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ABSTRACT

To ensure that the data collected from human subjects is entrusted with a secret,
rival labels are introduced to conceal the information provided by the participants
on purpose. The corresponding learning task can be formulated as a noisy partial-
label learning problem. However, conventional partial-label learning (PLL) meth-
ods are still vulnerable to the high ratio of noisy partial labels, especially in a large
labelling space. To learn a more robust model, we present Adversary-Aware Par-
tial Label Learning and introduce the rival, a set of noisy labels, to the collection
of candidate labels for each instance. By introducing the rival label, the predictive
distribution of PLL is factorised such that a handy predictive label is achieved with
less uncertainty coming from the transition matrix, assuming the rival generation
process is known. Nonetheless, the predictive accuracy is still insufficient to pro-
duce an sufficiently accurate positive sample set to leverage the clustering effect
of the contrastive loss function. Moreover, the inclusion of rivals also brings an in-
consistency issue for the classifier and risk function due to the intractability of the
transition matrix. Consequently, an adversarial teacher within momentum (ATM)
disambiguation algorithm is proposed to cope with the situation, allowing us to
obtain a provably consistent classifier and risk function. In addition, our method
has shown high resiliency to the choice of the label noise transition matrix. Exten-
sive experiments demonstrate that our method achieves promising results on the
CIFAR10, CIFAR100 and CUB200 datasets.

1 INTRODUCTION

Deep learning algorithms depend heavily on a large-scale, true annotated training dataset. Nonethe-
less, the costs of accurately annotating a large volume of true labels to the instances are exorbitant,
not to mention the time invested in the labelling procedures. As a result, weakly supervised labels
such as partial labels that substitute true labels for learning have proliferated and gained massive pop-
ularity in recent years. Partial-label learning (PLL) is a special weakly-supervised learning problem
associated with a set of candidate labels Y⃗ for each instance, in which only one true latent label y is
in existence. Nonetheless, without an appropriately designed learning algorithm, the limitations of
the partial label are evident since deep neural networks are still vulnerable to the ambiguous issue
rooted in the partial label problem because of noisy labels Zhou (2018); Patrini et al. (2017); Han
et al. (2018). As a result, there have had many partial label learning works (PLL)Cour et al. (2011);
Hüllermeier & Beringer (2006); Feng & An (2019); Feng et al. (2020) successfully solved the ambi-
guity problem where there is a set of candidate labels for each instance, and only a true label exists.
Apart from the general partial label, we have also seen a variety of partial label generations evolved,
simulating different real-life scenarios. The independently and uniformly drawing is the one have
seen the most Lv et al. (2020); Feng & An (2019). The other problem settings include the instance
dependent partial label learning, where each partial label set is generated depending on the instance
as well as the true label Xu et al. (2021). Furthermore, Lv et al. (2020) has introduced label spe-
cific partial label learning, where the uniform flipping probability of similar instances differs from
dissimilar group instances. Overall, the learning objective of the previous works is all about disam-
biguation. More specifically, the goal is to design a classifier training with partial labels, aiming to
correctly label the testing dataset, hoping the classification performance will be as close as the full
supervised learning.
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On the contrary, there is a lack of discussion on previous works that shed light on the data privacy-
enhancing techniques in general partial label learning. The privacy risk is inescapable; thus, privacy-
preserving techniques need to be urgently addressed. Recently, we have seen surging data breach
cases worldwide. These potential risks posed by the attacker are often overlooked and pose a detri-
mental threat to society. For instance, it is most likely for the adversary to learn from stolen or leaked
partially labelled data for illegal conduct using the previous proposed partial-label learning methods.
Subsequently, it has become an inherent privacy concerns in conventional partial label learning. In
this paper, the Adversary-Aware partial label learning is proposed to address and mitigate the ramifi-
cation of the data breach. In a nutshell, we propose an affordable and practical approach to manually
corrupt the collected dataset to prevent the adversary from obtaining high-quality, confidential in-
formation meanwhile ensure the trustee has full access to the useful information. However, we have
observed that adversary-aware partial label learning possesses some intrinsic learnability issues.
Firstly, the intractability is raised from the transition matrix. Secondly, the classifier and risk incon-
sistency problem has been raised. Hence, we propose an the Adversarial teacher within momentum
(ATM)(In section 2.1), adversary-aware loss function equation 19, and a new ambiguity condition
equation 1 to counter the issues.

Under the adversary-aware partial label problem setting, the rival is added to a candidate set of
labels. To achieve that, we extend the original partial label generation equation 2 by factorisation
to add the rival Y ′. Subsequently, we have the adversary-aware partial label generation established
as equation 3. Then, we decompose the second equation of equation 3 into the rival embedded
intractable transition matrix term Q∗ and class instance-dependent transition matrix Ty,y′ , which
is P(Y ′ = y′ | Y = y,X = x). In our problem setting, T̄y,y′ , the class instance-independent
transition matrix is utilised, which is defined as P(Y ′ = y′ | Y = y), with the assumption the
rival is generated depending only on Y but instance X . Under the assumption, the class instance-
independent transition matrix is simplified and mathematically identifiable. Since all the instances
share the same class instance-independent transition matrix in practice, such encryption is more
affordable to implement. The rival variable serves as controllable randomness to enhance privacy
against the potential adversary and information leakage. In contrast, the previous methods can not
guarantee the privacy protection property.

However, a fundamental problem has been raised, inclusion of the rival implies an inconsistent clas-
sifier according to the adversary-aware label generation equation equation 3. Learning a consistent
partial label classifier is vital, but in our problem setting, the consistency classifier may not be ob-
tained due to the intractability of Q∗(details are described in section 1.2). As a consequence, the
Adversarial teacher within momentum (ATM) is proposed, which is designed to identify the term
P(Y⃗ | Y, Y ′, X) which is denoted as Q∗. The Moco-style dictionary technique He et al. (2020)
and Wang et al. (2022) have inspired us to explore exploiting the the soft label from instance em-
bedding, leveraging T̄y,y′ to identify or reduce the uncertainty of the Q∗ due to the property of
informational preservation and tractability. Therefore, a consistent partial label learner is obtained
if the uncertainty raised from the transition matrix is reduced greatly. Specifically, we transform the
inference of label generation in Adversary-Aware PLL as an approximation for the transition matrix
Q∗. Ultimately, a tractable solution to the unbiased estimate of P(Y⃗ | Y, Y ′, X) can be derived.
Lastly, we have rigorously proven that a consistent Adversary-Aware PLL classifier can be obtained
if P(Y⃗ | Y, Y ′, X) and P(Y ′ | Y ) are approximated accurately according to equation 3.

In this work, we are mainly focusing on identifying the transition matrix term P(Y⃗ | Y, Y ′, X).
The rival is generated manually for privacy enhancement. Thus the P(Y ′ | Y ) is given by design.
Overall, our proposed method has not only solved the ambiguity problem in Adversary-Aware PLL
but also addressed the potential risks from the data breach by using a rival as the encryption. Our
proposed label generation bears some resemblance to local differential privacy Kairouz et al. (2014);
Warner (1965), which aims to randomise the responses. The potential application is to randomise
survey responses, a survey technique for improving the reliability of responses to confidential inter-
views or private questions. Depending on the sophistication of the adversary, our method offers a
dynamic mechanism for privacy encryption that is more resilient and flexible to face the potential
adversary or privacy risk. By learning from the previous attacks, we can design different levels of
protection by adjusting the T̄ term. The main contributions of the work are summarized:

• We propose a novel problem setting named adversary-aware partial label learning.
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• We propose a novel Adversary-Aware loss function and the Adversarial teacher within
momentum (ATM) disambiguation algorithm. Our proposed paradigm and loss function
can be applied universally to other related partial label learning methods to enhance the
privacy protection.

• A new ambiguity condition (equation 1) for Adversary-Aware Partial Label Learning is
derived. Theoretically, we proven that the method is a Classifier-Consistent Risk Estimator.

1.1 RELATED WORK

Partial Label Learning (PLL) trains an instance associated with a candidate set of labels in which
the true label is included. Many frameworks are designed and proposed to solve the label ambiguity
issue in partial label learning. The probabilistic graphical model-based methodsZhang et al. (2016);
Wang & Isola (2020); Xu et al. (2019); Lyu et al. (2019) as well as the clustering-based or unsu-
pervised approaches Liu & Dietterich (2012) are proposed by leveraging the graph structure and
prior information of feature space to do the label disambiguation. The average-based perspective
methods Hüllermeier & Beringer (2006); Cour et al. (2011); Zhang et al. (2016) are designed based
on the assumption of uniform treatment of all candidates; however, it is vulnerable to the false posi-
tive label, leading to misled prediction. Identification perspective-based methods Jin & Ghahramani
(2002) tackle disambiguation by treating the true label as a latent variable. The representative per-
spective approach uses the maximum margin method Nguyen & Caruana (2008); Wang et al. (2020;
2022) to do the label disambiguation. Most recently, self-training perspective methodsFeng & An
(2019); Wen et al. (2021); Feng et al. (2020) have emerged and shown promising performance. In
Contrastive Learning He et al. (2020); Oord et al. (2018), the augmented input is applied to learns
from feature of the unlabeled sample data. The learning objective is to differentiate the similar and
dissimilar parts of the input, in turn, maximise the learning of the high-quality representations. CL
has been studied in unsupervised representation fashion Chen et al. (2020); He et al. (2020), which
treats the same classes as the positive set to boost the performance. The weakly supervised learning
has also borrowed the concepts of CL to tackle the partial label problem Wang et al. (2022). The CL
has also been applied to semi-supervised learning Li et al. (2020).

1.2 ADVERSARY-AWARE PARTIAL LABEL PROBLEM SETTING

Given the input space X ∈ Rd and label space is defined as Y = [c] ∈ {1 · · · c} with the number
of c > 2 classes. Under adversary-aware partial labels, each instance X ∈ X has a candidate
set of adversary-aware partial labels Y⃗ ∈ Y⃗ . The adversary-aware partial label set has space of
Y⃗ := {y⃗ | y⃗ ⊂ Y}=2[c], in which there is total 2[c] selection of subsets in [c]. The objective is to learn
a classifier with the adversary-aware partially labelled sample n, which was i.i.d drawn from the
D⃗ = {(X1, Y⃗1), . . . , (Xn, Y⃗n)}, aiming that it is able to assign the true labels for the testing dataset.
Given instance and the adversary-aware partial label Y⃗ the adversary-aware partial label dataset
distribution D⃗ is defined as (X, Y⃗ ) ∈ X × Y⃗ . The class instance-independent transition matrix
P (Y ′ | Y ) is denoted as T̄ ∈ Rc×c. T̄y,y′ = P (Y ′ = y′ | Y = y) where T̄y,y = 0,∀y′, y ∈ [c].
The adversary-aware means the designed paradigm can prevent the adversary from efficiently and
reliably inferring certain information from the database without the T̄ , even if the data was leaked.
The rival is the controllable randomness added to the partial label set to enhance privacy.

1.2.1 ASSERTION CONDITIONS IN LABEL GENERATION SET

The following conditions describe the learning condition for adversary-aware partial label. Accord-
ing to Cour et al. (2011) there needs to be certain degrees of ambiguity for the partial label learning.
Lemma 1 is the new ERM learnability condition which is proposed as follows

Py′,ȳ := P(y′, ȳ ∈ Y⃗ | Y ′ = y′, Ȳ = ȳ, X = x). (1)
The y′ is the rival, and ȳ is the false positive label that exists in the partial label set. It has to be met
to ensure the Adversary-Aware PLL problem is learnable with y′ ̸= y and ȳ ̸= y, these conditions
ensure the ERM learnability Liu & Dietterich (2014) of the adversary-aware PLL problem if there
is small ambiguity degree condition. In our case which is that, Py′,ȳ < 1. The y is the true label
corresponding to each instance x. And Py:= P(y ∈ Y⃗ | Y = y,X = x), where Py = 1 to ensure
that the ground truth label is in the partial label set with respect to each instance.
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1.2.2 LABEL GENERATION

In the previous works of partial label generation procedure, only a candidate of the partial label was
generated as such.
The Standard Partial Label Generation:∑

y∈Y

P(Y⃗ = y⃗, Y = y | X = x) =
∑
y∈Y

P(Y⃗ = y⃗ | Y = y,X = x)P(Y = y | X = x).

=
∑
y∈Y

P(Y⃗ = y⃗ | Y = y)P(Y = y | X = x),
(2)

where P(Y⃗ = y⃗ | Y = y,X = x) is the label generation for the class instance-dependent partial
label and P(Y⃗ = y⃗ | Y = y) is the standard partial label learning framework. Then we present the
difference between the general partial labels and the adversary-aware partial label.
The Adversary-Aware Partial Label Generation:∑

y∈Y

P(Y⃗ = y⃗ | X = x) =
∑
y∈Y

∑
y′∈Y ′

P(Y⃗ = y⃗, Y = y, Y ′ = y′ | X = x)

=
∑
y∈Y

∑
y′∈Y ′

P(Y⃗ = y⃗ | Y = y, Y ′ = y′, X = x)︸ ︷︷ ︸
Adversary-Aware transition matrix

T̄y,y′P(Y = y | X = x).

(3)
In the adversary-aware partial label problem setting, the transition matrix of the adversary-aware
partial label is defined as P(Y⃗ | Y, Y ′, X) and denoted as Q∗ ∈ Rc×(2c−2). The partial label
transition matrix P(Y⃗ | Y ) is denotes as Q̄ ∈ Rc×(2c−2). Theoretically, if the true label Y of the
vector Y⃗ is unknown given an instance X , where y⃗ ∈ Y⃗ and there are 2c−2 candidate label sets.The
ϵx is the instance-dependent rival label noise for each instance where ϵx ∈ R1×c. The entries of the
adversary-aware transition matrix for each instance is defined as follows

2c−2∑
j=1

Q∗[:, j] =

2c−2∑
j=1

([Q̄[:, j]T + ϵx]T̄ )
T =

2c−2∑
j=1

(A[:, j]T T̄ )T , (4)

where A[:, j]T = Q̄[:, j]T + ϵx and the conditional distribution of the adversary-aware partial label
set Y⃗ based on Wen et al. (2021) is derived as belows

P(Y⃗ = y⃗ | Y = y, Y ′ = y′, X = x) =
∏

b′∈y⃗,b′ ̸=y

pb′ ·
∏
t′ /∈y⃗

(1− pt′) ,

(5)
where pt′ and pb′ are defined as

pt′ := P(t ∈ Y⃗ | Y = y, Y ′ = y′, X = x) < 1, pb′ := P(b ∈ Y⃗ | Y = y, Y ′ = y′, X = x) < 1.

(6)
We summarize the equation 3 as a matrix form in equation 7. The inverse problem is to identify a
sparse approximation matrix A to use equation 8 to estimate the true posterior probability.

P (Y⃗ | X = x)︸ ︷︷ ︸
Adversary-aware PLL

= Q∗ P (Y | X = x)︸ ︷︷ ︸
True posterior probability

,

Q∗−1 P (Y⃗ | X = x)︸ ︷︷ ︸
Adversary-aware PLL

= P (Y | X = x)︸ ︷︷ ︸
True posterior probability

,

(7)

T̄−1A−1 P (Y⃗ | X = x)︸ ︷︷ ︸
Adversary-aware PLL

≈ P (Y | X = x)︸ ︷︷ ︸
True posterior probability

. (8)

In reality, due to the computational complexity of the transition matrix, it would be a huge burden
to estimate Q∗ accurately for each instance. The 2c − 2 is an extremely large figure and increases
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exponentially as the label space increase. Therefore, we are no longer required to estimate the true
transition matrix P(Y⃗ | Y, Y ′, X). Instead, we resort to using instance embedding in the form
of a soft label to identify the adversary-aware partial label transition matrix Q∗. Specifically, we
proposed to use a soft pseudo label from the instance embedding (Prototype) to approximate the
adversary-aware transition matrix for each instance. The reason is that we can not achieve the true
transition matrix Q∗ directly due to the nature of the practical partial label problem. Therefore, we
have used the self-attention prototype learning to approximate the true transition matrix. The detail
is described in section 2.1. Since the Adversary-aware partial label is influenced by the rival label
noise, it is challenging to accurately estimate both the class instance-independent transition matrix
T̄ and the sparse matrix A simultaneously to estimate the true posterior. Considering that the T̄ is
private and given, it is easier for us just to approximate A to estimate the posterior probability than
the adversary. The equation 8 is implemented as the loss function in equation 17.

1.3 POSITIVE SAMPLE SET

The construction of a positive sample is used for contrastive learning to identify the transition ma-
trix P (Y⃗ | Y ′, Y,X) via the label disambiguation. Nonetheless, the performance of the contrastive
learning erodes drastically due to the introduced rival, which is manifest in the poorly constructed
positive sample set, resulting in the degenerated classification performance (See Figure 2). Sub-
sequently, the adversary-aware loss function is proposed in conjunction the contrastive learning to
prevent classification performance degeneration. To start with, we define L2 norm embedding of u
and k as the query and key latent feature from the feature extraction network fΘ and key neural net-
work f ′

Θ respectively. Correspondingly, we have the output u ∈ R1×d where ui = fΘ(Augq(x))

and z ∈ R1×d where zi=f ′
Θ(Augk(xi)). The construction of a positive sample set is shown as

follows. In each mini-batch, we have D⃗b where D⃗b ∈ D⃗. The f(xi) is the function of a neural net-
work with a projection head of 128 feature dimensionality. The outputs of Dq and Dk are defined
as follows,

Dq = {ui = f
(
Augq (xi)

)
| xi ∈ D⃗b}, (9)

Dk = {zi = f ′ (Augk (xi)) | xi ∈ D⃗b}, (10)

where S̄(x) is the sample set excluding the query set q and is defined as S̄(x) = C̄\{q}, in which
C̄ = Dq ∪ Dk ∪ queue . The Dq and Dk are vectorial embedding with respect to the query and
key views given the current mini-batch. The queue size is determined accordingly depending on the
input. The instances from the current mini-batch with the prediction label ȳ′ equal to (ŷi = c) from
the S̄(x). is chosen to be the positive sample set. Ultimately, the N(x) is acquired, and it is denoted
as

N+(xi) =
{
z′ | z′ ∈ S̄ (xi) , ȳ

′ = (ŷi = c)
}
. (11)

The N+(x) is the positive sample set. The construction of sufficiently accurate positive sample set
N+(x) is vital as it underpins the clustering effect of the latent embedding in the contrastive learning
procedure. The quality of the clustering effect relies on the precision of prototype vj corresponding
to j ∈ {1, ..., C}. Our method helps maintain the precision of prototypes using the T̄ to render
better label disambiguation module performance for contrastive learning when introduced the rival.
where the query embedding u multiplies the key embedding z and then divides with the remaining
pool C̄. Overall, the S+(x) is used to facilitate the representation learning of the contrastive learning
and the self-attention prototype learning to do the label disambiguation or a more accurate pseudo-
labelling procedure. Our proposed loss ensures the prototype and contrastive learning are working
systematically and benefit mutually when the rival is introduced. The pseudo label generation is
according to equation 16. We have followed Wang et al. (2022) for the positive sample selection.

2 METHODOLOGY

The main task of partial label learning is label disambiguation, which targets identifying the true la-
bel among candidate label sets. Thus, we present an adversarial teacher within momentum (ATM).
The equation 17 is developed to do the debiasing from the prediction of f(x) given the adversary-
aware partial label via the class instance dependent transition matrix T̄ + I . The unbiased predic-
tion induces the identification of a more accurate positive sample set which allows Equation 18 to
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Figure 1: An overview of the proposed method. General partial label can be disclosed to adversary. The initial
training is about positive sample selection. Moreover, we have assumed T̄ is given.

leverage the high-quality presentation power of a positive sample set to improve the classification
performance.

2.1 PSEUDO LABEL LEARNERS VIA ADVERSARIAL TEACHER WITHIN MOMENTUM (ATM)

Unlike Wang et al. (2022), we present an adversarial teacher strategy with momentum update (ATM)
to guide the learning of pseudo labels using Equation 17. Just like a tough teacher who teaches the
subject using harsh contents to test students’ understanding of the subject. In our case, the rival is
like the subject which is purposely generated by us, at the same time Equation 17 is introduced to
check the understanding of the student (classifier) given the scope of testing content which is the
T̄ . Specifically, the spherically margin between prototype vector vi ∈ Sd−1 and prototype vector
vj ∈ Sd−1 is defined as

mij = exp (−v⊤
i vj). (12)

For prototype vi, we define the normalized margin between vi and vj as

m̄ij =
exp (−v⊤

i vj)∑
j ̸=i exp (−v⊤

i vj)
. (13)

For each vi, i ∈ {1, · · · ,K}, we perform momentum updating with the normalized margin between
vj and vi for all j ̸= i as an regularization. The resulted new update rule is given as

vt+1
i =

√
1− α2vt

i + α
g

∥g∥2
, (14)

where the gradient g is given as

g = u− β
∑
j ̸=i

m̄t
ijv

t
j , (15)

where u is the query embedding whose prediction is class i, m̄t
ij is the normalized margin between

prototype vectors at step t (i.e., vt
j , j ̸= i). The vc is the prototype corresponding to each class.

q̄ = ϕq̄ + (1− ϕ)v, vc =

{
1 if c = argmaxj∈Y u⊤v

0 otherwise ,
. (16)

where q̄ is the target prediction and subsequently used in the equation 17. It was initialised as the
uniform probability q̄ = 1

|c|1 and updated accordingly to the equation 16. The ϕ is the hyper-
parameter controlling for the updating of q̄.

2.2 ADVERSARY AWARE LOSS FUNCTION.

The goal is to build a risk consistent loss function, hoping it can achieve the same generalization
error as the supervised classification risk R(f) with the same classifier f . To train the classifier,

6



Under review as a conference paper at ICLR 2023

we minimize the following modified loss function estimator by leveraging the updated pseudo label
from the Adversarial teacher within momentum (ATM) distillation method and transition plus iden-
tity matrix, Ii,j ∈ [0, 1]c×c, Ii,i = 1, for ∀i=j ∈ [c], Ii,j = 0, for ∀i ̸=j ∈ [c]: where f (X) ∈ R|c|,

L⃗(f(X), Y⃗ ) = −
c∑

i=1

(q̄i) log
(
((T̄+ I)f(X))i

)
.

(17)
The proof for the modified loss function is shown in the appendix lemma 4. In our case, given
sufficiently accurate positive sample set of the contrastive learning is utilised to incorporate with
equation 17 to identify the transition matrix of the adversary-aware partial label. The contrastive
loss is defined as follows

L(f(x), τ, C) =
1

|Dq|
∑
u∈Dq

{− 1

N+(x)

∑
z+∈N+(x)

log
exp(u⊤z/τ)∑

z′∈C̄(x) exp(u
⊤z/τ)

}.

(18)

Finally, we have the Adversary-Aware Loss expressed as

Adversary-Aware Loss = λL(f(xi), τ, C) + L⃗(f(X), Y⃗ ). (19)

There are two terms of the proposed loss function (equation 19), which are the equation 17 and equa-
tion 18 correspondingly. equation 17 is developed to lessen prediction errors from f(x) given the
adversary-aware partial label. The debiasing is achieved via the class instance dependent transition
matrix T̄ + I by down-weighting the false prediction. The unbiased prediction induces the identi-
fication of a more accurate positive sample set. equation 18 is the contrastive loss. It leverages the
high-quality representation power of positive sample set to improve the classification performance
further.

3 THEORETICAL ANALYSIS

The section introduces the concepts of classifier consistency and risk consistency Xia et al. (2019)
Zhang (2004), which are crucial in weakly supervised learning. Risk consistency is achieved if the
risk function of weak supervised learning is the same as the risk of fully supervised learning with
the same hypothesis. The risk consistency implies classifier consistency, meaning classifier trained
with partial labels is consistent as the optimal classifier of the fully supervised learning.

Classifier-Consistent Risk Estimator Learning with True labels. Lets denote f(X) =
(g1(x), . . . , gK(x)) as the classifier, in which gc(x) is the classifier for label c ∈ [K]. The prediction
of the classifier fc(x) is P (Y = c | x). We want to obtain a classifier f(X) =argmaxi∈[K] gi(x).
The loss function is to measure the loss given classifier f(X). To this end, the true risk can be
denoted as

R(f) = E(X,Y )[L (f (X) , Y )]. (20)
The ultimate goal is to learn the optimal classifier f∗=argminf∈F R(f) for all loss functions,
for instance to enable the empirical risk R̄pn(f) to be converged to true risk R(h). To obtain the
optimal classifier, we need to prove that the modified loss function is risk consistent as if it can
converge to the true loss function.

Learning with adversary-aware Partial Label. An input X ∈ X has a candidate set of
Y⃗ ∈ Y⃗ but a only true label Y ∈ Y⃗ . Given the adversary-aware partial label Y⃗ ∈ Y⃗ and instance
X ∈ X that the objective of the loss function is denoted as

R̂(f) = E(X,Y⃗ )L⃗
(
f (X) , Y⃗

)
. (21)

Since the true adversary-aware partial label distribution D̄ is unknown, our goal is approximate the
optimal classifier with sample distribution D̄pn by minimising the empirical risk function, namely

R̂pn(f) =
1

n

n∑
i=1

L⃗ (f (xi) , y⃗i) . (22)
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Assumption 1. According to Yu et al. (2018) that the minimization of the expected risk R(f) given
clean true population implies that the optimal classifier is able to do the mapping of f∗

i (X) =

P (Y = i | X), ∀i ∈ [c]. Under the assumption 1, we are able to draw conclusion that f̂∗ = f∗

applying the theorem 2 in the following.

Theorem 1. Assume that the Adversary-Aware matrix Ty,y′ is fully ranked and the Assumption 1 is
met, the the minimizer of f̂∗ of R̂(f) will be converged to f∗ of R(f), meaning f̂∗ = f∗.

Remark. If the Q∗ and Ty,y′ is estimated correctly the empirical risk of the designed algorithm
trained with adversary-aware partial label will converge to the expected risk of the optimal clas-
sifier trained with the true label. If the number of sample is reaching infinitely large that given
the adversary-aware partial labels, f̂n is going to converged to f̂∗ theoretically. Subsequently, f̂n
will converge to the optimal classifier f∗ as claimed in the theorem 1. With the new generation
procedure, the loss function risk consistency theorems are introduced.

Theorem 2. The adversary-aware loss function proposed is risk consistent estimator if it can asymp-
totically converge to the expected risk given sufficiently good approximate of Q̄ and the adversary-
aware matrix.The proof is in appendix lemma 4.

L(y, f(x)) =
∑
y⃗∈Y⃗y

C∑
y=1

∑
y′∈Y ′

(P(Y = y | X = x) =
∏
b′∈y⃗

pb′ ·
∏
t′ /∈y⃗

(1− pt′) T̄yy′L⃗(y⃗, f(x))) = L⃗(y⃗, f(x)).

3.0.1 GENERALISATION ERROR

Define R̂ and R̂pn as the true risk the empirical risk respectively given the adversary-aware partial
label dataset. The empirical loss classifier is obtained as f̂pn = argminf∈F R̂pn(f). Suppose a
set of real hypothesis Fy⃗k

with fi(X) ∈ F ,∀i ∈ [c] . Also, assume it’s loss function L⃗(f(X), Y⃗ ) is
L-Lipschitz continuous with respect to f(X) for all y⃗k ∈ Y⃗ and upper-bounded by M , i.e., M =

supx∈X ,f∈F,yk∈Y⃗ L⃗ (f(x), y⃗k). The expected Rademacher complexity of Fk is denoted as ℜn(Fy⃗k
)

Bartlett & Mendelson (2002)

Theorem 3. For any δ > 0, with probability at least 1− δ,

R̂
(
f̂pn

)
− R̂

(
f̂⋆

)
≤ 4

√
2L

c∑
k=1

ℜn (Fy⃗k
) +M

√
log 2

δ

2n
. (23)

As the number of samples reaches to infinity n → ∞,ℜn (Fy⃗k
) → 0 with a bounded norm. Subse-

quently, R̄(f̂) → R̄
(
f̂⋆

)
as the number of training data reach to infinitely large. The proof is given

in Appendix Theorem 3.

4 EXPERIMENTS

Datasets We evaluate the proposed method on three benchmarks-CIFAR10, CIFAR100 Krizhevsky
et al. (2009), and fine-grained CUB200 Wah et al. (2011) with general partial label and adversary-
aware partial label datasets. Main Empirical Results for CIFAR10. All the classification accu-
racy is shown in Table 1. We have compared classification results on CIFAR-10 with previous
works Wang et al. (2022); Lv et al. (2020); Wen et al. (2021) using the Adversarial teacher within
momentum (ATM). The method has shown consistently superior results in all learning scenarios
where q = {0.3, 0.5} for the adversary-aware partial label learning. More specifically, the proposed
method achieves 8.17% superior classification performance at a 0.5 partial rate than the previous
state of art work Wang et al. (2022). Moreover, our proposed method has achieved comparable
results at 0.1 and 0.3 partial rates. The experiments for CIFAR-10 have been repeated four times
with four random seeds. Main Empirical Results for CUB200 and CIFAR100. The proposed
method has shown superior results for the Adversary-Aware Partial Label, especially in more chal-
lenging learning tasks like the 0.1 partial rate of the dataset cub200 and CIFAR100, respectively.
On the cub200 dataset, we have shown 5.95% improvement at partial rates 0.1 and 1.281% and
0.37% where the partial rate is at 0.05 and 0.03. On the CIFAR100 dataset, the method has shown
6.06% and 0.4181%, 0.5414% higher classification margin at partial rate 0.1, 0.05 and 0.03.The
experiments have been repeated five times with five random seeds.
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Table 1: Benchmark datasets for accuracy comparisons. Superior results are indicated in bold. Our proposed methods have shown comparable results to fully
supervised learning and outperform previous methods in a more challenging learning scenario, such as the partial rate at 0.5(CIFAR10) and 0.1(CIFAR100, CUB200).
The hyper-parameter α is set to 0.1 for our method. (The symbol ∗ indicates Adversary-Aware partial label dataset).

Dataset Method q = 0.01 q = 0.05 q = 0.1

(ATM)(Without T)(Our) 73.43 ±0.11 72.63±0.27 72.35±0.22
CIFAR100 PiCO 73.28 ±0.24 72.90 ±0.27 71.77±0.14

LWS 65.78 ±0.02 59.56 ±0.33 53.53 ±0.08
PRODEN 62.60±0.02 60.73±0.03 56.80±0.29

Full Supervised 73.56 ±0.10

Dataset Method q∗ = 0.03± 0.02 q∗ = 0.05± 0.02 q∗ = 0.1± 0.02

(ATM)(Our)∗ 73.36 ±0.32 72.76±0.14 54.09 ±1.88
CIFAR100 PiCO∗ 72.87 ±0.26 72.53±0.37 48.03±3.32

LWS∗ 46.8±0.06 24.82±0.17 4.53±0.47
PRODEN∗ 59.33±0.48 41.20±0.27 13.44±0.41

Dataset Method q = 0.01 q = 0.05 q = 0.1

(ATM) (Without T)(Our) 74.43±0.876 72.30±0.521 66.87±0.98
CUB200 PiCO 74.11±0.37 71.75±0.56 66.12±0.99

LWS 73.74±0.23 39.74±0.47 12.30±0.77
PRODEN 72.34±0.04 62.56±0.10 35.89±0.05

Full Supervised 76.02±0.19

Dataset Method q∗ = 0.03±0.02 q∗ = 0.05 ±0.02 q∗ =0.1±0.02

(ATM) (Our)∗ 72.22±1.36 72.43±0.86 56.26±0.70
CUB200 PiCO∗ 71.85 ±0.53 71.15 ±0.41 50.31 ±1.01

LWS∗ 9.6 ±0.62 4.02 ±0.03 1.44 ±0.06
PRODEN∗ 18.71±0.45 17.63 ±0.89 17.99 ±0.62

Dataset Method q = 0.1 q = 0.3 q = 0.5

(ATM)(Without T)(Our) 93.57±0.16 93.17±0.09 92.22±0.40
CIFAR10 PiCO 93.74±0.24 93.25±0.32 92.46±0.38

LWS 90.30 ±0.60 88.99 ±1.43 86.16 ±0.85
PRODEN 90.24±0.32 89.38±0.31 87.78±0.07

Full Supervised 94.91±0.07

Dataset Method q∗ = 0.1± 0.02 q∗ = 0.3± 0.02 q∗ = 0.5± 0.02

(ATM) (Our) ∗ 93.52 ±0.11 92.98±0.51 89.62±0.79
CIFAR10 PiCO∗ 93.64±0.24 92.85±0.43 81.45±0.57

LWS∗ 87.34±0.87 39.9±0.72 9.89±0.55
PRODEN∗ 88.80±0.14 81.88±0.51 20.32±3.43

4.1 ABLATION STUDY

Figure 2 shows the experimental result comparisons for CUB200 between the adversary-aware loss
function and previous loss function before and after the momentum updating. Given equation 17,
the uncertainty of the transition matrix Q̄ is reduced, leading to a good initialisation for the positive
set selection, which is a warm start and plays a vital role in improving the performance of contrastive
learning. After we have a good set of positive samples, the prototype’s accuracy is enhanced. Sub-
sequently, leveraging the clustering effect and the high-quality representation power of the positive
sample set of contrastive loss function to improve the classification performance.

(a) (b)
Figure 2: The Top1 and Prototype Accuracy of the Proposed Method and the Method in Wang et al. (2022) on CUB200 Adversary-Aware Loss
Comparison.

5 CONCLUSION AND FUTURE WORKS

This paper introduces a novel Adversary-Aware partial label learning problem. The new problem
setting has taken local data privacy protection into account. Specifically, we have added the rival
to the partial label candidate set as encryption for the dataset. Nonetheless, the generation process
has made the intractable transition matrix even more complicated, leading to an inconsistency issue.
Therefore, the novel adversary-aware loss function and the self-attention prototype are proposed.
The method is proven to be a provable classifier and has shown superior performance. Future work
will use variational inference methods to approximate the intractable transition matrix.
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