated with a positive-definite matrix A is defined66

as ∥x∥A =
√
x⊤Ax. For two symmetric matrices A and B, we use A ⪰ B to denote A −B is67

positive semidefinite. We use 1 to denote the indicator function and 0 to denote the zero vector. For68

two actions a, b, we use a ≻ b to denote a is more preferable to b. For a postive integer N , we use69

[N ] to denote {1, 2, . . . , N}. We use standard asymptotic notations including O(·),Ω(·),Θ(·), and70

Õ(·), Ω̃(·), Θ̃(·) will hide logarithmic factors.71

2 Related Work72

Bandits with Adversarial Reward. The multi-armed bandit problem, involving an agent making73

sequential decisions among multiple arms, has been studied with both stochastic rewards (Lai74

et al., 1985; Lai, 1987; Auer, 2002; Auer et al., 2002a; Kalyanakrishnan et al., 2012; Lattimore and75

Szepesvári, 2020; Agrawal and Goyal, 2012), and adversarial rewards (Auer et al., 2002b; Bubeck76

et al., 2012). Moreover, a line of works focuses on designing algorithms that can achieve near-optimal77

regret bounds for both stochastic bandits and adversarial bandits simultaneously (Bubeck and Slivkins,78

2012; Seldin and Slivkins, 2014; Auer and Chiang, 2016; Seldin and Lugosi, 2017; Zimmert and79

Seldin, 2019; Lee et al., 2021), which is known as “the best of both worlds” guarantee. Distinct from80
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fully stochastic and fully adversarial models, Lykouris et al. (2018) studied a setting, where only a81

portion of the rewards is subject to corruption. They proposed an algorithm with a regret dependent82

on the corruption level C, defined as the cumulative sum of the corruption magnitudes in each round.83

Their result is C times worse than the regret without corruption. Gupta et al. (2019) improved the84

result by providing a regret guarantee comprising two terms, a corruption-independent term that85

matches the regret lower bound without corruption, and a corruption-dependent term that is linear in86

C. In addition, Gupta et al. (2019) proved a lower bound demonstrating the optimality of the linear87

dependency on C.88

Contextual Bandits with Corruption. Li et al. (2019) studied stochastic linear bandits with89

corruption and presented an instance-dependent regret bound linearly dependent on the corruption90

level C. Bogunovic et al. (2021) studied the same problem and proposed an algorithm with near-91

optimal regret in the non-corrupted case. Lee et al. (2021) studied this problem in a different setting,92

where the adversarial corruptions are generated through the inner product of a corrupted vector93

and the context vector. For linear contextual bandits, Bogunovic et al. (2021) proved that under an94

additional context diversity assumption, the regret of a simple greedy algorithm is nearly optimal95

with an additive corruption term. Zhao et al. (2021) and Ding et al. (2022) extended the OFUL96

algorithm (Abbasi-Yadkori et al., 2011) and proved a regret with a corruption term polynomially97

dependent on the total number of rounds T . He et al. (2022) proposed an algorithm for known98

corruption level C to remove the polynomial dependency on T in the corruption term, which only99

has a linear dependency on C. They also proved a lower bound showing the optimality of linear100

dependency on C for linear contextual bandits with a known corruption level. Additionally, He et al.101

(2022) extended the proposed algorithm to an unknown corruption level and provided a near-optimal102

performance guarantee that matches the lower bound. For more extensions, Kuroki et al. (2023)103

studied best-of-both-worlds algorithms for linear contextual bandits. Ye et al. (2023) proposed a104

corruption robust algorithm for nonlinear contextual bandits.105

Dueling Bandits and Logistic Bandits. The dueling bandit model was first proposed in Yue106

et al. (2012). Compared with bandits, the agent will select two arms and receive the preference107

feedback between the two arms from the environment. For general preference, there may not exist108

the “best” arm that always wins in the pairwise comparison. Therefore, various alternative winners109

are considered, including Condorcet winner (Zoghi et al., 2014; Komiyama et al., 2015), Copeland110

winner (Zoghi et al., 2015; Wu and Liu, 2016; Komiyama et al., 2016), Borda winner (Jamieson et al.,111

2015; Falahatgar et al., 2017; Heckel et al., 2018; Saha et al., 2021; Wu et al., 2023) and von Neumann112

winner (Ramamohan et al., 2016; Dudík et al., 2015; Balsubramani et al., 2016), along with their113

corresponding performance metrics. To handle potentially large action space or context information,114

Saha (2021) studied a structured contextual dueling bandit setting. In this setting, each arm possesses115

an unknown intrinsic reward. The comparison is determined based on a logistic function of the relative116

rewards. In a similar setting, Bengs et al. (2022) studied contextual linear stochastic transitivity117

model with contextualized utilities. Di et al. (2023) proposed a layered algorithm with variance118

aware regret bound. Another line of works does not make the reward assumption. Instead, they119

assume the preference feedback can be represented by a function class. Saha and Krishnamurthy120

(2022) designed an algorithm that achieves the optimal regret for K-armed contextual dueling bandit121

problem. Sekhari et al. (2023) studied contextual dueling bandits in a more general setting and122

proposed an algorithm the provides guarantees for both regret and the number of queries. Another123

related area of research is the logistic bandits, where the agent selects one arm in each round and124

receives a Bernoulli reward. Faury et al. (2020) studied the dependency with respect to the degree125

of non-linearity of the logistic function κ. They proposed an algorithm with no dependency in κ.126

Abeille et al. (2021) further improved the dependency on κ and proved a problem dependent lower127

bound. Faury et al. (2022) proposed a computationally efficient algorithm with regret performance128

still matching the lower-bound proved in Abeille et al. (2021).129

Dueling Bandits with Adversarial Feedback. A line of work has focused on dueling bandits with130

adversarial feedback or corruption. Gajane et al. (2015) studied a fully adversarial utility-based131

version of dueling bandits, which was proposed in Ailon et al. (2014). Saha et al. (2021) considered132

the Borda regret for adversarial dueling bandits without the assumption of utility. In a setting133

parallel to that in Lykouris et al. (2018); Gupta et al. (2019), Agarwal et al. (2021) studied K-armed134

dueling bandits in a scenario where an adversary has the capability to corrupt part of the feedback135

received by the learner. They designed an algorithm whose regret comprises two terms: one that136

is optimal in uncorrupted scenarios, and another that is linearly dependent on the total times of137

adversarial feedback C. Later on, Saha and Gaillard (2022) achieved “best-of-both world” result for138

noncontextual dueling bandits and improved the adversarial term of Agarwal et al. (2021) in the same139
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setting. For contextual dueling bandits, Wu et al. (2023) proposed an EXP3-type algorithm for the140

adversarial linear setting using Borda regret. For a comparison of the most related works for robust141

bandits and dueling bandits, please refer to Table 1. In this paper, we study the influence of adversarial142

feedback within contextual dueling bandits, particularly in a setting where only a minority of the143

feedback is adversarial. Compared to previous studies, most studies have focused on the multi-armed144

dueling bandit framework without integrating context information. The notable exception is Wu et al.145

(2023); however, this study does not provide guarantees regarding the dependency on the number of146

adversarial feedback instances.147

3 Preliminaries148

In this work, we study linear contextual dueling bandits with adversarial feedback. In each round149

t ∈ [T ], the agent observes the context information xt from a context set X and the corresponding150

action set A. Utilizing this context information, the agent selects two actions, at and bt. Subsequently,151

the environment will generate a binary feedback (i.e., preference label) lt = 1(at ≻ bt) ∈ {0, 1}152

indicating the preferable action. We assume the existence of a reward function r∗(x, a) dependent on153

the context information x and action a, and a monotonically increasing link function σ satisfying154

σ(x) + σ(−x) = 1. The preference probability will be determined by the link function and the155

difference between the rewards of the selected arms, i.e.,156

P(a ≻ b|x) = σ
(
r∗(x, a)− r∗(x, b)

)
. (3.1)

We assume that the reward function is linear with respect to some known feature map ϕ(x, a). To be157

more specific, we make the following assumption:158

Assumption 3.1. Let ϕ : X × A → Rd be a known feature map, with ∥ϕ(x, a)∥2 ≤ 1 for any159

(x, a) ∈ X × A. We define the reward function rθ parameterized by θ ∈ Rd, with rθ(x, a) =160

⟨θ,ϕ(x, a)⟩. Moreover, there exists θ∗ satisfying rθ∗ = r∗, with ∥θ∗∥2 ≤ B.161

Similar assumptions have been made in the literature of dueling bandits (Saha, 2021; Bengs et al.,162

2022; Xiong et al., 2023). We also make an assumption on the derivative of the link function, which163

is common in the study of generalized linear models for bandits (Filippi et al., 2010).164

Assumption 3.2. The link function σ is differentiable. Furthermore, its first-order derivative satisfies:165

σ̇(·) ≥ κ

for some constant κ > 0.166

In our setting, however, the agent does not directly observe the true binary feedback. Instead, an167

adversary will see both the choice of the agent and the true feedback. Based on the information, the168

adversary can decide whether to corrupt the binary feedback or not.1 We represent the adversary’s169

decision in round t by an adversarial indicator ct, which takes values from the set {0, 1}. If the170

adversary chooses not to corrupt the result, we have ct = 0. Otherwise, we have ct = 1, which means171

adversarial feedback in this round. As a result, the agent will observe a flipped preference label, i.e.,172

the observation ot = 1− lt. We define C as the total level of adversarial feedback, i.e.,173 ∑T
t=1 ct ≤ C.

Remark 3.3. Adversarial corruption has been firstly studied in bandits (Lykouris et al., 2018), where174

in each round t, the agent selects an action at and the environment generates a numerical reward175

rt(at). The adversary observes the reward and returns a corrupted reward r̄t. The corruption level176

C is defined by
∑T

t=1 |rt(at) − r̄t| ≤ C. Compared with the continuous perturbation of rewards177

in bandits, the adversary’s label flipping attack method in our model is quite different. The cost178

of obtaining adversarial feedback is uniformly 1, unlike in bandits where the cost depends on the179

intensity of the perturbation. Additionally, adversarial feedback in our setting involves comparing two180

arms, whereas in bandits it pertains to the reward of a single arm. The only previous work that studied181

label-flipping is (Agarwal et al., 2021), where the adversary cannot observe the action selected by the182

agent. In contrast, our setting focuses on scenarios where this information is available to adversaries,183

which is common in many real-life applications.184

As the context is changing, the optimal action is different in each round, denoted by a∗t =185

argmaxa∈A r∗(xt, a). The goal of our algorithm is to minimize the cumulative gap between the186

rewards of both selected actions and the optimal action187

Regret(T ) =
∑T

t=12r
∗(xt, a

∗
t )− r∗(xt, at)− r∗(xt, bt). (3.2)

1Such adversary is referred to as strong adversary (He et al., 2022), compared with the weak adversary who
cannot obtain the information before the decision.
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This regret definition is the same as that in Saha (2021) and the average regret defined in Bengs et al.188

(2022). It is typically stronger than weak regret defined in Bengs et al. (2022), which only considers189

the reward gap of the better action.190

4 Algorithm191

In this section, we present our new algorithm RCDB, designed for learning contextual linear dueling192

bandits. The main algorithm is illustrated in Algorithm 1. At a high level, we incorporate uncertainty-193

dependent weighting into the Maximum Likelihood Estimator (MLE) to counter adversarial feedback.194

Specifically, in each round t ∈ [T ], we construct the estimator of parameter θ by solving the following195

equation:196

λκθ +
∑t−1

i=1wi

(
σ(ϕ⊤

i θ)− oi
)
ϕi = 0, (4.1)

where we denote ϕi = ϕ(xi, ai)−ϕ(xi, bi) for simplicity, wi is the uncertainty weight we are going197

to choose. To obtain an intuitive understanding of our weight, we consider any action-observation198

sequence (x1, a1, b1, o1, x2, a2, b2, o2, . . . , xt, at, bt, ot) up to round t. For simplicity, we denote199

Ft = σ(x1, a1, b1, o1, x2, a2, b2, o2, . . . , xt, at, bt) as the filtration. Suppose the estimated parameter200

θt is the solution to the unweighted version equation of (4.1), i.e.,201

λκθt +
∑t

i=1

(
σ(ϕ⊤

i θt)− oi
)
ϕi = 0. (4.2)

When we receive ϕt = ϕ(xt, at)− ϕ(xt, bt), the probability of receiving lt = 1 can be estimated202

by σ(ϕ⊤
t θt). We consider the conditional variance of the estimated probability σ(ϕ⊤

t θt) in round t,203

i.e.,Var
[
σ(ϕ⊤

t θt)|Ft

]
, involving a posterior estimate of the prediction’s variance. First, we have204

E
[
σ(ϕ⊤

t θt)|Ft

]
≈ E

[
σ(ϕ⊤

t θ
∗) + σ′(ϕ⊤

t θ
∗)ϕ⊤

t (θt − θ∗)|Ft

]
= E

[
σ(ϕ⊤

t θ
∗)− σ′(ϕ⊤

t θ
∗)ϕ⊤

t θ
∗︸ ︷︷ ︸

Ft−measurable

|Ft

]
+ E

[
σ′(ϕ⊤

t θ
∗)ϕ⊤

t θt|Ft

]
.

Moreover, using the Taylor’s expansion to (4.2), we have205

0 = λκθt +
∑t

i=1

(
σ(ϕ⊤

i θt)− oi
)
ϕi

≈
(
λκI+

∑t
i=1σ

′(ϕ⊤
i θ

∗)ϕiϕ
⊤
i

)
θt +

∑t
i=1

(
σ(ϕ⊤

i θ
∗)− oi

)
ϕi −

∑t
i=1 σ

′(ϕ⊤
i θ

∗)ϕiϕ
⊤
i θ

∗.

Let Λt = λκI+
∑t

i=1 σ
′(ϕ⊤

i θ
∗)ϕiϕ

⊤
i , we have206

θt ≈ Λ−1
t

[∑t
i=1σ

′(ϕ⊤
i θ

∗)ϕiϕ
⊤
i θ

∗ −
∑t

i=1

(
σ(ϕ⊤

i θ
∗)− oi

)
ϕi

]
= Λ−1

t

[∑t
i=1σ

′(ϕ⊤
i θ

∗)ϕiϕ
⊤
i θ

∗ −
∑t−1

i=1

(
σ(ϕ⊤

i θ
∗)− oi

)
ϕi − σ(ϕ⊤

t θ
∗)
]

︸ ︷︷ ︸
Ft−measurable

+otΛ
−1
t ϕt

Therefore, the variance of the estimated preference probability can be approximated by207

Var
[
σ(ϕ⊤

t θt)|Ft

]
= E

[(
σ(ϕ⊤

t θt)− E
[
σ(ϕ⊤

t θt)|Ft

])2|Ft

]
≈ E

[(
E
[
otσ

′(ϕ⊤
t θ

∗)ϕ⊤
t Λ

−1
t ϕt|Ft

])2∣∣∣Ft

]
≤ E

[
ot[σ

′(ϕ⊤
t θ

∗)]2∥ϕt∥2Λ−1
t
|Ft

]
≤ [σ′(ϕ⊤

t θ
∗)]2∥ϕt∥2Λ−1

t
,

where the first inequality holds due to the Jensen’s inequality and o2t = ot, and the last inequality208

holds due to E[ot|Ft] ≤ 1. Using σ′(ϕ⊤
t θ

∗) ≤ 1, ϕ⊤
t θ

∗ ≤ 1, Λt ≥ κΣt+1 ≥ κΣt, we can see that209

Var
[
σ(ϕ⊤

t θt)|Ft

]
≤ κ−1∥ϕt∥2Σ−1

t

. Since higher variance leads to larger uncertainty, which harms210

the credibility of the data, it is natural to assign a smaller weight to the data with high uncertainty.211

Thus, we choose the weight to cancel out the uncertainty as follows212

wi = min{1, α/∥ϕi∥Σ−1
i
}, (4.3)

where α/∥ϕi∥Σ−1
i

normalizes the variance of the estimated probability. To prevent excessively213

large weights, we apply truncation to this value. A similar weight has been used in He et al. (2022)214

for linear contextual bandits under corruption. Different from their setting where the weight is an215

estimate of the variance of the linear model, our weight is an estimate of a generalized linear model.216
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Furthermore, by selecting a proper threshold parameter, e.g., α =
√
d/C, the weighted MLE shares217

the same confidence radius with that of the no-adversary scenario.218

After constructing the estimator θt from the weighted MLE, the sum of the estimated reward for219

each duel (a, b) can be calculated as
(
ϕ(xt, a) +ϕ(xt, b)

)⊤
θt. To encourage the exploration of duel220

(a, b) with high uncertainty during the learning process, we introduce an exploration bonus with the221

following β
∥∥ϕ(xt, a)−ϕ(xt, b)

∥∥
Σ−1

t
, which follows a similar spirit to the bonus term in the context222

of linear bandit problems (Abbasi-Yadkori et al., 2011). However, the reward term and the bonus term223

exhibit different combinations of the feature maps ϕ(xt, a) and ϕ(xt, b), which is the key difference224

between bandits and dueling bandits. The selection of action pairs (a, b) is subsequently determined225

by maximizing the estimated reward with the exploration bonus term, i.e.,226 (
ϕ(xt, a) + ϕ(xt, b)

)⊤
θt + β

∥∥ϕ(xt, a)− ϕ(xt, b)
∥∥
Σ−1

t
.

More discussion about the selection rule was discussed in Appendix A of Di et al. (2023).227

Algorithm 1 Robust Contextual Dueling Bandit (RCDB)
1: Require: α > 0, Regularization parameter λ, confidence radius β.
2: for t = 1, . . . , T do
3: Compute Σt = λI+

∑t−1
i=1wi

(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
.

4: Calculate the MLE θt by solving the following equation:

λκθ +
∑t−1

i=1wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)
− oi

](
ϕ(xi, ai)− ϕ(xi, bi)

)
= 0. (4.4)

5: Observe the context vector xt.
6: Choose at, bt = argmaxa,b

{(
ϕ(xt, a) + ϕ(xt, b)

)⊤
θt + β

∥∥ϕ(xt, a)− ϕ(xt, b)
∥∥
Σ−1

t

}
.

7: The adversary sees the feedback lt = 1(at ≻ bt) and decides the indicator ct. Observe ot = lt
when ct = 0, otherwise observe ot = 1− lt.

8: Set weight wt as (4.3).
9: end for

5 Main Results228

5.1 Known Number of Adversarial Feedback229

At the center of our algorithm design is the uncertainty-weighted MLE. When faced with adversarial230

feedback, the estimation error of the weighted MLE θt can be characterized by the following lemma.231

Lemma 5.1. If we set β =
√
λB +

(
αC +

√
d log((1 + 2T/λ)/δ)

)
/κ, then with probability at232

least 1− δ, for any t ∈ [T ], we have233 ∥∥θt − θ∗∥∥
Σt

≤ β.

Remark 5.2. If we set α = (
√
d+

√
λB)/C, then the bonus radius β has no direct dependency on234

the number of adversarial feedback C. This observation plays a key role in proving the adversarial235

term in the regret without polynomial dependence on the total number of rounds T .236

With Lemma 5.1, we can present the following regret guarantee of our algorithm RCDB in the dueling237

bandit framework.238

Theorem 5.3. Under Assumption 3.1 and 3.2, let 0 < δ < 1, the total number of adversarial feedback239

be C. If we set the bonus radius to be240

β =
√
λB +

(
αC +

√
d log((1 + 2T/λ)/δ)

)
/κ,

then with probability at least 1− δ, the regret in the first t rounds can be upper bounded by241

Regret(T ) ≤ 4
(√

λB + αC/κ
)√

dT log(1 + 2T/λ)

+ 4d
(√

T/κ+
√
λB/α+ 4C/κ

)
log

(
(1 + 2T/λ)/δ

)
+ 4d1.5

√
log3

(
(1 + 2T/λ)/δ

)
/(ακ).

Moreover, if we set α = (
√
d+

√
λB)/C, λ = 1/B2, the regret upper bound can be simplified to242

Regret(T ) = Õ
(
d
√
T/κ+ dC/κ

)
.
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Remark 5.4. Our regret bound consists of two terms. The first one is a C-independent term Õ(d
√
T ),243

which matches the lower bound Ω̃(d
√
T ) proved in Bengs et al. (2022). This indicates that our result244

is optimal in scenarios without adversarial feedback (C = 0). Additionally, our result includes an245

additive term that is linearly dependent on the number of adversarial feedback C. When C = O(
√
T ),246

the order of regret will be the same as the stochastic setting. It indicates the robustness of our algorithm247

to adversarial feedback. Additionally, the following theorem we present establishes a lower bound248

for this adversarial term, indicating that our dependency on the number of adversarial feedback C249

and the context dimension d is also optimal.250

Theorem 5.5. For any dimension d, there exists an instance of dueling bandits with |A| = d, such251

that any algorithm with the knowledge of the number of adversarial feedback C must incur Ω(dC)252

regret with probability at least 1/2.253

Remark 5.6. The proof of Theorem 5.5 follows Bogunovic et al. (2021). In the constructed instances,254

only one action has reward 1, while others have 0. Compared with linear bandits, where the feedback255

is an exact reward, dueling bandits deal with the comparison between a pair of actions. A critical256

observation from our preference model, as formulated in (3.1), is that two actions with identical257

rewards result in a pair that is challenging to differentiate. The lower bound can be proved by258

corrupting every comparison into a random guess until the total times of adversarial feedback have259

been used up. For detailed proof, please refer to Section B.2. Our proved lower bound Ω(dC) shows260

that our result is nearly optimal because of the linear dependency on C, d and only logarithmic261

dependency on the total number of rounds T .262

5.2 Unknown Number of Adversarial Feedback263

In our previous analysis, the selection of parameters depends on having prior knowledge of the total264

number of adversarial feedback C. In this subsection, we extend our previous result to address265

the challenge posed by an unknown number of adversarial feedback C. Our approach to tackle266

this uncertainty follows He et al. (2022), we introduce an adversarial tolerance threshold C̄ for the267

adversary count. This threshold can be regarded as an optimistic estimator of the actual number of268

adversarial feedback C. Under this situation, the subsequent theorem provides an upper bound for269

regret of Algorithm 1 in the case of an unknown number of adversarial feedback C.270

Theorem 5.7. Under Assumptions 3.1 and 3.2, if we set the the confidence radius as271

β =
√
λB +

[
αC̄ +

√
d log

(
(1 + 2T/λ)/δ

)]
/κ,

with the pre-defined adversarial tolerance threshold C̄ and α = (
√
d+

√
λB)/C̄, then with probability272

at least 1− δ, the regret of Algorithm 1 can be upper bounded as following:273

• If the actual number of adversarial feedback C is smaller than the adversarial tolerance threshold274

C̄, then we have275

Regret(T ) = Õ
(
d
√
T/κ+ dC̄/κ

)
.

• If the actual number of adversarial feedback C is larger than the adversarial tolerance threshold C̄,276

then we have Regret(T ) = O(T ).277

Remark 5.8. The COBE framework (Wei et al., 2022) converts any algorithm with the known278

adversarial level to an algorithm in the unknown case. However, such a framework only works for279

weak adversaries and does not work in our strong adversary setting. In fact, He et al. (2022) proved280

that any algorithm cannot simultaneously achieve near-optimal regret when uncorrupted and maintain281

sublinear regret with corruption level C = Ω(
√
T ). Therefore, there exists a trade-off between robust282

adversarial defense and near-optimal algorithmic performance. Our algorithm achieves the same283

nearly optimal Õ(d
√
T ) regret as the no-adversary case even when C = Θ(

√
T ), which indicates284

that our results are optimal in the presence of an unknown number of adversarial feedback.285

6 Experiments286

6.1 Experiment Setup287

Preference Model. We study the effect of adversarial feedback with the preference model deter-288

mined by (3.1), where σ(x) = 1/(1 + e−x). We randomly generate the underlying parameter in289

[−0.5, 0.5]d and normalize it to be a vector with ∥θ∗∥2 = 2. Then, we set it to be the underlying290

parameter and construct the reward utilized in the preference model as r∗(x, a) = ⟨θ∗,ϕ(x, a)⟩.291

We set the action set A =
{
− 1/

√
d, 1/

√
d
}d

. For simplicity, we assume ϕ(x, a) = a. In our292

experiment, we set the dimension d = 5, with the size of action set |A| = 2d = 32.293
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Adversarial Attack Methods. We study the performance of our algorithm using different adversar-294

ial attack methods. We categorize the first two methods as “weak” primarily because the adversary in295

these scenarios does not utilize information about the agent’s actions. In contrast, we classify the296

latter two methods as “strong” attacks. In these cases, the adversary leverages a broader scope of297

information, including knowledge of the actions selected by the agent and the true preference model.298

This enables it to devise more targeted adversarial methods.299

• “Greedy Attack": The adversary will flip the preference label for the first C rounds. After that, it300

will not corrupt the result anymore.301

• “Random Attack": In each round, the adversary will flip the preference label with the probability of302

0 < p < 1, until the times of adversarial feedback reach C.303

• “Adversarial Attack": The adversary can have access to the true preference model. It will only flip304

the preference label when it aligns with the preference model, i.e., the probability for the preference305

model to make that decision is larger than 0.5, until the times of adversarial feedback reach C.306

• “Misleading Attack": The adversary selects a suboptimal action. It will make sure this arm is307

always the winner in the comparison until the times of adversarial feedback reach C. In this way, it308

will mislead the agent to believe this action is the optimal one.309

Experiment Setup. For each experiment instance, we simulate the interaction with the environment310

for T = 2000 rounds. In each round, the feedback for the action pair selected by the algorithm is311

generated according to the defined preference model. Subsequently, the adversary observes both the312

selected actions and their corresponding feedback and then engages in one of the previously described313

adversarial attack methods. We report the regret defined in (3.2) averaged across 10 random runs.
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Figure 1: Comparison of RCDB (Our Algorithm 1), MaxInp (Saha, 2021), CoLSTIM (Bengs et al.,
2022) and MaxPairUCB (Di et al., 2023). We report the cumulative regret with various adversarial
attack methods (Greedy, Random, Adversarial, Misleading). For the baselines, the parameters are
carefully tuned to achieve better results with different attack methods. The total number of adversarial
feedback is C = ⌈

√
T ⌉.

314
6.2 Performance Comparison315

We first introduce the algorithms studied in this section.316

• MaxInP: Maximum Informative Pair by Saha (2021). It involves maintaining a standard MLE.317

With the estimated model, it then identifies a set of promising arms possible to beat the rest. The318

selection of arm pairs is then strategically designed to maximize the uncertainty in the difference319

between the two arms within this promising set, referred to as “maximum informative”.320

• CoLSTIM: The method by Bengs et al. (2022). It involves maintaining a standard MLE for the321

estimated model. Based on this model, the first arm is selected as the one with the highest estimated322

reward, implying it is the most likely to prevail over competitors. The second arm is selected to be323

the first arm’s toughest competitor, with an added uncertainty bonus.324

• MaxPairUCB: This algorithm was proposed in Di et al. (2023). It uses the regularized MLE to325

estimate the parameter θ∗. Then it selects the actions based on a symmetric action selection rule,326

i.e. the actions with the largest estimated reward plus some uncertainty bonus.327

• RCDB: Algorithm 1 proposed in this paper. The key difference from the other algorithms is the328

use of uncertainty weight in the calculation of MLE (4.4). The we use the same symmetric action329

selection rule as MaxPairUCB. Our experiment results show that the uncertainty weight is critical330

in the face of adversarial feedback.331

Our results are demonstrated in Figure 1. In Figure 1(a) and Figure 1(b), we observe scenarios where332

the adversary is “weak” due to the lack of access to information regarding the selected actions and the333

underlying preference model. Notably, in these situations, our algorithm RCDB outperforms all other334
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baseline algorithms, demonstrating its robustness. Among the other algorithms, CoLSTIM performs335

as the strongest competitor.336

In Figure 1(c), the adversary employs a ’stronger’ adversarial method. Due to the inherent randomness337

of the model, some labels may naturally be ’incorrect’. An adversary with knowledge of the selected338

actions and the preference model can strategically neglect these naturally incorrect labels and339

selectively flip the others. This method proves catastrophic for algorithms to learn the true model,340

as it results in the agent encountering only incorrect preference labels at the beginning. Our results341

indicate that this leads to significantly higher regret. However, it’s noteworthy that our algorithm342

RCDB demonstrates considerable robustness.343

In Figure 1(d), the adversary employs a strategy aimed at misleading algorithms into believing a344

suboptimal action is the best choice. The algorithm CoLSTIM appears to be the most susceptible to345

being cheated by this method. Despite the deployment of ’strong’ adversarial methods, as shown346

in both Figure 1(c) and Figure 1(d), our algorithm, RCDB, consistently demonstrates exceptional347

robustness against these attacks. A significant advantage of RCDB lies in that our parameter is selected348

solely based on the number of adversarial feedback C, irrespective of the nature of the adversarial349

methods employed. This contrasts with other algorithms where parameter tuning must be specifically350

adapted for each distinct adversarial method.
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Figure 2: The relationship between cumulative regret and the number of adversarial feedback C. For
this specific experiment, we employ the "greedy attack" method to generate the adversarial feedback.
C is selected from the set [20, 40, 60, 80, 100, 120, 140, 160, 180, 200] (10 adversarial levels).

351
6.3 Robustness to Different Numbers of Adversarial Feedback352

In this section, we test the performance of algorithms with increasing times of adversarial feedback.353

Our results show a linear dependency on the number of adversarial feedback C, which is consistent354

with the theoretical results we have proved in Theorem 5.3 and 5.5. In comparison to other algorithms,355

RCDB demonstrates superior robustness against adversarial feedback, as evidenced by its notably356

smaller regret.357

7 Conclusion358

In this paper, we focus on the contextual dueling bandit problem from adversarial feedback. We359

introduce a novel algorithm, RCDB, which utilizes an uncertainty-weighted Maximum Likelihood360

Estimator (MLE) approach. This algorithm not only achieves optimal theoretical results in scenarios361

with and without adversarial feedback but also demonstrates superior performance with synthetic362

data. For future direction, we aim to extend our uncertainty-weighted method to encompass more363

general settings involving preference-based data. A particularly promising future direction of our364

research lies in addressing adversarial feedback within the process of aligning large language models365

using Reinforcement Learning from Human Feedback (RLHF).366

Limitations. We assume that the reward is linear with respect to some known feature maps. Although367

this setting is common in the literature, we observe that some recent works on dueling bandits can368

deal with nonlinear rewards (Li et al., 2024). Therefore, it’s possible to extend our results to a more369

general setting. Another assumption concerns the lower bound of the derivative of the link function.370

Notably, in the logistic bandit model, which shares similarities with our setting through Bernoulli371

variables, some work (Abeille et al., 2021; Faury et al., 2022) can improve the dependency of κ from372

1/κ to
√
κ. A similar improvement might be achieved in our setting as well.373
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Broader Impact510

This paper studies contextual dueling bandits with adversarial feedback. Our primary objective is511

to propel advancements in bandit theory by introducing a more robust algorithm backed by solid512

theoretical guarantees. The uncertainty-weighted approach we have developed for dueling bandits513

holds significant potential to address the issue of adversarial feedback in preference-based data, which514

could be instrumental in enhancing the robustness of generative models against adversarial attacks,515

thereby contributing positively to the societal impact and reliability of machine learning applications.516

A Roadmap of the Proof517

A.1 Uncertainty-weighted MLE with Adversarial Feedback518

In this section, we offer an overview of the proof for Lemma 5.1. The general proof idea for519

the uncertainty-weighted MLE with adversarial feedback lies in decomposing the estimation error520

into three terms, a stochastic error term, an adversarial term, and an additional regularization term.521

Following the analysis of standard (weighted) MLE (Li et al., 2017), we introduce an auxiliary522

function:523

Gt(θ) = λκθ +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)

− σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ∗
)](

ϕ(xi, ai)− ϕ(xi, bi)
)
.

It satisfies two conditions: First, for the true parameter value θ∗, Gt(θ
∗) has a simple expression, i.e.,524

Gt(θ
∗) = λκθ∗.

Second, according to (4.4), we can get the value of function Gt at the MLE θt,525

Gt(θt) =

t−1∑
i=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
, (A.1)

where γi = oi − σ
(
(ϕ(xi, ai)− ϕ(xi, bi))

⊤θ∗). To connect the desired estimation error with the526

function Gt, we use the mean value theorem. This leads to an upper bound of the estimation error:527

∥θt − θ∗∥Σt ≤
1

κ

∥∥Gt(θt)−Gt(θ
∗)
∥∥
Σ−1

t

≤ 1

κ
λ∥θ∗∥Σ−1

t︸ ︷︷ ︸
Regularization term

+
1

κ

∥∥Gt(θt)
∥∥
Σ−1

t︸ ︷︷ ︸
I1

.

For term I1, we can decompose the summation in (A.1) based on the adversarial feedback ct, i.e.,528

Gt(θt) =
∑

i<t:ci=0

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
︸ ︷︷ ︸

I2

,

where I2 can be further decomposed as529

I2 =
∑

i<t:ci=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wi(γi − ϵi)
(
ϕ(xi, ai)− ϕ(xi, bi)

)
.

where ϵi = li − σ
(
(ϕ(xi, ai) − ϕ(xi, bi))

⊤θ∗). With our notation of adversarial feedback, when530

ci = 0, we have γi = ϵi. Therefore, we have |γi − ϵi| ≤ 1 and531

I1 ≤ 1

κ

∥∥∥ t−1∑
i=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥
Σ−1

t︸ ︷︷ ︸
Stochastic term

+
1

κ

∥∥∥ ∑
i<t:ci=1

wi

(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥
Σ−1

t︸ ︷︷ ︸
Adversarial term

.

The stochastic term can be upper bounded with the concentration inequality (Lemma D.2). Addition-532

ally, by employing our specifically chosen weight, as (4.3), we can control the adversarial term, with533

wi∥ϕ(xi, ai)− ϕ(xi, bi)∥Σ−1
t

≤ α. Therefore, the adversarial term can be bounded by αC/κ.534
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A.2 Regret Upper Bound535

With a similar discussion of the symmetric arm selection rule to Di et al. (2023), the regret defined in536

(3.2) can be bounded by537

Regret(T ) ≤
T∑

t=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.

Note that in our selection of weight wt, it has two possible values. We decompose the summation538

based on the two cases separately. We have539

Regret(T ) ≤
∑
wt=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
︸ ︷︷ ︸

J1

+
∑
wt<1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
︸ ︷︷ ︸

J2

.

We consider J1, J2 separately. For the term J1, we define Λt = λI +
∑

i≤t−1,wi=1

(
ϕ(xi, ai) −540

ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
. Then, we have Σt ⪰ Λt, and therefore541

∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

≤ ∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1
t
.

Using Lemma D.3 with xt = ϕ(xt, at)− ϕ(xt, bt), we have542

J1 ≤ 4β
√

dT log(1 + 2T/λ). (A.2)

For term J2, we note that wt < 1 implies that wt = α/∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

. Therefore, we543

have544

J2 ≤
T∑

t=1

4β

α
min

{
1, ∥

√
wt(ϕ(xt, at)− ϕ(xt, bt))∥2Σ−1

t

}
.

Using Lemma D.3 with x′
t =

√
wt(ϕ(xt, at)− ϕ(xt, bt)), we have545

J2 ≤ 4dβ log(1 + 2T/λ)

α
. (A.3)

We conclude the proof of regret by combining (A.2) and (A.3).546

B Proof of Theorems in Section 5547

B.1 Proof of Theorem 5.3548

In this subsection, we provide the proof of Theorem 5.3. We condition on the high-probability event549

in Lemma 5.1550

E =
{∥∥θt − θ∗∥∥

Σt
≤ β,∀t ∈ [T ]

}
.

Let rt = 2r∗(xt, a
∗
t )−r∗(xt, at)−r∗(xt, bt) be the regret incurred in round t. The following lemma551

provides the upper bound of rt.552

Lemma B.1. Let 0 < δ < 1. If we set β =
√
λB +

(
αC +

√
d log((1 + 2T/λ)/δ)

)
/κ, on event E ,553

the regret of Algorithm 1 incurred in round t can be upper bounded by554

rt ≤ min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.

Moreover, the regret can be upper bounded by555

Regret(T ) ≤
T∑

t=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.

With Lemma B.1, we can provide the proof of Theorem 5.3.556
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Proof of Theorem 5.3. Using Lemma B.1, the total regret can be upper bounded by557

Regret(T ) ≤
T∑

t=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.

Our weight wt has two possible values. We decompose the summation based on the two cases558

separately. We have559

Regret(T ) ≤
∑
wt=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
︸ ︷︷ ︸

J1

+
∑
wt<1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
︸ ︷︷ ︸

J2

.

For the term J1, we consider a partial summation in rounds when wt = 1. Let Λt = λI +560 ∑
i≤k−1,wi=1

(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
. Then we have561

J1 ≤ 4β
∑

t:wt=1

min
{
1, ∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
≤ 4β

∑
t:wt=1

min
{
1, ∥ϕ(xt, at)− ϕ(xt, bt)∥Λ−1

t

}
≤ 4β

√
T

∑
t:wt=1

min
{
1, ∥ϕ(xt, at)− ϕ(xt, bt)∥2Λ−1

t

}
≤ 4β

√
dT log(1 + 2T/λ), (B.1)

where the second inequality holds due to Σt ⪰ Λt. The third inequality holds due to the Cauchy-562

Schwartz inequality, The last inequality holds due to Lemma D.3.563

For the term J2, the weight in this summation satisfies wt < 1, and therefore wt = α/∥ϕ(xt, at)−564

ϕ(xt, bt)∥Σ−1
t

. Then we have565

J2 =
∑
wt<1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
wt∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
/α

}

≤
T∑

t=1

min
{
4, 2β/α∥

√
wt(ϕ(xt, at)− ϕ(xt, bt))∥2Σ−1

t

}
≤

T∑
t=1

4β

α
min

{
1, ∥

√
wt(ϕ(xt, at)− ϕ(xt, bt))∥2Σ−1

t

}
≤ 4dβ log(1 + 2T/λ)

α
, (B.2)

where the first equality holds due to the choice of wt. The first inequality holds because each term in566

the summation is positive. The last inequality holds due to Lemma D.3. Combining (B.1) and (B.2),567

we complete the proof of Theorem 5.3.568

B.2 Proof of Theorem 5.5569

Proof of Theorem 5.5. Our proof adapts the argument in Bogunovic et al. (2021) to dueling bandits.570

For any dimension d, we construct d instances, each with θi = ei, where ei is the i-th standard basis571

vector. We set the action set A = {ei}di=1. Therefore, in the i-th instance, the reward for the i-th572

action will be 1. For the other actions, it will be 0. Therefore, the i-th action will be more preferable573

to any other action. While for other pairs, the feedback is simply a random guess.574

Consider an adversary that knows the exact instance. When the comparison involves the i-th action,575

it will corrupt the feedback with a random guess. Otherwise, it will not corrupt. In the i-th instance,576

the adversary stops the adversarial attack only after C times of comparison involving the i-th action.577

However, after Cd/4 rounds, at least d/2 actions have not been compared for C times. For the578

instances corresponding to these actions, the agent learns no information and suffers from Ω(dC)579

regret. This completes the proof of Theorem 5.5.580
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B.3 Proof of Theorem 5.7581

Proof of Theorem 5.7. Here, based on the relationship between C and the threshold C̄, we discuss582

two distinct cases separately.583

• In the scenario where C̄ < C, Algorithm 1 can ensures a trivial regret bound, with the guarantee584

that Regret(T ) ≤ 2T .585

• In the scenario where C ≤ C̄, we know that C̄ is remains a valid upper bound on the number of586

adversarial feedback. Under this situation, Algorithm 1 operates successfully with C̄ adversarial587

feedback. Therefore, according to Theorem 5.3, the regret is upper bounded by588

Regret(T ) ≤ Õ(d
√
T + dC̄).

589

C Proof of Lemmas 5.1 and B.1590

C.1 Proof of Lemma 5.1591

Proof of Lemma 5.1. Using a similar reasoning in Li et al. (2017), we define some auxiliary quantities592

Gt(θ) = λκθ +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ
)

− σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ∗
)](

ϕ(xi, ai)− ϕ(xi, bi)
)
,

ϵt = lt − σ
((

ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗
)
,

γt = ot − σ
((

ϕ(xt, at)− ϕ(xt, bt)
)⊤

θ∗
)
,

Zt =

t−1∑
i=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
.

In Algorithm 1, θt is chosen to be the solution to the following equation,593

λκθt +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θt

)
− oi

](
ϕ(xi, ai)− ϕ(xi, bi)

)
= 0. (C.1)

Then we have594

Gt(θt) = λκθt +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θt

)
− σ

((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ∗

)](
ϕ(xi, ai)− ϕ(xi, bi)

)
=

t−1∑
i=1

wi

[
oi − σ

((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ∗

)](
ϕ(xi, ai)− ϕ(xi, bi)

)
= Zt.

The analysis in Li et al. (2017); Di et al. (2023) shows that this equation has a unique solution, with595

θt = G−1
t (Zt). Using the mean value theorem, for any θ1,θ2 ∈ Rd, there exists m ∈ [0, 1] and596

θ̄ = mθ1 + (1−m)θ2, such that the following equation holds,597

Gt(θ1)−Gt(θ2) = λκ(θ1 − θ2) +

t−1∑
i=1

wi

[
σ
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ1

)
− σ

((
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
θ2

)](
ϕ(xi, ai)− ϕ(xi, bi)

)
=

[
λκI+

t−1∑
i=1

wiσ̇
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ̄
)

(
ϕ(xi, ai)− ϕ(xi, bi)

)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤]
(θ1 − θ2).
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We define F (θ̄) as598

F (θ̄) = λκI+

t−1∑
i=1

wiσ̇
((

ϕ(xi, ai)− ϕ(xi, bi)
)⊤

θ̄
)(

ϕ(xi, ai)− ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤]
.

Moreover, we can see that Gt(θ
∗) = λκθ∗. Recall Σt = λI +

∑t−1
i=1 wi

(
ϕ(xi, ai) −599

ϕ(xi, bi)
)(
ϕ(xi, ai)− ϕ(xi, bi)

)⊤
. We have600 ∥∥Gt(θt)−Gt(θ

∗)
∥∥2
Σ−1

t
= (θt − θ∗)⊤F (θ̄)Σ−1

t F (θ̄)(θt − θ∗)

≥ κ2(θt − θ∗)⊤Σt(θt − θ∗)

= κ2∥θt − θ∗∥2Σt
,

where the first inequality holds due to µ̇(·) ≥ κ > 0 and F (θ̄) ⪰ κΣt. Then we have the following601

estimate of the estimation error:602

∥θt − θ∗∥Σt
≤ 1

κ

∥∥Gt(θt)−Gt(θ
∗)
∥∥
Σ−1

t

≤ λ∥θ∗∥Σ−1
t

+
1

κ
∥Zt∥Σ−1

t

≤
√
λ∥θ∗∥2 +

1

κ
∥Zt∥Σ−1

t
,

where the second inequality holds due to the triangle inequality and Gt(θ
∗) = λκθ∗. The last603

inequality holds due to Σt ⪰ λI. Finally, we need to bound the ∥Zt∥Σ−1
t

term. To study the impact604

of adversarial feedback, we decompose the summation in (A.1) based on the adversarial feedback ct,605

i.e.,606

Zt =
∑

i<t:ci=0

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
,

When ci = 1, i.e. with adversarial feedback, |γi − ϵi| = 1. On the contrary, when ci = 0, γi = ϵi.607

Therefore,608 ∑
i<t:ci=0

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
=

∑
i<t:ci=0

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
,

∑
i<t:ci=1

wiγi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
=

∑
i<t:ci=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wi

(
γi − ϵi)(ϕ(xi, ai)− ϕ(xi, bi)

)
.

Summing up the two equalties, we have609

Zt =

t−1∑
i=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)
+

∑
i<t:ci=1

wi(γi − ϵi)
(
ϕ(xi, ai)− ϕ(xi, bi)

)
.

Therefore,610

∥Zt∥Σ−1
t

≤
∥∥∥∥ t−1∑

i=1

wiϵi
(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
Σ−1

t︸ ︷︷ ︸
I1

+

∥∥∥∥ ∑
i<t:ci=1

wi

(
ϕ(xi, ai)− ϕ(xi, bi)

)∥∥∥∥
Σ−1

t︸ ︷︷ ︸
I2

.

For the term I1, with probability at least 1− δ, for all t ∈ [T ], it can be bounded by611

I1 ≤
√
2 log

(det(Σt)1/2 det(Σ0)−1/2

δ

)
,

due to Lemma D.2. Using wi ≤ 1, we have
√
wi∥ϕ(xi, ai)− ϕ(xi, bi)∥2 ≤ 2. Moreover, we have612

det(Σt) ≤
(

Tr(Σt)

d

)d
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=

(
dλ+

∑t−1
i=1 wi∥(ϕ(xi, ai)− ϕ(xi, bi))∥22

d

)d

≤
(
dλ+ 2T

d

)d

,

where the first inequality holds because for every matrix A ∈ Rd×d, detA ≤ (Tr(A)/d)d. The613

second inequality holds due to
√
wi∥ϕ(xi, ai) − ϕ(xi, bi)∥2 ≤ 2. Easy to see that det(Σ0) = λd.614

The term I1 can be bounded by615

I1 ≤
√
d log((1 + 2T/λ)/δ). (C.2)

For I2, with our choice of the weight wi, we have616

I2 ≤
∑

i<t:ci=1

wi

∥∥(ϕ(xi, ai)− ϕ(xi, bi))
∥∥
Σ−1

t

≤
∑

i<t:ci=1

wi

∥∥(ϕ(xi, ai)− ϕ(xi, bi))
∥∥
Σ−1

i

≤
∑

i<t:ci=1

α

≤ αC, (C.3)
where the second inequality holds due to Σt ⪰ Σi. The third inequality holds due to wi ≤617

α/∥(ϕ(xi, ai) − ϕ(xi, bi))
∥∥
Σ−1

i

. The last inequality holds due to the definition of C. Combining618

(C.2) and (C.3), we complete the proof of Lemma 5.1.619

C.2 Proof of Lemma B.1620

Proof of Lemma B.1. Let the regret incurred in the t-th round by rt = 2r∗(xt, a
∗
t ) − r∗(xt, at) −621

r∗(xt, bt). It can be decomposed as622

rt = 2r∗(xt, a
∗
t )− r∗(xt, at)− r∗(xt, bt)

= ⟨ϕ(xt, a
∗
t )− ϕ(xt, at),θ

∗⟩+ ⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θ

∗⟩
= ⟨ϕ(xt, a

∗
t )− ϕ(xt, at),θ

∗ − θt⟩+ ⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θ

∗ − θt⟩
+ ⟨2ϕ(xt, a

∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩

≤ ∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Σ−1

t
∥θ∗ − θt∥Σt

+ ∥ϕ(xt, a
∗
t )− ϕ(xt, bt)∥Σ−1

t
∥θ∗ − θt∥Σt

+ ⟨2ϕ(xt, a
∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩

≤ β∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Σ−1

t
+ β∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Σ−1

t

+ ⟨2ϕ(xt, a
∗
t )− ϕ(xt, at)− ϕ(xt, bt),θt⟩,

where the first inequality holds due to the Cauchy-Schwarz inequality. The second inequality holds623

due to the high probability confidence event E . Using our action selection rule, we have624

⟨ϕ(xt, a
∗
t )− ϕ(xt, at),θt⟩+ β∥ϕ(xt, a

∗
t )− ϕ(xt, at)∥Σ−1

t

≤ ⟨ϕ(xt, bt)− ϕ(xt, at),θt⟩+ β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t

⟨ϕ(xt, a
∗
t )− ϕ(xt, bt),θt⟩+ β∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Σ−1

t

≤ ⟨ϕ(xt, at)− ϕ(xt, bt),θt⟩+ β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t
.

Adding the above two inequalities, we have625

β∥ϕ(xt, a
∗
t )− ϕ(xt, at)∥Σ−1

t
+ β∥ϕ(xt, a

∗
t )− ϕ(xt, bt)∥Σ−1

t

≤ ⟨ϕ(xt, at) + ϕ(xt, bt)− 2ϕ(xt, a
∗
t ),θt⟩+ 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t
.

Therefore, we prove that the regret in round t can be upper bounded by626

rt ≤ 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1
t
.

With a simple observation, we have rt ≤ 4. Therefore, the total regret can be upper bounded by627

Regret(T ) ≤
T∑

t=1

min
{
4, 2β∥ϕ(xt, at)− ϕ(xt, bt)∥Σ−1

t

}
.

628

18



D Auxiliary Lemmas629

Lemma D.1 (Azuma–Hoeffding inequality, Cesa-Bianchi and Lugosi 2006). Let {ηk}Kk=1 be a630

martingale difference sequence with respect to a filtration {Ft} satisfying |ηt| ≤ R for some constant631

R, ηt is Ft+1-measurable, E[ηt|Ft] = 0. Then for any 0 < δ < 1, with probability at least 1− δ, we632

have633

T∑
t=1

ηt ≤ R
√

2T log 1/δ.

Lemma D.2 (Lemma 9 Abbasi-Yadkori et al. 2011). Let {ϵt}Tt=1 be a real-valued stochastic process634

with corresponding filtration {Ft}Tt=0 such that ϵt is Ft-measurable and ϵt is conditionally R-sub-635

Gaussian, i.e.636

∀λ ∈ R,E[eλϵt |Ft−1] ≤ exp
(λ2R2

2

)
.

Let {xt}Tt=1 be an Rd-valued stochastic process where xt is Ft−1-measurable and for any t ∈ [T ],637

we further define Σt = λI+
∑t

i=1 xix
⊤
i . Then with probability at least 1− δ, for all t ∈ [T ], we638

have639 ∥∥∥∥ T∑
i=1

xiηi

∥∥∥∥2
Σ−1

t

≤ 2R2 log

(
det(Σt)

1/2 det(Σ0)
−1/2

δ

)
.

Lemma D.3 (Lemma 11, Abbasi-Yadkori et al. 2011). For any λ > 0 and sequence {xt}Tt=1 ⊆ Rd640

for t ∈ [T ], define Zt = λI+
∑t−1

i=1 xix
⊤
i . Then, provided that ∥xt∥2 ≤ L holds for all t ∈ [T ], we641

have642

T∑
t=1

min
{
1, ∥xt∥2Z−1

t

}
≤ 2d log(1 + TL2/(dλ)).
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• While the authors might fear that complete honesty about limitations might be used by703
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limitations that aren’t acknowledged in the paper. The authors should use their best705
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