
Toward Engineering AGI: Benchmarking the
Engineering Design Capabilities of LLMs

Xingang Guo1∗†, Yaxin Li1∗, Xiangyi Kong1∗, Yilan Jiang1∗, Xiayu Zhao1∗, Zhihua Gong1∗, Yufan
Zhang1∗, Daixuan Li1, Tianle Sang1, Beixiao Zhu1, Gregory Jun1, Yingbing Huang1, Yiqi Liu1,
Yuqi Xue1, Rahul Dev Kundu1, Qi Jian Lim1, Yizhou Zhao2, Luke Alexander Granger1, Mohamed
Badr Younis1, Darioush Keivan1, Nippun Sabharwal1, Shreyanka Sinha1, Prakhar Agarwal1, Kojo
Vandyck1, Hanlin Mai1, Zichen Wang1, Aditya Venkatesh1, Ayush Barik1, Jiankun Yang1, Chongying
Yue1, Jingjie He1, Libin Wang1, Licheng Xu1, Hao Chen1, Jinwen Wang1, Liujun Xu1, Rushabh
Shetty1, Ziheng Guo1, Dahui Song1, Manvi Jha1, Weijie Liang1, Weiman Yan1, Bryan Zhang1, Sahil
Bhandary Karnoor1, Jialiang Zhang1, Rutva Pandya1, Xinyi Gong1, Mithesh Ballae Ganesh1, Feize
Shi1, Ruiling Xu1, Yifan Zhang1, Yanfeng Ouyang1, Lianhui Qin3, Elyse Rosenbaum1, Corey Snyder3,
Peter Seiler4, Geir Dullerud1, Xiaojia Shelly Zhang1, Zuofu Cheng1, Pavan Kumar Hanumolu1, Jian
Huang1, Mayank Kulkarni5, Mahdi Namazifar5, Huan Zhang1, Bin Hu1†

1University of Illinois at Urbana-Champaign, 2University of Pennsylvania,
3University of California San Diego, 4University of Michigan, 5Amazon AGI
∗Core Contributors †Corresponding Author
Project page: https://agi4engineering.github.io/Eng-Design/
Dataset page: https://huggingface.co/datasets/opt1zer/EngDesign

Abstract

Modern engineering, spanning electrical, mechanical, aerospace, civil, and com-
puter disciplines, stands as a cornerstone of human civilization and the foundation
of our society. However, engineering design poses a fundamentally different chal-
lenge for large language models (LLMs) compared with traditional textbook-style
problem solving or factual question answering. Although existing benchmarks
have driven progress in areas such as language understanding, code synthesis, and
scientific problem solving, real-world engineering design demands the synthesis
of domain knowledge, navigation of complex trade-offs, and management of the
tedious processes that consume much of practicing engineers’ time. Despite these
shared challenges across engineering disciplines, no benchmark currently cap-
tures the unique demands of engineering design work. In this work, we introduce
ENGDESIGN, an Engineering Design benchmark that evaluates LLMs’ abilities
to perform practical design tasks across nine engineering domains. Unlike exist-
ing benchmarks that focus on factual recall or question answering, ENGDESIGN
uniquely emphasizes LLMs’ ability to synthesize domain knowledge, reason under
constraints, and generate functional, objective-oriented engineering designs. Each
task in ENGDESIGN represents a real-world engineering design problem, accom-
panied by a detailed task description specifying design goals, constraints, and
performance requirements. ENGDESIGN pioneers a simulation-based evaluation
paradigm that moves beyond textbook knowledge to assess genuine engineering
design capabilities and shifts evaluation from static answer checking to dynamic,
simulation-driven functional verification, marking a crucial step toward realizing
the vision of engineering Artificial General Intelligence (AGI).

1 Introduction

Modern engineering, spanning electrical, mechanical, aerospace, civil, and computer disciplines
[Chen, 2004, Grote and Hefazi, 2021, Chen and Liew, 2002, Blockley, 2012], stands as a cornerstone
of human civilization and the foundation of our society. From the electrical grids powering our cities

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://agi4engineering.github.io/Eng-Design/
https://huggingface.co/datasets/opt1zer/EngDesign

to the aerospace systems launching us beyond Earth, from analog integrated circuits forming the
foundation of electronics to the structural designs supporting our skylines, engineering disciplines
have woven themselves into the fabric of human existence [Ten and Hou, 2024, Paul et al., 2023, Gray
et al., 2009]. At its core, engineering design is the systematic and creative process that engineers use
to solve problems and create functional products, systems, or processes, transforming requirements
and constraints into tangible solutions that meet human needs. Recent advances in large language
models (LLMs) have led to remarkable performance on conventional question-answering (QA)
benchmarks, with strong results across a wide range of tasks—from textbook-level scientific problem
solving [Rein et al., 2024, Wang et al., 2024b, Du et al., 2025, Zou et al., 2024], to code synthesis
[Chen et al., 2021, Jain et al., 2024, Chan et al., 2024], and even to answering textbook-level questions
across various engineering domains [Kevian et al., 2024, Li et al., 2024, Skelic et al., 2025]. Today,
industry leaders aspire to build on such progress in LLMs to create general-purpose AI engineers
capable of bringing to life humanity’s boldest ambitions-from interstellar starships to Dyson spheres
that harvest stellar energy-leveraging these foundation models’ vast knowledge across engineering
domains and their potential to transcend traditional disciplinary boundaries that constrain human
engineers [Business Wire, 2025].

However, practical engineering design confronts LLMs with a grand challenge profoundly different
and vastly more complex than conventional factual recall or textbook-level engineering problem
solving. Specifically, real-world engineering design demands the synthesis of domain knowledge,
navigation of complex trade-offs, management of the tedious processes that consume much of
practicing engineers’ time, and rigorous validation through domain-specific simulators to ensure that
designs meet functional requirements and safety constraints. Yet despite progress in textbook-level
engineering problem solving, no existing benchmark captures the distinctive demands of practical
design work–with its multifaceted, open-ended challenges across multiple engineering disciplines.

In this work, we introduce ENGDESIGN, the first benchmark for holistically evaluating LLMs on
real-world, multi-domain engineering design challenges. Unlike traditional Question-Answer (QA)
formats, our benchmark requires models to function as practicing engineers, producing functional so-
lutions, such as dynamical system controllers, material structure designs, analog integrated circuits, or
GPU architectures that meet rigorous performance requirements. ENGDESIGN uniquely emphasizes
the synthesis of domain knowledge, constraint-based reasoning, and the generation of functional,
objective-oriented designs, spanning practical design problems across nine engineering domains:
Operating System Design, Computer Architecture Design, Control System Design, Mechanical
Systems, Structural Design, Digital Hardware Design, Analog Integrated Circuit Design, Robotics,
and Signal Processing. Each task in ENGDESIGN is accompanied by an executable evaluation
pipeline that validates designs against task requirements using domain-specific simulation tools such
as SPICE simulations [Roberts, 1996], structural finite element analysis [Bhavikatti, 2005], MATLAB
Control System Toolbox [Chiang and Safonov, 1984], and other scientific software tailored to specific
engineering domains. Our approach establishes a revolutionary evaluation paradigm: assessment
using engineering simulation tools. This simulation-based approach fundamentally shifts evaluation
from linguistic pattern matching to functional verification, ensuring that solutions are assessed based
on their engineering merit rather than textual plausibility.

ENGDESIGN advances LLM evaluation methodology by moving beyond conventional question-
answering benchmarks to address the open-ended, constraint-driven nature of real-world engineering
design. Our key contributions include:

• The first multi-domain engineering design benchmark. Unlike QA benchmarks that
test narrow factual or procedural knowledge, ENGDESIGN evaluates LLMs on complex
engineering design challenges spanning diverse engineering disciplines (e.g., mechanical,
electrical, civil), requiring synthesis of domain knowledge, constraint satisfaction, and strong
reasoning capabilities.

• Executable simulation-based evaluation. We replace static correctness checks with
dynamic, domain-specific evaluation pipelines. Each task includes human-designed task-
specific evaluation scripts that rigorously verify functional feasibility (e.g., via simulation,
constraint validation, or performance testing), ensuring objective, reproducible scoring
grounded in real engineering standards.

• Partial-credit grading for incomplete solutions. Conventional benchmarks often use
binary scoring, but ENGDESIGN’s rubrics quantify incremental progress (e.g., 20/100 for

2

QA Style Question
A sample question from MMLU-Pro

Two long parallel conductors carry 100 A. If the
conductors are separated by 20 mm, the force per meter
of length of each conductor will be
(A) 100 N
(B) 0.01 N
(C) 10 N
(D) 0.5 N
(E) 0.001 N
(F) 5 N
(G) 1 N
(H) 50 N
(I) 0.1 N
(J) 0.0001 N

Design Style Task
A sample task from EngDesign (Ours)

In this task, you are required to design a suitable thickness (Th) of a rectangular steel beam subjected
to a dual-point load, applied at the quarter-span locations ⋯ You are given the following fixed parameters:
- 'L = 1000' mm (Total span length)
- 'w = 40' mm (Beam width, constant)
- Two vertical downward forces: F = 1000 N each, applied at quarter-span locations
- Material properties:
- Young’s modulus: 210,000 MPa
- Poisson’s ratio: 0.3
⋯
Your task is to:
- Propose a structurally sound value for Th (thickness of the beam, in mm)
- Provide a brief justification for your choice of thickness, considering stiffness, loading, and geometric
constraints.

QA Style Evaluation Design Style Evaluation

Answer Extraction

LLM Responses
Options from (A) to (J)

Evaluation Results
String-matching/LLM-judge
Binary correct or wrong

LLM Responses
Design specifications
proposed by LLMs

Design
 Extraction

Program-based
simulation
Domain-specific
simulations and
obtain performances

Performance Check
Performance check
against design goals

Evaluation Results
Binary pass/fail
Numerical score
Evaluation log

Figure 1: Comparison between conventional QA-style benchmarks (left) and the design-style bench-
mark ENGDESIGN (right). Conventional QA benchmarks evaluate LLMs through static answer
extraction and string-matching, while ENGDESIGN involves open-ended design tasks with potentially
non-unique solutions. LLMs must propose candidate design specifications, which are evaluated via
program-based simulations and performance validation pipelines.

delivering a stable controller that meets partial performance requirements). This granularity
reveals nuanced capability gaps and rewards iterative refinement.

• Empirical validation of design competencies. Through large-scale evaluations across
10+ state-of-the-art LLMs including both general-purpose LLMs and reasoning models,
we demonstrate ENGDESIGN’s ability to expose critical limitations in AI systems—such
as over-reliance on textual patterns or failure to handle trade-offs—that are invisible to
traditional benchmarks.

We believe that ENGDESIGN marks a crucial milestone toward realizing engineering AGI by breaking
new ground with its comprehensive coverage of engineering design problems across diverse domains,
each requiring deep technical expertise and domain-specific simulation tools for rigorous evaluation.
This benchmark not only measures what models know but what they can actually design, bridging
the chasm between textbook-level knowledge understanding and practical engineering capability.

2 ENGDESIGN

In this section, we introduce ENGDESIGN, a multi-domain benchmark developed to evaluate the
capabilities of LLMs in real-world engineering design tasks. Unlike conventional QA benchmarks,
ENGDESIGN adopts a rigorous simulation-based evaluation pipeline to assess model performance in
practical, design-oriented scenarios. Table 1 summarizes the benchmark’s key statistics: it comprises
101 design tasks spanning 9 engineering domains, with a total of 473 gradable items. While the task
distribution may appear uneven, it naturally reflects the domain expertise of our contributors and
the filtering rigor imposed by our multi-stage review process. Notably, the average prompt length in
ENGDESIGN is 778.71 tokens, substantially higher than typical QA benchmarks1, highlighting the
contextual richness and complexity of realistic engineering design problems. Word clouds generated
from ENGDESIGN prompts are provided in Appendix C.

Among the 101 tasks in ENGDESIGN, 34 tasks require domain-specific scientific software such
as MATLAB or Cadence for evaluation, while the remaining 67 tasks are fully open-sourced and
evaluated using manually authored evaluation scripts. We consolidate these tasks into a subset

1We adopt Byte Pair Encoding (BPE) tokenizer for OpenAI models, available at Tiktoken. Token length
comparison between ENGDESIGN and other QA benchmarks in Appendix C.1.

3

https://github.com/openai/tiktoken

Domain: Control Design (XG_05) Evaluation Pipeline (with MATLAB)

def evaluate_llm_response(llm_response):
Start MATLAB engine
eng = matlab.engine.start_matlab()
Get controller coefficients from LLM response
theta = llm_response.config.theta …
den = llm_response.config.den
Run MATLAB evaluation
passed, eval_details, score = eng.evaluate(theta, tau, num,

den, nargout=3)
return passed, eval_details, score

function [passed, details, score] = evaluate(theta, tau,
num, den)
 % Performance check
 s = tf('s’);
 ⋯
 is_stable = all(real(poles) < 0); …
 S = stepinfo(Tfb);
 ⋯
 [Gm, Pm] = margin(Gp*C);
 Gm_db = 20*log10(Gm); % Convert to dB
 % Compare against performance requirements
 theta_check = abs(theta - desired_theta) <= 2;
 phase_margin_check = (Pm > 60);
 score = ⋯
 % Add evaluation results to details
end

T

TC

 Stirring
Tank

Steam
Flow

Valve

Heat
Exchanger

Liquid
Inflow

In this task, you are required to design a feedback controller to regulate the temperature of a chemical
reactor using a heat exchanger system ...
Task 1
Your first task is to derive a first-order with delay transfer function " # = %!"#/(1 + *#) to model the
dynamics of the stirred tank … Please determine the value of , and * from the step response figure using
the given information.
Task 2
Your second task is to design a feedback controller … that satisfies the following requirements:
- Gain margin: >= 7 dB
- Phase margin: >= 60 degrees …
- Settling time: <= 150 sec (for a step reference input)

Controller Evaluation

Domain: Analog IC-Design (TB_04) Evaluation Pipeline (with SPICE Simulator)

def evaluate_llm_response(llm_response):
Load netlist from LLM response
netlist = llm_response.config.netlist
Write netlist to file for evaluation
with open(netlist_path, "w") as fh:

fh.write(netlist)
Run simulation and get evaluation results …
ok, err = run_autograder(shell_path, "mp3")
…
passed = …
score = …
return passed, details, score

You are asked to design a 5 transistor OTA topology and its bias current circuit in one netlist … The
testbench is a unity-gain buffer connection (feedback from output -./0 to inverting input vin).
122	 = 	1.4	1, 166	 = 	0	1. Output load: 89	 = 	2	;<	capacitor at -./0 …
Task: OTA Design
Pass Rule: All MOSFETs must instantiate exactly the foundry models
tsmc18dP (PMOS) and tsmc 18>? (NMOS). A Cadence/SPECTRE testbench (differential input OTA,
89	 = 	2	;<, 122	 = 	1.4	1, 166	 = 	0	1) will be used to verify that your OTA design satisfies the
specifications list the the following table.

ICMR pass rule: for VCM ∈ {VSS, VDD}, each point
must achieve:
fUGF(18F) 	≥ 	50	FIJ,
AV(18F) 	≥ 	M10	 − 	3	>P, and
CMRR(18F) ≥ CMRR0 − 3	>P, …
<SPICE Template> … </SPICE Template>

Spec Target

DC differential-mode gain AV0 ≥ 	40	>P	
Unity-gain frequency fUGF ≥ 	50	FIJ
Common-mode rejection ratio CMRR ≥ 	80	>P	
Input common-mode range ICMR ≥ 	800	T1 ∗	

#!/bin/bash
Prompt user for MP number
echo "Enter the MP number (e.g., mp1, mp2, etc.):"
mp_number="${1:-mp3}"
Load Python3 module
module load python3
…
Run Virtuoso
virtuoso -replay "$LOG_DIR/autograde.tcl"
Wait for Virtuoso to complete
wait
Find the latest CDS log file after Virtuoso runs
LATEST_LOG=$(ls -t ~/CDS.log* 2>/dev/null | head -n 1)
…

SPICE
Simulation

function [passed, details, score] = TopOpt_SIMP()

 %% Setup Optimization Problem …
 [Node,Element,Supp,Load] = Mesh_Crack(8000);

E0 = 70e3; nu0 = 0.3; % Material Properties …
 m = @(y,B)MatIntFnc(y,‘SIMP-H1’,[p,B,eta0]); % SIMP …

fem = preComputations(fem); % Setup FEA …
 %% Run Optimization
 [z,V,fem,c_hist,v_hist,s_hist] = Main_TO(fem,opt); …
 v_final = v_hist(end); % volume fraction of design …
 s_final = s_hist(end)*opt.s_lim; % max. stress in
design …
 nel_x = int32((Lx/Ly)*sqrt(fem.NElem/(Lx/Ly)));
 y_hat =
flipud(reshape(V,int32(fem.NElem/nel_x),nel_x)); % design
density values …

Domain: Structure Design (RK_03) Evaluation Pipeline (with MATLAB)

def evaluate_llm_response(llm_response):
Start MATLAB engine
eng = matlab.engine.start_matlab()
Load LLM response
vf = float(llm_response.config.VF) …
Run MATLAB evaluation
y_hat, s_final, v_final = eng.TopOpt_SIMP(nargout=3)
eng.quit()
Performance check and scoring
if vf <= v_final: …
return passed, eval_details, score

You are given a square design domain bounded by the vertices (−1,−1), (1,−1), (1,1), and (-1, 1). A sharp
pre-crack is present in the domain, running vertically from the point (0,0) to (0, 1). Two horizontal loads of
magnitude 5 are applied at the top corners of the domain:
• A load is applied at (−1,1) in the negative x-direction.
• A load is applied at (1,1) in the positive x-direction.
Solid material parameters are Young's modulus, E = 70000, and Poisson's ratio, nu = 0.3. Assume
density-based SIMP approach with relative void stiffness factor 1e-8.
The optimization setup includes ... Your task is to:
• Design a structure within the domain that minimizes the maximum local stress while ensuring that

the volume fraction of material used does not exceed 0.25.
• Once the optimization is complete, report the following numerical values:
 - s_hat: the maximum stress in the optimized design.
 - vf: the volume fraction of the structure, which must lie within the range [0,1].

Topology
Optimization

Reduction in maximum von Mises stress with progressive evolution of design

Design von Mises stress Design von Mises stress Design von Mises stress

Domain: Computer Architecture Design (DL_01) Evaluation Pipeline (with MQSim Simulator)

def evaluate_llm_response(llm_response):
Load ground truth obtained via MQSim simulation
ground_truth = json.load(open(ground_truth_file, "r"))
Check performance for each workload
passed, score, details = False, 0, {}
for i, workload_name in

enumerate(llm_response.config.workload_names):
Performance check for workload I

Check performance for each workload
for workload in tuning_result.keys():
⋯

Scoring the LLM responses based on ground_truth
for name in tuning_result[workload]:

⋯
return passed, eval_details, score

In this problem, you will finalize a set of Solid-State
Drive (SSD) designs that meet the performance
requirements for a specific workload type. Initially,
you must determine which parameters to tune, and
to what extent, to satisfy the given performance
criteria …
Task Description
SSD customers typically evaluate SSD … If we want
to get 20% performance improvement on I/O
throughput or … Please provide your solution for
each workload mentioned below:
Real-world Workloads. These workloads represents
typical storage-intensive application patterns.

Workload Category Description

Big Data Analytics Data center MapReduce workloads .

Cloud Storage Data center cloud storage workloads.

⋯ ⋯
WebSearch WebSearch services trace collected by UMass.

Advertisement Advertisement workloads running on servers.

SSD Config files

MQSim

{
 "LiveMapsBackEnd": {
 "Data_Cache_Capacity": [
 [Tuning_Result,
 Goal_Reached_flag,...
],
 ...
],
 ...
 }
} Performance JSON

MQSim
simulation

<Execution_Parameter_Set>
 <Device_Parameter_Set>

<Data_Cache_Capacity>26
8435456</Data_Cache_Cap
acity>

<Execution_Parameter_Set>
 <Device_Parameter_Set>

<Data_Cache_Capacity>26
8435456</Data_Cache_Cap
acity>

<Execution_Parameter_Set>
 <Device_Parameter_Set>

<Data_Cache_Capacity>26
8435456</Data_Cache_Cap
acity>

Figure 2: Selected demonstration tasks from ENGDESIGN.

4

Table 1: Statistics of ENGDESIGN. Token counts are computed vis o200k_base in Tiktoken.

Engineering Domain # tasks # rubrics # query tokens
Open Closed Total Max Min Avg

Operating System Design 8 0 8 66 2938 310 1103.25
Computer Arch Design 5 0 5 20 4385 2348 3539.60
Control Design 7 11 18 100 1361 209 634.44
Mechanical Systems 6 1 7 32 781 225 391.14
Structure Design 7 6 13 25 483 186 345.31
Digital Hardware Design 13 4 17 58 1715 206 515.65
Analog IC Design 0 5 5 23 2136 547 1196.6
Robotics 10 0 10 68 1485 192 771.9
Signal Processing 11 7 18 81 2304 151 611.72

Overall 67 34 101 473 4385 151 778.71

called ENGDESIGN-OPEN to support broader community adoption without licensing constraints.
Additionally, 23 tasks of ENGDESIGN incorporate images as part of the task input to LLMs.

2.1 Task Structure

Each task of ENGDESIGN consists of the following four key components:

1. Task Description. This part is the query prompt fed into the LLMs, offering a clear and detailed
definition of the engineering design problem, including design objectives, specifications, constraints.

2. Evaluation Rubrics. Given the complexity of ENGDESIGN tasks, each task is further decomposed
into multiple gradable items evaluated individually during the performance check stage. The evalua-
tion rubrics define the assessment criteria and scoring metrics, with a full score of 100. This enables
models to receive partial credit even if the design does not fully meet all specified requirements.

3. Evaluation Pipeline. Each task includes automated evaluation scripts that assess the LLMs’
design. It returns a binary pass/fail indicator, numerical score, and evaluation logs for further analysis.

4. Reference Design. Each task provides a validated reference design that fully satisfies all specified
requirements, ensuring the feasibility and realism of the design challenge.

Figure 2 shows four demonstrated design examples from ENGDESIGN including task descriptions
and evaluation pipelines.

2.2 Evaluation Pipeline

Unlike conventional benchmarks, which often have a single golden answer that allows evaluation
through exact string matching or LLM-as-judge scoring, our engineering design tasks inherently
lack a unique golden design. For example, there are infinitely many valid controller designs that
can regulate the temperature of a stirred tank modeled by a first-order system while satisfying
both time-domain and frequency-domain performance requirements. To address this challenge,
our benchmark introduces a simulation-based evaluation pipeline. Specifically, for each LLM-
generated design, we first parse the key design components from the response automatically (such
as code snippets, key parameters, etc.). These components are then fed into our evaluation pipeline,
which runs domain-specific simulations to assess the design’s performance against the specified task
requirements. Guided by a per-task rubric table, the evaluation pipeline outputs three key results: a
binary pass/fail indicator, a numerical score between 0 and 100, and a detailed log that records the
evaluation process for further analysis. Below we discuss each step in detail.

Structured Responses from LLMs. To constrain the output format for a wide range of LLMs and
ensure compatibility with our evaluation pipeline, we adopt the popular open-source Python library
instructor [Liu and Contributors, 2024], which is built on top of Pydantic and facilitates structured
LLM responses. By defining schema templates that specify expected fields, such as design parameters
or code snippets, the instructor package enables LLMs to produce outputs in a pre-defined format.
We provide an example at Figure 10 in Appendix D.2. Specifically, LLMs are instructed to construct

5

Feedback

Refinement

First-Round Review
• Task Clarity
• Validate Rubrics
• Test Evaluation Code
• Verify Reference Design

AcceptRevise Reject

Second-Round Review
• Done by domain experts
• Check sensibility of approved tasks
• Provide domain-specific refinements

Initial Task Design
• Engineering Domain
• Task Description
• Rubrics Design
• Evaluation Codebase
• Reference Design

LLM Filtering & Pre-test

Result
Analysis

LLM Query &
Evaluation Final Benchmark

Figure 3: An overview of the construction process of ENGDESIGN, illustrating stages from initial
task design, LLM filtering, and expert review to final benchmark integration, with iterative refinement
and evaluation.

their responses into two main parts: (1) a reasoning field, which contains the step-by-step reasoning
process for solving the task, and (2) a ConfigFile class, which summarizes the final design results,
including their design choices or code snippets. During evaluation, the fields defined in ConfigFile
can be automatically parsed to trigger the simulation-based evaluation pipeline.

Task-Specific Evaluation Pipeline. A simulation-based evaluation pipeline was designed for each
task. For example, control engineering tasks may evaluate closed-loop dynamics through metrics such
as rise time, settling time, overshoot, and phase/gain margins via MATLAB. The evaluation pipeline
outputs three key results: (1) a binary pass/fail indicator for meeting all performance requirements,
(2) a numerical score (0–100) reflecting fine-grained performance analysis, and (3) an evaluation log
capturing simulation outputs, performance metrics, or error messages.

2.3 Construction of ENGDESIGN

The construction of ENGDESIGN follows a multi-stage process that integrates both automated
validation and human expertise as shown in Figure 3:

1. Initial Task Design. We recruited graduate students and researchers from various engineer-
ing disciplines to contribute initial task proposals, drawing on open-source resources and
their domain knowledge. Contributors were guided to follow a standardized submission
format, which includes a task description, evaluation rubric, executable evaluation codebase,
and a reference solution.

2. LLM Filtering and Pre-Test. Submitted tasks undergo an initial filtering phase using a
language model (o4-mini) to assess prompt sufficiency and the functionality of the evaluation
code. Specifically, we prompt the LLM to classify the task’s engineering domain and
determine whether the information provided is adequate to solve the problem. If the model
flags missing or unclear details, we work with the original contributor to address those gaps.

3. First-Round Review. Tasks that pass the pre-test enter a first-round review involving close
collaboration between reviewers and the original authors. The review ensures that:

• The task description is clear, self-contained, and complete.
• The evaluation rubric is well-defined with partial credit, and aligns with the task goals.
• The evaluation codebase is executable, robust, and handles typical edge cases.
• The reference design meets all performance requirements, validating the task feasibility.

Based on this review, tasks fall into one of three categories: Accept: the task meets
all requirements and proceeds to expert review; Revise: minor issues are identified and
addressed in collaboration with the contributor; or Reject: the task is excluded due to critical
issues such as unfeasibility, triviality, or misalignment with design-oriented evaluation.

4. Second-Round Review with Domain Experts. Tasks accepted in the first round are
reviewed by faculty experts in the corresponding engineering domain. These experts assess
the technical soundness and relevance of each task to ensure it serves as a meaningful
evaluation of LLMs in realistic design settings.

6

Table 2: Average pass rate (%) results (each task evaluated over 3 trials). ∗ Model is not multi-
modal and was evaluated only on the text-only subset. We report text-only results for all models in
Appendix D.4. The domain abbreviations are: AICD = Analog Integrated Circuit Design, Arch =
Computer Architecture Design, Ctrl = Control Design, DHD = Digital Hardware Design, Mech =
Mechanical Systems, OS = Operating System Design, Robo = Robotics, SigP = Signal Processing,
Stru = Structure Design. The best results for each column are highlighted in bold.

Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru
Chat Models

GPT-4o 15.68 0.00 20.00 18.52 10.26 0.00 4.17 26.67 17.65 25.64
DeepSeek-v3∗ 17.92 0.00 0.00 27.27 25.64 0.00 0.00 16.67 12.82 38.89
Gemini-2.0-Flash 14.16 0.00 0.00 15.15 16.67 4.76 0.00 20.00 5.13 36.11
Claude-3.7-Sonnet 22.61 0.00 40.00 16.67 33.33 14.29 0.00 33.33 21.57 30.77

Reasoning Models
o1 29.17 0.00 40.00 24.07 41.03 14.29 37.50 50.00 25.49 23.08
o3 34.38 0.00 40.00 35.19 20.51 23.81 25.00 63.33 41.18 30.77
o3-high 33.57 0.00 40.00 27.78 20.51 28.57 30.43 68.97 35.29 41.03
o4-mini 31.60 0.00 33.33 24.07 41.03 19.05 29.17 43.33 33.33 41.03
o4-mini-high 34.04 0.00 40.00 27.78 47.22 19.05 37.50 46.67 35.29 35.90
Gemini-2.5-Pro 29.54 0.00 0.00 33.33 43.59 0.00 9.52 56.67 12.82 50.00
DeepSeek-R1∗ 25.53 0.00 36.36 36.36 38.46 4.76 5.26 26.67 20.51 41.67
Claude-3.7-Thinking 20.07 0.00 33.33 18.52 17.95 9.52 0.00 40.00 19.61 28.21

5. Final Integration. Tasks that pass both review stages are standardized to match the bench-
mark’s formatting and structural guidelines, and are formally included in the ENGDESIGN.

3 Experiments

We evaluate a set of representative LLMs on the ENGDESIGN and analyze their performance.

Evaluated LLMs. For chat models, we include GPT-4o, Claude-3.7-Sonnet, Gemini-2.0-Flash,
and DeepSeek-v3. For reasoning models, we evaluate o1, o3, o3-high, o4-mini, o4-mini-high,
Claude-3.7-Thinking, DeepSeek-R1, and Gemini-2.5-Pro.

Evaluation Metrics. We report three primary evaluation metrics: (1) Average Pass Rate, (2)
Average Score, and (3) Reasoning Robustness. Each task is evaluated over three independent trials
per model. To measure reasoning robustness, we compute the ratio between the number of tasks
where all three trials passed and the number of tasks where at least one trial passed. This ratio, which
ranges from 0 to 1, serves as a straightforward indicator of an LLM’s reasoning consistency. A value
closer to 1 indicates higher robustness and more stable reasoning behavior across repeated runs.
Formal definitions of all evaluation metrics are provided in Appendix D.3.

3.1 Main Results

Table 2 presents the average pass rates and average score across evaluated LLMs, across 9 distinct
engineering design areas. The average score demonstrates a strong correlation with the pass rate,
which we provided the detailed results in Appendix D.4. We make the following key observations.

ENGDESIGN presents a highly challenging benchmark, with even the best-performing models
achieving only modest pass rate. As shown in Table 2, no model surpasses a 35% overall pass rate.
The top-performing model, o3, achieves 34.38%, while widely-used chat models such as GPT-4o
and Gemini-2.0-Flash attain around 15%. Analog IC design tasks stands as the most difficult ones
where all the models got 0% pass rate. These results highlight the difficulty of the benchmark, which
stems from its requirements for domain-specific expertise, multi-step reasoning, and design trade-off
considerations, capabilities that go beyond the strengths of current LLMs.

Reasoning models outperform general-purpose chat models. Models designed with enhanced
reasoning capabilities, including o3, o4-mini, and DeepSeek-R1, consistently outperform general-
purpose chat models across most engineering domains. However, this trend does not hold for Claude

7

o1 o3

o4-mini-high
o3-high

Claude-3.7-Sonnet

Gemini-2.5-Pro

Claude-3.7-Thinking

DeepSeek-R1*
GPT-4o

o4-mini

DeepSeek-v3*

Gemini-2.0-Flash
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
as

on
in

g
Ro

bu
st

ne
ss

0.62 0.61
0.57

0.55

0.48
0.45 0.44

0.41 0.41 0.40
0.35

0.20

Figure 4: Reasoning robustness distribution of evaluated LLMs on ENGDESIGN.

models, where both Claude-3.7-Sonnet and Claude-3.7-Thinking exhibit similar pass rates despite
their differences in reasoning emphasis.

Reasoning Models are more robust in general. Figure 4 shows the reasoning robustness of all
evaluated models. Reasoning-focused models such as o1, o3, and o4-mini-high achieve the highest
robustness scores (0.62, 0.61, and 0.57, respectively), indicating strong consistency across repeated
trials on tasks they are capable of solving. In contrast, chat-oriented models like Gemini-2.0-flash and
DeepSeek-v3 exhibit substantially lower robustness (0.20 and 0.35), reflecting less stable reasoning
behavior. Notably, the gap in reasoning robustness between top-performing reasoning models and
weaker chat models is more pronounced than in average pass rate as shown in Table 2—up to a
3× performance difference in robustness compared to a 2× difference in pass rate. This highlights
robustness as a distinguishing strength of reasoning models.

Token Consumption. Reasoning models require substantially more compute due to longer inference
time. We analyze the number of completion tokens generated across different models. As shown
in Figure 5, the reasoning model (o1) produces significantly more tokens than the non-reasoning
model (GPT-4o) to achieve performance gains. Optimizing the latency–performance trade-off will be
essential for making future models more accessible and deployable in real-world engineering design
scenarios. Additional results are provided in Appendix D.5.

Figure 5: Average token consumption of evaluated LLMs on ENGDESIGN.

3.2 Iterative Design

To emulate the workflow of human engineers, we implement an iterative design protocol that allows
LLMs to refine their solutions based on feedback from previous attempts. In our implementation, the
LLM is provided with its previous design output along with corresponding evaluation results, such
as scores, performance metrics, and diagnostic logs, and is then prompted to generate an improved
design in the subsequent iteration. The prompt we used for iterative design is presented in Figure 6.

8

LLM Prompt for Iterative Design

Task Description: original task description

Previous Responses: previous responses

Evaluation Feedback: previous evaluation re-
sults

Instruction: Please review the feedback
above and propose an improved solution
based on the evaluation results.

Figure 6: LLM prompt for iterative design.
The prompt includes the original task description,
model’s previous responses, evaluation feedback,
and a final instruction to propose an improved so-
lution.

Domain
Knowledge

Constraint
Violation

Hallucination

Computation
Error

Prior
Knowledge

Overreliance

Figure 7: Iterative refinement process. Av-
erage pass rate across iterations, showing how
performance evolves with feedback-driven up-
dates.

As shown in Figure 7, model performance consistently improves with additional iterations. Notably,
o3 achieves almost a 60% pass rate after ten iterations.2. However, we also observed that iterative
design does not help in all cases. For example, in Analog IC design tasks, models still fail to meet the
requirements even after ten iterations.

3.3 Failure Analysis

To better understand the limitations of LLMs in engineering design tasks, we define five primary
error categories observed in ENGDESIGN:

1. Domain Knowledge Error (DKE). The model lacks essential engineering knowledge
required to interpret or solve the task correctly.

2. Constraint Violation Error (CVE). The model generates designs that violate explicitly
stated constraints, such as structural limits, performance bounds, or budgetary requirements.

3. Prior Knowledge Overreliance (PKE). The model applies memorized patterns or text-
book solutions without adapting them to the specific requirements of the task, resulting in
suboptimal or invalid outputs.

4. Hallucination (HAL). The model fabricates content, such as equations, parameters, or
designs, that is unsupported by the task description or domain knowledge.

5. Computation Error (CE). The model performs arithmetic or symbolic computations
incorrectly despite correct methodological reasoning.

6. Others. Residual errors that do not fit the above categories

Table 3: Error types statistics for three representative models.
Model DKE CVE PKE HAL COM Others
o4-mini 33.3% 25.2% 18.8% 12.6% 9.0% 0.9%
Gemini-2.5-Pro 31.9% 31.9% 15.9% 12.4% 6.2% 1.7%
Claude-3.7-Sonnet 30.7% 36.0% 10.5% 13.2% 7.0% 2.6%

We analyzed the responses of three representative models (o4-mini, Gemini-2.5-Pro, and Claude-3.7-
Sonnet) on ENGDESIGN tasks where they failed evaluation, and manually annotated each failure

2Due to time and resource constraints, the iterative design protocol was applied to a selected subset (71 tasks)
of ENGDESIGN tasks using four representative models: GPT-4o, o1, o3, and o4-mini. As a result, reported pass
rates in the iterative experiments are slightly lower than the ones report in Table 2. Nonetheless, this subset
demonstrates the effectiveness of feedback-driven refinement and highlights the potential of LLMs to improve
design quality through iterative design.

9

LLM Prompt for Iterative Design

Task Description: original task description

Previous Responses: previous responses

Evaluation Feedback: previous evaluation re-
sults

Instruction: Please review the feedback
above and propose an improved solution
based on the evaluation results.

Figure 6: LLM prompt for iterative design.
The prompt includes the original task description,
model’s previous responses, evaluation feedback,
and a final instruction to propose an improved so-
lution.

Domain
Knowledge

Constraint
Violation

Hallucination

Computation
Error

Prior
Knowledge

Overreliance

Figure 7: Iterative refinement process. Av-
erage pass rate across iterations, showing how
performance evolves with feedback-driven up-
dates.

As shown in Figure 7, model performance consistently improves with additional iterations. Notably,
o3 achieves almost a 60% pass rate after ten iterations.2. However, we also observed that iterative
design does not help in all cases. For example, in Analog IC design tasks, models still fail to meet the
requirements even after ten iterations.

3.3 Failure Analysis

To better understand the limitations of LLMs in engineering design tasks, we define five primary
error categories observed in ENGDESIGN:

1. Domain Knowledge Error (DKE). The model lacks essential engineering knowledge
required to interpret or solve the task correctly.

2. Constraint Violation Error (CVE). The model generates designs that violate explicitly
stated constraints, such as structural limits, performance bounds, or budgetary requirements.

3. Prior Knowledge Overreliance (PKE). The model applies memorized patterns or text-
book solutions without adapting them to the specific requirements of the task, resulting in
suboptimal or invalid outputs.

4. Hallucination (HAL). The model fabricates content, such as equations, parameters, or
designs, that is unsupported by the task description or domain knowledge.

5. Computation Error (CE). The model performs arithmetic or symbolic computations
incorrectly despite correct methodological reasoning.

6. Others. Residual errors that do not fit the above categories

Table 3: Error types statistics for three representative models.
Model DKE CVE PKE HAL COM Others
o4-mini 33.3% 25.2% 18.8% 12.6% 9.0% 0.9%
Gemini-2.5-Pro 31.9% 31.9% 15.9% 12.4% 6.2% 1.7%
Claude-3.7-Sonnet 30.7% 36.0% 10.5% 13.2% 7.0% 2.6%

We analyzed the responses of three representative models (o4-mini, Gemini-2.5-Pro, and Claude-3.7-
Sonnet) on ENGDESIGN tasks where they failed evaluation, and manually annotated each failure

2Due to time and resource constraints, the iterative design protocol was applied to a selected subset (71 tasks)
of ENGDESIGN tasks using four representative models: GPT-4o, o1, o3, and o4-mini. As a result, reported pass
rates in the iterative experiments are slightly lower than the ones report in Table 2. Nonetheless, this subset
demonstrates the effectiveness of feedback-driven refinement and highlights the potential of LLMs to improve
design quality through iterative design.

9

Figure 6: Left: LLM prompt for iterative design. Right: Average pass rate across iterations, showing
how performance evolves with feedback-driven updates.

As shown in Figure 6, model performance consistently improves with additional iterations. Notably,
o3 achieves almost a 60% pass rate after ten iterations.2. However, we also observed that iterative
design does not help in all cases. For example, in Analog IC design tasks, models still fail to meet the
requirements even after ten iterations.

3.3 Failure Analysis

To better understand the limitations of LLMs in engineering design tasks, we define five primary
error categories observed in ENGDESIGN:

1. Domain Knowledge Error (DKE). The model lacks essential engineering knowledge
required to interpret or solve the task correctly.

2. Constraint Violation Error (CVE). The model generates designs that violate explicitly
stated constraints, such as structural limits, performance bounds, or budgetary requirements.

3. Prior Knowledge Overreliance (PKO). The model applies memorized patterns or text-
book solutions without adapting them to the specific requirements of the task, resulting in
suboptimal or invalid outputs.

4. Hallucination (HAL). The model fabricates content, such as equations, parameters, or
designs, that is unsupported by the task description or domain knowledge.

5. Computation Error (CE). The model performs arithmetic or symbolic computations
incorrectly despite correct methodological reasoning.

6. Others. Residual errors that do not fit the above categories

Table 3: Error types statistics for three representative models.
Model DKE CVE PKO HAL COM Others
o4-mini 33.3% 25.2% 18.8% 12.6% 9.0% 0.9%
Gemini-2.5-Pro 31.9% 31.9% 15.9% 12.4% 6.2% 1.7%
Claude-3.7-Sonnet 30.7% 36.0% 10.5% 13.2% 7.0% 2.6%

We analyzed the responses of three representative models (o4-mini, Gemini-2.5-Pro, and Claude-3.7-
Sonnet) on ENGDESIGN tasks where they failed evaluation, and manually annotated each failure
with its corresponding error types. The results are summarized in Table 3. Given the complexity of
engineering design problems, many responses exhibited multiple failure modes; we therefore allowed
multi-label annotations per task.

2Due to time and resource constraints, the iterative design protocol was applied to a selected subset (71 tasks)
of ENGDESIGN tasks using four representative models: GPT-4o, o1, o3, and o4-mini. As a result, reported pass
rates in the iterative experiments are slightly lower than the ones report in Table 2. Nonetheless, this subset
demonstrates the effectiveness of feedback-driven refinement and highlights the potential of LLMs to improve
design quality through iterative design.

9

Our analysis yields several key observations3:

1. Dominant failure modes: Insufficient domain knowledge and constraint violations together
account for roughly 55–67% of all failures. This indicates that LLMs frequently struggle to apply
domain-specific principles, satisfy task constraints, and generalize beyond memorized patterns.

2. Second-tier issues: Over-reliance on prior knowledge and hallucinations contribute 25–30%,
suggesting that incorrect reuse or misapplication of known facts remains a significant challenge.

3. Low arithmetic fragility: Pure computational errors are rare (≤9%), implying that numerical
reasoning is not the primary bottleneck for current frontier models.

4 Related Work

Large Language Models. Advances in large language models (LLMs) have been propelled by
scaling, instruction tuning, and improved reasoning. Frontier models such as GPT-3 and GPT-
4 [Brown et al., 2020, Achiam et al., 2023], Claude [Anthropic, a], Gemini [Team et al., 2023], and
DeepSeek [Liu et al., 2024a] exhibit broad general capabilities. Recent work enhances reasoning
through architectural and prompting innovations, including Chain-of-Thought [Wei et al., 2022] and
least-to-most prompting [Zhou et al., 2022]. These developments have led to reasoning-oriented
models such as OpenAI’s o-series [OpenAI], Claude-Thinking [Anthropic, b], Gemini 2.5 Pro [Google
DeepMind], and DeepSeek-R1 [Guo et al., 2025]. Yet, their effectiveness in domain-specific contexts,
particularly engineering design, remains largely unexplored. ENGDESIGN fills this gap by evaluating
LLMs within realistic, simulation-based engineering workflows.

General Purpose Benchmarks for LLMs. A variety of benchmarks assess LLM reasoning and
problem-solving capabilities. MMLU [Hendrycks et al., 2020] and MMLU-Pro [Wang et al., 2024b]
evaluate broad subject knowledge, while GAIA [Mialon et al., 2023] and HLE [Phan et al., 2025] test
long-context and high-difficulty reasoning. HumanEval [Chen et al., 2021] measures code generation
accuracy, GPQA [Rein et al., 2024] targets graduate-level science, and GSM8k [Cobbe et al., 2021]
focuses on arithmetic reasoning. Recent work such as DynaMath [Zou et al., 2024] evaluates VLMs’
mathematical reasoning robustness.

LLMs in Engineering Domains. Recent studies have started to explore the applicability of LLMs
to engineering contexts. For example, [Syed et al., 2024, Kevian et al., 2024, Guo and Zhao, 2025,
Xu et al., 2025, Xiong et al., 2025, Eslaminia et al., 2024, Ogo and Koga, 2024] evaluate LLMs
across engineering subfields using curated QA datasets. However, these efforts only focuses one
specific domain or largely focus on factual recall rather than generative design capabilities. Several
domain-specific studies examine LLM-assisted design workflows. For example, ControlAgent [Guo
et al., 2024] integrates control theory solvers for automated controller design, while AnalogCoder [Lai
et al., 2024] and SPICED [Chaudhuri et al., 2024] target analog circuit and SoC design using prompt
engineering and retrieval-based techniques. Retrieval-augmented and programmatic strategies have
also been explored to enhance LLM performance [Ghosh and Team, 2024, Alsaqer et al., 2024].
Other studies examine LLMs in mechanical design [Lu et al., 2024], cross-domain creativity [Jia
et al., 2024], and computational engineering [Hamann et al., 2024, Xu et al., 2024, Majumder et al.,
2024, Makatura et al., 2023]. Compared to prior work, ENGDESIGN spans multiple engineering
domains and introduces a novel evaluation framework that combines generative outputs from LLMs
with simulation-based evaluation to assess performance in realistic design settings.

5 Conclusion

In this work, we introduced ENGDESIGN, a comprehensive benchmark for rigorously evaluating large
language models (LLMs) in realistic, multi-domain engineering design scenarios. ENGDESIGN em-
phasizes end-to-end design synthesis, constraint satisfaction, and simulation-based validation across
diverse engineering disciplines. Our results show that ENGDESIGN poses substantial challenges: even
the most capable frontier models achieve only modest performance. We envision ENGDESIGN as a
foundation for future research at the intersection of language, reasoning, and engineering intelligence.
By providing a standardized and reproducible evaluation testbed, we hope to accelerate progress
toward the long-term goal of developing general-purpose AI engineers.

3Additional failure cases and qualitative analyses are provided in Appendix E.

10

Acknowledgment

Xingang Guo and Bin Hu are generously supported by the Amazon AICE award.

References
Chipdev platform. https://chipdev.io/, 2025.

Matlab and simulink examples. https://www.mathworks.com/academia/examples.html, 2025.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Shadan Alsaqer, Sarah Alajmi, Imtiaz Ahmad, and Mohammad Alfailakawi. The potential of llms in hardware
design. Journal of Engineering Research, 2024.

Antenna-Theory.com. The dipole antenna, 2011a. URL https://www.antenna-theory.com/antennas/
dipole.php.

Antenna-Theory.com. Patch antennas, 2011b. URL https://www.antenna-theory.com/antennas/
patches/patch4.php.

Anthropic. Claude 3.7 sonnet system card, a. URL https://assets.anthropic.com/m/
785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf.

Anthropic. Claude’s extended thinking. https://www.anthropic.com/news/
visible-extended-thinking, b.

Tamer Başar, Sean P. Meyn, and William R. Perkins. Lecture notes on control system theory and design. arXiv
preprint arXiv:2007.01367, 2024.

SS Bhavikatti. Finite element analysis. New Age International, 2005.

David Blockley. Engineering: a very short introduction, volume 309. Oxford university press, 2012.

Bailey Brown, Nadim S Hmeidat, Xiu Jia, Jackson Wilt, Michael Roberts, Brett G Compton, and Natasha
Vermaak. Experimental investigations of the effectiveness of simultaneous topology/orientation optimization
via somp and principal stress directions. Materials & Design, 217:110647, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Business Wire. P-1 AI Comes Out of Stealth, Aims to Build Engineering AGI for Physical Systems. Press release,
Business Wire, April 2025. URL https://www.businesswire.com/news/home/20250425073932/en/
P-1-AI-Comes-Out-of-Stealth-Aims-to-Build-Engineering-AGI-for-Physical-Systems.
San Francisco.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace, Kevin
Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning agents on machine
learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Jayeeta Chaudhuri, Dhruv Thapar, Arjun Chaudhuri, Farshad Firouzi, and Krishnendu Chakrabarty. Spiced:
Syntactical bug and trojan pattern identification in a/ms circuits using llm-enhanced detection. arXiv preprint
arXiv:2408.16018, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri
Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Wai-Fah Chen and JY Richard Liew. The civil engineering handbook. Crc Press, 2002.

Wai Kai Chen. The electrical engineering handbook. Elsevier, 2004.

Richard Y Chiang and Michael G Safonov. Matlab. Robust Control toolbox. User’s guide (The Mathworks Inc.,
1998), 1984.

11

https://chipdev.io/
https://www.mathworks.com/academia/examples.html
https://www.antenna-theory.com/antennas/dipole.php
https://www.antenna-theory.com/antennas/dipole.php
https://www.antenna-theory.com/antennas/patches/patch4.php
https://www.antenna-theory.com/antennas/patches/patch4.php
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://www.anthropic.com/news/visible-extended-thinking
https://www.anthropic.com/news/visible-extended-thinking
https://www.businesswire.com/news/home/20250425073932/en/P-1-AI-Comes-Out-of-Stealth-Aims-to-Build-Engineering-AGI-for-Physical-Systems
https://www.businesswire.com/news/home/20250425073932/en/P-1-AI-Comes-Out-of-Stealth-Aims-to-Build-Engineering-AGI-for-Physical-Systems

P.P. Chu. FPGA Prototyping by SystemVerilog Examples: Xilinx MicroBlaze MCS SoC Edition. Wiley, 2018.
ISBN 9781119282662. URL https://books.google.com/books?id=CR5eDwAAQBAJ.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient
exact attention with io-awareness, 2022. URL https://arxiv.org/abs/2205.14135.

Alejandro Dominguez-Garcia. Ece 486: Real-time operating systems and networks (spring 2025). https:
//courses.grainger.illinois.edu/ece486/sp2025/, 2025.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming Liang,
Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate disciplines. arXiv
preprint arXiv:2502.14739, 2025.

University of Illinois Urbana-Champaign ECE Department. Ece 385: Digital systems laboratory (spring 2025) -
course slides: Cpu control logic. https://courses.engr.illinois.edu/ece385, 2025a.

University of Illinois Urbana-Champaign ECE Department. Ece 385: Digital systems laboratory (spring 2025) -
lab 5 specification. https://courses.engr.illinois.edu/ece385, 2025b.

ECE Department, University of Illinois Urbana-Champaign. ECE 483: Analog IC Design (Spring 2025) -
Course Project Material: MP1. https://courses.engr.illinois.edu/ece483/sp2025/, 2025a.

ECE Department, University of Illinois Urbana-Champaign. ECE 483: Analog IC Design (Spring 2025) -
Course Project Material: MP3. https://courses.engr.illinois.edu/ece483/sp2025/, 2025b.

ECE Department, University of Illinois Urbana-Champaign. ECE 483: Analog IC Design (Spring 2025) -
Course Project Material: MP4. https://courses.engr.illinois.edu/ece483/sp2025/, 2025c.

Ahmadreza Eslaminia, Adrian Jackson, Beitong Tian, Avi Stern, Hallie Gordon, Rajiv Malhotra, Klara Nahrstedt,
and Chenhui Shao. Fdm-bench: A comprehensive benchmark for evaluating large language models in additive
manufacturing tasks. arXiv preprint arXiv:2412.09819, 2024.

FPGA4student. Seven-segment led display controller in verilog. https://www.fpga4student.com/2017/
09/seven-segment-led-display-controller-verilog.html, 2017a.

FPGA4student. Fpga verilog code for tetris game. https://www.fpga4student.com/2017/08/
fpga-verilog-code-for-tetris-game.html, 2017b.

Debi Prasad Ghosh and Design Automation Team. Retrieval-augmented generation in engineering design, 2024.

Kai Goebel and Patrik Zips. Can llm-reasoning models replace classical planning? a benchmark study. arXiv
preprint arXiv:2507.23589, 2025.

Richard Gooch and Pekka Enberg. Overview of the linux virtual file system. https://docs.kernel.org/
filesystems/vfs.html, 2005.

Google DeepMind. Gemini: Our most capable model, updated with better thinking. https://
blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
#gemini-2-5-thinking.

Paul R Gray, Paul J Hurst, Stephen H Lewis, and Robert G Meyer. Analysis and design of analog integrated
circuits. John Wiley & Sons, 2009.

Karl-Heinrich Grote and Hamid Hefazi. Springer handbook of mechanical engineering. Springer Nature, 2021.

Ce Guo and Tong Zhao. Resbench: Benchmarking llm-generated fpga designs with resource awareness. arXiv
preprint arXiv:2503.08823, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
arXiv preprint arXiv:2501.12948, 2025.

Xingang Guo, Darioush Keivan, Usman Syed, Lianhui Qin, Huan Zhang, Geir Dullerud, Peter Seiler, and Bin
Hu. Controlagent: Automating control system design via novel integration of llm agents and domain expertise.
arXiv preprint arXiv:2410.19811, 2024.

12

https://books.google.com/books?id=CR5eDwAAQBAJ
https://arxiv.org/abs/2205.14135
https://courses.grainger.illinois.edu/ece486/sp2025/
https://courses.grainger.illinois.edu/ece486/sp2025/
https://courses.engr.illinois.edu/ece385
https://courses.engr.illinois.edu/ece385
https://courses.engr.illinois.edu/ece483/sp2025/
https://courses.engr.illinois.edu/ece483/sp2025/
https://courses.engr.illinois.edu/ece483/sp2025/
https://www.fpga4student.com/2017/09/seven-segment-led-display-controller-verilog.html
https://www.fpga4student.com/2017/09/seven-segment-led-display-controller-verilog.html
https://www.fpga4student.com/2017/08/fpga-verilog-code-for-tetris-game.html
https://www.fpga4student.com/2017/08/fpga-verilog-code-for-tetris-game.html
https://docs.kernel.org/filesystems/vfs.html
https://docs.kernel.org/filesystems/vfs.html
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking

Hendrik F Hamann, Thomas Brunschwiler, Blazhe Gjorgiev, Leonardo SA Martins, Alban Puech, Anna Varbella,
Jonas Weiss, Juan Bernabe-Moreno, Alexandre Blondin Massé, Seong Choi, et al. A perspective on foundation
models for the electric power grid. arXiv preprint arXiv:2407.09434, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. arXiv preprint arXiv:2009.03300, 2020.

J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach. The Morgan Kaufmann
Series in Computer Architecture and Design. Morgan Kaufmann, 2017. ISBN 9780128119068. URL
https://books.google.com/books?id=cM8mDwAAQBAJ.

Joseph Howse and Joe Minichino. Learning OpenCV 4 Computer Vision with Python 3. Packt Publishing, 3rd
edition, 2020. ISBN 978-1789531619.

IEEE. Ieee standard for systemverilog–unified hardware design, specification, and verification language. IEEE
Std 1800-2017 (Revision of IEEE Std 1800-2012), pages 1–1315, 2018. doi: 10.1109/IEEESTD.2018.
8299595.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama,
Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free evaluation of large language
models for code. arXiv preprint arXiv:2403.07974, 2024.

Mengshuo Jia, Zeyu Cui, and Gabriela Hug. Enabling large language models to perform power system
simulations with previously unseen tools: A case of daline. arXiv preprint arXiv:2406.17215, 2024.

Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza. Dissecting the graphcore ipu architecture
via microbenchmarking, 2019. URL https://arxiv.org/abs/1912.03413.

Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai, Nishant Patil, Suvinay
Subramanian, Andy Swing, Brian Towles, Clifford Young, Xiang Zhou, Zongwei Zhou, and David A
Patterson. Tpu v4: An optically reconfigurable supercomputer for machine learning with hardware support
for embeddings. In Proceedings of the 50th Annual International Symposium on Computer Architecture,
ISCA ’23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400700958. doi:
10.1145/3579371.3589350. URL https://doi.org/10.1145/3579371.3589350.

K R Kashwan, V Rajeshkumar, T Gunasekaran, and K R Shankar Kumar. Design and characterization of pin
fed microstrip patch antennae. In 2011 Eighth International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), volume 4, pages 2258–2262, 2011. doi: 10.1109/FSKD.2011.6020028.

Darioush Kevian, Usman Syed, Xingang Guo, Aaron Havens, Geir Dullerud, Peter Seiler, Lianhui Qin, and Bin
Hu. Capabilities of large language models in control engineering: A benchmark study on gpt-4, claude 3
opus, and gemini 1.0 ultra. arXiv preprint arXiv:2404.03647, 2024.

Simon Knowles. Graphcore. In 2021 IEEE Hot Chips 33 Symposium (HCS), pages 1–25, 2021. doi: 10.1109/
HCS52781.2021.9567075.

Bram Lagerweij. Topopt: Topology optimization in python. https://github.com/AJJLagerweij/topopt,
2024.

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping Luo. Analog-
coder: Analog circuit design via training-free code generation. arXiv preprint arXiv:2405.14918, 2024.

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping Luo. Analog-
coder: Analog circuit design via training-free code generation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pages 379–387, 2025a.

Yao Lai, Souradip Poddar, Sungyoung Lee, Guojin Chen, Mengkang Hu, Bei Yu, Ping Luo, and David Z Pan.
Analogcoder-pro: Unifying analog circuit generation and optimization via multi-modal llms. arXiv preprint
arXiv:2508.02518, 2025b.

Eugene Lavretsky and Kevin A. Wise. Frequency Domain Analysis, pages 103–176. Springer International
Publishing, Cham, 2024. ISBN 978-3-031-38314-4. doi: 10.1007/978-3-031-38314-4_3. URL https:
//doi.org/10.1007/978-3-031-38314-4_3.

Junghee Lee, Youngjae Kim, Galen M Shipman, Sarp Oral, and Jongman Kim. Preemptible i/o scheduling of
garbage collection for solid state drives. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 32(2):247–260, 2013.

13

https://books.google.com/books?id=cM8mDwAAQBAJ
https://arxiv.org/abs/1912.03413
https://doi.org/10.1145/3579371.3589350
https://github.com/AJJLagerweij/topopt
https://doi.org/10.1007/978-3-031-38314-4_3
https://doi.org/10.1007/978-3-031-38314-4_3

Kirill Levchenko. Virtual memory. Lecture slides, ECE391 Course Materials, University of Illinois Ur-
bana–Champaign, Fall 2024.

Kirill Levchenko. File system. Lecture slides, ECE391 Course Materials, University of Illinois Ur-
bana–Champaign, Spring 2025.

Ming Li, Jike Zhong, Tianle Chen, Yuxiang Lai, and Konstantinos Psounis. Eee-bench: A comprehensive
multimodal electrical and electronics engineering benchmark. arXiv preprint arXiv:2411.01492, 2024.

Shangyu Li, Juyong Jiang, Tiancheng Zhao, and Jiasi Shen. Osvbench: Benchmarking llms on specification
generation tasks for operating system verification. arXiv preprint arXiv:2504.20964, 2025a.

Yinsheng Li, Zhen Dong, and Yi Shao. Drafterbench: Benchmarking large language models for tasks automation
in civil engineering. arXiv preprint arXiv:2507.11527, 2025b.

Chen Liang, Zhaoqi Huang, Haofen Wang, Fu Chai, Chunying Yu, Huanhuan Wei, Zhengjie Liu, Yanpeng Li,
Hongjun Wang, Ruifeng Luo, et al. Aecbench: A hierarchical benchmark for knowledge evaluation of large
language models in the aec field. arXiv preprint arXiv:2509.18776, 2025.

Sean Lie. Multi-million core, multi-wafer ai cluster. In 2021 IEEE Hot Chips 33 Symposium (HCS), pages 1–41,
2021. doi: 10.1109/HCS52781.2021.9567153.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024a.

Jason Liu and Contributors. Instructor: A library for structured outputs from large language models, 3 2024.
URL https://github.com/instructor-ai/instructor.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large language
models for verilog code generation. In 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pages 1–8. IEEE, 2023.

Yiqi Liu, Yuqi Xue, Yu Cheng, Lingxiao Ma, Ziming Miao, Jilong Xue, and Jian Huang. Scaling deep learning
computation over the inter-core connected intelligence processor with t10. In Proceedings of the ACM
SIGOPS 30th Symposium on Operating Systems Principles, SOSP ’24, page 505–521. ACM, November
2024b. doi: 10.1145/3694715.3695955. URL http://dx.doi.org/10.1145/3694715.3695955.

Jiaxing Lu, Heran Li, Fangwei Ning, Yixuan Wang, Xinze Li, and Yan Shi. Constructing mechanical design
agent based on large language models. arXiv preprint arXiv:2408.02087, 2024.

Subir Majumder, Lin Dong, Fatemeh Doudi, Yuting Cai, Chao Tian, Dileep Kalathil, Kevin Ding, Anupam A
Thatte, Na Li, and Le Xie. Exploring the capabilities and limitations of large language models in the electric
energy sector. Joule, 8(6):1544–1549, 2024.

Liane Makatura, Michael Foshey, Bohan Wang, Felix HähnLein, Pingchuan Ma, Bolei Deng, Megan Tjandra-
suwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large language models
help humans in design and manufacturing? arXiv preprint arXiv:2307.14377, 2023.

François Mazé and Faez Ahmed. Diffusion models beat gans on topology optimization, 2022a. URL https:
//arxiv.org/abs/2208.09591.

François Mazé and Faez Ahmed. Topodiff project page. https://decode.mit.edu/projects/topodiff/,
2022b.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark
for general ai assistants. In The Twelfth International Conference on Learning Representations, 2023.

Bo Ni and Markus J Buehler. Mechagents: Large language model multi-agent collaborations can solve mechanics
problems, generate new data, and integrate knowledge. Extreme Mechanics Letters, 67:102131, 2024.

Jean P. Nicolle. Pong game. https://www.fpga4fun.com/PongGame.html.

Thomas Norrie, Nishant Patil, Doe Hyun Yoon, George Kurian, Sheng Li, James Laudon, Cliff Young, Norman
Jouppi, and David Patterson. The design process for google’s training chips: Tpuv2 and tpuv3. IEEE Micro,
41(2):56–63, 2021. doi: 10.1109/MM.2021.3058217.

Itsuki Ogo and Masanobu Koga. Can chatgpt pass modern control theory exam? In 2024 24th International
Conference on Control, Automation and Systems (ICCAS), pages 1287–1292. IEEE, 2024.

14

https://github.com/instructor-ai/instructor
http://dx.doi.org/10.1145/3694715.3695955
https://arxiv.org/abs/2208.09591
https://arxiv.org/abs/2208.09591
https://decode.mit.edu/projects/topodiff/
https://www.fpga4fun.com/PongGame.html

OpenAI. Openai o3 and o4-mini system card. URL https://cdn.openai.com/pdf/
2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf.

Saswata Paul, Elkin Cruz, Airin Dutta, Ankita Bhaumik, Erik Blasch, Gul Agha, Stacy Patterson, Fotis
Kopsaftopoulos, and Carlos Varela. Formal verification of safety-critical aerospace systems. IEEE Aerospace
and Electronic Systems Magazine, 38(5):72–88, 2023.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed
Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint arXiv:2501.14249, 2025.

Raghu Prabhakar and Sumti Jairath. Sambanova sn10 rdu:accelerating software 2.0 with dataflow. In 2021 IEEE
Hot Chips 33 Symposium (HCS), pages 1–37, 2021. doi: 10.1109/HCS52781.2021.9567250.

Pengrui Quan, Xiaomin Ouyang, Jeya Vikranth Jeyakumar, Ziqi Wang, Yang Xing, and Mani Srivastava.
Sensorbench: Benchmarking llms in coding-based sensor processing. In Proceedings of the 26th International
Workshop on Mobile Computing Systems and Applications, pages 25–30, 2025.

Saeed Rashidi, William Won, Sudarshan Srinivasan, Srinivas Sridharan, and Tushar Krishna. Themis: a network
bandwidth-aware collective scheduling policy for distributed training of dl models. In Proceedings of the
49th Annual International Symposium on Computer Architecture, ISCA ’22, page 581–596. ACM, June 2022.
doi: 10.1145/3470496.3527382. URL http://dx.doi.org/10.1145/3470496.3527382.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian
Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In First Conference
on Language Modeling, 2024.

RISC-V Privileged Horizontal Committee. The risc-v instruction set manual volume ii: Privileged architecture.
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view, 2024.

Gordon W Roberts. Spice. Oxford University Press, Inc., 1996.

M. Safonov, A. Laub, and G. Hartmann. Feedback properties of multivariable systems: The role and use of the
return difference matrix. IEEE Transactions on Automatic Control, 26(1):47–65, 1981. doi: 10.1109/TAC.
1981.1102566.

S. Salapaka, A. Sebastian, J. P. Cleveland, and M. V. Salapaka. High bandwidth nano-positioner: A robust
control approach. Review of Scientific Instruments, 73(9):3232–3241, 09 2002. ISSN 0034-6748. doi:
10.1063/1.1499533. URL https://doi.org/10.1063/1.1499533.

Peter Seiler and Julian Theis. An Introduction to Classical Control and Loopshaping.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism, 2020. URL
https://arxiv.org/abs/1909.08053.

Lejla Skelic, Yan Xu, Matthew Cox, Wenjie Lu, Tao Yu, and Ruonan Han. Circuit: A benchmark for circuit
interpretation and reasoning capabilities of llms. arXiv preprint arXiv:2502.07980, 2025.

Xavier Soria, Edgar Riba, and Angel Sappa. Dense extreme inception network: Towards a robust cnn model for
edge detection. In The IEEE Winter Conference on Applications of Computer Vision (WACV ’20), 2020.

Kun Wu Steven S. Lumetta. Ece 508: Manycore parallel algorithms (spring 2023) - lecture 4. https:
//lumetta.web.engr.illinois.edu/508/slides/lecture4.pdf, 2023.

David Strassera. Openlapsim. https://github.com/dstrassera/OpenLapSim, 2021.

Kenneth Sutton and Randolph A. Graves. A general stagnation-point convective heating equation for arbitrary
gas mixtures. 1971. URL https://api.semanticscholar.org/CorpusID:52257986.

Usman Syed, Ethan Light, Xingang Guo, Huan Zhang, Lianhui Qin, Yanfeng Ouyang, and Bin Hu. Benchmark-
ing the capabilities of large language models in transportation system engineering: Accuracy, consistency,
and reasoning behaviors. arXiv preprint arXiv:2408.08302, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalk-
wyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Chee-Wooi Ten and Yunhe Hou. Modern power system analysis. CRC Press, 2024.

15

https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
http://dx.doi.org/10.1145/3470496.3527382
https://drive.google.com/file/d/17GeetSnT5wW3xNuAHI95-SI1gPGd5sJ_/view
https://doi.org/10.1063/1.1499533
https://arxiv.org/abs/1909.08053
https://lumetta.web.engr.illinois.edu/508/slides/lecture4.pdf
https://lumetta.web.engr.illinois.edu/508/slides/lecture4.pdf
https://github.com/dstrassera/OpenLapSim
https://api.semanticscholar.org/CorpusID:52257986

Tetris Wiki contributors. Tetris guideline. https://tetris.fandom.com/wiki/Tetris_Guideline.

The JAX Authors. Matrix multiplication. https://docs.jax.dev/en/latest/pallas/tpu/matmul.html,
2024.

Michael S Tsirkin and Cornelia Huck. Virtual i/o device (virtio) version 1.1. OASIS Committee, 2022.

University of Michigan. Control tutorials for matlab and simulink - pid controller design. https://ctms.
engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S.
Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions, 2018. URL https://arxiv.org/abs/1802.04730.

Gwok-Waa Wan, Shengchu Su, Ruihu Wang, Qixiang Chen, Sam-Zaak Wong, Mengnv Xing, Hefei Feng,
Yubo Wang, Yinan Zhu, Jingyi Zhang, et al. Fixme: Towards end-to-end benchmarking of llm-aided design
verification. arXiv preprint arXiv:2507.04276, 2025.

Xi Wang, Gwok-Waa Wan, Sam-Zaak Wong, Layton Zhang, Tianyang Liu, Qi Tian, and Jianmin Ye. Chatcpu:
An agile cpu design and verification platform with llm. In Proceedings of the 61st ACM/IEEE Design
Automation Conference, pages 1–6, 2024a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-task language
understanding benchmark. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024b.

Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A Patterson, and Krste Asanovic. The risc-v instruction
set manual volume ii: Privileged architecture version 1.7. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-129, 2016.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Huan Weng, Bill Hunt, Jarvis Schultz, and Mikhail Todes. Modern robotics: Mechanics, planning, and control –
code library. https://github.com/NxRLab/ModernRobotics, 2018.

Wikipedia contributors. Clustered file system. Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/wiki/Clustered_file_system, a.

Wikipedia contributors. Round-robin scheduling. Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/wiki/Round-robin_scheduling, b.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Under-
standing chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Ruoxin Xiong, Yanyu Wang, Suat Gunhan, Yimin Zhu, and Charles Berryman. Can ai master construction
management (cm)? benchmarking state-of-the-art large language models on cm certification exams. arXiv
preprint arXiv:2504.08779, 2025.

Boyan Xu, Liang Wen, Zihao Li, Yuxing Yang, Guanlan Wu, Xiongpeng Tang, Yu Li, Zihao Wu, Qingxian Su,
Xueqing Shi, et al. Unlocking the potential: Benchmarking large language models in water engineering and
research. arXiv preprint arXiv:2407.21045, 2024.

Boyan Xu, Zihao Li, Yuxin Yang, Guanlan Wu, Chengzhi Wang, Xiongpeng Tang, Yu Li, Zihao Wu, Qingxian
Su, Xueqing Shi, et al. Evaluating and advancing large language models for water knowledge tasks in
engineering and research. Environmental Science & Technology Letters, 12(3):289–296, 2025.

Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. V10: Hardware-assisted npu multi-tenancy for improved
resource utilization and fairness. In Proceedings of the 50th Annual International Symposium on Com-
puter Architecture, ISCA ’23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400700958. doi: 10.1145/3579371.3589059. URL https://doi.org/10.1145/3579371.3589059.

Yuqi Xue, Yiqi Liu, Lifeng Nai, and Jian Huang. Hardware-assisted virtualization of neural processing units for
cloud platforms. In 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
1–16, 2024. doi: 10.1109/MICRO61859.2024.00011.

16

https://tetris.fandom.com/wiki/Tetris_Guideline
https://docs.jax.dev/en/latest/pallas/tpu/matmul.html
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://arxiv.org/abs/1802.04730
https://github.com/NxRLab/ModernRobotics
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://doi.org/10.1145/3579371.3589059

Sheng Yin, Xianghe Pang, Yuanzhuo Ding, Menglan Chen, Yutong Bi, Yichen Xiong, Wenhao Huang, Zhen
Xiang, Jing Shao, and Siheng Chen. Safeagentbench: A benchmark for safe task planning of embodied llm
agents. arXiv preprint arXiv:2412.13178, 2024.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and Ion Stoica. Ansor: Generating high-performance
tensor programs for deep learning, 2023. URL https://arxiv.org/abs/2006.06762.

Corey Snyder Zhi-Pei Liang. Ece 310: Digital signal processing (spring 2025). https://courses.grainger.
illinois.edu/ece310/sp2025/, 2025.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire
Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning in large language
models. arXiv preprint arXiv:2205.10625, 2022.

Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen Zhang, Jilong Xue, Lingxiao Ma, Yuqing
Xia, Wei Cui, Fan Yang, Mao Yang, Lidong Zhou, Asaf Cidon, and Gennady Pekhimenko. ROLLER: Fast
and efficient tensor compilation for deep learning. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 233–248, Carlsbad, CA, July 2022. USENIX Association. ISBN
978-1-939133-28-1. URL https://www.usenix.org/conference/osdi22/presentation/zhu.

Yuqi Zhu, Ge Li, Xue Jiang, Jia Li, Hong Mei, Zhi Jin, and Yihong Dong. Uncertainty-guided chain-of-thought
for code generation with llms. arXiv preprint arXiv:2503.15341, 2025.

Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang, Bin Hu, and Huan Zhang. Dynamath: A dynamic visual
benchmark for evaluating mathematical reasoning robustness of vision language models. arXiv preprint
arXiv:2411.00836, 2024.

Yazhou Zu, Alireza Ghaffarkhah, Hoang-Vu Dang, Brian Towles, Steven Hand, Safeen Huda, Adekunle Bello,
Alexander Kolbasov, Arash Rezaei, Dayou Du, Steve Lacy, Hang Wang, Aaron Wisner, Chris Lewis, and
Henri Bahini. Resiliency at scale: Managing Google’s TPUv4 machine learning supercomputer. In 21st
USENIX Symposium on Networked Systems Design and Implementation (NSDI 24), pages 761–774, Santa
Clara, CA, April 2024. USENIX Association. ISBN 978-1-939133-39-7. URL https://www.usenix.org/
conference/nsdi24/presentation/zu.

17

https://arxiv.org/abs/2006.06762
https://courses.grainger.illinois.edu/ece310/sp2025/
https://courses.grainger.illinois.edu/ece310/sp2025/
https://www.usenix.org/conference/osdi22/presentation/zhu
https://www.usenix.org/conference/nsdi24/presentation/zu
https://www.usenix.org/conference/nsdi24/presentation/zu

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduced ENGDESIGN benchmark in this work to benchmark the engi-
neering design capabilities of current LLMs. The dataset details have been discussed in
Section 2, and our experimental results are included in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

18

Justification: We have discussed the limitations of our work in Appendix A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have open-sourced our dataset and evaluation pipeline to reproduce our
work.

Guidelines:

19

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided open access to the benchmark data including all the task
prompt, domains, and topics. In addition, we have provided a github repo contains all the
evaluations logs and evaluation pipeline for each task of ENGDESIGN.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We can explained our experimental setup in detail in Appendix D.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Table 11 and Table 12, which presents the detailed
evaluation results. Specifically, during evaluation, we ran each task three independent trials
to compute the mean and standard deviation results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have discussed the required compute resources in Appendix D.1.

Guidelines:

21

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work adheres to the NeurIPS Code of Ethics. All experiments were
conducted responsibly, without harm to individuals or groups, and without the use of
sensitive or personally identifiable data. We also carefully considered the potential societal
impact of our methods and reported both the limitations and potential risks in the paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impacts of our work in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

22

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not involve the release of any pretrained models, generative
systems, or large-scale scraped datasets that would present a high risk of misuse. ENGDE-
SIGN is a benchmark comprising structured engineering design tasks, and all associated
data is manually curated and domain-specific. It is intended solely for the evaluation of
model capabilities in engineering design and does not raise the same risks associated with
general-purpose generative models or unfiltered data releases.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Tasks in ENGDESIGN are curated by individual task contributors, and the
corresponding references are cited properly (see Table 15).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a new benchmark, ENGDESIGN, which includes a suite
of engineering design tasks along with structured evaluation scripts. Each task is docu-
mented with a clear task description, LLM response instruction, and evaluation codebase.
Additionally, we provide metadata and instructions for running evaluations, reproducibility
guidelines, and license information alongside the released assets. The assets are shared
through publicly accessible repositories to support transparent and reproducible research.

23

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our study does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core development of ENGDESIGN in this work does not involve LLMs as
any important, original, or non-standard components.
Guidelines:

24

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

A Limitations and Broader Impact

Limitations

While ENGDESIGN provides a comprehensive benchmark for evaluating LLMs in engineering design
tasks, some limitations remain:

1. ENGDESIGN currently covers 9 engineering design domains. Although these are diverse
and representative, the benchmark does not yet encompass the full breadth of engineering
disciplines or subfields.

2. Our evaluation includes a selection of widely used and high-performing LLMs. However, it
is not exhaustive. Many emerging or smaller-scale models are not included in our evaluation.

3. We employ the instructor framework to enforce structured output from LLMs. While
this tool has shown reliable performance throughout our evaluations, there are instances
where LLMs fail to adhere to the expected output format. As instructor is still under
active development, future improvements will be necessary to further enhance its robustness
and compatibility across models.

Broader Impact

This work aims to advance our understanding of how LLMs perform in complex, real-world engi-
neering design scenarios. However, we highlight the following considerations:

• Not a replacement for human engineers. Our benchmark is intended to assess LLM
capabilities, not to replace the expertise and judgment of professional engineers. Engineering
design involves safety-critical decision-making, physical prototyping, and domain-specific
knowledge that current LLMs cannot fully replicate.

• Supporting real-world design workflows. We hope that LLMs, when properly evaluated
and deployed, can assist engineers by automating routine tasks, enhancing ideation, and
accelerating early-stage design processes—particularly in settings with limited access to
expert resources.

• Need for rigorous safety checks. Any LLM-generated design, particularly those intended
for deployment in safety-critical domains such as aerospace, biomedical devices, civil infras-
tructure, or autonomous systems, must undergo thorough validation and safety assessment
by qualified human experts before real-world application.

• Ethical use and accessibility. Care must be taken to ensure that advances in AI-assisted
engineering design benefit a broad and diverse community. Efforts should be made to avoid
misuse, bias amplification, or overreliance on unverified outputs.

B More on Related Work

Recent years have seen a surge of domain-specific engineering benchmarks that evaluate AI systems
on isolated reasoning or coding sub-tasks. However, most existing efforts fall short of assessing
end-to-end design capability, that is, the ability to synthesize, implement, and validate complete
engineering systems under realistic constraints. Below, we review representative benchmarks across
key engineering domains and highlight how EngDesign differs by emphasizing holistic design and
simulation-based validation.

Operating Systems OSVBench [Li et al., 2025a] focuses on the specification and verification
of simplified operating system components using formal methods. While it advances progress in
formal verification, its tasks are limited to checking correctness of given code fragments. In contrast,
ENGDESIGN-OS tasks require participants to design and simulate new operating system subsystems
(e.g., schedulers, memory allocators), moving beyond static specification toward dynamic design.

Computer Architecture Benchmarks such as FIXME [Wan et al., 2025] and ChatCPU [Wang et al.,
2024a] center on verifying or patching existing CPU components through code reasoning. These
tasks measure correctness and local optimization. ENGDESIGN-ARCH, by comparison, tasks models

26

with designing and optimizing new micro-architectures and quantitatively validates performance
through simulation, bridging reasoning and generative design.

Control Systems Design ControlBench [Kevian et al., 2024] and ControlEval [Guo et al., 2024]
examine language models’ ability to answer control-theoretic questions or tune simple PID controllers.
These benchmarks remain largely static, focusing on analytical understanding rather than synthesis.
ENGDESIGN-CTRL extends the scope to diverse control system design problems, including state-
feedback, robust control, and optimal control, and evaluates designs via dynamic simulations.

Mechanical Design Prior mechanical design studies, such as MechAgents [Ni and Buehler, 2024]
developed a set of AI agents can solve specified elasticity problem, which focuses on one type of
problems. ENGDESIGN-MECH introduces multiple mechanism design tasks with physics-based
simulation and objective trade-offs, providing a consistent evaluation framework across mechanical
systems.

Structural Engineering Benchmarks like AEC-bench [Liang et al., 2025] that integrate a bench-
mark for architecture, engineering, and construction field domain questions and DrafterBench [Li
et al., 2025b] that focuses on evaluting LLMs on technical drawing revision all focuses on speicify
question and answer evaluation scenario. ENGDESIGN-STRU instead requires sizing new structures
under material and load trade-offs, capturing the creative reasoning central to structural design.

Digital Hardware Design VerilogEval [Liu et al., 2023] focuses on writing and verifying RTL code
snippets. These benchmarks measure correctness at the snippet level but not full design integration. In
contrast, ENGDESIGN-DHD targets complete module-level design with explicit trade-offs between
latency, area, and power—mirroring real-world hardware co-design challenges.

Analog and Integrated Circuit Design Recent efforts such as AnalogCoder [Lai et al., 2025a]
and AnalogCoder-Pro [Lai et al., 2025b] focuses on agent design on IC design domains. EngDesign-
AICD advances this direction by provide a evaluation testbed and validates models’ performance
through SPICE-like simulation.

Robotics Benchmarks such as [Goebel and Zips, 2025, Yin et al., 2024] target high-level reasoning,
perception, or planning. These are complementary but orthogonal to engineering design, as they
do not involve building controllers or physical systems. ENGDESIGN-ROBO bridges this gap by
coupling low-level control design with physics simulation, assessing dynamic feasibility and safety
in robotic mechanisms.

Signal Processing SensorBench [Quan et al., 2025] focuses on sensor data. They emphasize data
understanding, but not system-level design. ENGDESIGN-SIGP introduces tasks involving filter
design, sensor configuration, and system-level optimization, encompassing a broader range of design
decisions.

Across these domains, ENGDESIGN distinguishes itself by requiring end-to-end design reasoning,
cross-disciplinary synthesis, and simulation-based validation. Whereas prior benchmarks evaluate
correctness or reasoning on partial tasks, EngDesign systematically measures an AI model’s ability
to conceptualize, implement, and verify complex engineered systems—an essential step toward
assessing the real-world utility of intelligent design agents.

C More on ENGDESIGN

C.1 Prompt Token Length Comparison

Table 4 reports the average number of tokens in the input prompts for various benchmarks, measured
using the o200k_base tokenizer. Notably, ENGDESIGN exhibits significantly longer prompts
(averaging 778.71 tokens) compared to other popular QA-style benchmarks such as MMLU-Pro
(61.76), HLE (250.03), and GSM8K (58.46). This reflects the greater contextual and structural
complexity involved in realistic engineering design tasks, which often require extensive problem
descriptions and domain-specific constraints.

27

Table 4: Average token counts across different benchmarks using the o200k_base tokenizer.
Benchmark MMLU-Pro HLE SuperGPQA DynaMATH GSM8K EngDesign
Average Token # 61.76 250.03 57.89 27.83 58.46 778.71

C.2 More on construction of ENGDESIGN

As described in Section 2.3, the development of ENGDESIGN follows a rigorous multi-stage process,
including initial task design and two rounds of review to ensure task quality and relevance. During
the initial stage, over 40 task contributors submitted a total of 186 task proposals. Following thorough
evaluation and revision across the two review phases, 101 tasks were accepted for inclusion in
ENGDESIGN, while the remaining 85 were discarded due to various issues such as insufficient clarity,
infeasibility, or misalignment with the benchmark’s design-oriented goals.

C.3 Word Clouds of ENGDESIGN

Figure 7 and Figure 8 present the word clouds of the most frequently occurring terms across all
prompts and within each domain, respectively. These visualizations underscore the benchmark’s
emphasis on design-specific vocabulary and highlight the diversity of engineering contexts it encom-
passes.

Figure 7: Word Cloud of the overall ENGDESIGN Prompts.

D More on Evaluation

Figure 9 illustrates the benchmarking pipeline for evaluating LLMs on engineering design tasks. In
this section, we provide more details on the evalutions of ENGDESIGN.

D.1 Detailed Experimental Setup

We use the default configuration for each LLM during evaluation. Table 5 provides detailed informa-
tion on the model names, setup parameters, and special configurations used for each model.

All evaluations in this work were conducted via API access to proprietary LLMs (e.g., OpenAI,
Anthropic, Google, and DeepSeek). As a result, the computational burden on our end was minimal,
with no need for local GPU infrastructure. The primary cost was associated with inference-time API
usage, which varies depending on the model types and token numbers. Since we did not perform
model training or fine-tuning, the overall computational footprint of our study remains low.

28

(a) Analog integrated circuit design. (b) Control Design (c) Robotics

(d) Structure Design (e) Signal Processing (f) Mechanical Systems

(g) Digital Hardware Design (h) Operating System Design (i) Computer Architecture Design

Figure 8: Word clouds of ENGDESIGN for each engineering domain.

29

Large Language Models (LLMs)Task Description
Input prompt to LLMs including problem
statement, design tasks, requirements, and
output formats.

Evaluation PipelineResults

Pass/Fail Score (0 to 100) Eval Log Code Scientific Software Rubrics

Figure 9: Overview of the ENGDESIGN Benchmarking Pipeline. The process begins with a task
description curated by task contributors (Step 1). This prompt is then submitted to various LLMs (e.g.,
GPT, Claude, Gemini, DeepSeek) to generate candidate design proposals (Step 2). The generated
outputs are evaluated using an automated codebase that includes code execution, integration with
scientific software (e.g., MATLAB, Webots), and standardized scoring rubrics (Step 3). Finally, the
results, including pass/fail status, quantitative scores, and detailed evaluation logs, are recorded for
further analysis (Step 4).

Table 5: Model names and configuration details for each evaluated LLM.
Model Model Pointer & Setup
GPT-4o gpt-4o-2024-08-06

o1 o1-2024-12-17

o3 o3-2025-04-16, reasoning effort: medium/high

o4-mini o4-mini-2025-04-16, reasoning effort: medium/high

Claude-3.7-Sonnet claude-3-7-sonnet-20250219

Claude-3.7-Thinking claude-3-7-sonnet-20250219, thinking token budget: 16,000

Gemini-2.0-Flash gemini-1.5-pro

Gemini-2.5-Pro gemini-2.5-pro-preview-03-25

DeepSeek-v3 DeepSeek-V3

DeepSeek-R1 DeepSeek-R1

D.2 LLM Response Structure

As discussed in Section 2.2, we use instructor to construct LLM responses by defining a response
structure class, as illustrated in Figure 10. For each task, the response structure class includes two
keys: reasoning and config. The reasoning component prompts the LLM to perform a detailed
step-by-step reasoning process to complete the task. The config component defines a task-specific
ConfigFile class, which guides the LLM to produce key design components in a predefined format.
This structured output facilitates automated evaluation by making it easy to parse LLMs’ design
choices or code snippets.

D.3 More on Evaluation Metrics

We evaluate model performance using three metrics: Average Pass Rate, Average Score, and Average
Response Length. Each task is tested over N (N = 3) independent trials per model. For each metric,
we aggregate at the task level and then summarize across all tasks to ensure equal weighting.

Average Pass Rate For each task i, we define the pass rate as:

pass_ratei =
number of successful trials

N

30

import instructor
from pydantic import BaseModel, Field

class ConfigFile(BaseModel):
theta: float = Field(description="The value of theta")
tau: float = Field(description="The value of tau")
num: list[float] = Field(description="The numerator of the transfer function of the

controller")
den: list[float] = Field(description="The denominator of the transfer function of the

controller")

Define your desired output structure
class Response_structure(BaseModel):

reasoning: str = Field(..., description="Detailed reasoning process to accomplish the
task, please solve all the tasks step by step")

config: ConfigFile

Figure 10: An example of response structure class for instructor (Task XG_05).

The overall pass rate is then computed as the mean of per-task pass rates:

µpass =
1

N

N∑
i=1

pass_ratei

We report µpass along with its standard deviation across tasks:

σpass =

√√√√ 1

N − 1

N∑
i=1

(pass_ratei − µpass)2

Average Score For each task i, the score is averaged over N trials:

scorei =
1

N

3∑
j=1

xi,j

where xi,j is the score in trial j. The overall score is the mean of per-task scores:

µscore =
1

N

N∑
i=1

scorei

with corresponding standard deviation:

σscore =

√√√√ 1

N − 1

N∑
i=1

(scorei − µscore)2

Reasoning Robustness Let T denote the set of all evaluated tasks. For a given model, each task
t ∈ T is evaluated over N independent trials. Define:

• Nall: the number of tasks for which all N trials passed, and
• Nany: the number of tasks for which at least one trial passed.

Then, the Reasoning Robustness R ∈ [0, 1] is defined as:

R =
Nall

Nany

This metric quantifies the model’s consistency in reasoning. A value of R = 1 indicates perfect
robustness. In other words, whenever a task is solvable by the model, it succeeds consistently across
all trials. On the other hand, lower values indicate higher variance or instability in the model’s
reasoning process across repeated attempts.

31

o4-mini-high
o3-high o3 o1

Gemini-2.5-Pro
o4-mini

DeepSeek-R1*

Claude-3.7-Sonnet

Claude-3.7-Thinking
GPT-4o

DeepSeek-v3*

Gemini-2.0-Flash
0

10

20

30

40

50

Av
er

ag
e

Sc
or

e

49.88 49.46 48.98 48.52 48.25 47.30
44.71

41.14 39.75
36.74 35.97

33.59

Figure 11: Average Score of evaluted LLMs on ENGDESIGN.

Table 6: Average score results (each task evaluated over 3 trials) under different domains.
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 36.74 25.71 18.15 35.30 41.69 29.05 26.33 55.80 41.45 34.60
DeepSeek-v3* 35.97 17.33 0.00 45.58 39.67 24.05 25.94 48.47 34.55 38.68
Gemini-2.0-Flash 33.59 7.00 0.00 39.45 38.25 27.14 28.15 53.47 30.03 31.51
Claude-3.7-Sonnet 41.14 31.00 23.79 43.94 46.03 30.24 29.55 58.97 44.90 37.11

Reasoning Models
o1 48.52 19.00 49.09 47.48 63.28 40.48 58.35 57.22 52.61 32.57
o3 48.98 20.33 35.82 59.37 28.82 40.24 54.52 70.13 57.44 44.77
o3-high 49.46 20.33 32.80 53.19 33.36 45.24 65.59 73.67 53.51 47.48
o4-mini 47.30 11.00 25.72 48.80 57.36 35.00 56.90 61.38 51.28 42.07
o4-mini-high 49.88 12.67 36.97 54.87 64.28 36.43 63.96 56.72 48.45 44.15
Gemini-2.5-Pro 48.25 31.00 0.00 53.70 58.05 29.05 44.05 62.43 39.63 55.02
DeepSeek-R1* 44.71 22.00 0.00 56.27 54.38 26.19 37.26 53.82 48.08 40.31
Claude-3.7-Thinking 39.75 22.67 26.02 43.87 29.59 37.62 28.25 59.38 45.58 40.39

D.4 Additional Evaluation Results

In this section, we present additional evaluation results. Table 6 provide the average score results of
evaluated LLMs on ENGDESIGN.

Figure 11 presents the average score distribution across all evaluated models. The overall ranking is
consistent with the pass rate results in Table 2, with reasoning-focused models such as o4-mini-high,
o3-high, and o3 achieving the highest scores. Notably, the score differences are less pronounced than
the corresponding differences in pass rates, suggesting that while these models may not consistently
meet strict pass criteria, they still generate partially correct or near-complete solutions that earn
substantial credit. In addition, Table 7 and Table 8 show the average pass and score for text-only tasks.
Table 9 and Table 10 present the evaluation results for ENGDESIGN-OPEN. Finally, we provide the
results with error bar in Table 11 and Table 12.

D.5 Token Consumption

Figure 12 to Figure 15 show the token consumption for the evaluated LLMs under 9 topics within
ENGDESIGN.

D.6 Prompt

In this section, we provide the LLMs prompts we used for task filtering (the second stage of
ENGDESIGN Section 2.3).

32

Table 7: Average pass rate (%) results (text-only tasks).
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 14.98 0.00 20.00 20.83 10.26 0.00 4.17 26.67 16.67 27.78
DeepSeek-v3∗ 18.42 0.00 0.00 33.33 25.64 0.00 0.00 16.67 13.89 38.89
Gemini-2.0-Flash 13.12 0.00 0.00 4.17 16.67 4.76 0.00 20.00 5.56 36.11
Claude-3.7-Sonnet 21.97 0.00 40.00 25.00 33.33 14.29 0.00 33.33 13.89 33.33

Reasoning Models
o1 28.95 0.00 40.00 25.00 41.03 14.29 37.50 50.00 22.22 25.00
o3 34.38 0.00 40.00 20.51 20.51 23.81 25.00 63.33 41.67 41.67
o3-high 34.51 0.00 40.00 33.33 20.51 28.57 30.43 68.97 36.11 44.44
o4-mini 31.58 0.00 33.33 20.83 41.03 19.05 29.17 43.33 30.56 44.44
o4-mini-high 33.78 0.00 40.00 20.83 47.22 19.05 37.50 46.67 36.11 38.89
Gemini-2.5-Pro 28.89 0.00 0.00 25.00 43.59 0.00 9.52 56.67 13.89 50.00
DeepSeek-R1∗ 23.77 0.00 36.36 20.83 38.46 4.76 5.26 26.67 22.22 41.67
Claude-3.7-Thinking 18.30 0.00 33.33 20.83 17.95 9.52 0.00 40.00 11.11 30.56

Table 8: Average score results (text-only results).
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 37.57 25.71 0.00 43.75 41.69 29.05 26.33 55.80 36.59 34.98
DeepSeek-v3* 37.20 17.33 0.00 60.17 39.67 24.05 25.94 48.47 34.93 38.68
Gemini-2.0-Flash 33.87 7.00 0.00 42.58 38.25 27.14 28.15 53.47 30.86 31.51
Claude-3.7-Sonnet 41.39 31.00 0.00 48.54 46.03 30.24 29.55 58.97 42.54 37.70

Reasoning Models
o1 48.94 19.00 0.00 53.92 63.28 40.48 58.35 57.22 54.59 32.79
o3 48.02 20.33 0.00 60.58 28.82 40.24 54.52 70.13 59.76 46.00
o3-high 50.39 20.33 0.00 58.08 33.36 45.24 65.59 73.67 56.44 48.93
o4-mini 48.18 11.00 0.00 50.04 57.36 35.00 56.90 61.38 52.46 43.08
o4-mini-high 49.76 12.67 0.00 49.96 64.28 36.43 63.96 56.72 51.65 45.30
Gemini-2.5-Pro 48.33 31.00 0.00 50.50 58.05 29.05 44.05 62.43 42.93 55.02
DeepSeek-R1* 44.24 22.00 0.00 53.21 54.38 26.19 37.26 53.82 50.42 40.31
Claude-3.7-Thinking 39.47 22.67 0.00 47.71 29.59 37.62 28.25 59.38 43.92 41.25

Table 9: Average pass rate (%) results for ENGDESIGN-OPEN.
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 14.74 N/A 20.00 16.67 11.11 0.00 4.17 29.63 20.00 0.00
DeepSeek-v3∗ 8.94 N/A 0.00 N/A 14.81 0.00 0.00 18.52 8.33 N/A
Gemini-2.0-Flash 10.34 N/A 0.00 0.00 12.50 5.56 0.00 22.22 8.33 0.00
Claude-3.7-Sonnet 22.52 N/A 40.00 8.33 29.17 16.67 0.00 37.04 23.33 0.00

Reasoning Models
o1 36.54 N/A 40.00 0.00 48.15 16.67 37.50 55.56 36.67 0.00
o3 35.90 N/A 40.00 0.00 7.41 27.78 25.00 70.37 60.00 0.00
o3-high 36.77 N/A 40.00 0.00 11.11 33.33 30.43 74.07 50.00 0.00
o4-mini 36.54 N/A 33.33 0.00 48.15 22.22 29.17 48.15 50.00 0.00
o4-mini-high 40.52 N/A 40.00 0.00 58.33 22.22 37.50 51.85 50.00 0.00
Gemini-2.5-Pro 30.00 N/A 0.00 0.00 44.44 0.00 9.52 62.96 20.83 0.00
DeepSeek-R1∗ 22.03 N/A 0.00 N/A 44.44 5.56 5.26 29.63 16.67 N/A
Claude-3.7-Thinking 19.74 N/A 33.33 0.00 7.41 11.11 0.00 44.44 30.00 0.00

33

Table 10: Average score results for ENGDESIGN-OPEN.
Model Overall AICD Arch Ctrl DHD Mech OS Robo SigP Stru

Chat Models
GPT-4o 36.03 N/A 18.15 47.00 26.85 29.44 26.33 62.00 37.79 30.00
DeepSeek-v3* 31.50 N/A 0.00 N/A 20.37 28.06 25.94 53.85 30.94 N/A
Gemini-2.0-Flash 34.74 N/A 0.00 35.00 17.50 31.67 28.15 59.41 36.36 30.00
Claude-3.7-Sonnet 38.71 N/A 23.79 46.00 29.17 35.28 29.55 65.52 36.41 30.00

Reasoning Models
o1 51.64 N/A 49.09 42.67 57.04 35.00 58.35 63.57 47.70 30.00
o3 47.48 N/A 35.82 41.33 7.41 41.39 54.52 77.93 64.18 30.00
o3-high 49.61 N/A 32.80 47.17 13.33 45.00 65.59 79.13 57.54 30.00
o4-mini 52.08 N/A 25.72 47.17 50.37 40.83 56.90 68.20 59.37 30.00
o4-mini-high 54.02 N/A 36.97 46.33 59.58 42.50 63.96 63.02 54.46 30.00
Gemini-2.5-Pro 47.88 N/A 0.00 46.00 47.78 30.56 44.05 69.37 46.13 30.00
DeepSeek-R1* 45.66 N/A 0.00 N/A 48.15 30.56 37.26 59.80 50.62 N/A
Claude-3.7-Thinking 34.74 N/A 26.02 37.67 7.41 35.00 28.25 65.98 39.07 30.00

Figure 12: Average token consumption of Claude models on ENGDESIGN.

Figure 13: Average token consumption of Gemini models on ENGDESIGN.

Figure 14: Average token consumption of DeepSeek models on ENGDESIGN.

34

Ta
bl

e
11

:A
ve

ra
ge

pa
ss

ra
te

(%
)(

ea
ch

ta
sk

ev
al

ua
te

d
ov

er
3

tr
ia

ls
)u

nd
er

di
ff

er
en

td
om

ai
ns

w
ith

er
ro

rb
ar

.

M
od

el
O

ve
ra

ll
A

IC
D

A
rc

h
C

tr
l

D
H

D
M

ec
h

O
S

R
ob

o
Si

gP
St

ru
C

ha
tM

od
el

s
G

PT
-4

o
15

.6
8±

0.
79

0.
00
±

0.
00

20
.0

0±
0.

00
18

.5
2±

2.
62

10
.2

6±
3.

63
0.

00
±

0.
00

4.
17
±

5.
89

26
.6

7±
4.

71
17

.6
5±

0.
00

25
.6

4±
3.

63
D

ee
pS

ee
k-

v3
*

17
.9

2±
1.

56
0.

00
±

0.
00

0.
00

±
0.

00
27

.2
7±

7.
42

25
.6

4±
3.

63
0.

00
±

0.
00

0.
00
±

0.
00

16
.6

7±
4.

71
12

.8
2±

3.
63

38
.8

9±
7.

86
G

em
in

i-
2.

0-
Fl

as
h

14
.1

6±
0.

31
0.

00
±

0.
00

0.
00

±
0.

00
15

.1
5±

11
.3

4
16

.6
7±

1.
14

4.
76

±
6.

73
0.

00
±

0.
00

20
.0

0±
8.

16
5.

13
±

7.
25

36
.1

1±
3.

93
C

la
ud

e-
3.

7-
So

nn
et

22
.6

1±
0.

95
0.

00
±

0.
00

40
.0

0±
0.

00
16

.6
7±

4.
54

33
.3

3±
0.

00
14

.2
9±

0.
00

0.
00

±
0.

00
33

.3
3±

4.
71

21
.5

7±
2.

77
30

.7
7±

0.
00

R
ea

so
ni

ng
M

od
el

s
o1

29
.1

7±
2.

25
0.

00
±

0.
00

40
.0

0±
0.

00
24

.0
7±

2.
62

41
.0

3±
3.

63
14

.2
9±

0.
00

37
.5

0±
0.

00
50

.0
0±

14
.1

4
25

.4
9±

2.
77

23
.0

8±
6.

28
o3

34
.3

8±
1.

70
0.

00
±

0.
00

40
.0

0±
0.

00
35

.1
9±

5.
24

20
.5

1±
7.

25
23

.8
1±

6.
73

25
.0

0±
10

.2
1

63
.3

3±
4.

71
41

.1
8±

0.
00

38
.4

6±
6.

28
o3

-h
ig

h
33

.5
7±

1.
16

0.
00
±

0.
00

40
.0

0±
0.

00
27

.7
8±

9.
07

20
.5

1±
7.

25
28

.5
7±

0.
00

30
.4

3±
5.

26
68

.9
7±

1.
57

35
.2

9±
4.

80
41

.0
3±

3.
63

o4
-m

in
i

31
.6

0±
0.

49
0.

00
±

0.
00

33
.3

3±
9.

43
24

.0
7±

6.
93

41
.0

3±
7.

25
19

.0
5±

6.
73

29
.1

7±
5.

89
43

.3
3±

4.
71

33
.3

3±
2.

77
41

.0
3±

3.
63

o4
-m

in
i-

hi
gh

34
.0

4±
0.

50
0.

00
±

0.
00

40
.0

0±
16

.3
3

27
.7

8±
4.

54
47

.2
2±

3.
93

19
.0

5±
6.

73
37

.5
0±

0.
00

46
.6

7±
9.

43
35

.2
9±

4.
80

35
.9

0±
3.

63
G

em
in

i-
2.

5-
Pr

o
29

.5
4±

0.
95

0.
00

±
0.

00
0.

00
±

0.
00

33
.3

3±
4.

29
43

.5
9±

3.
63

0.
00

±
0.

00
9.

52
±

6.
36

56
.6

7±
4.

71
12

.8
2±

3.
63

50
.0

0±
0.

00
D

ee
pS

ee
k-

R
1*

25
.5

3±
3.

35
0.

00
±

0.
00

0.
00

±
0.

00
36

.3
6±

7.
42

38
.4

6±
6.

28
4.

76
±

6.
73

5.
26
±

7.
86

26
.6

7±
9.

43
20

.5
1±

7.
25

41
.6

7±
6.

80
C

la
ud

e-
3.

7-
T

hi
nk

in
g

20
.0

7±
2.

41
0.

00
±

0.
00

33
.3

3±
9.

43
18

.5
2±

10
.4

8
17

.9
5±

9.
59

9.
52

±
6.

73
0.

00
±

0.
00

40
.0

0±
0.

00
19

.6
1±

2.
77

28
.2

1±
3.

63

35

Ta
bl

e
12

:A
ve

ra
ge

sc
or

e
re

su
lts

(e
ac

h
ta

sk
ev

al
ua

te
d

ov
er

3
tr

ia
ls

)u
nd

er
di

ff
er

en
td

om
ai

ns
w

ith
er

ro
rb

ar
.

M
od

el
O

ve
ra

ll
A

IC
D

A
rc

h
C

tr
l

D
H

D
M

ec
h

O
S

R
ob

o
Si

gP
St

ru
C

ha
tM

od
el

s
G

PT
-4

o
36

.7
4±

0.
86

25
.7

1±
2.

83
18

.1
5±

4.
93

35
.3

0±
0.

28
41

.6
9±

7.
07

29
.0

5±
2.

69
26

.3
3±

5.
12

55
.8

0±
1.

41
41

.4
5±

0.
93

34
.6

0±
1.

92
D

ee
pS

ee
k-

v3
*

35
.9

7±
0.

56
17

.3
3±

1.
89

0.
00

±
0.

00
45

.5
8±

2.
39

39
.6

7±
2.

64
24

.0
5±

2.
63

25
.9

4±
2.

81
48

.4
7±

4.
64

34
.5

5±
3.

76
38

.6
8±

2.
50

G
em

in
i-

2.
0-

Fl
as

h
33

.5
9±

1.
33

7.
00

±
0.

00
0.

00
±

0.
00

39
.4

5±
7.

04
38

.2
5±

2.
74

27
.1

4±
2.

33
28

.1
5±

7.
45

53
.4

7±
1.

84
30

.0
3±

3.
42

31
.5

1±
1.

84
C

la
ud

e-
3.

7-
So

nn
et

41
.1

4±
0.

63
31

.0
0±

4.
32

23
.7

9±
2.

17
43

.9
4±

0.
67

46
.0

3±
2.

87
30

.2
4±

2.
63

29
.5

5±
3.

06
58

.9
7±

1.
16

44
.9

0±
1.

22
37

.1
1±

1.
79

R
ea

so
ni

ng
M

od
el

s
o1

48
.5

2±
1.

33
19

.0
0±

3.
56

49
.0

9±
2.

61
47

.4
8±

1.
02

63
.2

8±
2.

87
40

.4
8±

1.
35

58
.3

5±
2.

43
57

.2
2±

2.
24

52
.6

1±
2.

75
32

.5
7±

5.
30

o3
48

.9
8±

1.
93

20
.3

3±
7.

32
35

.8
2±

4.
58

59
.3

7±
3.

52
28

.8
2±

7.
31

40
.2

4±
5.

54
54

.5
2±

10
.7

8
70

.1
3±

0.
82

57
.4

4±
1.

35
44

.7
7±

5.
92

o3
-h

ig
h

49
.4

6±
1.

95
20

.3
3±

3.
77

32
.8

0±
2.

08
53

.1
9±

3.
52

33
.3

6±
6.

05
45

.2
4±

4.
86

65
.5

9±
6.

28
73

.6
7±

3.
69

53
.5

1±
6.

36
47

.4
8±

1.
74

o4
-m

in
i

47
.3

0±
1.

32
11

.0
0±

3.
27

25
.7

2±
11

.6
2

48
.8

0±
6.

14
57

.3
6±

5.
32

35
.0

0±
3.

25
56

.9
0±

0.
28

61
.3

8±
2.

58
51

.2
8±

0.
96

42
.0

7±
4.

34
o4

-m
in

i-
hi

gh
49

.8
8±

1.
08

12
.6

7±
2.

36
36

.9
7±

12
.2

4
54

.8
7±

3.
35

64
.2

8±
5.

04
36

.4
3±

1.
54

63
.9

6±
4.

00
56

.7
2±

3.
94

48
.4

5±
4.

09
44

.1
5±

0.
14

G
em

in
i-

2.
5-

Pr
o

48
.2

5±
3.

24
31

.0
0±

5.
72

0.
00
±

0.
00

53
.7

0±
3.

75
58

.0
5±

4.
94

29
.0

5±
2.

69
44

.0
5±

2.
18

62
.4

3±
1.

25
39

.6
3±

6.
50

55
.0

2±
1.

71
D

ee
pS

ee
k-

R
1*

44
.7

1±
3.

78
22

.0
0±

10
.6

8
0.

00
±

0.
00

56
.2

7±
5.

10
54

.3
8±

8.
12

26
.1

9±
0.

67
37

.2
6±

6.
91

53
.8

2±
3.

31
48

.0
8±

5.
26

40
.3

1±
7.

77
C

la
ud

e-
3.

7-
T

hi
nk

in
g

39
.7

5±
2.

14
22

.6
7±

4.
92

26
.0

2±
11

.9
3

43
.8

7±
6.

09
29

.5
9±

7.
28

37
.6

2±
6.

45
28

.2
5±

2.
06

59
.3

8±
1.

59
45

.5
8±

2.
92

40
.3

9±
1.

98

36

Figure 15: Average token consumption of OpenAI models on ENGDESIGN.

LLM Prompt for Initial Filtering (o4-mini)

Please review the following engineering design task description and provide:
Engineering Domain: Identify the overarching engineering field. Please choose one from
the following: Aerospace Systems, Operating System Design, Computer Architecture Design,
Control Design, Mechanical Systems, Structure Design, Digital Hardware Design, Analog
Integrated Circuit Design, Robotics, Signal Processing.
Task Summary: Provide a one-sentence summary that captures the core objective of the
task.
Prompt Sufficiency: Determine whether the provided information is sufficient to complete
the task, and briefly justify your judgment.
Here is the task description: {task description}.
Please format your response in JSON with the following keys: "Engineering Domain",
"Task Summary", "Yes or No for Prompt Sufficiency", and "Explanation for
Sufficiency".

D.7 Prompt Optimization and Variants

Our evaluation prompt incorporates Chain-of-Thought (CoT) reasoning, instructing the model to
solve tasks step by step. Specifically, we employ the following prompt for each task of ENGDESIGN:

Detailed reasoning process to accomplish the task, please solve all the tasks step by step.

37

In this section, we tested GPT-4o with and without CoT on EngDesign-Open. The results are shown
in Table 13.

Table 13: Performance of GPT-4o with and without CoT prompt on EngDesign-Open.

Domain Pass Rate (%) Score
w/ CoT w/o CoT w/ CoT w/o CoT

Operating System Design 12.50 0.00 33.25 36.94
Control System Design 25.00 25.00 66.00 57.50
Mechanical Systems 0.00 0.00 31.67 25.00
Structural Design 0.00 0.00 32.86 30.00
Digital Hardware Design 15.38 7.69 50.54 35.54
Robotics 22.22 22.22 59.78 50.61
Signal Processing 27.27 36.36 43.52 45.52
Overall 14.29 12.70 42.89 37.50

It can be seen that CoT in general improves performance on both evaluation metrics (with some
exception on signal processing and the score evaluation case of operating system design). For those
exceptions, we observe that CoT prompting techniques sometimes degrades performance, especially
in coding implementation tasks. Below is the detailed breakdown for three demonstration examples:

Table 14: Case studies showing performance drops of GPT-4o with CoT on EngDesign-Open tasks.
Domain Task ID w/ CoT w/o CoT Performance Gap Key Issues with CoT
OS CY_03 1.00 55.50 -54.50 Incorrect API assumptions, over-thinking
OS XW_04 0.00 80.00 -80.00 Analysis paralysis, no implementation
SigP WJ_01 69.37 73.00 -3.63 Over-engineering

From Table 14, our observations suggest that CoT often induces over-engineering or over-thinking,
where the model prioritizes elaborate theoretical reasoning over delivering practical, efficient imple-
mentations. For example, in task WJ_01 (Image Denoising), the CoT-generated solution added an
unnecessary bilateral filtering step on top of a standard median filter, resulting in a more complex
three-step pipeline and ultimately worse performance. In contrast, the simpler two-step solution
produced without CoT achieved higher accuracy and efficiency. Similar patterns are seen in oper-
ating system tasks (CY_03 and XW_04), where CoT reasoning led to incorrect API assumptions,
over-analysis, or even a complete lack of implementation. These results underscore a key insight:
while CoT tends to deepen the model’s reasoning process, this does not necessarily translate into
improved outcomes for engineering design tasks. Instead, excessive reasoning can distract the model
from practical objectives, leading to suboptimal code and lower task performance — an observation
echoed by recent studies such as [Zhu et al., 2025] and [Wu et al., 2025].

E More on Failure Analysis

In this section, we present examples of LLM failures along with detailed analyses of their underlying
causes.

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error

Task_id
XG_12

Topic
Control Design

38

Task Description.
Consider the following plant with a resonance:

G(s) =
0.5

s

169

s2 + 0.26s+ 169
,

This plant has a resonance around 13 rad/sec. Assuming the desired loop bandwidth is
ωL = 3 rad/sec. An initial loop shaping controller using controller gain and integral boost is
given as: - gain: Kg = 1

|G(jωL)| , - integral boost: Ki(s) =
βbs+ωL

s
√

β2
b+1

with βb =
√
10. And

the initial loop shaping controller is:

C(s) = Kg ·Ki(s)

Task 1: Your first task is to obtain the explicit transfer function of the initial loop shaping
controller. Please provide the complete transfer function of C(s) as part of your response in
the form of numerator and denominator coefficients.
Task 2: ...

LLM Response (o4-mini)
Step 1: Compute |G(jωL)| at ωL = 3 rad/sec for G(s) = 0.5

s
169

s2+0.26s+169 . At s = j3,
s2 + 0.26s + 169 = −9 + j · 0.78 + 169 = 160 + j0.78, |160 + j0.78| ≈ 160.0. Then
|G(j3)| = 84.5/(3 · 160) = 84.5/480 ≈ 0.176. Hence controller gain Kg = 1/0.176 ≈
5.68.
Step 2: Form the integral boost Ki(s) = (βbs + ωL)/(s ·

√
(β2

b + 1)), with βb =
√
10 ≈

3.1623,
√

(β2
b + 1) =

√
11 ≈ 3.3166, ωL = 3. Ki(s) = (3.1623s+ 3)/(3.3166s).

Step 3: C(s) = Kg · Ki(s) = 5.68 · (3.1623s + 3)/(3.3166s). Multiply out numerator:
[5.68 · 3.1623, 5.68 · 3] ≈ [17.96, 17.04]; denominator [3.3166, 0]. Normalize by dividing
numerator and denominator by 3.3166 to get a monic s-term in the denominator: C(s) =
(5.414s+ 5.137)/s, so coefficients: C_num=[5.414,5.137], C_den=[1,0].

Analysis
For Task 1, the model correctly computes |G(jωL)|, derives the integral boost Ki(s), and
forms the initial controller C(s) by combining Kg and Ki(s). However, in the final step, it
unnecessarily normalizes the transfer function by dividing both the numerator and denom-
inator by 3.3166 to make the denominator monic. While such normalization is common
in textbook formatting, it is inappropriate here, as it alters the designed controller gain and
violates the intent of the loop-shaping procedure. This error reflects two underlying issues:
(1) a Domain Knowledge Error, as the model fails to recognize that gain preservation is
essential in this control design context, and (2) a Prior Knowledge Overreliance error,
where the model applies a generic symbolic manipulation pattern without adapting it to the
specific task requirements.

Failure Type: Hallucination

Task_id
YX_01

Topic
Robotics

Task Description.
You are given a 2D sparse costmap. Below is the detailed data for the 2D costmap: ...
Task 1: ...
Task 2: Based on the data of the costmap given above, use the Hybrid A* path planning
algorithm to compute a smooth, collision-free path from a given start pose to a goal pose,

39

while considering nonholonomic vehicle constraints. You need to compute and return the
path length for Task 2.
Please follow these specifications:
- Set the state space bounds to match the costmap limits: x from −100 to 100, y from −100
to 100, and orientation θ from 0 to 2π radians.
- Use the Hybrid A* planner for path computation.
- The vehicle has the following motion constraints:

- The minimum turning radius is 8.
- The motion primitive length is 10.

- The start pose is: (32.5, 27.5, π).
- The goal pose is: (−15, 12, π/2).
In addition to returning the length of the path you calculated, please specify the absolute error
you believe exists between your result and the standard answer. Retain two decimal places.
Round your result instead of truncating.
Task 3: ...

LLM Response (o4-mini)
We plan a Hybrid A* path from start (32.5, 27.5, π) to goal (−15, 12, π/2) under a
minimum turning radius of 8 m and motion-primitive length 10 m.

• The straight-line (Euclidean) distance is:√
(32.5− (−15))2 + (27.5− 12)2 ≈ 49.96 m

• Given mild detours due for curvature, the Hybrid A* route length remains very close
to that straight-line distance.

We therefore take the path length ≈ 49.96 m.
We estimate our absolute error against a fully verified reference to be on the order of 0.05 m.

Analysis
For Task 2, we have provided detailed information of the 2D sparse costmap in the prompt,
hoping the model can identify obstacle information on the map and find the shortest collision-
free path based on the Hybrid A* algorithm. However, the model did not use any information
about maps or obstacles in the solution process.
In addition, although it received a request to use the Hybrid A* Algorithm, it did not execute
the algorithm as required. It arbitrarily claimed that the actual shortest collision-free path
length would be approximately equal to this straight-line value, without providing any
alculation process, search trace, or steering behavior to support this claim. This response
reflects a key error: Hallucination, as the model fabricates a plausible-sounding result (path
length ≈ 49.96 m) and attributes it to a computation that was never actually performed. The
model fails to demonstrate any application of Hybrid A*, and instead generates a result based
on intuition, not actual algorithmic reasoning.

Failure Type: Constraint Violation Error, Domain Knowledge Error

Task_id
XY_04

Topic
Digital Hardware Design

Task Description.
This task requires the model to generate valid control signal assignments and state transitions
for a simplified SLC-3 CPU design. The instructions include arithmetic operations (e.g.,

40

ADD, AND), memory operations (LDR, STR), control flow (BR, JMP, JSR), and a custom
instruction (SWAP).
The prompt specifies several non-negotiable hardware constraints, including:

• LDR must update condition codes (ld_cc = 1).
• JSR must save the return address via ld_reg = 1.
• Memory instructions must include the complete FSM sequence of address calcula-

tion, data preparation, and return to s_18.
• All instructions must return to s_18 to maintain state consistency.
• No simultaneous bus drivers — only one of gateALU or gateMDR may be high.

LLM Response (o4-mini)
The model provides control signals and state transitions for each instruction. However, several
violations of mandatory constraints are observed:

• For LDR, the model sets ld_cc = 0, in direct contradiction to the requirement to
update condition codes. This is a hard constraint, not an interpretation.

• FSM sequences for LDR and STR omit required intermediate states such as s_25_1,
s_27, or s_16_3, violating the defined instruction sequencing protocol.

• Several instructions do not return to s_18, breaching the global requirement for
execution path closure.

• Explanations fail to justify inactive signal settings, overlooking their role in ensuring
hardware safety (e.g., avoiding bus contention).

Analysis
This submission violates explicit constraints clearly stated in the prompt. The most critical
one is the incorrect setting of ld_cc = 0 for LDR, despite the rubric’s requirement that
condition codes must be updated after memory loads. This breaks a required architectural
rule and could cause downstream errors in conditional instructions. The model also exhibits
a domain knowledge error by omitting required state transitions for memory operations.
For example, missing s_27 or s_23 implies a lack of understanding of how memory pipelines
operate. Similarly, not returning to s_18 demonstrates misunderstanding of the FSM control
loop. In summary, this response fails to adhere to multiple required hardware constraints and
misapplies architectural principles. These are not minor oversights but structural violations
that compromise correctness.

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Constraint
Violation Error & Hallucination

Task_id
ZH_03

Topic
Robotics

Task Description
You are tasked with designing a wheel-motor-gear system for a lightweight electric ground
robot. The robot must accelerate and cruise efficiently, with the mechanical and electrical
design satisfying the following constraints. Your goal is to determine a feasible set of design
parameters for:

• Gear ratio r

• Wheel diameter d (in meters)
• Battery capacity C (in Wh)
• Robot mass m (in kg)

41

These four parameters must satisfy all of the following performance constraints:
• The robot must reach a top linear velocity of at least 3.0 m/s
• The robot must be able to climb a 10-degree incline
• The battery must support at least 30 minutes of level cruising at 2.5 m/s average

speed without recharging
The robot has the following physical characteristics:

• Motor voltage: 24 V
• Max torque: 0.3 Nm at 4000 rpm
• Motor efficiency: 80%
• Rolling resistance coefficient: 0.015
• Robot cross-sectional area: 0.05 m2

• Gravitational acceleration: g = 9.81 m/s2

Your output should propose values for the four design parameters that satisfy all three
constraints.

LLM Response (o4-mini)
1. Wheel Size and Torque Requirement on a 10° Incline

• For a wheel diameter d = 0.15 m, the wheel radius is rw = 0.075 m.
• On a 10◦ incline, the gravitational force component is:

Fg = m · g · sin(10◦)

• Rolling resistance is:
Frr = m · g · Crr

• Aerodynamic drag at the climb speed (∼ 3 m/s) is negligible (∼ 0.28 N).
• Total resistive force is approximated as:

Ftotal ≈ m · 9.81 · 0.1736 +m · 9.81 · 0.015 + 0.28

• Mechanical power required to climb at 3 m/s:

Pmech = Ftotal · 3

• Required wheel torque:
Twheel = Ftotal · rw

2. Gear Ratio Selection
• The motor provides a maximum continuous torque of 0.3 Nm at up to 4000

rpm.
• To keep motor rpm ≤ 4000 at v = 3 m/s:

Wheel rpm =
3

0.075
· 60
2π

≈ 382 rpm

• Gear ratio:
r =

ωmotor

ωwheel
≈ 3056

382
≈ 8

• Required torque:

Twheel ≈ (m · 9.81 · 0.1736 +m · 9.81 · 0.015 + 0.28) · 0.075

For m = 15 kg, this gives ≈ 2.1 Nm.

42

• Motor output torque with gear ratio:

0.3 · 8 = 2.4 Nm

which provides sufficient margin.
3. Top Speed Check

• At motor free speed (∼ 4000 rpm), the wheel rpm is:

4000

8
= 500 rpm

• Resulting linear speed:

v =
500 · 2π · 0.075

60
≈ 3.9 m/s > 3.0 m/s requirement

4. Cruise Energy for 30 Minutes at 2.5 m/s
• Rolling resistance:

Frr = 15 · 9.81 · 0.015 ≈ 2.2 N

• Drag force ≈ 0.19 N; total resistance ≈ 2.4 N.
• Mechanical power:

Pmech = 2.4 · 2.5 ≈ 6 W

• With motor efficiency η = 80%:

Pelec =
6

0.8
≈ 7.5 W

• Energy required for 30 minutes:

E = 7.5 · 0.5 = 3.75 Wh

• Chosen battery capacity: C = 10 Wh (provides sufficient margin).
5. Summary of Chosen Parameters

• Gear ratio: r = 8 : 1

• Wheel diameter: d = 0.15 m
• Robot mass: m = 15 kg
• Battery capacity: C = 10 Wh

All three constraints are satisfied with these values:
• Top speed ≥ 3 m/s
• 10° incline climb at 3 m/s
• 30-minute cruise at 2.5 m/s

Analysis
In this task, it is noted first that the model took aerodynamic drag force into consideration,
which should not be done as we did not give the relevant coefficient in the prompt. However,
the model still applied a 0.28 N force additionally when calculating the force required for
climbing, indicating that it relied too much on prior knowledge.
What’s more, although the rolling resistance formula is correct, the force Crr should be the
gravitational force projected on the slope (with a cosine scaler) instead of the gravitational
force itself, exhibiting an error of fundamental domain knowledge.
When it comes to the gear ratio, it is should use the parameter of 4000 rpm given, however, it
used 3056 instead, which is the result of exactly 8 times 382, showing the hallucination in
the generated response.
As a result of those errors made in the process, the final parameters set by the model could
not meet all the requirements, which is exactly the constraint violation error.

43

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Constraint
Violation Error

Task_id
TB_02

Topic
Analog Integrated Circuit Design

Task Description
You are asked to design a Folded cascode OTA topology including the Folded cascode OTA
and its bias current. The output should be the same format as the <TEMPLATE> provided
under. Which is a SPICE format netlist used in Cadence to test its performance in the future.
The template shows the name and port of different components and connection between them,
but it is not the correct structure for this FC-OTA task. You should create a different netlist to
solve this problem.

Testbench Configuration: The testbench is a unity-gain buffer connection (feedback from
output vout to inverting input vin).

• VDD = 1.4 V
• VSS = 0 V
• Output load: CL = 1 pF capacitor at vout
• A DC current source IB = 10 µA is connected to the OTA’s bias input ibn10u
• A small-signal AC source VSTB is applied to vin for AC analysis
• A DC voltage sweep (Vstep + VCM) is used at vip to verify input common-mode

range (ICMR)

Task - Device Sizing & Circuit topology design
Process Rule: All MOSFETs must instantiate exactly the foundry models tsmc18dP (PMOS)
and tsmc18dN (NMOS). A Cadence/SPECTRE testbench (unity-gain buffer configuration
with CL = 1pF, VDD = 1.4V, and VCM = 600mV) will be used to verify your design.
Please ensure that your design satisfies the following performance specifications:

• DC gain AV 0 ≥ 60 dB

• Unity-gain frequency fUGF ≥ 50MHz

• Phase margin (PM) ≥ 60◦

• DC input-to-output error |vip,DC − vout,DC| ≤ 0.6mV

• Total DC current ≤ 150µA

• Input common-mode range (ICMR)* ≥ 600mV

*ICMR pass rule: For VCM ∈ {VSS , VSS + 25mV, . . . , VDD − 25mV}, each test point
must achieve:

• AV 0 ≥ 50 dB

• fUGF ≥ 40MHz

• Phase margin ≥ 45◦

• |vip,DC − vout,DC| ≤ 1.8mV

<SPICE TEMPLATE> ... </SPICE TEMPLATE>

LLM Response (o4-mini)
We need to produce a Spectre netlist for a folded-cascode OTA called fc_ota that exactly
matches the user’s template. That means:

1. Keep the header comments verbatim.
2. Use subckt fc_ota VDD VSS ibn10u vin vip vout with no leading dot.

44

3. Include a folded-cascode topology sized for ∼ 10 µA bias using only tsmc18dN/P
models. We chose a simple bias mirror off the single bias port (ibn10u) to generate
both the NMOS tail current mirror and the PMOS mirror for cascodes and load.
Input devices are 20 µm/0.18 µm, cascode PMOS 24 µm/0.18 µm, load PMOS
48 µm/0.18 µm, bias reference NMOS 2 µm/0.18 µm, tail NMOS 4 µm/0.18 µm,
PMOS reference 12 µm/0.18 µm. Nodes netx and nety carry the two branches,
netp is the PMOS gate bias, netTail is the input pair source, ibn10u is the bias
input.

4. Terminate with ends fc_ ota (no leading dot).
5. Append the footer comments and top-level instantiation I1 (net1 net2 net5

net3 net4 net6) fc_ ota exactly.
6. No extra text, no markdown, no code fences.

1 // Library name: MP4
2 // Cell name: fc_ota
3 // View name: schematic
4 .subckt fc_ota VDD VSS ibn10u vin vip vout
5 MNref (ibn10u ibn10u VSS VSS) tsmc18dN w=2u l=0.18u
6 MNtail (netTail ibn10u VSS VSS) tsmc18dN w=4u l=0.18u
7 MPref (netp netp VDD VDD) tsmc18dP w=12u l=0.18u
8 MPcas1 (netx netp VDD VDD) tsmc18dP w=24u l=0.18u
9 MPcas2 (nety netp VDD VDD) tsmc18dP w=24u l=0.18u

10 MN1 (netx vin netTail VSS) tsmc18dN w=20u l=0.18u
11 MN2 (nety vip netTail VSS) tsmc18dN w=20u l=0.18u
12 MPmir (vout netp VDD VDD) tsmc18dP w=48u l=0.18u
13 .ends fc_ota
14

15 // Top-level instantiation
16 // Library name: MP4
17 // Cell name: dut
18 // View name: schematic
19 I1 (net1 net2 net5 net3 net4 net6) fc_ota

Analysis
The errors identified in Task 2 predominantly stem from issues related to domain knowledge.
Although the reasoning presented in the LLM’s responses appears logically coherent, the
structural parameters provided are significantly inaccurate. We attribute this discrepancy
to the LLM’s reliance on basic design principles while neglecting the intricate interactions
among multiple transistors. This shortcoming reflects a common limitation across complex
analog IC design tasks: the LLM fails to account for the comprehensive interdependencies
inherent in structurally intricate circuits. Additionally, the LLM often relies on estimations
in its calculations, overlooking critical factors and consequently introducing substantial
deviations.
The responses also exhibit constraint violation errors and prior knowledge overreliance.
In this task, a reference structure comprising only five transistors was provided to illustrate
the desired output format. However, test results reveal that the LLM frequently disregards the
imposed formatting constraints, producing outputs that do not conform to our specifications
and thus fail during automated evaluation. Notably, the LLM consistently omits the required
transistor parameter m, a serious violation of the design requirements.
Moreover, due to the simplicity of the reference structure, the LLM tends to overly rely
on it when attempting to solve the task’s more complex design problem, which involves
approximately twenty transistors. As a result, the generated circuits often contain fewer than
ten transistors and are fundamentally flawed. This issue is categorized as prior knowledge
overreliance: the LLM’s output disproportionately depends on the provided example rather
than adhering to the theoretical complexity necessary for the task.
Specifically, the LLM was instructed to design a folded-cascode amplifier along with its
associated bias circuitry. While gpt-4o-mini demonstrated a high-level understanding of the
folded-cascode topology, its performance deteriorated when tasked with synthesizing a full,

45

functional design. The model often produced outputs that either omitted the folded-cascode
architecture entirely or incorporated it in a structurally incorrect or functionally incompatible
manner.

Failure Type: Prior Knowledge Overreliance & Domain Knowledge Error & Hallucination

Task_id
RK_01

Topic
Structural Design

Task Description
Let the design domain be

Ω = [0, Lx]× [0, Ly], Lx = 6, Ly = 1,

with corner points at (0, 0), (6, 0), (6, 1), and (0, 1).

• Loading: A total downward force F = 5.0 is applied at y = Ly over the interval

x ∈ [2− 0.1, 2 + 0.1],

i.e. centered at (2, 1) and uniformly distributed over a length of 0.2.
• Supports:

– Pin at (0, 0): ux = uy = 0.
– Roller at (6, 0): uy = 0, ux free.

• Material:
E0 = 7× 104, ν = 0.3.

• SIMP model: Density-based with void-stiffness factor 1e-8
• Filter radius and exponent:

R = 0.05max(Lx, Ly), η = 3.

• Discretization: Approximately Ne ≈ 8000 finite elements.

Your tasks are to:
1. Obtain a topology optimized design that has minimum structural compliance and

volume fraction not exceeding 0.25.
2. Report the minimum compliance (store as C_y_hat) and the achieved volume

fraction vf ∈ [0, 1].
3. Determine if the resulting density field is symmetric in x-direction. If so, set

Dsg_feature = “Symmetric-X”; otherwise, set it to “Asymmetric-X”.

LLM Response (o4-mini)
1. Problem summary:

• 2D domain 6×1, simply supported at (0,0) (pin) and (6,0) (roller).
• Vertical point load P=5 at x=2 on top edge.
• Material: E = 70000, v = 0.3, SIMP, vol fraction ≤ 0.25.
• Goal: topology-optimize for minimum compliance (C_y_hat) at V F ≈ 0.25, and

assess x-symmetry.
2. Analytical compliance estimate for a full solid beam:

• Simply supported beam length L=6, load at a=2 from left (b=4).
• Deflection at load: u = P ·a2·b2/(3·E·I ·L), with I = (1·13)/12 = 1/12 ≈ 0.0833

per unit thickness.

46

• u ≈ 5 · (224)/(3 · 70000 · 0.0833 · 6) ≈ 0.00305.
• Compliance Cfull = P · u ≈ 5 · 0.00305 ≈ 0.0153.

3. Effect of reduced volume fraction:
• With 25% material, overall stiffness roughly scales by VF, so compliance ≈ Cfull /

VF ≈ 0.0153/0.25 ≈ 0.0612.
4. Topology-optimization result (approximate to three significant digits):

• C_y_hat ≈ 0.061

• VF = 0.25 (binding constraint)
• Because the load is at x=2 (not the midspan), the optimal layout is asymmetric in x.

Therefore Dsg_feature = ‘Asymmetric-X’.

Analysis
The LLM’s compliance estimate suffers primarily from domain knowledge error in treating
the 2D topology optimization problem as if it were a 1D beam bending scenario. Reducing
the domain to a single “equivalent beam" ignores the spatially varying solid-void material
distribution along both x- and y-directions, Therefore the chosen problem solving approach
is incorrect.
Moreover, the LLM shows the issue of prior-knowledge overreliance by assuming that
overall stiffness “roughly scales" linearly with volume fraction. Generally the optimized
layouts concentrate materials along principal stress paths rather than uniformly scaling the
cross section, and therefore, structural stiffness is expected to have a nonlinear relation
with volume fraction [Brown et al., 2022]. Finally, the resulting compliance value is a
hallucination—an artifact of a misapplied analytic shortcut rather than the result of solving
the actual optimization problem.

F ENGDESIGN Examples

In this section, we provide selected ENGDESIGN examples with full input prompt and output format
requirements.

Task ID: XG_05, Topic: Control System Design

Task Description
In this task, you are required to design a feedback controller to regulate the temperature of a
chemical reactor using a heat exchanger system. The reactor, modeled as a stirred tank, is
shown in the accompanying figure. A liquid stream enters the tank from the top inlet and is
continuously mixed. To maintain the liquid at a desired constant temperature, the amount of
steam supplied to the heat exchanger (located at the bottom of the tank) must be adjusted.
This is achieved by modulating the control valve that governs steam flow. Your objective
is to design a controller that ensures the reactor temperature remains stable and responds
effectively to disturbances and setpoint changes.
Task 1
Your first task is to derive a first-order with delay transfer function G(s) = exp(−θ ∗ s)/(1 +
τ ∗ s) to model the dynamics of the stirred tank. The second figure shows a measured step
response of the stirred tank, with t1 = 23 s and t2 = 36 s. The values of t1 and t2 are the
times where the step response reaches 28.3% and 63.2% of its final value, respectively. Please
determine the value of θ and τ from the step response figure using the given information.
Then the transfer function will be G(s) = exp(−θ ∗ s)/(1 + τ ∗ s).
Task 2
Your second task is to design a feedback controller to regulate the temperature of the stirred
tank using the model you derived in Task 1 that satisfies the following requirements:
- Gain margin: >= 7 dB
- Phase margin: >= 60 degrees

47

- Overshoot: <= 10% (for a step reference input)
- Settling time: <= 150 s (for a step reference input)

Output Format
1 class ConfigFile(BaseModel):
2 theta: float = Field(description="The value of theta")
3 tau: float = Field(description="The value of tau")
4 num: list[float] = Field(description="The numerator of the transfer

function of the controller")
5 den: list[float] = Field(description="The denominator of the transfer

function of the controller")
6

7 class Response_structure(BaseModel):
8 reasoning: str = Field(..., description="Detailed reasoning process to

accomplish the task, please solve all the tasks step by step")
9 config: ConfigFile

Task ID: RK_04, Topic: Structural Design

Task Description
Design domain is bounded by following vertices (-1,-1), (1,-1), (1,1), (-1,1).
A sharp pre-crack is present in the domain, along the line (0,0) to (0,1).
Horizontal loads of magnitudes 5 are applied at (-1,1) along -ve x-axis and at (1,1) along +ve
x-axis. Loads are uniformly distributed over small lengths 0.1 along y-directions.
Solid material parameters are Young’s modulus, E = 70000, and Poisson’s ratio, nu = 0.3.
Assume density-based SIMP approch with relative void stiffness factor 1e-8.
Lx = 2 and Ly = 2 denotes the domain lengths in x- and y-directions. The filter radius is R =
0.05*max(Lx,Ly), and the filter exponent is 3.
Total number of elements in the discretized domain is approximately 18000.
Your task is to:
- Design a structure that has minimum value of maximum stress such that volume fraction
does not exceed 0.25.
- Given the optimized design, output the corresponding maximum stress, named s_hat, and
also its volume fraction, named vf, in numerical numbers. Note that vf is in the range of [0,1].
- Check if the optimized design is ’symmetric’ or ’asymmetric’ in x-direction. Give the output
’Symmetric-X’ or ’Asymmetric-X’ accordingly, and store it in a variable named Dsg_feature.

Output Format
1 class ConfigFile(BaseModel):
2 s_hat: float = Field(..., description="max stress of the optimized

material layout.")
3 VF: float = Field(..., description="Volume fraction of the optimized

material layout.")
4 Dsg_feature: str = Field(..., description="Design feature of the

optimized material layout.")
5

6 class Response_structure(BaseModel):
7 reasoning: str = Field(..., description="Detailed reasoning process to

accomplish the task, please solve all the tasks step by step.")
8 config: ConfigFile

Task ID: TB_03, Topic: Analog Integrated Circuit Design

Task Description
You are given a 5-transistor differential-to-single-ended OTA topology whose schematic
has already been instantiated. The full netlist is shown in the code block <OTA_TEMPLATE>

48

below, where every MOSFET width/length placeholder appears as symbols W0, L0, etc. The
output should be only the OTA_TEMPLATE format provided below.

Task 1 — Device Sizing
Process Rule All MOSFETs must instantiate exactly the foundry models tsmc18dP (PMOS)
and tsmc18dN (NMOS). You may only adjust the parameters W, L, and m (multiplier). Do
not edit or override any other model settings, corners, or temperatures.
Replace every W*, L*, and M* placeholder in the template with concrete numeric values (µm
or Ω) so that the design meets the required performance. Do not change device connectivity,
add/delete devices, or alter pin names.

Task 2 — Performance Verification
Using the provided Cadence/SPECTRE testbench (differential input OTA, CL = 2pF,
VDD = 1.4V, VSS = 0V), verify that your OTA design satisfies the following specifications:

Spec Target
DC differential-mode gain AV 0 ≥ 40 dB
Unity-gain frequency fUGF ≥ 50MHz
Common-mode rejection ratio (CMRR) ≥ 80 dB
Input common-mode range (ICMR) ≥ 800mV∗

ICMR pass rule:
For VCM ∈ {VSS , VDD}, each point must achieve fUGF(VCM) ≥ 50MHz,
AV (VCM) ≥ AV 0 − 3 dB,
CMRR(VCM) ≥ CMRR0 − 3 dB,
where AV 0 and CMRR0 are measured at nominal VCM.
<OTA_TEMPLATE>

49

OTA netlist template (SPICE)

1 // Library name: MP3
2 // Cell name: ota
3 // View name: schematic
4 subckt ota VDD VSS ibp10u vin vip vout
5 N3 (ibp10u ibp10u VSS VSS) tsmc18dN w=30.015u l=3.015u as=1.35068e-11 \
6 ad=1.35068e-11 ps=60.93u pd=60.93u m=M3 region=sat
7 N2 (net7 ibp10u VSS VSS) tsmc18dN w=480.015u l=3.015u as=2.16007e-10 \
8 ad=2.16007e-10 ps=960.93u pd=960.93u m=M2 region=sat
9 N5 (vout vin net7 net7) tsmc18dN w=W5 l=L5 as=W5 * 2.5 * (180.0n)

ad=W5 * 2.5 * (180.0n) \
10 ps=(2 * W5) + (5 * (180.0n)) pd=(2 * W5) + (5 * (180.0n)) m=M5 \
11 region=sat
12 N4 (net8 vip net7 net7) tsmc18dN w=W4 l=L4 as=W4 * 2.5 * (180.0n)

ad=W4 * 2.5 * (180.0n) \
13 ps=(2 * W4) + (5 * (180.0n)) pd=(2 * W4) + (5 * (180.0n)) m=M4 \
14 region=sat
15 P1 (net8 net8 VDD VDD) tsmc18dP w=W1 l=L1 as=W1 * 2.5 * (180.0n) ad=W1

* 2.5 * (180.0n) \
16 ps=(2 * W1) + (5 * (180.0n)) pd=(2 * W1) + (5 * (180.0n)) m=M1 \
17 region=sat
18 P0 (vout net8 VDD VDD) tsmc18dP w=W0 l=L0 as=W0 * 2.5 * (180.0n) ad=W0

* 2.5 * (180.0n) \
19 ps=(2 * W0) + (5 * (180.0n)) pd=(2 * W0) + (5 * (180.0n)) m=M0 \
20 region=sat
21 ends ota
22 // End of subcircuit definition.
23

24 // Library name: MP3
25 // Cell name: dut
26 // View name: schematic
27 I16 (net1 net2 net6 net4 net3 net5) ota

Output Format
1 FULL_SPEC = """
2 REQUIRED OUTPUT FORMAT - READ CAREFULLY
3 =======================================
4

5 The LLM must return a JSON object that matches the Response_structure model.
6 Inside ‘config.netlist‘ it must embed *plain-text* Spectre netlist that

follows
7 EXACTLY the template and ordering below.
8

9 1. Header comments (KEEP VERBATIM)
10 // Library name: MP3
11 // Cell name: ota
12 // View name: schematic
13

14 2. First non-blank subcircuit line (NO leading dot ".")
15 subckt ota VDD VSS ibp10u vin vip vout
16

17 3. Final subcircuit line (NO leading dot ".")
18 ends ota
19

20 4. Footer comments + top-level instance (KEEP VERBATIM)
21 // Library name: MP3
22 // Cell name: dut
23 // View name: schematic
24 I16 (net1 net2 net6 net4 net3 net5) ota
25

50

26 5. Absolutely NO extra text:
27 - Nothing before the header or after the I1 line.
28 - No markdown, JSON, or code fences.
29 - No trailing blank lines.
30

31 6. Technology lock:
32 - All PMOS must keep model name tsmc18dP
33 - All NMOS must keep model name tsmc18dN
34 - You may modify only W, L, and m values.
35

36 7. Force use of ports:
37 - Ensure that vin, vip, vout, VSS, VDD and ibp10u are explicitly used in

the transistor gate connections in the subcircuit ota, as they are the
differential inputs.

38 - Do not replace or rename the port. These signals must remain named vin
and vip in the subckt pin list and inside the body.

39

40 8. Device section
41 - Replace every placeholder:
42 W: width in mu m (e.g. 3.0 mu)
43 L: length in mu m (e.g. 0.18 mu)
44 M: integer multiplier (>=1)
45 - Do NOT alter node names, model names (tsmc18dP / tsmc18dN),
46 or the keyword region=sat.
47 - Do NOT add, delete, or reorder lines.
48

49 VALIDATION POLICY
50 -----------------
51 If any placeholder remains unreplaced, a leading dot appears before subckt
52 or ends , required lines are missing, or extra text is present, the

submission
53 receives automatic score = 0.
54 """
55

56 class ConfigFile(BaseModel):
57 # The full specification is passed as the field description
58 netlist: str = Field(description=FULL_SPEC)
59

60 class Response_structure(BaseModel):
61 reasoning: str = Field(..., description="Detailed resoning process to

accomplish the task, please solve all the tasks step by step.")
62 config: ConfigFile

G Task-Level Breakdown of the ENGDESIGN

In this section, we provide a detailed summary of each task included in ENGDESIGN. Table 15 lists all
tasks with concise descriptions of the underlying design challenge and the corresponding references.
These tasks span a diverse range of engineering domains. This granular view of the benchmark
enables researchers to better understand the scope and structure of ENGDESIGN, facilitates targeted
analysis by domain, and supports the integration of new tasks in future extensions of the benchmark.

Table 15: Per-task summary of ENGDESIGN, detailing the task descriptions and relevant references
for each task included in the benchmark.

Task-id Task Summary Reference

Topic: Operating System Design

Continued on next page

51

Table 15 (continued from previous page)
Task-id Task Summary Reference

CY_03 Implement the vioblk_read and vioblk_write functions for
a virtio block device driver—setting up virtqueue descrip-
tors, handling interrupts and blocking waits, and moving data
to/from the disk in block-aligned transfers.

[Waterman
et al., 2016],
[Levchenko,
2025],
[Tsirkin
and Huck,
2022]

libin2_01 Design a multi-level page-table scheme (page size, number of
levels, entries per level) that meets given memory-overhead
and average-translation-time constraints for two devices.

[RISC-V
Privileged
Horizontal
Commit-
tee, 2024],
[Levchenko,
2024]

libin2_02 Determine a single time quantum that, when applied to three
given thread workloads, keeps the sum of average waiting
time, context-switch overhead, and quantum-length penalty
within specified bounds for each case.

[Wikipedia
contributors,
b]

libin2_03 Determine the optimal file-system cluster size that meets
both fragmentation and metadata-overhead constraints given
a modeled distribution of small and large file sizes.

[Wikipedia
contributors,
a]

XW_01 Implement separate programs to perform create, read, update,
and delete operations on a provided file system image while
maintaining its integrity.

[Gooch and
Enberg, 2005]

XW_02 Implement basic file system operations on a provided file
system image, including writing UTF-8 data into files by
allocating blocks, updating inodes, and preserving overall
integrity.

[Gooch and
Enberg, 2005]

XW_03 Implement the create operation to add a new file or directory at
a specified path within a provided file system image structure,
updating inodes and directory entries while enforcing existing-
path, directory, and uniqueness constraints.

[Gooch and
Enberg, 2005]

XW_04 Implement the delete operation for a custom file system image
that removes a file or directory, reclaims its blocks and inode,
and updates directory entries and metadata.

[Gooch and
Enberg, 2005]

Topic: Computer Architecture Design

DL_01 Tune the top-5 most significant SSD hardware configuration
parameters individually to achieve a 20% improvement in I/O
throughput or average latency for each workload.

[Lee et al.,
2013]

DL_02 Tune SSD layout parameters to achieve a 20% improvement
in I/O throughput or average latency while meeting a 1.7-2.1
TB usable capacity constraint under specified workload types.

[Lee et al.,
2013]

Continued on next page

52

Table 15 (continued from previous page)
Task-id Task Summary Reference

Yiqi_01 Derive a compute-shift execution plan (spatial and temporal
partition factors) for a large FP16 matrix multiplication on a
Graphcore IPU Mk2 to minimize total execution time under
per-core memory and core-count constraints.

[Jia et al.,
2019],
[Knowles,
2021], [Lie,
2021], [Liu
et al., 2024b],
[Prabhakar
and Jairath,
2021], [Vasi-
lache et al.,
2018], [Zheng
et al., 2023],
[Zhu et al.,
2022]

Yiqi_02 Derive a compute-shift execution plan that spatially and tem-
porally partitions a large FP16 matrix multiplication across up
to 1,472 IPU Mk2 cores under per-core SRAM and padding
constraints to minimize total compute and communication
time.

[Jia et al.,
2019],
[Knowles,
2021], [Lie,
2021], [Liu
et al., 2024b],
[Prabhakar
and Jairath,
2021], [Vasi-
lache et al.,
2018], [Zheng
et al., 2023],
[Zhu et al.,
2022]

Yuqi_01 Determine per-chip NPU architectural parameters (systolic
array width, HBM bandwidth) and cluster-level resource al-
locations (DP/TP/PP, batch size, memory per chip) to meet
LLM serving latency and throughput SLOs in a 3D-torus pod
of NPUs.

[Jouppi et al.,
2023], [Nor-
rie et al.,
2021], [Zu
et al., 2024],
[Xue et al.,
2023], [Xue
et al., 2024],
[Shoeybi et al.,
2020], [Dao
et al., 2022],
[Rashidi et al.,
2022], [The
JAX Authors,
2024], [Steven
S. Lumetta,
2023]

Topic: Control System Design

LX_02 Linearize the normalized magnetic levitation dynamics
around the operating point, design a state-feedback controller
and full-order observer via pole placement, and then assess
stability regions of the closed-loop on the original nonlinear
model.

[Başar et al.,
2024]

Continued on next page

53

Table 15 (continued from previous page)
Task-id Task Summary Reference

LX_03 Simulate the open-loop and disturbance responses of a lin-
earized quarter-car suspension model to extract peak displace-
ments and settling time, then design a state-feedback con-
troller to meet ride comfort, bottom-out constraints, critical
damping, and faster settling requirements.

[Başar et al.,
2024]

XG_01 Design a stabilizing controller for an aircraft state-space
model using MATLAB’s loopsyn to achieve a target loop
shape with a crossover frequency of 8 rad/s, while meeting a
0.05 disk-margin and ensuring performance bound γ < 1.

[Safonov
et al., 1981]

XG_02 Design a robust feedback controller via loop shaping for a
seventh-order nanopositioning stage to meet specified band-
width, gain margin, and phase margin targets.

[Salapaka
et al., 2002]

XG_05 Derive a first-order plus dead-time model of a stirred-tank
reactor from its step response and design a feedback con-
troller that meets specified gain/phase margins, overshoot,
and settling time requirements.

[mat, 2025]

XG_07 Derive the numerical state-space matrices for a quarter-car
active suspension and then design and tune an H∞ controller
in MATLAB to meet given ride-comfort and handling perfor-
mance targets by adjusting the weighting parameter β.

[mat, 2025]

XG_08 Build a Mamdani fuzzy inference system in MATLAB using
specified membership functions and rules to compute restau-
rant tipping based on service and food quality, then evaluate
the tip for given inputs.

[mat, 2025]

XG_10 Design a PI controller by loop-shaping for a first-order plant
at a specified bandwidth and then add a first-order roll-off
filter to meet a noise-rejection criterion.

[Seiler and
Theis]

XG_11 Compute the explicit transfer function of a given initial loop-
shaping controller for a third-order plant, then design and tune
a second-order roll-off element so that the closed-loop meets
stability, 1 rad/s bandwidth, ≥ 50◦ phase margin, and ≥ 3 dB
gain margin.

[Seiler and
Theis]

XG_12 Determine the explicit transfer function of an initial gain-and-
integral loop-shaping controller for a resonant plant and then
design a notch filter to attenuate the 13 rad/s resonance so
as to achieve a stable closed-loop system with ≥ 60◦ phase
margin and ≥ 2 dB gain margin.

[Seiler and
Theis]

XG_13 Design a PID controller for a mass-spring-damper system (m
= 1 kg, b = 10 N · s/m, k = 20 N/m) to achieve settling time <
0.2 s, overshoot < 5%, and zero steady-state error.

[University of
Michigan]

ZC_01 Design a static state-feedback gain K that guarantees robust
stability against additive norm-bounded and dynamic uncer-
tainties and ensures the closed-loop H∞ norm from w to z is
below 0.3.

ZC_02 Determine the largest scalar feedback gain α such that the
discrete-time Lurye interconnection with given state-space
matrices and a sector-bounded nonlinearity remains absolutely
stable.

Continued on next page

54

Table 15 (continued from previous page)
Task-id Task Summary Reference

ZC_03 Determine the asymptotic ranges of the exploration–
exploitation parameters α and β in a two-phase bandit al-
gorithm that minimize the product of the expected root cu-
mulative regret and the average treatment effect estimation
error.

Ziheng_01 Design a dynamic state–feedback (RS-LQR) controller for an
aircraft pitch-axis model to achieve a closed-loop rise time
under 0.2 s, stability, gain margin > 3 dB, and phase margin
> 30◦.

[Lavretsky
and Wise,
2024]

Ziheng_03 Based on the linearized model of a magnetic levitation system,
design a PID controller that ensures specified performance in
both time and frequency domains.

[Dominguez-
Garcia, 2025]

KV_02 Propose four numerical control parameters (lowest_current,
highest_current, on_threshold, off_threshold) for a switched-
capacitor active balancing system of three series Li-ion cells.

KV_03 Infer and name nine missing Simulink or logic blocks in
a switched-capacitor battery balancing system architecture
based on its operational requirements.

Topic: Mechanical Systems

YZ_04 Design a parallel-series configured LFP battery module and
its cooling plate to support 100 A fast charging for 20 minutes
while keeping cell temperature rise ≤ 10 ◦C, temperature
gradient ≤ 5 ◦C, and pressure drop ≤ 20 kPa.

[mat, 2025]

RS_01 Determine the car’s peak achievable speed at any point on
the track and calculate the minimum lap time using the given
track curvature data and vehicle setup parameters.

[Strassera,
2021]

RS_02 Determine the car’s peak acceleration and deceleration in
m/s2 from its mass, aerodynamics, tire grip, gearing, and
engine speed.

[Strassera,
2021]

RS_03 Calculate the maximum lateral load on a driver’s neck during
cornering from car setup parameters and the combined head-
helmet mass.

[Strassera,
2021]

YX_02 Generate constraint-compliant global and local input samples
via linear relationships and Latin Hypercube Sampling to
support diesel engine calibration.

[mat, 2025]

ZH_02 Determine the optimal heat shield radius for a spherical 250
kg spacecraft in ballistic re-entry to meet peak heat flux, total
heat load, and deceleration constraints.

[Sutton and
Graves, 1971]

ZH_04 Determine a feasible glide angle, vehicle volume, and ballast
mass for a buoyancy-driven underwater glider to cover 4
km in ≤ 2 hours under given power, depth, and buoyancy
constraints.

Topic: Structural Design

RK_01 Generate a 2D topology-optimized design of a rectangular
beam under an asymmetric point load with fixed/roller sup-
ports to minimize compliance at a maximum volume fraction
of 0.25, then report its compliance and volume fraction.

Continued on next page

55

Table 15 (continued from previous page)
Task-id Task Summary Reference

RK_02 Perform a 2D compliance-based topology optimization of a
rectangular domain under two downward point loads with
supports at its corners, subject to a volume fraction limit of
0.25.

RK_03 Perform 2D topology optimization on a rectangular domain
with specified supports and loading to minimize compliance
under a 15% volume fraction constraint.

RK_04 Perform topology optimization on a cracked 2D domain under
given horizontal loads to minimize the maximum stress while
restricting the material volume to 25%.

YF_01 Determine the required wall thickness of an L-shaped ex-
truded steel beam so that its maximum z-direction displace-
ment under a specified surface traction remains below 0.1 mm
in a static linear FEA simulation.

YF_02 Determine the required thickness of a simply supported rect-
angular steel beam under two quarter-span loads so that its
maximum vertical displacement is less than 1 mm in a 3D
PDE Toolbox simulation.

YF_03 Determine the plate thickness of a rectangular steel cantilever
beam under a specified half-length uniform pressure so that
its maximum vertical deflection stays below 2 mm in a 3D
linear elasticity model.

YF_04 Determine the diameter of a cantilevered solid steel shaft
under a specified torque so that its maximum end-to-end twist
does not exceed 0.05 rad.

YF_05 Determine the required cross-sectional area of the truss mem-
ber between Node 2 and Node 3 so that the maximum nodal
displacement under a 4000 N load at Node 3 remains below
0.5 mm.

YF_06 Determine the required thickness t of a fixed-edge rectan-
gular steel plate under uniform pressure to meet a specified
deflection criterion using MATLAB’s PDE Toolbox.

YJ_01 Determine the optimal 2D material distribution on a 64× 64
grid that minimizes structural compliance under given loads,
boundary conditions, and a volume fraction constraint.

[Mazé and
Ahmed,
2022a], [Mazé
and Ahmed,
2022b]

YJ_02 Perform a topology optimization of a discretized cantilever
beam to minimize compliance under a given volume con-
straint.

[Lagerweij,
2024]

YJ_03 Set up and solve a topology optimization to distribute mate-
rial in a finite-element mesh so as to minimize the Mode I
stress-intensity factor at a crack tip under a volume-fraction
constraint.

[Lagerweij,
2024]

Topic: Digital Hardware Design

Continued on next page

56

Table 15 (continued from previous page)
Task-id Task Summary Reference

XY_01 Analyze and extract the 4x4 bit pattern of a specified Tetris
tetromino in a given rotation from ROM data, and convert it
into a visual character-based representation for display.

[IEEE, 2018],
[Tetris Wiki
contributors],
[FPGA4student,
2017b]

XY_03 Design a time-multiplexed 4-digit hexadecimal display driver
on a 50 MHz FPGA that guarantees at least a 60 Hz per-digit
refresh and evaluates worst-case flicker.

[Chu, 2018],
[FPGA4student,
2017a],
[IEEE, 2018]

XY_04 Design a hardware-efficient color mapping system on an
FPGA for a Tetris game with RGB444 VGA output that sup-
ports distinct element colors and a dynamic Night Mode under
a 10-color limit.

[Nicolle]

XY_05 Define the per-instruction control signal settings, finite-state-
machine transitions, and detailed explanations for the SLC-
3 CPU, including a custom SWAP instruction, under strict
hardware and sequencing constraints.

[Hennessy
and Patter-
son, 2017],
[ECE Depart-
ment, 2025b],
[ECE De-
partment,
2025a]

YH_01 Implement a tiled and pipelined GEMM function in Vivado
HLS to maximize DSP utilization on the VCK5000 using
block sizes of 64× 64× 64.

YH_02 Implement a DSP-optimized tiled GEMM in Vivado HLS for
1024× 1024 matrices using 128× 128× 128 blocking on the
VCK5000 platform.

YH_03 Create a synthesizable Vitis HLS GEMM function with AXI
interfaces and loop pipelining for 1024× 1024 matrices tar-
geting the VCK5000.

YH_04 Design a Vitis HLS-compatible GEMM function for 256×
256 matrices with AXI interfaces and pipelined inner loop
targeting the VCK5000.

NS_PA_SS_02 Design a parameterizable n-bit Gray-code sequence generator
in Verilog that updates on each rising clock edge and resets
synchronously with active-low reset to zero.

[chi, 2025]

NS_PA_SS_03 Design a parameterized 32-entry, 2-read/1-write register file
in synthesizable SystemVerilog with synchronous reset, read-
/write enables, and collision detection.

[chi, 2025]

NS_PA_SS_04 Implement a parameterizable 8-bit Fibonacci LFSR in syn-
thesizable SystemVerilog with synchronous active-low reset,
seed loading, tap buffering, and feedback shifting.

[chi, 2025]

NS_PA_SS_05 Develop a parameterizable, synthesizable SystemVerilog mod-
ule that captures eight bitwidth-wide input words, performs a
fully unrolled one-cycle bubble sort on them when triggered,
and presents the sorted vector plus optional valid flag.

[chi, 2025]

Continued on next page

57

Table 15 (continued from previous page)
Task-id Task Summary Reference

NS_PA_SS_06 Design a synthesizable SystemVerilog module that reads two
3-element vectors serially, computes their dot product in one
cycle after the sixth input, and drives an 18-bit result plus a
one-cycle valid signal with defined reset behavior.

[chi, 2025]

NS_PA_SS_07 Implement a synthesizable 8× 8 register file in Verilog with
one read port, one write port, valid-bit tracking, error flagging,
and synchronous reset/clock behavior.

[chi, 2025]

NS_PA_SS_08 Develop a fully synchronous, parameterized SystemVerilog
module that detects a user-loaded 5-bit target pattern in a
serial input stream and pulses a one-cycle ’seen’ flag on each
match.

[chi, 2025]

NS_PA_SS_09 Create a fully synthesizable, parameterized SystemVerilog
module that converts an N-bit Gray code input into its binary
equivalent using a combinational XOR cascade.

[chi, 2025]

NS_PA_SS_10 Implement a synthesizable SystemVerilog finite-state machine
that reads a serial bitstream, tracks the value modulo 5, and
raises dout when the running value is divisible by 5.

[chi, 2025]

Topic: Analog Integrated Circuit Design

TB_01 Size the devices in a folded-cascode OTA netlist by assigning
concrete W, L, m, and R values to meet given performance
specs under a fixed testbench.

[ECE De-
partment,
University
of Illinois
Urbana-
Champaign,
2025c]

TB_02 Design and size a folded-cascode OTA from scratch in SPICE
format to meet specific performance specs using the tsmc18
process and a given testbench setup.

[ECE De-
partment,
University
of Illinois
Urbana-
Champaign,
2025c]

TB_03 Size a 5-transistor differential-to-single-ended OTA by assign-
ing W, L, and m values to meet gain, bandwidth, CMRR, and
ICMR specs using tsmc18 models in a fixed testbench.

[ECE De-
partment,
University
of Illinois
Urbana-
Champaign,
2025b]

TB_04 Design and size a 5-transistor OTA along with its bias circuit
in a single SPICE netlist to meet performance specs under a
unity-gain testbench.

[ECE De-
partment,
University
of Illinois
Urbana-
Champaign,
2025b]

Continued on next page

58

Table 15 (continued from previous page)
Task-id Task Summary Reference

TB_05 Size a common-source amplifier with resistive load in SPICE
by tuning NMOS, resistor, and bias parameters to meet gain,
bandwidth, and output voltage specs.

[ECE De-
partment,
University
of Illinois
Urbana-
Champaign,
2025a]

Topic: Robotics

Ziheng_02 Determine the six joint angles of a 6-DOF serial robot that
achieve a specified end-effector pose given the robot’s screw
axes and home transformation.

[Weng et al.,
2018]

AM_02 Compute two time-parameterized, collision-free trajectories
for 2 by 2 robots on a 30 by 30 grid from given start to end
points in 20 time steps, avoiding static rectangular obstacles
and dynamically moving pedestrians under a maximum per-
step speed of 2 units in each axis.

AM_03 Compute a time-stamped, grid-based, collision-free trajectory
for a 2 by 2 robot on a 30 by 30 map with static rectangles and
three moving pedestrians, starting at (17,2) and visiting goals
A and B in any order without exceeding a per-step speed of 2
in x or y.

HJ_01 Select refresh rate, acceleration, maximum velocity, and look-
ahead distance settings to complete a 56 m lap in under 10 s
with a maximum 1 m track-off error on a $300 budget.

XZ_01 Compute the shortest collision-free grid path for a small in-
spection robot across a 50×40 m construction map with spec-
ified walls and obstacles.

[mat, 2025]

XZ_02 Compute a smooth, collision-free trajectory for an au-
tonomous construction vehicle from (0,0,π) to (49,39,π/2)
on a 50×40 m site with fixed obstacles, while respecting a 4
m turning radius and 0.5 m vehicle clearance.

[mat, 2025]

XZ_03 Generate a collision-free shortest path on an integer grid in a
Webots world from (0,0,0) to (49,39,0) around defined obsta-
cles.

[mat, 2025]

XZ_04 Generate a time-parameterized, collision-free 3D trajectory in
a Webots world from a start to a goal point while respecting
zone-based speed constraints.

[mat, 2025]

YX_01 Compute the world-coordinate corners of a 2D sparse costmap
and then use a Hybrid A* planner with nonholonomic con-
straints to find collision-free paths for given start and goal
poses.

[mat, 2025]

ZH_03 Determine wheel diameter, gear ratio, battery capacity, and
robot mass for an electric ground robot to meet specified
speed, incline, and endurance targets.

Topic: Signal Processing

Continued on next page

59

Table 15 (continued from previous page)
Task-id Task Summary Reference

qjlim2_01 Design a rectangular microstrip patch antenna on a Rogers
laminate to resonate at 1.537 GHz with ≥ 50 MHz bandwidth,
≥ 3 dBi gain, and fit within a 100 × 100 × 10 mm volume
using a 50Ω coaxial feed.

[Antenna-
Theory.com,
2011b],
[Kashwan
et al., 2011],
[mat, 2025]

qjlim2_02 Design a free-space strip dipole antenna centered at 3 GHz
with at least 100 MHz bandwidth, ≥ 2 dBi gain, and fitting
within a 100× 100 mm footprint.

[Antenna-
Theory.com,
2011a], [mat,
2025]

qjlim2_04 Design a cylindrical monopole antenna resonant at 0.487 GHz
with S11 ≤ −10 dB, bandwidth ≥ 10MHz, and gain ≥ 0 dBi.

[Antenna-
Theory.com,
2011a], [mat,
2025]

XG_09 Tune the parameters of Gaussian and triangular membership
functions in a fuzzy inference system to improve edge detec-
tion performance (MSE, PSNR, SSIM) on a grayscale image
relative to a Canny pseudo-ground truth.

[mat, 2025]

YZ_01 Design a three-stage sample-rate converter—including a Far-
row fractional resampler and two decimating FIR filters—to
down-convert input rates (e.g., 150 MHz) to 30.72 MHz while
meeting LTE passband, stopband, and EVM requirements.

[mat, 2025]

YZ_02 Derive analytic formulas and determine coefficient sets for
SG filter cutoff and half-magnitude width, then design four
weighted SG filters meeting specified noise-vs-smoothness
performance criteria.

[mat, 2025]

YZ_03 Design a circularly polarized helical antenna in MATLAB’s
Antenna Toolbox to operate from 1.3 to 2 GHz, meeting
specified directivity and axial ratio requirements.

[mat, 2025]

AB_01 Compute first-order statistical features (mean, variance, skew-
ness, kurtosis) and the GLCM contrast for pixel intensities
strictly inside a given polygonal ROI in a medical image
patch.

AB_02 Implement the OpenCV watershed algorithm in Python to
segment the red heart pips and numerals from the white back-
ground in the specified image.

[Howse and
Minichino,
2020]

AB_03 Load a hard-coded image, find its largest contour, and com-
pute both its approximate polygon and convex hull using
OpenCV.

[Howse and
Minichino,
2020]

AV_02 Design a digital IIR filter to notch out a 120 Hz resonance in
a 2000 Hz-sampled sensor signal while preserving ±15 Hz
around that frequency.

[Zhi-
Pei Liang,
2025]

AV_03 Design an FIR anti-aliasing filter to allow downsampling a
48 kHz audio signal to 8 kHz while preserving the 0-3.5 kHz
band with less than 3 dB ripple.

[Zhi-
Pei Liang,
2025]

HC_03 Estimate the coefficients a, b, and c of a second-order polyno-
mial y = ax2 + bx+ c that best fits a given noisy 2D data set
by minimizing mean squared error.

Continued on next page

60

Table 15 (continued from previous page)
Task-id Task Summary Reference

JY_01 Design and implement an automated test stand using two
linear polarizers, a quarter-wave plate, and rotary motors to
control and measure changes in the Stokes vector of polarized
light.

JY_02 Design and apply a Gaussian smoothing filter, horizontal and
vertical edge-detection kernels, and a thresholding step to
produce an edge map from the given image array.

[Soria et al.,
2020]

JY_03 Design a convolutional kernel that performs linear interpo-
lation to fill zero-valued pixels in the corrupted Degree0 po-
larization image and evaluate its effect on AoLP and DoLP
outputs.

WJ_01 Design and implement a flexible OpenCV based filter pipeline
choosing and parameterizing one or more denoising filters
based on detected noise types.

YX_03 Compute and combine SNR metrics, integration gains, and
various radar losses to evaluate the detectability of a 1m2

target at 100 km for an S-band surveillance radar.

[mat, 2025]

61

	Introduction
	EngDesign
	Task Structure
	Evaluation Pipeline
	Construction of EngDesign

	Experiments
	Main Results
	Iterative Design
	Failure Analysis

	Related Work
	Conclusion
	Limitations and Broader Impact
	More on Related Work
	More on EngDesign
	Prompt Token Length Comparison
	More on construction of EngDesign
	Word Clouds of EngDesign

	More on Evaluation
	Detailed Experimental Setup
	LLM Response Structure
	More on Evaluation Metrics
	Additional Evaluation Results
	Token Consumption
	Prompt
	Prompt Optimization and Variants

	More on Failure Analysis
	EngDesign Examples
	Task-Level Breakdown of the EngDesign

