arXiv:2502.09467v1 [stat.ME] 13 Feb 2025

Just Trial Once: Ongoing Causal Validation of Machine Learning Models

Jacob M. Chen! and Michael Oberst!

'Department of Computer Science, Johns Hopkins University

February 14, 2025

Abstract

Machine learning (ML) models are increasingly used as decision-support tools in high-risk domains. Evaluating
the causal impact of deploying such models can be done with a randomized controlled trial (RCT) that randomizes
users to ML vs. control groups and assesses the effect on relevant outcomes. However, ML models are inevitably
updated over time, and we often lack evidence for the causal impact of these updates. While the causal effect
could be repeatedly validated with ongoing RCTs, such experiments are expensive and time-consuming to run. In
this work, we present an alternative solution: using only data from a prior RCT, we give conditions under which
the causal impact of a new ML model can be precisely bounded or estimated, even if it was not included in the
RCT. Our assumptions incorporate two realistic constraints: ML predictions are often deterministic, and their
impacts depend on user trust in the model. Based on our analysis, we give recommendations for trial designs that
maximize our ability to assess future versions of an ML model. Our hope is that our trial design recommendations
will save practitioners time and resources while allowing for quicker deployments of updates to ML models.

1 Introduction

Machine learning (ML) models are increasingly deployed in high-risk domains like healthcare and criminal justice as
tools to support human decision-makers. For instance, in healthcare, ML-powered decision-support tools (ML-DSTS)
are widespread, including early warning systems for sepsis [Adams et al., 2022, Sendak et al., 2020, Boussina et al.,
2024], computer-assisted decision-support for antibiotic treatment decisions [Gohil et al., 2024a,b], and a variety
of tools for computer-aided diagnostics in radiology and pathology, with the FDA having cleared or approved over
1,000 AI/ML-enabled devices to date [FDA, 2024]. Although these models often exhibit high accuracy, it is not
always clear whether their deployment actually leads to better decisions, and thus, better downstream outcomes. In
healthcare, for instance, we are interested not only in model accuracy, but also whether deployment of an ML-DST
improves health outcomes for patients.

The gold standard evaluation of ML-enabled decision-support is to assess impact in a randomized controlled
trial (RCT), typically structured as a cluster RCT, where decision-makers (e.g., clinicians in a given hospital) are
randomized to an ML-DST or no ML-DST. Such trials are becoming more common in healthcare [Han et al., 2024]
and criminal justice [Imai et al., 2023]. Examples include recent “failed trials” like the PROTEUS trial of ML-
assisted diagnosis of stress echocardiography [Upton et al., 2024] and trials with more positive results, such as the
INSPIRE trials for antibiotic recommendations powered by ML predictions of resistance likelihood [Gohil et al.,
2024a,b]. These trials provide rigorous evidence for the impact of deploying specific ML-enabled systems (and their
underlying models), and the broader research community recognizes the need for more randomized trials [Ouyang
and Hogan, 2024] and evaluation of ML systems as interventions [Joshi et al., 2025].

However, the traditional RCT framework is not designed for ML-enabled systems, which (unlike drugs) are often
updated frequently to handle performance degradation. Even when RCT data is available for a single version of
an ML-DST, it is not obvious whether those results apply to later models, and running additional RCTs to verify
continued effectiveness is both time-consuming and costly.

Our work addresses this challenge from a methodological perspective, as illustrated in Fig. 1: We formalize
conditions under which data from an existing RCT can be used to precisely infer or bound the causal impact
of deploying models that were not included in the original RCT. We take into account two important practical
considerations: First, model performance (e.g., accuracy at diagnosing disease) will influence user trust in the system,
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Figure 1: (a) The goal of this paper is to predict the causal impact of deploying a new model 7, given data from
a cluster randomized trial that randomizes sets of users (e.g., hospitals) to one of a set of trial models that does
not include m.. (b) The first challenge: Relevant outcomes (e.g., of patients) are not only influenced by model
outputs, but also by how users actually respond to the outputs of model-based decision-support, which may itself be
affected by the perceived reliability / performance of the model. (c¢) The second challenge: There may exist some
subset of cases (e.g., patients) for whom we never observe certain model outputs, making it impossible to give precise
predictions for outcomes of patients in that group, denoted by the question mark.

and thereby indirectly influence outcomes (Fig. 1b). Second, while the deployment of DSTs is often randomized,
the predictions themselves are not typically randomized (Fig. 1c¢), since doing so would undermine trust (e.g., by
raising alerts randomly). Hence, there may be some combinations of model outputs (e.g., diagnoses) and inputs (e.g.,
patients) that we never observe.

Under limited assumptions that incorporate these considerations, we derive bounds on the causal impact of
deploying a new model. Crucially, we show that both of our main assumptions can be checked using RCT data
that includes at least two models with differing performance characteristics. In a simulation study, we show how our
framework yields more rigorous conclusions about the value of model updates, as compared to naive approaches that
only judge models based on their raw performance.

Our results have practical implications for post-trial analysis and pre-trial design. First, evaluating new models
using historical trial data is possible under reasonably limited assumptions, but not all alternative models can be
precisely evaluated in this way. Second, our results suggest a benefit to running RCTs with multiple ML models to
maximize the ability to estimate causal impacts in future model updates.

To summarize, our contributions are as follows:

e We provide assumptions (Assumptions 2.1 and 3.1 to 3.3) under which we derive bounds (Theorem 3.1) on
the effect of deploying a new ML model, given data from a prior RCT. Our bounds are tight, and cannot be
improved without further assumptions (Theorem 3.2).

e We provide a simple estimator for these bounds and a procedure for generating asymptotically valid confidence
intervals (Proposition 3.4). We also show that our core assumptions can be falsified via hypothesis tests
constructed from RCT data trialing multiple models (Propositions 3.1 and 3.2).

e We provide recommendations for pre-trial design and post-trial analysis in light of our results (Section 4), and
demonstrate in a simulation study (Section 5) that our bounds provide a more informative tool to select among
model updates, as compared to using the raw performance (e.g., accuracy) of updated models.

Related literature: Our work is related to off-policy policy evaluation in causal inference and reinforcement
learning [Uchara et al., 2022]. An ML-DST can be viewed as a deterministic policy that chooses actions (i.e.,
predictions or alerts to raise) based on context (i.e., inputs to the model) with the goal of obtaining some reward
(i.e., positively influencing outcomes for patients). Two critical distinctions arise in our work versus the standard
setting: First, the policies that are present in retrospective data (in our case, from a trial) are deterministic rather
than random, leading to violation of the common assumption that, for a given context, there is a positive probability
of seeing any action. Second, we allow for the fact that actions taken for one patient can influence outcomes for other



Figure 2: The directed acyclic graph (DAG) G depicting the causal relationships in our problem setup (Assump-
tion 2.1). We draw circles around nodes II, A, M to represent that these variables are deterministic given their
parents.

patients. Our work is also related to causal evaluations of Al-assisted decision-making in criminal justice settings
[fmai et al., 2023, Ben-Michael et al., 2024], but our goal differs: Rather than evaluating the impact of Al-assistance
on the accuracy of (observable) predictions made by a human, we are interested in the total effect on downstream
outcomes.

2 Model and Problem Setup

Notation: Note that in the rest of this paper, we use the terms model and policy interchangeably. We use upper
case letters X to denote a random variable, calligraphic font to denote the space of possible values X', and lower-case
to denote a specific realization of a random variable z. We assume that the causal structure of an RCT is modeled
by a directed acyclic graph (DAG) G over a set of vertices V = {A,Y, D, X,II, M}, where A € A represents the
output (or “action”) of the deployed model, ¥ € R represents an outcome of interest, D € D represents the cluster to
which a user is assigned, X € X represents covariates used as inputs to the ML model, II € IT represents the specific
ML model that was deployed, and M € R represents model performance, which we represent as a real number. We
assume that model performance is computable for any model via some functional fys(7) (e.g., the accuracy, precision,
recall, sensitivity, specificity, or some combination, computed on a held-out dataset where m(X) is considered the
model prediction). We also use the indicator function 1{S} which is equal to 1 if the event S is true, and 0 otherwise.

Example 1 (Alerting Systems). Suppose we are interested in the effect of deploying a DST that monitors patient
vital signs and selectively raises an “alert”. A common application of these systems is detecting the onset of sepsis
and alerting clinicians to facilitate timely intervention [Adams et al.; 2022, Sendak et al., 2020, Boussina et al., 2024].
Here, the inputs X to the model are typically vital signs, the outcome Y may be long-term patient survival, and the
outputs A include raising an alert (A = 1) or not (A = 0). The variable M in this setting could correspond to the
false alarm rate of the alerting policy II when it comes to predicting the onset of disease within the next hour. Note
that the label used for computing performance here (onset of disease) differs from the patient outcome of interest Y
(survival). A control arm of “no assistance” can be represented as a deterministic policy that never raises an alert.

Example 2 (Computer Assisted Diagnosis). Suppose we are interested in the effect of deploying a diagnostic model
that assists with screening for some disease. Here, the outcome of interest Y may be long-term patient survival, X
would include inputs to the model (e.g., medical imaging, past medical history), and the set of actions A could include
a set of K possible diagnostic labels as well as the option of deferring to a human expert, such that A = {&,1,..., K},
where @ denotes deferral. The variable M in this setting could represent the overall accuracy of the diagnostic model
at predicting some true diagnostic label or some combination of its sensitivity and specificity when it does not defer.
In a randomized trial where the control arm consists of “no assistance”, the resulting “policy” in the control arm
could be viewed as a deterministic policy that always defers.

For concreteness in the remainder, we will primarily use the language of healthcare applications (e.g., patients,
clinical outcomes, etc). Our assumed causal structure can be represented by the structural causal model (SCM) that
we define below, which is consistent with the DAG shown in Fig. 2.

Assumption 2.1 (Data Generating Process). The random variables D e D, e I, X € X, A€ A, andY € R



are generated according to the SCM

D = fp(ep), X = fx(ex),
H:7TD, M:f]\/f(H)v
A:H(X) Y:fY(A7X7Ma€Y)7

where ey, €p, and €x are mutually independent.

We make a few notes regarding Assumption 2.1. First, the randomization into a specific policy (signified by D)
is independent of covariates X. Second, the policy II is entirely determined by D, model performance M is entirely
determined by IT (and observable), and the output A is a deterministic function of X, based on II. This deterministic
nature of model outputs can create difficulties in evaluating new models; in particular, we are unlikely to see all
possible outputs a € A for all types of patients X. Finally, we assume that outcomes Y are not only a function of
covariates X and the model output A, but also the performance M of the model'. Note that we assume that M and
A are sufficient to capture the impact of a deployed model on outcomes.

3 Identification and Bounds

Goal: We adopt potential outcomes notation [Richardson and Robins, 2013] where we use Y(A = a,M = m) =
fy(a, X, m,ey) to denote counterfactual outcomes, representing the value of Y that would be observed if we had
taken action A = a with a model whose performance is given by M = m?. Using this notation, our goal is to infer
expected outcomes if we had deployed a new model / policy 7, not trialed in the original RCT, i.e.

E[Y(Tre)} = E[Y(A =Te, M = f]v[(ﬂ—e))] (1)

We refer to E[Y (A = 7, M = fay(w.))] as our target estimand or policy value. Once this value is inferred, one could
compute the causal effect of deploying 7. as opposed to any other trialed model 7; by evaluating E[Y (A = 7., M =
fu(me))] = E[Y (A =my, M = far(mi))]-

Example 1 (continued). For simplicity, suppose that the model alerts based on thresholding a pre-defined risk score
r(z) that is a function of vital signs (e.g., systolic blood pressure, respiratory rate, etc). Suppose that an initial RCT
assigns patients to a control arm, D = 0 where my = 0 (alerts are never raised), and a treatment arm, D = 1 where
the model raises alerts using the threshold ¢, i.e., m1(x) = 1{r(xz) > t}. Suppose we want to use this RCT data to
evaluate the impact of two alternative models with a lower and higher threshold respectively, m;(x) = 1{r(z) > ¢;}
and m,(z) == 1{r(x) > t,} where ¢, >t > t;. Fig. 3 visually demonstrates the challenges of this task for evaluating
7, since we never observe alerts for patients with r(z) € [t;, t].

In order to estimate the policy value in Eq. (1), we introduce a few key assumptions that relate outcomes under
different hypothetical models / policies. First, since it is unlikely that our target policy 7. has exactly the same
performance M as policies trialed during the RCT, we need to assume a relationship between outcomes and model
performance.

Assumption 3.1 (Performance Monotonicity). Potential outcomes are non-decreasing in model performance, i.e.,
if m; < my, then for all a € A,
Y(A=a,M=m;) <Y(A=a,M=m;).

Assumption 3.1 says that improvements in model performance do not harm patient outcomes, given a fixed action.
For instance, in the context of Example 1, we might expect that for a given patient, having an alarm raised by a
high-performance model would not lead to worse outcome than if that alert had been raised by a model with frequent
false alarms. Note that this assumption is stated with a fixed action A = a, and does not imply that improving
performance alone is guaranteed to improve outcomes: A change in model performance is generally associated with
a change in outputs, which may have its own effect on outcomes. In Section 5, we give a case where improved overall
performance (accuracy) is associated with worse outcomes.

1We discuss defining M for the control arm in Section 3.
2We defer a more detailed discussion of potential outcomes and other causal inference background to Appendix A.



m(Age)
NN\
mfAge) ANOONNNNANNN
Patient 2 : o :
Outcomes e) _
QL T
@) 1 |
O: S eo—06e o o
|
tI t Risk Score

¢ Patient outcome with -. Model alerts
alerts

() Patient outcome without |:| Model does not alert

alerts

Figure 3: Illustration from Example 1 below, demonstrating the challenge of our task. We can use data from both
the control arm my (green) and 71 (blue) to infer patient outcomes when m; (orange) does not raise alerts for patients
with risk scores less than ¢;. Next, we can use data from 7 (blue) to infer patient outcomes when m; raises alerts for
patients with risk scores greater than ¢t. However, we do not know what patient outcomes are when 7; raises alerts
for patients with risk scores between t¢; and t.

Proposition 3.1 (Falsification of Assumption 3.1). Let X denote the full space of possible covariate values. Un-
der Assumption 2.1, given data from an RCT that includes at least two trialed models w1 and 7o with different levels
of performance far(m) < fa(m2), and whose actions agree on a non-empty set of patients Xogree = {x € X | m1(z) =
ma(x)} such that P(X € Xygree) > 0, the observation that

E[Y | X € Xagreea = 71—2] < ]E[Y | X € XagreevH = 7Tl]a
implies that Assumption 3.1 is false.

The proof for Proposition 3.1, along with all other proofs, is given in Appendix B. While it is not possible to
guarantee that Assumption 3.1 is true in general (over all possible models), it has observable implications in an RCT
that we can check. In particular, this result suggests a simple hypothesis test that we can use to falsify Assumption 3.1:
compare two empirical means in the data and check if outcomes are lower under 75 than under m; on those cases
where m; and 7o agree on their actions.

In our discussions thus far, we have considered the control arm to be just another policy. However, this framework
creates practical difficulties when considering the model performance of a control arm. For instance, suppose the
relevant metric for model performance is the false positive rate (as in Example 1); then, M is not clearly defined
because the control arm never raises alerts. Alternatively, if the relevant metric were model accuracy under no
deferral (as in Example 2), then the performance of the control arm would be similarly undefined. One way of
resolving this tension is to presume the existence of a “neutral” action (e.g., not raising an alert, or deferring to
clinicians).

Assumption 3.2 (Neutral Actions). There exists a “neutral action” ag € A such that the potential outcome of Y
under ag does not depend on model performance M. That is, for any two values my, mo, including when my # ms,

Y(A=ag,M =my) =Y (A= a9, M =my), (2)
and in these cases we use the shorthand Y (A = ag) to reflect the fact that the outcome does not depend on M.

Assumption 3.2 is a sufficient condition for leveraging data from the control arm of an RCT in our setting, and
implies that when a model output is “neutral” (e.g., no alert in Example 1, or deferral in Example 2), decision-makers
act as they would if no model were deployed?.

3Note that, while all of our results make use of Assumption 3.2, they can also be re-written to hold if Assumption 3.2 is false,
by re-defining ag as some placeholder model output that is never observed under any model (including m.), such that indicators like
1{mec(z) = ao} are always zero.



Proposition 3.2 (Falsification of Assumption 3.2). Under Assumption 2.1, given data from an RCT that includes at
least two trialed models w1 and mo with different levels of performance fur(m1) < far(m2), and which both models take
the neutral action ag on a non-empty set of patients X,, = {x € X | m1(z) = mao(x) = ag} such that P(X € X,,) > 0,
the observation that

EY | X € &,,,lI=m] #E[Y | X € X,,, 11 =m],
implies that Assumption 3.2 is false.

Similar to Proposition 3.1, Proposition 3.2 suggests a simple hypothesis test that can be used to falsify Assump-
tion 3.2: compare two empirical means in the data to test if outcomes under 7 and ms are significantly different on
the cases where they both choose ag as the model output. Of particular interest is the scenario where a control arm
exists, and we are interested in checking whether outcomes under the control arm (e.g., not alerting in Example 1)
coincide with outcomes in a treatment arm where the trialed model agrees with the control arm (e.g., does not raise
alerts in Example 1).

Example 1 (continued). Consider the evaluation policy 7, (z) = 1{r(z) > t,} where the threshold for alerting ¢,, > ¢
is greater than the threshold used in the original trial and where the performance of 7, (z) (e.g., the precision) is
greater than that of the original trialed policy 71. In this scenario, under Assumptions 3.1 and 3.2, we can intuitively
infer a lower bound on the policy value of 7, using the outcomes of both (a) patients with r(z) < ¢, who did not
receive alerts in the trial (either because they were in the control arm or because 71 did not raise alerts), and (b)
those patients with r(z) > t,, who did receive alerts under ;.

While these assumptions are sufficient in some scenarios, they do not yield meaningful bounds when a new policy
takes actions (i.e., a new model produces outputs) on a given case that were never seen for similar cases in the RCT.

Example 1 (continued). Consider the evaluation policy m(z) = 1{r(z) > ¢;} where the threshold for alerting
t; < t is less than the threshold used in the original trial. Regardless of the performance of 7; in this scenario, even
under Assumptions 3.1 and 3.2 we have no way to infer outcomes under m; for the individuals where r(z) € [t;,1].
These correspond to a set of “never alerted” individuals where 7; raises an alert, but where neither the control arm
nor the trialed policy 7 raised an alert.

To resolve this fundamental uncertainty, it is sufficient to know that outcomes Y are bounded, such that we can
provide some bounds on expected outcomes in the evaluation of policies that take never-before-seen actions.

Assumption 3.3 (Bounded Outcomes). There exists constants Yiin, Yimasz such that Yo <Y < Y.

We will shortly present our main result: Under our data-generating process (Assumption 2.1) and the assumptions
above (Assumptions 3.1 to 3.3), we can provide tight bounds on expected outcomes under any proposed model 7.
First, however, we will define some useful notation for conveying our results, which builds upon the intuition above.

Definition 3.1 (Partitions). For each value of x, we first define the set of trialed models (possibly none) that agree
with 7. (z)* and subsets of this set based on the performance characteristics of those trialed models.

Si(z) ={i € D|m(x) =7.(x)}

S—(z) ={i € Su | fu(mi) = fu(me)}
Sc(z) ={i € S| fu(m) < fau(me)}
Ss () ={i € S| fu(mi) > fu(me)}

and we further define subsets of S., S~ where we only index the next-best or next-worst performing model®

S<(z) = argmax fu (m;), Ss (z) = argmin for ().
iE€S< (@) 1€S> ()

4All these partitions are defined with respect to the model 7, and could be written more precisely with 7. as an argument (e.g.,
S«(x;me), X=(me)) but we suppress this notation for simplicity.
5We only use these sets when S<, S~ are non-empty, but we additionally use the convention that arg min;c 4 (f(i)) = @.



Using these sets, we define several subsets of X', where there exist trialed models that do or do not agree with m,
and have equal/better /worse performance.

X ={z € X | S:(z) # o}

Xo={xeX|S=(x) # T}
Xo = {r € X |So(2) £ 0} \ Ao, X = X0\ (A, X
Xs ={r e X[ S5 (x) # o} \ A, Ay = X\ {A=, X}

where X, X5 are defined to exclude any overlap with X_.
Using Definition 3.1, we can give precise upper and lower bounds on the performance of a new model 7.

Theorem 3.1. Given the data generating process in Assumption 2.1, and under Assumptions 3.1 to 3.3, the policy
value of a model / policy 7. is bounded as

L(me) SE[Y(A=me, M = fa(me))] < U(me), (3)
where

L(m.) =E[1{X € X_}1{m. #ao}E[Y | X, D € S_(X)]
+1{X € X }1{me # ao}E[Y | X, D € S.(X)]
+ 1{X € Xz} 1{me # ao}Ymin
+ 1{X € X, }1{me = ap}E[Y | X, D € S.(X)]
F1{X ¢ X {re = a0} Yy

Ume) =E[1{X € X_}1{m. # a0 }E[Y | X, D € S_(X)]
S 1{X € X} 1{m £ ao)E[Y | X, D € 8o (X)]
+ 1{X € X% }1{me # a0} Yimaa
+ 1{X € X} {7 = ap}E[Y | X, D € S.(X)]
+ 1{X ¢ X }1{me = ao}Yinaal

These bounds are still valid if we replace S<(x) with S<(x) and Ss(x) with S (z), which we denote L(m.), U ().

We give intuition for the construction of the lower bound. First, under model output ag, we use data from the
control arm and any trialed model outputting ag to infer patient outcomes. Next, we break up the target estimand
into its components over three subpopulations: two subpopulations where there is at least one trialed model in the
RCT that matches in output with 7. and that (i) has the same performance as 7. and (ii) has worse performance
than 7., and a third subpopulation that fits into neither of the above two categories. In the first subpopulation,
we point identify the policy value from data trialing models that match in output and have the same performance.
In the second subpopulation, we lower bound the policy value with data trialing models that match in output and
have worse performance. Finally, in the third subpopulation, we have no information on how m. might behave, so
we lower bound the policy value by Yi.i,. Notably, these bounds cannot be improved without further assumptions,
as we show in the following.

Theorem 3.2 (Tightness of bounds in Theorem 3.1). For any observational distribution P(X,Y, A, M,1I, D) con-
sistent with the assumptions of Theorem 3.1, there exist two structural causal models My, My such that both are
consistent with Assumptions 2.1 and 3.1 to 3.3, both give rise to that same observational distribution P, and where
the policy value of any policy w. under My, My is given by I~/(7re), U(’]Te) from Theorem 3.1, respectively (the bounds
constructed using §<7S>). Hence, these bounds cannot be improved without further assumptions.

Note that Theorem 3.2 implies that the tightest possible bounds require the use of e.g., S< in place of Sc. This
requirement arises because we may get tighter lower-bounds (and similarly, tighter upper-bounds) by using only out-
comes under the “next-worst/best” performing model, rather than averaging over outcomes under all worse/better-
performing models. Nonetheless, it may be useful to use S instead of S in some scenarios due to sample-size concerns,
especially if outcomes Y do not vary significantly with M.

When is exact identification possible? To better understand conditions for agreement of upper and lower
bounds, we directly consider the width of these bounds.



Proposition 3.3 (Bound Decomposition). The gap between the bounds in Theorem 3.1 can be written as

U(me) — L(me) = E[5(X, Y, D)]

where

(5(X,Y,D) = (Ymaz - Ymin)l{X € X*C} (4)
+[E[Y | X,DeS.(X)]-E[Y | X,D e S(X)])

A # a0, X € Xon Ao} (5)
+ Yimee —E[Y | X, D € S<(X)])

{7 # ag, X € X NALY (6)
+ EY [ X, D € S5(X)] = Yinin)

“{me £ ap, X € A NXL} (7)

Moreover, 6(X,Y,D) > 0 almost surely under the assumptions of Theorem 3.1. For L,U, this gap holds with
S<(z), S~ (x) replaced with S<(z), S (x).

Note that the only way to achieve point identification (a gap of zero in Proposition 3.3) is if each component
(Egs. (4) to (7)) is equal to zero. Eq. (4) captures uncertainty that arises in the subset of the population X'¢ where
no trialed model agrees with the output of the model w.. For this term to be zero, there must exist some trialed model
that agrees with the action taken by 7. for every value of X. Second, Eq. (5) reflects differences in the bounds for the
subpopulation where the evaluation policy 7. takes a non-neutral action (m.(X) # ag), and the trialed models that
agree with 7. include both better-performing (X~) and worse-performing (X~) models®. Here, the outcomes under
the better /worse-performing models give an upper/lower bound on the outcomes under 7. For this term to be zero,
either this subpopulation (X< N X5 ) must be empty, or the outcomes under the better and worse-performing models
must coincide”. Equations (6) and (7) capture subpopulations where the only models that agree with 7. are either
better-performing (giving an upper bound, but no meaningful lower bound on performance) or worse-performing,
and these sets must be empty for these terms to be zero.

How can we estimate these bounds from data? Proposition 3.4 below implies a simple estimator that can
be used to estimate bounds (and provide asymptotically valid confidence intervals) on the policy value for a new
policy m, without the need for training auxiliary models.

Proposition 3.4. The bounds in Theorem 3.1 can be written L(w.) = E[¢ (X, D,Y)] and U(n.) = E[¢y (X, D,Y)],
where V1, and Yy are defined as follows

CAE X ) o
DeS(X .

Y.;(Dgsiié‘x);’ ZfX€X<77re(X)7éa0

’L/)L(X’D’Y) = 4 Yinin, ZfX S Xﬁ,'fre(X) 7& ap

1{DeS. (X . N

Y.W’ leGX*77re(X)—aO

Yinin, if X & X, me(X) = ag

Y'%= if X € X_,me(X) # ag
S .

Y.]I-)(ggsiigi{);’ le€X>77re(X)7éao

Yu(X,D,Y) = YW,{ o if X € Xy, me(X) # ag
1{DeS. (X .

vy Hpeel, X eX m(X)=ao

Ymaza ZfX g.)f'*,’fre(X) =ag

6Recall that the definition of X< and X explicitly excludes any values of X where there exists a model/policy that agrees with 7e
and has exactly the same performance.

"Equivalence of conditional outcomes could occur if differences in performance do not impact outcomes for the range of performances
tested. Note that Assumption 3.1 allows for this occurrence, as it does not assume a strict inequality.



Moreover, since Yy, Yy are known functions of the data, these bounds can be estimated as
L(me) =n""Y ¢ (Y;, X;, Dy)
i

U(re) =n""Y vu(Yi, X, Di)

where \/n(L — L) <4 N(0,02(¢pr)) where o2(vp1,) is the variance of ¥y, and <4 denotes convergence in distribution,

with similar convergence of U, and hence

-2 (1-5) 2 o (1) 2]

is an asymptotically valid (1 — a)-confidence interval, where G (1) is the empirical standard deviation of ¢ and @‘1 18
the inverse of the standard normal CDF. For L,U, all the above holds after replacing S<(x), Ss (z) with S<(x),S> ().

Proposition 3.4 gives a straightforward way of estimating bounds from data as empirical means over the RCT
dataset. To give intuition, terms like p(D € S< (X)) are known by design (though they depend on X), since p(D)
is assumed to be known and the trialed policies II are known, and so asymptotic normality is straightforward to
demonstrate.® In Section 5, we use Proposition 3.4 to estimate the bounds for the effect of deploying a new model.

4 Implications for pre-trial design and post-trial analysis

Aside: Why require the performance assumption? We pause to reflect on the importance of the assumption
(implicit in Assumption 2.1) that implies that our choice of model IT impacts outcomes, not only through the outputs
A, but also through model performance M. Broadly speaking, this assumption is not only intuitive from a real-world
perspective, but it also has the welcome side-effect of ruling out nonsensical conclusions about trial design. For
instance, there are trivial ways to satisfy the condition that, for every value of X', there exists some model in the trial
that matches the output of 7. In the context of Example 1, for instance, one could trial an alerting system that
simply always raises alerts for every patient, alongside a control arm that never raises alerts. The assumption that
model accuracy M impacts outcomes gives a formal rationale for why this type of trial design is nonsensical: The
observed impact of this “always alert” policy would likely be minimal (or even harmful), compared to never raising
alerts, due to the negative impact of extremely poor accuracy or false positive rates.

Recommendation: Conduct trials with multiple models. Our results suggest the utility of trialing multiple
models in a cluster RCT that vary in their outputs on different patient populations and which exhibit a range of
reasonable performance characteristics. First of all, doing so gives more flexibility to estimate the value of new
models if there are sizeable populations where trialed models raise different outputs. Second, falsification of our
main assumptions (Assumptions 3.1 and 3.2) can be done using data from patient populations where the outputs of
different models agree.

Recommendation: Improved accuracy is not sufficient for deployment. Given a set of models or
policies included in a trial, it may be tempting to conclude that an updated model or policy that is more accurate
(on average) should be deployed. However, this conclusion may be flawed given the goal of improving patient
outcomes. For instance, a model that is more accurate, but achieves higher accuracy by sacrificing performance
on some important subpopulation, may ultimately lead to worse outcomes. Indeed, in Section 5 we give a simple
simulated example where the optimal model is not the model with the best performance.

5 Simulation Study

We now describe a simple simulated example, inspired by Example 1, that demonstrates the results derived in
Section 3 and how our proposed method allows for more robust comparisons between models. We consider machine
learning models that alert clinicians to the near-term onset of some disease, denoted O € {0, 1}. We simulate a cluster

8The statistical efficiency of these bounds could potentially be improved by using a doubly-robust-style estimator that incorporates
an estimate of terms such as p—(X) := E[Y | X = 2, D € S<(X)], but we present this simpler estimator for ease of exposition.
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Figure 4: Bar graph showing accuracy at predicting disease, and expected patient survival rates, of different simulated
alerting models. Bars denote ground-truth values, and blue intervals denote estimated bounds using our approach.
Because 7o and 7.; were not trialed in the RCT, their bounds are wider. Despite m.; having the greatest raw
accuracy, 7o has the most positive effect on patient survival rates.

RCT with three arms: A control arm, denoted as a policy 7y that never alerts, and two arms where models 71 and
o are deployed, respectively. For simplicity, we consider model performance M to be the ground-truth accuracy in
predicting disease onset. Our outcome of interest, Y € {0, 1}, is patient survival, and X represents a baseline health
characteristics. For the sake of an interpretable simulation, X takes on values uniformly in {0, 1,2, 3}, corresponding
to decreasing likelihood of disease onset. The trialed models are defined as m; = 1{X = 1} and m = 1{X € {2,3}}.

Table 1 gives expected values of O and Y (a,m) over all possible values of X, satisfying Assumptions 3.1 to 3.3. In
this simulation, patients with X = 0 are the most likely to develop disease, yet raising an alert on these patients only
increases their survival rate by 0.1, while raising an alert on other cases increases survival rate by 0.5. This simulated
scenario captures the real-world intuition that clinicians may already be paying attention to these “obvious” cases,
such that raising an alert does little to improve outcomes. We consider the effect of deploying two new models,
meo = 1{X € {1,2,3}} and w1 = 1{X € {0,1}}, whose accuracy at predicting onset is computable using Table 1.
We then estimate bounds on E[Y (A = m, M = fy(m))] for each model (including confidence intervals to incorporate
finite-sample uncertainty, as described under Proposition 3.4) using data from a simulation with n = 5,000. Fig. 4
shows the simulation results and illustrates that the most accurate model is not always the best: 7. has
the greatest accuracy in predicting the onset of disease, but 7o has the largest causal impact on patient outcomes.
This reversal occurs since 7o raises alerts for patients who stand to benefit the most, whereas m.; tends to alert for
patients who have little to gain from them. Moreover, our bounds reflect greater confidence in the (positive) impact of
Teo, since the lower bound for patient outcomes under 7. is greater than patient outcomes under all trialed models.
Python code implementing this simulation study, implementing the estimation procedure proposed in Proposition 3.4,
and for generating Fig. 4 is publicly available online at: https://github.com/jacobmchen/just_trial once.

6 Conclusion and Limitations

In this paper, we discussed methods for estimating the causal impact of new or updated ML and AI models not
previously trialed in an RCT. Under the important considerations that ML predictions are deterministic and that
clinician trust in ML models play a role in determining their impacts on patient outcomes, we demonstrated how one
could estimate lower and upper bounds on a new model. Given the possibility that key assumptions for employing
our methods may not be fulfilled, we proposed simple strategies for testing and falsifying them. Finally, we concluded
with a simulation study to illustrate the application of our method and to highlight its benefits when selecting among
model updates and considering the causal impact of new models.

However, our work is not without limitations: First, our derived bounds are naturally pessimistic, and, while they
cannot be tightened without further assumptions (Theorem 3.2), some additional assumptions may be warranted in
some cases. For instance, we implicitly assume that “anything can happen” when a model raises an alert on patients
who never received alerts in the past. One could instead assume that alerts are not harmful (except for their impact
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X=0 X=1
E[0] 0.9 0.7
E[Y(a,m)] | 0.34+0.1a+0.1am | 0.4+ 0.5a + 0.1am
X =2 X =3
E[0] 0.6 05
E[Y (a,m)] | 0.3+ 0.5a + 0.1am | 0.2+ 0.5a + 0.1am

Table 1: A table summarizing the probability of developing disease (E[O]) and the expected survival rate (E[Y (a, m)])

for the simulation in Section 5.

on performance), or that they are not harmful for a specific patient if the alert is correct. Second, we assume that
model performance can be summarized in a single real number, but a more complex representation (e.g., involving
subgroup-specific performance) may be warranted in some applications. Finally, a core limitation of our approach is
that we still require an RCT. Using RCT data comes with many benefits: It allows for greater confidence that core
assumptions (e.g., randomization of policies) hold by design, and even allows for checking (in some cases) the core
assumptions we make in this paper, as we have shown (Propositions 3.1 and 3.2). However, observational studies
(e.g., pre-post studies of model deployments) are often easier to run in practice. Our hope is that this work can serve
as a springboard towards increasing the utility, and thus adoption, of RCTs for ML models deployed in high-risk

settings.
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Appendix

A Brief Causal Inference Overview

Figure 5: SWIG showing G(a, m).

In this section, we give a brief overview of additional topics in causal inference that we use in our proofs and
provide references for further reading on these topics.

First, independencies implied in the full data distribution p(V) can be read off from G using the d-separation
criterion [Pearl, 2014]. In our proofs, we assume faithfulness [Spirtes et al., 2001], which states that any independencies
implied by the data distribution must be reflected in G via d-separation and vice versa. Formally, A 1L B | C in
p(V) if and only if A 1l 4sep B | C, where A and B are variables and C is a set of variables that can be empty.

Next, we follow [Richardson and Robins, 2013] to convert a DAG G, given an intervened on variable W, to a
single-world intervention graph (SWIG) using a node-splitting transformation as follows: (1) replace all children of
W, V, with the potential outcome random variable V(w), (2) add the intervened on variable w into G as a new
vertex, and (3) change all outgoing edges from W to originate from w instead. This new SWIG is denoted by
G(w). Tt is possible to intervene on multiple variables in G by repeatedly applying the node-splitting transformation
described above. Fig. 5 shows the SWIG G(a,m), the SWIG containing the potential outcome random variable
Y (a,m) corresponding to the target estimand E[Y (A = 7., M = fa(7e))].

In order to connect potential outcome distributions to observed distributions, [Malinsky et al., 2019] propose a
set of three rules known as the potential outcome calculus (po-calculus). Most salient to our proofs is Rule 2 of po-
calculus, which states that p(V(w) | X) = p(V | X, W = w) if V(w) 1L W | X in G(w), where X is any set of random
variables in G(w), including the empty set. Rule 2 is also referred to as the conditional ignorability assumption
commonly used in causal inference, which states that a potential outcome of interest is independent of a treatment
of interest conditional on a sufficiently rich set of covariates X. The benefit of using Rule 2 of po-calculus is that
it allows us to use d-separation in a SWIG to directly verify whether conditional ignorability holds. For instance,
note that Y (a,m) 1L A, M | X in the SWIG shown in Fig. 5. Rule 2 of po-calculus thus allows us to conclude that
p(Y(a,m) | X)=p(Y | A=a,M =m,X).

We now formally define some concepts from our discussion above that we use in our proofs.

Corollary A.1 (Consistency). Under Assumption 2.1, if A=a, M =m, then Y =Y (A =a,M =m).
Corollary A.2 (Conditional Ignorability). Under Assumption 2.1, since Y(a,m) 1L A, M | X, then P(Y (a,m) |
X)=PY |A=a,M =m,X).

B Proofs

Proposition 3.1 (Falsification of Assumption 3.1). Let X denote the full space of possible covariate values. Un-
der Assumption 2.1, given data from an RCT that includes at least two trialed models w1 and 7o with different levels
of performance fur(m) < fa(m2), and whose actions agree on a non-empty set of patients Xogree = {x € X | m1(z) =
ma(2)} such that P(X € Xggree) > 0, the observation that

EY | X € Xagree, I = mo] < E[Y | X € Xygree, II = m1],

implies that Assumption 3.1 is false.
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Proof. We will show that if Assumption 3.1 holds, then the stated observation will yield a contradiction. We will
first show that the Assumption 3.1 implies a point-wise inequality over x, and then show that this inequality holds
when aggregating over X € X,g1c. First, choose any € &Xygr0c. Then we can write

EY | X=2=m]=EY | X=0,A=mn((x),M = fy(m;), I =m] (8)
=EY(A=m(z),M = fu(m)) | X =2,A=m(z), M = fu(m), Il = m;] (9)
=EY(A=m(z), M = fu(m)) | X = 2] (10)

where Eq. (8) follows from the implication {Il = m;, X = 2} = {A = m(z),M = fu(m)}, Eq. (9) follows from
consistency (Corollary A.1), and Eq. (10) follows from conditional ignorability (Corollary A.2). Since Eq. (10) holds
for both policies 71, w3, we can then write that
EY | X=2,I=m] —E[Y | X =2,II = m]

=E[Y(A =my(2), M = fu(me)) = Y(A=m(z), M = fu(m)) | X = ] (11)

>0 (12)
where Eq. (11) follows from linearity of expectation, and Eq. (12) follows from Assumption 3.1, since m(z) = m2(z)
by construction, and fys(m2) > far(m1). To aggregate, we first observe that X 1l II in our data generating process

(as the policies are assigned randomly and independently of X). Hence P(X | Il = w3, X € Xagree) = P(X | I =
71, X € Xagree) = P(X | X € Xagree). Accordingly, we can write that

E[Y | X € Xagree, I1 = 772] - E[Y ‘ X € Xagree, I = 771}

= /E[Y | X = 2,11 = m]dP(x | Il = 72, X € Xagree) — /E[Y | X =z, lI=m]dP(z |l =7, X € Xagree)

_ /E[Y | X = 2,11 = m]dP(2 | X € Xogreo) — /IE[Y | X = 2,11 = m]dP(x | X € Xagreo)

x

:/(]E[Y|X::c,H:7r2]—IE[Y|X::v,H:7rl])dP(x|X€Xagree)

>0

where the final inequality follows from the point-wise inequality in Eq. (12), and which directly gives the implication
EY | X € Xagree, I =m2] > E[Y | X € Xagree, II = m1],

which is contradicted in the case where the stated observation (the relationship < instead of >) holds. O

Proposition 3.2 (Falsification of Assumption 3.2). Under Assumption 2.1, given data from an RCT that includes at

least two trialed models w1 and wo with different levels of performance far(m1) < far(m2), and which both models take

the neutral action ag on a non-empty set of patients X,, = {x € X | m1(x) = ma(x) = ag} such that P(X € X,,) > 0,

the observation that
EY | X € X,,,lI=m] #E[Y | X € X,,, I = m],

implies that Assumption 3.2 is false.

Proof. Our proof follows a similar structure to that of Proposition 3.1. We will show that if Assumption 3.2 holds,
then the stated observation would yield a contradiction. We will first show that the Assumption 3.2 implies a point-
wise equality over x, and then show that this inequality holds when aggregating over X € X,,. First, choose any
x € X,,. Then we can write

EY | X =2,=m]=E[Y(A=m),M=fy(m)]| X =2a] (13)
using the same argument as in Proposition 3.1 (namely, the implication that {Il = m;, X = 2} — {A=m(z),M =

far(mi)}, consistency (Corollary A.1), and conditional ignorability (Corollary A.2). Since Eq. (13) holds for both
policies w1, ™3, we can then write that

EY | X=2,=m]—-E[Y | X =z,1I=m]

=E[Y(A=ma(x), M = fum(me)) = Y(A=m(x), M = fu(m)) | X = 2] (14)
=E[Y(A=ao,M = fu(m2)) —Y(A=ao, M = fu(m)) | X = 1] (15)
—0 (16)
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where Eq. (14) follows from linearity of expectation, Eq. (15) follows from the fact that « € X, , and Eq. (16) follows
from Assumption 3.2, which states that Y(A = ag, M =m) =Y (A = ag, M = m’) for any m, m’.

To aggregate, we first observe (similar to the proof of Proposition 3.1) that X L IT in our data generating process
(as the policies are assigned randomly and independently of X). As a result, we can write that

E[Y | X € Xy, 1= 7o) —E[Y | X € X,,, 11 = 7]

:/E[Y|X:x,H=7r2]dP(3:|H=W2,X€Xao)—/E[Y|X:a:,H:m]dP(x|H:7T1,X6Xa0)
:/IE[Y|X::U,H:7r2]dP(x|XeXao)—/IE[Y|X:J;,H:m]dP(x|X6Xa0)

:/(IE[Y | X =2, ll=m] —E[Y | X =2, 11=m])dP(z | X € X,,)
- 01
where the final equality follows from the point-wise equality in Eq. (16), and which directly gives the implication
EY | X eX,,,I=m|=E[Y | X € X,,,lI = m],

which is contradicted in the case where the stated observation (an inequality instead of equality) holds. O

B.1 Proof of Theorem 3.1

Before we give the proof of Theorem 3.1, we restate Definition 3.1 from the main text, for ease of reference when
reviewing the proof.

Definition 3.1 (Partitions). For each value of z, we first define the set of trialed models (possibly none) that agree
with 7 (z)? and subsets of this set based on the performance characteristics of those trialed models.

Si(z) ={i € D|m(x) = me(z)}

S—(z) = {i € S« | fu(mi) = fu(me)}
S<(z) ={i € S« | fur(mi) < fur(me)}
Sx () ={i € S| fu(mi) > fau(me)}

and we further define subsets of S., S~ where we only index the next-best or next-worst performing model'"

§< () = argmas fur(m), §..(x) = argmin far(m).
€S (z) €S (z)

Using these sets, we define several subsets of X', where there exist trialed models that do or do not agree with m,
and have equal/better/worse performance.

Xe={z e X | S:(z) # 2}

X ={zxeX|S(x) #2}
Xe={xeX|Sc(x) #2}\ X, Xy =X\ {-, X}
Xs={xeX|S(x) #2}\ X, Xy =X\ {0, X5}

where X, X5 are defined to exclude any overlap with X_.

Armed with Definition 3.1, we first state some useful inequalities that will form the core of the proof for Theo-
rem 3.1

Lemma B.1 (Independence under neutral actions). Under the assumed data generating process (Assumption 2.1)
and Assumption 3.2,

Y UL M| X,A=a (17)

9All these partitions are defined with respect to the model 7, and could be written more precisely with 7. as an argument (e.g.,
S« (x;me), X=(me)) but we suppress this notation for simplicity.
10We only use these sets when S<,S> are non-empty, but we additionally use the convention that arg min;cy (f(i)) = @
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Proof. This claim follows from Assumption 3.2 in a straightforward fashion. Let m and m’ be any two distinct values
of M, then

PY|X=2,M=m,A=ay) =PY(A=a,M=m)| X=2,M=m,A=ag) Consistency
Y(A=ap,M=m')| X =2,M =m,A=ag) By Assumption 3.2
YA=a,M=m')| X=2,M=m'A=qay) Y(a,m) 1L M,A|X

(

Y| X=z,M=m' A=ap) Consistency

P
P
P

The claim follows from the fact that we have shown equality P(Y | X =2, M =m,A=a9) =PY | X =2, M =
m', A = ag) for arbitrary m, m’. O

Lemma B.2 (Outcome Equalities / Inequalities). Under Assumptions 3.1 and 3.2, the following inequalities hold,
where we use T, as shorthand for mw.(x),

H{z e XJEY | X =2, A=7m, M = fy(re)] =1{z € X_}E[Y | X =2,D € S=(x)] (18)
H{z e XIE)Y | X =2, A=m, M = fa(me)] > 1{z € XJE[Y | X =z, D € S-(z)] (19)
o € XQE)Y | X =a,A=7, M = fy(me)] > 1z € XIE[Y | X =2,D € Sc ()] (20)
H{z e X )E)Y | X =2, A=, M = fa(me)] <1{z € X }E[Y | X = z,D € 8- ()] (21)
He e X IE[Y | X =a,A =me, M = fy(me)] < 1{z € X}E[Y | X =2,D € S5 (x)] (22)
HrzeXgme=a}EY | X =2, A=7m, M = fy(me)] = 1{z € Xs,me = ag}E[Y | X =2, D € Si(x)] (23)

Proof. The proof for each of these relations follows a similar structure. For each, we only need to consider the relation
when the stated indicator (identical on either side) is equal to 1, since all are trivially true when the indicator is
equal to zero.

For Eq. (18), the event {D € S—(z)} implies {A = m.(z), M = fum(me)} from the definition of S—(z) (see Defi-
nition 3.1). Moreover, we have it that Y 1L D | X, A, M from Assumption 2.1. Hence, E[Y | X = 2,D € S_(x)] =
ElY | X =2,A =7, M = fp(me)], and this conditional expectation is well-defined when z € X_. The stated
equality follows.

For Eq. (19), the event {D € S (x)} implies {A = m.(z), M < far(me)} from the definition of S<(x) (see Defini-
tion 3.1). By the independence Y 1L D | X, A, M, we have it that E[Y | X = 2,D € Sc(z)] = E[Y | X =2, A =
ey M < frr(me)], and this conditional expectation is well-defined when = € X.. Finally, we make use of Assump-
tion 3.1, which implies that E[Y | X =z, A =7, M = fy (7)) 2 EY | X =2, A =7, M < far(we)]. The stated
inequality follows.

For Eq. (20), the event {D € S-(z)} implies {A = 7.(z), M < fa(7.)} from the definition of S.(z) (see Defini-
tion 3.1). The rest follows from the same steps as the paragraph above.

For Egs. (21) and (22), the arguments are analogous to the arguments for Egs. (19) and (20), where X, S< are
replaced by X, S, and the direction of the inequality flips since, under Assumption 3.1, E[Y | X =z, A = 7., M =
fu(me)] <EY | X =2, A=me, M > fr(me)]

Finally, for Eq. (23), we can observe that

H{zr € X, me = ao}E[Y | X =2, D € S.(z)]

=1{z e X7 = ao}E[Y | X =2, A =7.(x),D € Si(2)] (24
=1z eX,me=a}EyEY | X =2, A =m(z),D € Si(x),M] | X =2,A = 7(x),D € S ()] (25
=1l{r e X7 =ap}EMEY | X =2, A=7c(2),M] | X =2,A =7.(z),D € Si(x)] (26
=1{z e Xo,me = ag}EM[E]Y | X =2,A=ao,M] | X =z, A =m.(x),D € S.(x)] (27
=1{z e X7 =a}EMEY | X =2,A=ag] | X =2, A =mc(x),D € S.(x)] (28
=1{z e X, me = ao}E]Y | X =2, A = ag] (29
=1l{z e Xme=ao}E]Y | X =2, A =7, M = frr(7e)] (30

M N O T

where Eq. (24) follows from the fact that the event {D € S.(z)} = {A = 7.(z)} by the definition of S,
(see Definition 3.1). Equation (25) simply applies the law of total probability, including M in the inner expectation
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(and where we use Ej; as helpful shorthand to remind the reader that the outer expectation is taken over M).
Equation (26) uses the fact that Y 1 D | A, M, X in our data-generating process to remove D from the inner
expectation. Equation (27) replaces me(z) with ag due to the outside indicator that restricts to x where m.(z) = ao,
so whenever this expression is non-zero, then 7m.(z) = ap. Finally, Eq. (28) uses Lemma B.1, which implies that
EY | X =z, A=ap,M =m]=E[Y | X =2, A = ag|, and Eq. (29) uses the fact that the inner expectation is a
constant value, to remove the outer expectation over M. From Eq. (29), we can simply add back the conditioning
on M = fp(me), again using Lemma B.1, and recall that m, = a under the indicator, to arrive at Eq. (30), which
completes the proof. O

We will also make use of the following inequalities that follow from boundedness of Y under Assumption 3.3.
Lemma B.3 (Boundedness). Under Assumption 3.3, the following inequalities hold by the fact that Y € [Yinin, Yimas)]-
He e XQEY | X =2, A=7, M = far(me)] >
H{z e X% JEY | X =2, A=m., M = fu(r.)] <
Ha ¢ X me(z) = ao}E[Y | X =2, A =ao, M = fu(me)] >
Ha & X, me(z) = ao}E[Y | X =2, A= ao, M = fu(m.)] <

Hzx € X} Yoin
1{3’] S XZ}YmaI
1{I g Xy, me() = aO}Ym'm
1{.’13 ¢ X*, 7Te(l') = aO}YmaI

Proof. Each claim is immediate from the fact that Y is bounded between Y, and Yi,.., with the additional
observation that for each inequality, the indicators are identical on either side. O

We are now prepared to prove our main result.

Theorem 3.1. Given the data generating process in Assumption 2.1, and under Assumptions 3.1 to 3.3, the policy
value of a model / policy 7. is bounded as

L(me) <E[Y(A=me, M = fu(me))] < Ulme), (3)
where

L(m.) = E[1{X € X_}1{m. # ao}E[Y | X, D € S_(X)]
F1{X € X1 m # ao)E[Y | X, D € S<(X)]
+ 1{X € X} 1{me # ao}Yomin
+1{X € X} 1{m. = ao}E[Y | X, D € S.(X)]
FUX ¢ X1 {m, = a0}V

U(me) = E[1{X € X_}1{m. # ao}E[Y | X,D € S_(X)]
+1{X € X }1{n. # ao}E[Y | X, D € 8- (X)]
+ 1{X € X% }1{me # a0} Yimaz
+ 1{X € X} {7 = ap}E[Y | X, D € S,.(X)]
+ H{X ¢ X3 1{me = ao}Yimaadl

These bounds are still valid if we replace S<(x) with S<(z) and S (x) with S (x), which we denote L(w,), U(m,).

Proof. We begin with the lower bound, and note that the upper bound follows similarly.

Lower Bound First, we observe that the given set indicators form a partition over X’ (a set of disjoint subsets of
X whose union is equal to X'), such that

1= l{X € X:,TFE(X) 7& CL(]} + 1{X S X<,7T8(X) 7& CL()} + 1{X S X$,7TE(X) 7& CL()}
X € Xy mo(X) = ao} + 1{X & X, me(X) = ag) (31)
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Where we recall that A—, X, Xy form a partition over X by construction. Hence, we can write that

E[Y(A =T, M = fM(ﬂ'e))]
=E[E[Y (A= me, M = fu(r.)) | X]] (32)
=E[E[Y | X, A =7, M = far(me))]] (33)
=E[(1{X € A, m(X) # ao} + 1{X € X, me(X) #ao} +1{X € Xg,me(X) #ao}
+H{X e Xyme(X)=ao} + H{X € X, me(X) = a0 DE[Y | X, A =7, M = fpr(me)]] (34)

= E[I{X € X_,me(X) # ag}ElY | X, A =7, M = fas(me)]
+H{X e Xo,7(X) £ ao}E]Y | X, A =7, M = fas(7.)]
+1{X € Xg,me(X) #ao}EY | X, A =7, M = fr(me)]
+H{X e Xme(X) =ao}E]Y | X, A =7, M = fpr(me)]
+H{X ¢ X, 7me(X) = ao)BlY | X, A =7, M = far(me)]] (35)

where Eq. (32) follows from the law of iterated expectation, Eq. (33) follows from consistency (Corollary A.1) and
the fact that Y(a,m) 1L A,M | X (Corollary A.2), and Eq. (34) follows from Eq. (31). After distributing terms
in Eq. (35), the lower bound follows from the application of Lemmas B.2 and B.3 to each term.

First, 1{X € X_,m,(X) # ao}EY | X, A = 7, M = fur(me)] = X € X, mo(X) # ao}E[Y | X, D € S_(x)
follows from Lemma B.2. Note that Lemma B.2 applies for all values of A, so restricting the possible values of A to
A = 7.(x) # ag does not affect its correctness.

Next, I{X € Xc,m(X) # ao}E[Y | X,A = 7, M = fy(me)] > H{X € X me(X) # ao}E[Y | X,D €
S<(z)] follows from Lemma B.2. Alternatively, 1{X € X, m.(X) # ao}E[Y | X, A = 7e, M = fp(me)] > 1{X €
X, me(X) # ao}E[Y | X, D € S-(z)], where we replace S< () with S<(z), is also true from Lemma B.2.

Next, 1{X € Xg,me(X) # ao}E[Y | X, A = 7, M = fu(me)] > H{X € Xy, me(X) # ao}Ymin follows from
Lemma B.3.

Next, 1{X € X, 7m.(X) = ao}BlY | X, A = 7, M = far(me)] = 1{X € X,7e(X) = ao}E[Y | X, D € S.(2)]
follows from Lemma B.2.

Finally, 1{X & X.,7(X) = ao}E[Y | X, A = 7, M = fa(7e)] > H{X & X, 7.(X) = ag}Ymin follows from
Lemma B.3.

As each term above is either equal to or less than or equal to their respective corresponding terms, the sum of
all the components above will be less than or equal to the target estimand.

Upper Bound For the upper bound, we use the partition given by

1= l{X S X:,Tre(X) 75 ao} + 1{X S X>,7Te(X) 7& ao} + 1{X S Xz,ﬂ'e(X) 75 ao}
F1X € Xy mo(X) = ag)} + 1{X & Xy, me(X) = ao} (36)

and the argument follows similarly, such that the upper bound follows from the application of Lemmas B.2 and B.3
to each term.

First, 1{X € X_,7(X) # ao}E[Y | X, A =7, M = fy(me)] = H{X € X_,7e(X) # ao}E[Y | X, D € S_(z)]
follows from Lemma B.2.

Next, 1{X € X5, m(X) # ao}E[Y | X, A = 7, M = fy(me)] < H{X € X, 7 (X) # ao}E]Y | X,D €
Ss (z)] follows from Lemma B.2. Alternatively, 1{X € X5, 7.(X) # ao}E[Y | X, A = 7, M = fp(me)] < 1{X €
X, Te(X) # ao}E[Y | X, D € S ()], where we replace Ss () with Ss (z), is also true from Lemma B.2.

Next, 1{X € Xy, me(X) # ao}E[Y | X, A = 7, M = fu(me)] < H{X € X%, 7(X) # ao}Yimas follows from
Lemma B.3.

Next, 1{X € X,,m(X) = ao}E[Y | X, A = 7, M = fyr(me)] = 1{X € Xy, 7e(X) = ao}E[Y | X,D € Si(z)]
follows from Lemma B.2.

Finally, 1{X ¢ X, me(X) = ao}E[Y | X, A = 7, M = far(7e)] < H{X & X, me(X) = ao}Yimas follows from
Lemma B.3. O

Proposition 3.3 (Bound Decomposition). The gap between the bounds in Theorem 3.1 can be written as

U(me) — L(me) = E[6(X,Y, D)]
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where

3(X,Y,D) = (Yias — Ymin)1{X € X°} (4)
+EY | X,DeS(X)]-E[Y | X,D e S<(X)))

7. #ap, X € X NAS} (5)
+ (Yimae —E[Y | X, D € S<(X)])

“1{me #ap, X € XoNAST (6)
+ ((E[Y | X,D € S (X)] — Yin)

-W{me #ag, X € X NAXL} (7)

Moreover, 6(X,Y,D) > 0 almost surely under the assumptions of Theorem 3.1. For LU, this gap holds with
S<(x),8s(x) replaced with S<(x),Ss(x).

Proof. We will start by observing that certain terms cancel out in the difference of the bound U(w,.) — L(m.). We
begin by recalling the definition of these bounds from Theorem 3.1

L(me) =E[1{x € X_}1{m. # ao}E[Y | X = 2,D € S_(z)] (37)
+1{x e X }1{m. # ao}E[Y | X = 2,D € S<(v)]
+ l{ZL' S )Cg}].{’ﬂ'e 7é aO}Ymm

+1{z € X} 1{m. = ao}E[Y | X =z, D € S.(x)] (38)
+ 1{1‘ g X*}].{?Te = aO}Ymin] (39)
U(re) =E[1{z € X_}1{r. # ao}E]Y | X = 2,D € S_(2)] (40)

+1{x € X }1{m. # ao}E[Y | X = 2,D € 8- (z)]

+ 1{z € X¥»}1{m. # ao}Ymaz

+1{zx e X} 1{m. = ao}E[Y | X = 2,D € S.(x)] (41)
+ 1{z & X }1{me = a0 }Yimaz) (42)

By linearity of expectation, we can remove identical terms, i.e., we can observe that in the difference U(r.) — L(7.),
the terms in Eqgs. (37) and (40) cancel, and likewise the terms in Egs. (38) and (41) cancel, leaving us with the
following after collecting similar terms Eqgs. (39) and (42)

U(re) — L(me)

=E[1{z € X>}1{n. # ao}E]Y | X = 2,D € S ()]
—1{x e X }1{me £ ap}E[Y | X =2,D € S ()]
+1{x € Xy} 1{m # ao}Ymaz
—1{z € X }1{m # ao}Ymin
(1o # X4, = a0}) Vimes — Vo)

e~
- W

>
D

,.\/.\A/.\,.\
=~ =~
~ [
—_ = D D

Now we will conduct two splits of indicators, to reflect finer-grained subgroups.

e First, we note that we can partition X into two subsets: The set of x where the only agreeing policies are
those with worse performance, and the set where there also exist policies with greater performance (note that
the existence of policies where performance is equivalent is ruled out by the definition of X.). We can argue
similarly for X<, and write

HreX=1{z e X NX}+1{z e A NA}

e Second, we note that we can partition Xy = X U X N XS, and likewise Xy = XU X N XS, For instance,
the set of x where there are no trialed policies (with equal or better performance than m.(x)) that agree with
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me(x) is equal to the set of 2 where there are no agreeing policies at all (X,) plus the set of x where the only
agreeing policies have worse performance (X< N X<). As a result, we can write that

HeeX=1{z e X NXL}+1{z € X}
H{z e Xy} =1{z e X NAS}+ 1{x € X}

With these equalities in mind, we can rewrite the difference as follows by expanding terms

U(me) — L(me)

=E[1{z € X N X }1{me Z ao}E[Y | X = 2,D € S ()] From Eq. (43) (48)
+1{z e X NX 1 {m. # ao}E[Y | X =2,D € S5 (2)] From Eq. (43) (49)
—1{rx e Xo N XY {me # ao}E[Y | X =2,D € S<(z)] From Eq. (44) (50)
-z e XoNXSH{m. # ao}E[Y | X =2, D € S ()] From Eq. (44) (51)
+ 1{z e Xe N XSI{7e # a0} Yiman From Eq. (45) (52)
+ {z € X }1{me # ao}Ymax From Eq. (45) (53)
—1{z € X NXEI{7me # a0} Ymin From Eq. (46) (54)
—1{z € X}1{me # ao}Yimin From Eq. (46) (55)
(1 € XY1{me = a0}) Vo — Vo) From Eq. (47) (56)

And by rearranging terms, we arrive at

U(WE) - L(ﬂ'e)

=E[1{z € X’} (Viax — Yinin) Egs. (53), (55) and (56)
+H{z e XA NX 1 {me #ao}(E]Y | X =2,D € Ss(x)] —E[Y | X =2,D € Sc(x)]) Egs. (48) and (50)
+1{z € Xe N X1 {me # ao}(Yimax —E[Y | X =2, D € Sc(z)]) Egs. (51) and (52)
+1{z € X N X1 {7, # ao}(E]Y | X = 2,D € S~ ()] — Yiin) Eqgs. (49) and (54)

Which gives us the desired result of the form E[§(X,Y, D)]. The fact that §(X,Y, D) > 0 almost surely follows from
the fact that Yinax = E[Y | C] > Yin for any conditioning set C, and the fact that (E[Y | X =z, D € S (x)] —E[Y |
X = xz,D € S-(z)]) is nonnegative by Assumption 3.1. Because L(rw.) and U(w.) may be alternatively expressed
with S<(x) and Ss (z), §(X,Y, D) may be expressed with S-(x) and Ss (z) as well. O

Theorem 3.2 (Tightness of bounds in Theorem 3.1). For any observational distribution P(X,Y, A, M,II, D) con-
sistent with the assumptions of Theorem 3.1, there exist two structural causal models My, My such that both are
consistent with Assumptions 2.1 and 3.1 to 3.3, both give rise to that same observational distribution P, and where
the policy value of any policy . under My, My is given by L(x.),U(w.) from Theorem 3.1, respectively (the bounds
constructed using 5<,3>). Hence, these bounds cannot be improved without further assumptions.

Proof. Recall that we make use of the more stringent sets of comparison arms

S<(x) = argmax fpr(m;) Ss () = argmin fps ().
€S (z) 1€Ss (x)

From here, we will construct a pair of SCMs M, My that satisfy our criteria, which are defined as follows, using f
to denote the structural equations under My, and fY to denote the structural equations under My, and f (without
a superscript) is used to denote structural equations that are shared between the two.

Shared Structural Equations for M, My: Both SCMs share the following equations that respect Assump-
tions 3.1 and 3.2, which give rise to a shared distribution over P(D, X, M, A), and these can be chosen to match any
such observed distribution.

D = fp(ep), X = fx(ex) II=np
M:fM(H)v A:H(X)
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Differences between M, My : These SCMs will differ in terms of how Y is generated. Let f&(A, X, M, ey),
fY(A, X, M, ey) denote the structural equations for My, My respectively. We will define these functions for every
possible set of inputs, using knowledge of the true conditional distribution P(Y | X = 2, A = a, M = m) wherever
this combination of inputs (z,a, m) has positive density under the observed distribution p(z,a, m) > 0.

We will define these functions constructively, by defining their behavior for every value of (z,a,m).

1. First, fix any value of 2 € X. For this value of z, we need to define the value of f&, fU for all values of
a € A,m e R. To do so, let
Su(w) = {i €D | milx) = a}

be the set of all policies (possibly an empty set) that have output a on the input z, and let M,(z) =
(mq,...,mg) be the (ordered) set of performance values for these policies, where m; denotes the worst
performance fs(m;) (breaking ties arbitrarily) of all policies m; where i € S,(z), and my denotes the best
performance, where K is the size of the set S,(x).

2. Now we consider any arbitrary a € A, in addition to our fixed x € X. Here, there are two cases to consider:

e If S,(z) is empty for this a, then for all m € R, we let f&(z,a,m,ey) = Yinin, f¥(2,a,m,€y) = Yipax. In
other words, at this point in z, if no trialed policy takes action a, we assume the worst (for f;@) and the
best (for fU) possible outcomes. We can easily verify that both fZ, fI satisfy Assumptions 3.1 and 3.2
since the output is a constant for each function, and satisfy Assumption 3.3 since the output remains
bounded.

e If S,(z) (and consequently M, (z)) is non-empty, then we first define the behavior of f, fJ at all the
(observable) performance values in M, (z) to match the conditional distribution P(Y | z,a, m).

f;g(l’,a,ﬂ% GY) = f}l//(I,CL,m,Ey) ~ P(Y | ‘Taa7m)7vm € MQ(I),

with the additional constraint that f, fU are constant with respect to m when a = ag, which itself must
be achievable since we assume that the true SCM generating P adheres to this constraint by Assump-
tion 3.2. Note that we can always achieve the equivalence of distribution shown above by taking ey to
be a uniform random variable in [0, 1], and defining our function as sampling from P(Y | z,a,m) using
the inverse CDF fy (z,a,m,ey) = F;ﬁc’a’m(ey). Because we assume that P(Y | z,a,m) does not violate
our assumptions, it should be clear that ff(x,a,m,ey), fY(z,a,m,ey) do not violate our assumptions
for values of m € M, (z). In addition, we have that for any m ¢ M(z), our construction above does not
violate Assumption 3.2 (since in this case, f{Z(x,ag, m,ey) is constant for all values of m).

We have now defined the behavior of f{;, f{f when a = ag, and when a # ag, m € My(z). Now it remains
to define the behavior of f&, fU for other values of m when a # ag. For any value m’ ¢ M,(z), there
are three possible scenarios: It is smaller than the smallest value (m;), larger than the largest value
M, or in-between two values, which we denote hprev(m’) < m’ < hnext(m’) without loss of generality,
where hprev(m') = max(m € My(z) | m < m') and hpext(m’) = min(m € M, | m > m'). Here,
hprev(m') corresponds to the performance of the “next-worst” policy among those deployed, and hpext (m’)
corresponds to the performance of the “next-best” policy. We define behavior on these sets as follows

Yinin, if m' < min(M,(x))
M,(z)),m & Ma(x)

a(m)
)

ol

f}[; (1‘, a, hprev(m/)7 6Y) it m’ > min(

f¥(xam’ ey) = {

Ymax, f / M
f;g(:v,a,m’,gy) — if m/ > max( )
M, (z)),m & My(x)

(2, a, hpext (M), ey)  if m’ < max(
In words, we have “filled in” the missing gaps in fZ, f/ for all values of m using piecewise constant
functions: For any m’ & M, (z), if m’ is worse than any observed performance, we assume the worst-case
for the lower bound, and if m’ is better than any observed performance, we assume the best-case for
the upper bound. Otherwise, we have hpev(m’) < m’ and/or m’ < Apext(m'), and we assume for the
lower bound that the outcomes at m’ match those at hprey(m’), and for the upper bound we assume the
outcomes at m’ match that at hyext(m’). Because we have maintained monotonicity with respect to m,
our construction continues to satisfy our core assumptions.

22



3. We have now fully defined f&, fJ, having defined these functions for any input (z,a,m), and shown that they
satisfy our core assumptions Assumptions 3.1 to 3.3. Putting it together, we have it that

Ymina lfS ( )
L ) Yauin, if Sg(x) 7& @, m < min(Mg,(x))
fy(x,a,mey) = F;\ic,a,hprev(m)(GY)’ if Sy(x) # @, m > min(Mg(x)),m € Mg(z), (57)
Fy i (€7); if So(z) # @,m € M,(z),
Yiax, if Su(z) =
U ) Yimax, if Sy () ;é @, m > max(M,(x))
fy (z,a,m,ey) = F;‘lx " hnext(m)(ey)’ if Sy(x) # @, m < max(Mg(x)),m € M, (z), (58)
F;‘zam(e;/)7 if Sy(z) # g, m € M,(x),

where Fy;! is the inverse conditional CDF of Y given X, A, M, derived from P, and where S,(z) == {i €

Y|z,a,m

D | mi(x) =a} and Mg (z) == {fam(m;) : i € Sq(x)}, as defined previously above.

Verifying conditions We have now defined the SCMs M, My, and shown that these SCMs are both consis-
tent with our assumptions. We will now briefly verify that both SCMs give rise to the same observed distribution
P(X,A,M,Y, D), and then demonstrate that these SCMs achieve the upper and lower bounds that are given in The-
orem 3.1 when using S in place of S.

First, we have it by construction that both SCMs yield the observed distribution P(X, A, M, D), so it remains to
demonstrate that they agree with the observed distribution P(Y | X, A, M, D), which we can write equivalently as
PY | X,A, M), since D 1L Y | X, A, M under our assumed data-generating process. Note that P(Y | X, A, M) is
only well-defined for z, a, m with positive density (if X is continuous) or probability mass (if X is discrete). Assuming
that p(z) > 0 for all x € X, we have constructed f&, fU to agree with P(Y | z,a,m) for all a, m where there exists
a trialed policy 7 that outputs a = w(x) with performance m = fj; (7). We note that for any other value of a’,m’,
we have it that p(a’,m’ | ) = 0, and hence the entire set (z,a’,m’) has zero density, and it is precisely on these
never-observed subsets of inputs where M, My disagree.

Second, we can verify that the policy values under f and f¥ evaluate to L(m.) and U(r.), respectively. Recalling
that Y(A = me, M = frr(me)) = fy (X, 7me(X), far(me), €y), and recalling Eq. (31), we can write that under M,

B, [Y (A =7, M = far(me))] = E[I{X € X=, me(X) # a0} (X, 7e(X), far(me), ev) (
+1{X € X, me(X) # ao} (X, me(X), far(me), €y) (
+1{X € Xg,me(X) # a0} f(X, 7e(X), far(me), ev) (61
+1{X € X, me(X) = a0} (X, me(X), far(me), €v) (
+1{X & X, me(X) = ao}fH(X, me(X), far(me), ev)] (

where we can consider each component in the sum individually by linearity of expectation, and the fact that E[1{x €
Q} f(x,ey)] = E[1{z € Q}E[f(z,ey) | z € Q]] for any set . We consider each term under the definition of f&
in Eq. (57).

e For Eq. (59), we can observe that for all x € X_, a = 7.(z), the set S,(z) is non-empty by definition of X—, and
moreover that m, € M, (z), where we define m. := fys(m.). In this case, we have it that f&(z,a,me,ey) =
F;lé’a’me (ey) ~ P(Y | z,a,m,), and so the term Eq. (59) is equal to 1{X € X_,7m.(X) # ao}E[Y | X, A =
7e(X), M = far(me)], which is equal to

1{X € X_,me(X) #ao}E[Y | X,D € S—(X)] (64)
from Eq. (18) of Lemma B.2.

e For Eq. (60), we can observe that for all x € X.,a = 7w.(x), the set S,(z) is non-empty by definition of X,
and moreover that m. > min(M,(z)). As a result, we have it that f&(z,a,me,ey) = F;|x s horen (1 )(Gy) ~

P(Y | x,a, hprey(me)), and thus this term can be re-written as

1{X € X, me(X) # ao}E[Y | X, D € S<(X)] (65)
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since for any D € S-(X), we have it that 7p(X) = 7.(X) and fa;(7p) = hprev () by definition of Aprey (me)
and S..

e For Eq. (61), we can observe that for all z € Xy, a = m.(z), the set S,(x) is either empty, or non-empty where
fa(me) < min(Mg(z)), by definition of Xx. In either case, we have it that f{ = Y, and so this term is
equal to

1{X S Xﬁ,ﬂ'e(X) ?é ao}Ymin (66)

e For Eq. (62), we can observe that for all z € X,,a = m.(x) = ao, the set S;(x) is non-empty by definition of
X, and moreover that f;é is invariant to the choice of m, and so (by a similar argument to Eq. (59), this term
is equal to 1{X € X, m(X) = ao}E[Y | X, A = 7.(X), M = fp(m)], which is equal to

1{X € X, 7.(X) = ao}E[Y | X, D € S§.(X)] (67)
from Eq. (23) of Lemma B.2

e For Eq. (63), we can observe that for all z ¢ X,, the set S,(x) is empty by definition of X, and so f{ = Yiin,
and so this term is equal to
1{X Q/ X*, WE(X) = ao}Ymin (68)

Collecting terms Eqgs. (64) to (68) gives us that

Em, [Y(A=me, M = fr(me))]
=E[1{X € X, m(X) # ao}E[Y | X, D € S_(X)]
+1{X € X_,m(X) # ao}E[Y | X,D € 5.(X)]
+ 1{X € Xy, me(X) # a0} Yinin
+1{X € X,,7m(X) = ao}E[Y | X, D € S,(X)]
+1{X € X, me(X) = a0} Yanin]

~— ~—

which is equivalent to L(r.) using S., and which completes the proof for the lower bound. For the upper bound,
the argument is similar, and roughly symmetric, but uses the partition given by Eq. (36).

Conclusion Because it is possible to construct structural causal models that are consistent with our assumptions
and that have counterfactual policy values that are exactly L(w.) and U(w,), the bounds in Theorem 3.1 cannot be
improved without further assumptions. O

Proposition 3.4. The bounds in Theorem 3.1 can be written L(w.) = E[¢ (X, D,Y)] and U(n.) = E[¢y (X, D,Y)],
where V1, and Yy are defined as follows

Y‘%, if X € Xo,me(X) # ag
DeS (X .
Y.;(Dgsiig)();7 ZfX€X<,7Te(X)7éa0
wL(X7D’Y) = Ymin» le € Xﬁv'fre(X) 7& agp
y MDESLOl i X € X me(X) = ag
YlniTH le ¢ X*77T6(X) = ap
VB ) b
S .
v HBeell, i X € X m(X) # ao
"/)U(X7D7Y) = Ymam ZfX S XZvﬂ'e(X) 7& ap
Y % if X € Xy, me(X) = ag
Ymaza le ¢ X*77re(X) =ap
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Moreover, since Yy, Yy are known functions of the data, these bounds can be estimated as
L(me) =n""Y ¢ (Y;, X;, Dy)
i

U(re) =n""Y vu(Yi, X, Di)

where \/n(L — L) <4 N(0,02(¢pr)) where o2(vp1,) is the variance of ¥y, and <4 denotes convergence in distribution,

with similar convergence of U, and hence

-2 (1-5) 2 o (1) 2]

is an asymptotically valid (1 — a)-confidence interval, where G (1) is the empirical standard deviation of ¢ and @‘1 18
the inverse of the standard normal CDF. For L,U, all the above holds after replacing S<(x), Ss (z) with S<(x),S> ().

Proof.

Lemma B.4. Let S8'(X) be a function that maps from X to any subset (including the empty set) of D, and let X’
be a subset of X. If P(D € §'(x))) > 0,Vz € X', then

E {le{X c X’}] —E[E]Y | D € 8'(X), X]1{X € &')] (69)
Proof.
1{D e S'(X)} nl , 1{X e X'}
E {YP(DGSI(X)I{X ex }] —E []E[Yl{D e S'(X)} | X]P(DGS’(X))] (70)
_E []E[Y | D eS(X),X]P(D € §'(X) | X)IM} (71)
_E[E]Y | D € 8'(X), X|1{X € &'}] (72)

where the first equality is well-defined on both sides by the assumption that for any X € X/, P(D € §'(X)) > 0.
For the second-to-last line, note that this follows from the basic fact that A, B,C
E[A-1{BeB}|C|=E[A-1{Be B} | BeB,C|P(BeB|C)
+E[A-1{BeB} | B¢ B,C|P(B¢B|C)
=E[A|BeB,CIP(BeB|C)
and the last line follows from the fact that D 1l X under Assumption 2.1, so that P(D € §'(X) | X) = P(D €
S'(X)). O

Note that Lemma B.4 applies to all of the pairs (e.g., S=(X) and X € X_Nm(X) # ap)) used in Proposition 3.4.
Thus, we can directly write the following through linearity of expectations and three applications of Lemma B.4.
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L(m.) =E[1{z € X_}1{m. # ao}E[Y | X =2, D € S_(x)]
+ 1{z € X }1{n. # ao}E]Y | X = 2,D € S-(x)]
+ 1{z € Xz} 1{me # ao}Ymin
+1{z e X} 1{rm. = ao}E[Y | X = 2,D € S.(z)]
+ {z & X} 1{me = ao}Yomin]
1{D e S_(x)}
P(D € S—(z))
P e X € X £ 0o}
+ Yiin 1{X € Xz} 1{me # a0}
1{D € S.(z)}
P(D € S.(x))
+ YiinH{X & X }1{7m. = ao}]

—E[Y 1{X € X_}1{r. # a0}

+Y

+Y H{X e X} 1{n. =ap}

Because the sets (X € X= N7 # ag), (X € Xc Nwe # ag), (X € Xg N7e # ag), (X € X Nme = ag), and
(X € X, N7 = ag) are disjoint, only one product of the indicator functions inside the expectation above ever
evaluates to 1. Thus, we can equivalently express the expression inside the expectation above as the piecewise
function

Y(X, DY)
Y.%, if X € X_, me(X) # ag
Y';(gggiigg;’ ifX€X<a7re(X)7éa0
=9 Yin, if X € Xg,me(X) # ao
Y ﬁggfg;)}v if X € X,,me(X) =aop
Yinin, if X ¢ X, 7(X) = ao.

Thus, L(m.) = E[¢.(X, D,Y)].
The proof for U(mw,) follows similarly. We directly write the following through linearity of expectations and three
applications of Lemma B.4.

U(re) =E[1{z € X_}1{r. # ao}E]Y | X = 2,D € S_(x)]
+1{zx € X} 1{m. # ao}E[Y | X = 2,D € 8> (2)]
+ 1{x € Xy }1{m # ao}Ymaz
+ 1z e X} 1{me = ao}E[Y | X = 2,D € S.(z)]
+ 1{z & X }1{7e = a0 }Yimaz)
1{DeS_(z)}
P(D e S_(z))
e X € 2 p1m £ ao)
+ Yia 1{X € X3 }1{m. # ao}
1{D e S.(z)}
P(D € S.(x))
+ Yinaa {X & X }1{me = ao}]

=E[Y {X € X_}1{m. # ap}

+Y

+Y 1{X € X }1{n. = ao}

Because this different enumeration of the sets (X € A N7 # ag), (X € Xs N7 # ap), (X € Xy Nwe # ao),
(X € XiNme = ag), and (X € X. N7, = ag) are also disjoint, only one product of the indicator functions inside
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the expectation above ever evaluates to 1. Thus, we can equivalently express the expression inside the expectation
above as the piecewise function

Yu(X,D,Y)
Y.%, if X € X_,7me(X) # ag
Y.:;(gggiigg)))}’ ifX€X>77re(X)7éa0
= Ymax, lf X e XZ)T(C(X) % ag
y UDESLO) it X € X, m(X) = ag
Ymaxa if X ¢ X*,WE(X) = ag

Thus, U(r.) = E[yy (X, D,Y)].

To show asymptotic normality, it suffices to observe that iy, are known functions of the data, such that
the problem reduces to mean estimation using samples. The asymptotic behavior is then just a consequence of the
central limit theorem [Vaart, 1998], and the validity of the confidence intervals follows from the fact that we use the
1 — a/2 lower bound for L, such that the probability of failing to cover L is asymptotically 1 — «/2, and similarly
the 1 — /2 upper bound for U. The validity of the given interval follows from application of the union bound. [
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