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Abstract
Amortized variational inference is an often em-
ployed framework in simulation-based inference
that produces a posterior approximation that can
be rapidly computed given any new observa-
tion. Unfortunately, there are few guarantees
about the quality of these approximate posteri-
ors. We propose Conformalized Amortized Neu-
ral Variational Inference (CANVI), a procedure
that is scalable, easily implemented, and provides
guaranteed marginal coverage. Given a collec-
tion of candidate amortized posterior approxima-
tors, CANVI constructs conformalized predic-
tors based on each candidate, compares the pre-
dictors using a metric known as predictive effi-
ciency, and returns the most efficient predictor.
CANVI ensures that the resulting predictor con-
structs regions that contain the truth with a user-
specified level of probability. CANVI is agnostic
to design decisions in formulating the candidate
approximators and only requires access to sam-
ples from the forward model, permitting its use in
likelihood-free settings. We prove lower bounds
on the predictive efficiency of the regions pro-
duced by CANVI and explore how the quality
of a posterior approximation relates to the predic-
tive efficiency of prediction regions based on that
approximation. Finally, we demonstrate the accu-
rate calibration and high predictive efficiency of
CANVI on a suite of simulation-based inference
benchmark tasks and an important scientific task:
analyzing galaxy emission spectra.

1. Introduction
In many scientific applications, such as in astrophysics,
neuroscience, and particle physics (Papamakarios & Mur-
ray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019;
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Deistler et al., 2022; Papamakarios et al., 2019; Boelts
et al., 2022), posterior distributions P(Θ | x) are sought
over a large collection of x, typically on the order of
10,000 or more. In such scientific settings, (θ, x) pairs
are assumed to come from nature, which has led to the
growth of “simulation-based inference,” in which a likeli-
hood P(X | θ) and prior P(Θ) are posited and simulated to
fit posteriors (Cranmer et al., 2020; Lueckmann et al., 2021).
Even when the likelihood and prior are well specified, ex-
act sampling from the posteriors is intractable, requiring
running 10,000 separate MCMC chains.

In these settings, amortized variational inference is fre-
quently employed. Variational inference (VI) has become
a staple in Bayesian inference; however, it has been repeat-
edly noted that a major shortcoming of VI is its lack of
any theoretical guarantees and tendency to produce biased
posterior estimates (Blei et al., 2017; Murphy, 2022; Zhang
et al., 2018; Yao et al., 2018). The most common metric for
assessing the calibration of such inference algorithms is the
“expected coverage.” Having calibrated expected coverage
is a necessary but not sufficient condition for conditional
coverage, yet amortized variational approximations fail to
even achieve this minimal requirement, despite significant
work to remedy this shortcoming (Deistler et al., 2022; De-
launoy et al., 2022; Lemos et al., 2023; Delaunoy et al.,
2023). A lack of such calibration limits the capacity to
reach downstream scientific conclusions, highlighted in a
recent meta-study of likelihood-free inference algorithms
(Hermans et al., 2021b).

In applications where many posteriors need to be estimated,
credible regions with marginally calibrated coverage can be
sufficient for downstream scientific inquiries. For instance,
in astrophysics, there is great interest in constraining the
ΛCDM model, the current concordance model in cosmology
(Gilman et al., 2021; Hezaveh et al., 2016; Vegetti et al.,
2010; Vegetti & Koopmans, 2009; Hogg & Blandford, 1994).
A recent work from this community, (Hermans et al., 2021a),
leveraged Bayesian inference towards this end, obtaining
approximate posteriors for the parameters of interest on
each of 10,000 observations. Crucially, these posteriors
were then used to produce credible intervals with marginally
valid frequentist coverage, from which they made claims on
the ΛCDM model.
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Figure 1. CANVI is a wrapper around variational inference requiring minimal implementation and computational overhead that produces
prediction regions with guaranteed marginal calibration. Among a family of candidate amortized posterior approximators, CANVI can
identify the approximator leading to the most efficient prediction regions. CANVI can be used in any setting where the forward model
P(X | Θ) can be sampled.

Our insight is that conformal prediction can be leveraged
to provide variational approximators with marginal cover-
age guarantees and provide users new ways to measure the
quality of variational approximators. In this manuscript, we
present CANVI (Conformalized Amortized Neural Varia-
tional Inference), a novel, general framework for producing
marginally calibrated, informative prediction regions from
a collection of variational approximators. Such regions can
be produced with minimal implementation and computa-
tional overhead, requiring only samples from the prior and
P(X | Θ), as shown in Figure 1. In Section 3.3, we provide
theoretical analysis of the informativeness of the prediction
regions produced by CANVI using a measure known as
“predictive efficiency.” High predictive efficiency is neces-
sary to draw conclusions in downstream scientific inquiries
and relates to asymptotic conditional coverage with the ap-
propriate choice of score function. Finally, in Section 4, we
show calibration and predictive efficiency across simulation-
based inference benchmark tasks and an important scientific
task: analyzing galaxy emission spectra.

2. Background
2.1. Variational Inference

Bayesian methods aim to sample the posterior distribution
P(Θ | X), typically using either MCMC or VI. VI has
risen in popularity recently due to how well it lends itself
to amortization. Given an observation X , variational infer-
ence transforms the problem of posterior inference into an
optimization problem by seeking

φ∗(X) = argmin
φ

D(qφ(Θ)||P(Θ | X)), (1)

where D is a divergence and qφ is a member of a varia-
tional family of distributions Q indexed by the free param-
eter φ. Normalizing flows have emerged as a particularly
apt choice for Q, as they are highly flexible and perform
well empirically (Rezende & Mohamed, 2015; Agrawal
et al., 2020). Amortized variational inference expands on

this approach by training a neural network to approximate
φ∗(X). This leads to a variational posterior approximator
q(Θ | X) = qφ∗(X)(Θ) that can be rapidly computed for
any value X . The characteristics of φ∗ depend in part on the
variational objective, D. For instance, using a reverse-KL
objective, i.e. DKL(qφ(Θ)||P(Θ | X)), is known to pro-
duce mode-seeking posterior approximations, whereas using
a forward-KL objective, i.e. DKL(P(Θ | X)||qφ(Θ)), en-
courages mode-covering behavior (Murphy, 2023). Popular
variational objectives include the Forward-Amortized Varia-
tional Inference (FAVI) objective (Ambrogioni et al., 2019;
Bornschein & Bengio, 2014), the Evidence Lower Bound
(ELBO), and the Importance Weighted ELBO (IWBO)
(Burda et al., 2015).

2.2. Conformal Prediction

Given DC = {(x1, θ1), . . . (xN , θN )} iid∼ P(X,Θ), con-
formal prediction (Angelopoulos & Bates, 2021; Shafer &
Vovk, 2008) produces prediction regions with distribution-
free guarantees. A prediction region is a mapping from
observations of X to sets of possible values for Θ and
is said to be marginally calibrated at the 1 − α level if
P(Θ /∈ C(X)) ≤ α.

Split conformal is one popular version of conformal predic-
tion. In this approach, marginally calibrated regions C are
designed using a “score function” s(x, θ). Intuitively, the
score function should have the quality that s(x, θ) is smaller
when it is more reasonable to guess that Θ = θ given the
observation X = x. For example, if one has access to
a function f̂(x) which attempts to predict Θ from X , one
might take s(x, θ) = ∥f̂(x)−θ∥. The score function is eval-
uated on each point of a subset of the dataset DC , called the
“calibration dataset,” yielding S = {s(xc

i , θ
c
i )}

NC
i=1. Note

that the calibration dataset cannot be used to pick the score
function; if data is used to design the score function, it must
independent of DC . This is how “split conformal” gets its
name: in typical cases, data are split into two parts, one used
to design s and the other to perform calibration. We then de-
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fine q̂(α) as the ⌈(NC + 1)(1− α)⌉ /NC quantile of S . For
any future x, the set C(x) = {θ | s(x, θ) ≤ q̂(α)} satisfies
1 − α ≤ P(Θ ∈ C(X)). This coverage guarantee arises
from the exchangeability of the score of a future test point
s(x′, θ′) with S and holds regardless NC : conformal guaran-
tees are not asymptotic. If s(X,Θ) is jointly continuous, we
additionally have that P(Θ ∈ C(X)) ≤ 1−α+1/(NC+1).

While the coverage guarantee holds for any score function,
different choices may lead to more or less informative pre-
diction regions (Shafer & Vovk, 2008). For example, the
score s(x, θ) = 1 leads to the uninformative prediction re-
gion of all possible values of Θ. Predictive efficiency is
one way to quantify informativeness (Yang & Kuchibhotla,
2021; Sesia & Candès, 2020), defined as the expected in-
verse Lebesgue measure of C(X), EX [L(C(X))−1]. Meth-
ods using conformal prediction often seek to identify pre-
diction regions that are efficient and marginally calibrated.

2.3. Related Literature

Efforts to correct for miscalibration have been of great inter-
est recently in light of its apparent omnipresence highlighted
in (Hermans et al., 2021b). The notion of calibration stud-
ied therein, and the one we concentrate on here, centers
on the expected coverage probability of the highest pre-
dictive density (HPD) of a posterior estimate q(Θ | X),
defined for such a q, some fixed x, and pre-specified cover-
age level α to be the set HPD(q(Θ | x), 1−α) with smallest
Lebesgue measure such that PΘ∼q(Θ|x)(Θ ∈ HPD(q(Θ |
x), 1 − α)) ≥ 1 − α. The expected coverage is then
EX,Θ∼P(X,Θ)[1[Θ ∈ HPD(q(Θ | X), 1− α)]].

Such calibration has been studied across a number of poste-
rior estimation techniques in the likelihood-free inference
community, which generally fall into one of three categories.
Neural posterior approximation (NPE) methods directly ap-
proximate the posterior density P(Θ | X) (Papamakarios
& Murray, 2016; Lueckmann et al., 2017; Greenberg et al.,
2019; Deistler et al., 2022), neural likelihood estimation
(NLE) methods estimate the assumed intractable likelihood
P(X | Θ) (Papamakarios et al., 2019; Boelts et al., 2022),
and neural ratio estimation (NRE) methods estimate the
P(X | Θ)/P(X) ratio (Hermans et al., 2020; Durkan et al.,
2020b; Miller et al., 2022). Both NLE and NRE rely on
MCMC for posterior sampling after estimation.

While these approaches differ in their estimation strategies,
they all suffer miscalibration if naively employed. One
suggestion advocated by (Hermans et al., 2021b) was en-
sembling, compatible with all the aforementioned posterior
approximation strategies. Despite its improvement in empir-
ical calibration, ensembling affords no guarantees on cali-
bration and also dramatically increases the computational
cost of training and inference alike. As an effort to address
this lack of guarantees and computational cost, recent cali-

bration efforts have focused on modifying the loss function
to appropriately encourage conservatism in the learned pos-
terior estimates, since the downstream scientific use cases
can afford such conservatism, unlike underdispersed posteri-
ors. In particular, (Delaunoy et al., 2022) took a first step in
this direction by proposing a modification over the vanilla
NRE formulation with a regularization term that results in
more conservative posterior estimates. Such a method, how-
ever, has no guarantees and further relies on the selection of
a tunable λ parameter, whose optimal selection is unknown
without awareness of the true posterior. This approach was
then extended to NPE and NLE in (Delaunoy et al., 2023)
and (Falkiewicz et al., 2023), which both again suffer from
the deficiencies of producing overly conservative posteriors
and relying on the careful selection of λ.

3. Method
In response to the shortcomings highlighted in the previ-
ous section, we were interested in procuring a method that
has (1) guarantees on calibration without tuning parameters,
(2) minimal computational overhead, and (3) informative
prediction regions. We demonstrate in Section 3.1 that
leveraging conformal prediction on an amortized VI ap-
proximator q(Θ | X) immediately addresses points (1) and
(2). We then study in the following sections how this naive
application can be extended to the full CANVI algorithm
by considering a collection of amortized VI approxima-
tors {q(1)(Θ | X), . . . , q(T )(Θ | X)} to address point (3).
CANVI can be applied whenever P(X,Θ) can be sampled.
The coverage validity of CANVI is proven in Section 3.2,
and analyses of its predictive efficiency in Section 3.5.

3.1. CANVI: Score Function

In the simplest case, CANVI takes as input a single amor-
tized posterior approximator q(Θ | X). In traditional appli-
cations of split conformal, much concern is given to the loss
of accuracy of the predictor q in having to reserve a subset
of the training data for calibration. Here we have no such
issues; we sample DC = {(xc

i , θ
c
i )}

NC
i=1

iid∼ P(Θ)P(X | Θ)
from the joint distribution to produce a calibration dataset
that can be arbitrarily large. Given q(Θ | X), we employ the
following score, as used in (Angelopoulos & Bates, 2021):

s(xi, θi) = (q(θi | xi))
−1. (2)

Denoting the ⌈(NC + 1)(1− α)⌉ /NC quantile of the score
distribution over DC as q̂C(α), C(x) = {θ : 1/q(θ | x) ≤
q̂C(α)} is then marginally calibrated. It may be disjoint if
the posterior is multimodal.

While other choices of score functions also result in re-
gions C(x) that address both the lack of guarantees and
computational cost of methods highlighted in Section 2.3,
the particular choice of Equation (2) has the desirable
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property that, if we recover the true posterior, that is
q(Θ | X) = P(Θ | X), we recover the HPDs, namely
C(x) = HPD(P(Θ | x), 1− α), achieving conditional cov-
erage. Note that the procedure described in this section
and those that follow can be easily extended to the group
conditional setting if such coverage is of interest, whose
discussion we defer to Appendix A.

3.2. CANVI: Approximator Selection

To mitigate the risk of producing uninformative prediction
regions, it is natural to explore multiple posterior approxima-
tions, {q(t)(Θ | X)}Tt=1, since a poorly chosen approxima-
tor may lead to poor predictive efficiency. These posterior
approximations could, for instance, differ in their choice of
training objective, variational family, or hyperparameters.
CANVI seeks to identify the variational approximator q(t

∗)

for which the efficiency is greatest, defined for a threshold
τ to be

ℓ(q, τ) := EX [L ({θ : 1/q(θ | X) ≤ τ})] , (3)

We defer the discussion of estimating ℓ(q, τ) to Section 3.4.
Naively, one would expect by taking (q(t

∗), q̂
(t∗)
C (α)) where

t∗ := argmint ℓ(q
(t), q̂

(t)
C (α)), we achieve maximal effi-

ciency and retain coverage guarantees. However, defining
C(x) with q̂

(t∗)
C (α) fails to retain coverage guarantees, as

the exchangeability of scores of future test points s(x′, θ′)
with S is lost in conditioning on DC for selecting t∗.

We must, therefore, perform an additional recalibration step
after selecting t∗ to retain coverage guarantees. CANVI
performs such recalibration using an additional dataset DR
again constructed with i.i.d. draws from P(X,Θ). We take
DR to be the same size as DC , i.e. |DR| = NC . CANVI
then computes the quantile q̂

(∗)
R (α) := q̂

(t∗)
R (α), which is

used to define prediction regions C(x) := {θ : 1/q(t
∗)(θ |

x) ≤ q̂
(∗)
R (α)}. However, such regions require analysis to

guarantee high efficiency, as we explore in Section 3.3.

The full CANVI framework is provided in Algorithm 1.
The validity of the CANVI procedure follows directly from
that of split conformal prediction, formally stated below and
explicitly proven in Appendix B.

Lemma 3.1. Let α ∈ (0, 1) and

q(∗)(Θ | X), q̂
(∗)
R (α) =

CANVI
(
{q(t)(Θ | X)}Tt=1,P(X,Θ), 1− α,NC , NT

)
Let (x′, θ′) ∼ P(X,Θ) ⊥⊥ D ∪ DC ∪ DR ∪ DT , with D
being the data used to train {q(t)(Θ|X)}Tt=1. Then 1−α ≤
P(1/q(∗)(θ′|x′) ≤ q̂

(∗)
R (α)).

Algorithm 1 CANVI: Note that VOLUMEEST is a volume
estimator subroutine detailed in Section 3.4.

1: Procedure CPQuantile
2: Inputs: Posterior approximation q(Θ | X), Calibra-

tion set DC , Desired coverage 1− α
3: S ← { 1

q(θi|xi)
}NC
i=1

4: Return ⌈(NC+1)(1−α)⌉
NC

quantile of S
5:
6: Procedure CANVI
7: Inputs: Posterior approximators {q(t)(Θ|X)}Tt=1,

Prior P(Θ), Forward model P(X | Θ), Desired cover-
age 1− α, Calibration size NC , Test size NT

8: DC ,DR ∼ P(X,Θ),DT ∼ P(X)
9: for t ∈ {1, . . . T} do

10: q̂
(t)
C ← CPQUANTILE(q(t),DC , 1− α)

11: ℓ̂(t) ← VOLUMEEST(q(t),P(Θ), q̂
(t)
C ,DT )

12: end for
13: t∗ ← argmint ℓ̂

(t)

14: q̂
(∗)
R (α)← CPQUANTILE(q(t

∗),DR, 1− α)

15: Return q(∗)(Θ | X), q̂(∗)R (α)

3.3. CANVI: Efficiency Analysis Assumptions

We now show that, with high probability, the pair CANVI
produces (q(∗)(Θ|X), q̂

(∗)
R (α)) is the most efficient amongst

the candidate posteriors considered. The concern is that
the post-recalibrated quantile may result in significant
degradation of the efficiency, i.e. ℓ(q(∗), q̂

(∗)
R (α)) ≫

ℓ(q(∗), q̂
(∗)
C (α)). This tradeoff between coverage and ef-

ficiency was studied in (Yang & Kuchibhotla, 2021).

Recall 1−α ≤ P(Θ ∈ C(X)) ≤ 1−α+1/(NC +1). De-
note the CDF of the score function under the joint distribu-
tion P(X,Θ) as F(s) := PΘ,X(1/q(Θ | X)). The cover-
age guarantee, thus, implies q̂(α) ∈ [F−1(1−α),F−1(1−
α + 1/(NC + 1))] for q̂(α) from any calibration set. In
particular, q̂(∗)C (α) and q̂

(∗)
R (α) both lie in this range.

We bound the efficiency suboptimality by proceeding in two
steps. We first demonstrate that the quantiles of q(∗)(Θ | X)
under DC and DR are close by demonstrating the quantile
range of F−1 is small. We then demonstrate the efficiency
varies smoothly as a function of the quantile, allowing us
to bound the resulting efficiency change. Formally, we
state these assumptions respectively as follows, per (Yang
& Kuchibhotla, 2021), which we then demonstrate follow
from properties of the chosen variational families.

Assumption 3.2. For each t, the ℓ(q(t), τ) is Lipschitz con-
tinuous in τ with constant LW .

Assumption 3.3. For each t, ∃ r, γ ∈ (0, 1] such that
F−1

t (s) (inverse score CDF under q(t)), is γ-Hölder contin-
uous on [1− α, 1− α+ r] with continuity constant Lt.
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3.3.1. LIPSCHITZ CONTINUITY OF EFFICIENCY

We now demonstrate Assumption 3.2 can be guaranteed
with the appropriate selection of variational family by the
end user. It suffices to demonstrate ℓx(q, τ) := L({θ :
1/q(θ | x) ≤ τ}) is L-Lipschitz continuous in τ for any
x ∈ X , proven in Appendix D.1.

For any fixed x, ℓx(q, τ) is the intrinsic volume of the sub-
level set of 1/q(θ | x). We summarize and subsequently
use relevant results from (Jubin, 2019) below. “Intrinsic
volume” defines the notion of volume for a lower dimen-
sional manifold embedded in a higher dimensional space.
For a brief review of Riemannian manifolds, see Appendix
C; a more complete presentation is available in (Lee & Lee,
2012). The n− k degree intrinsic volume of a flat compact
n-dimensional manifold N is

Ln−k(N) = bk

∫
∂N

tr
(∧k−1

S

)
vol∂N , (4)

where 0 ≤ k ≤ n, bk ∈ R, and S is the second fundamental
form of ∂N in N . Lipschitz continuity of Ln−k(M

τ
f ) was

established as follows. The level sets Mτ
f := f−1((−∞, τ ])

are restricted to “regular values” of f , namely τ such that
f(x) = τ =⇒ df(x) ̸= 0.

Theorem 3.4. Let (M, g) be an n-dimensional Riemannian
manifold, f ∈ C3(M,R) bounded below, and τ a regular
value of f equipped with the standard uniform C3 topol-
ogy. Then, if 0 ≤ k ≤ n, τ → Ln−k(M

τ
f ) is Lipschitz

continuous (Jubin, 2019).

The Lipschitz continuity of ℓx(q, τ) then follows as a
corollary for any variational families for which the den-
sity is sufficiently smooth, namely q(θ | x) ∈ C3(Rn).
The proof follows by taking ℓx(q, τ) := Ln((Rn)τs ) for
s(θ) = 1/q(θ|x), with τ = s(θ) for {θ : ∇θq(θ|x) ̸= 0}
being the set of regular values. This domain restriction is
discussed more in Section 3.5. Notice s(θ) ∈ C3(Rn) as
both f(x) := 1/x and q(θ | x) are ∈ C3(Rn) and C3 is
closed under function composition. Formally,

Corollary 3.5. Suppose for any x ∈ X , q(θ | x) ∈ C3(Rn)
is bounded above and τ is a regular value of q(θ | x). Then,
ℓ(q, τ) is Lipschitz continuous in τ .

Notably, this assumption on smoothness holds for most vari-
ational families used in practice, including highly expressive
flow-based variational families (Köhler et al., 2021).

3.3.2. CONTINUITY OF CONFORMAL QUANTILES

We now discuss the validity of Assumption 3.3. Comparable
assumptions are commonly used in the quantile estimation
literature, as discussed in (Lei et al., 2018). The Hölder
constant cannot be characterized in general, as it is inti-
mately tied to specific details of the score distribution under

P(X,Θ). We, therefore, provide an explicit characteriza-
tion for a particular family of distributions in Theorem 3.6
and defer extensions to a broader set of families to future
work. Details for this proof are given in Appendix E.

Theorem 3.6. Let Θ and X be zero-mean unit-variance
Gaussian random variables with correlation ρ. Let
q(t)(θ|x) = N (θ; tx, 1 − ρ2). Let κ := t2 − 2tρ + 1
and r > 0. Then F−1

t (z), is 1-Hölder continuous on
[1− α, 1− α+ r] with Hölder constant

κΦ−1( 1−α
2 )

√
exp

(
κ

1−ρ2Φ−1( 1−α
2 )2 − (1−α)2

2

)
√

(1− ρ2)/2
(5)

Notably, the Hölder constant is minimized in recovering the
true posterior, as Equation (5) is minimized at φ = ρ.

3.4. CANVI: Volume Estimation

We now provide an estimation procedure for ℓ(q, τ).
Naively, we might expect taking the sample average of
ℓxi

(q, τ) over DT := {xi}NT
i=1 ∼ P(X) would suffice.

However, exact calculation of ℓxi
(q, τ) requires a grid-

discretization over Supp(Θ|xi), which is only feasible when
the support has a known, small extent.

As a result, ℓx(q, τ) is estimated using an importance-
weighted Monte Carlo estimate over S samples from q.
Such an estimator, however, suffers from high variance if q
is underdispersed, as C(x) will cover regions of low varia-
tional density. To combat this issue, we use the well-known
fact that P(Θ | X) is narrower than P(Θ) to construct
a “mixed sampler,” specifically with zj ∼ Bern(λ) and
θj ∼ q(Θ|xi)

zjP(Θ)1−zj , where the mixed density is now
q̃(θj) = λq(θj |xi) + (1− λ)P(θj). The necessity of such
mixing is dependent on the nature of the variational posterior
with respect to the true posterior, which is unknown in prac-
tice. We, thus, average several estimates over {λk} ∈ [0, 1].
Denoting the mixed density with λk as q̃k, for each xi and
λk, we make S draws {θjk}Sj=1 ∼ q̃k(Θ | xi). We empiri-
cally demonstrate the necessity of such mixed sampling in
Section 4.2.2. This procedure is summarized in Algorithm
2, with the final estimate ℓ̂(q, τ) being

1

KNT

NT ,K∑
i,k=1

1

S

S∑
j=1

1

q̃k(θjk|xi)
1

[
1

q(θjk|xi)
≤ τ

]
(6)

3.5. CANVI: Efficiency Proof

We now state the result of recovery of the optimal recali-
brated approximator. To do so, we require the Monte Carlo
estimate to be sufficiently well-behaved to recover the opti-
mal pre-recalibration approximator.
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Algorithm 2 VOLUMEEST

1: Procedure VolumeEst
2: Inputs: Posterior approximation q(Θ | X), Prior
P(Θ), CP quantile q̂, Test set DT

3: for i ∈ {1, . . .NT }, k ∈ {1, . . .K} do
4: for j ∈ {1, . . . S} do
5: zj ∼ Bern(k/K)
6: θj ∼ q(Θ | xi)

zjP(Θ)1−zj

7: q̃j ← (k/K)q(θj | xi) + (1− k/K)P(θj)
8: end for
9: Vi,k ← 1

S

∑S
j=1

1
q̃j
1[1/q(θj |xi) ≤ q̂]

10: end for
11: Return 1

KNT

∑
i,k Vi,k

Assumption 3.7. If t∗ := argmin1≤t≤T ℓ(q(t), q̂
(t)
R (α))

and t̂∗ := argmin1≤t≤T ℓ̂(q(t), q̂
(t)
R (α)) for α ∈ (0, 1),

then ∃∆, ϵ > 0, such that with probability at least 1 − ϵ,
|ℓ(q(t̂∗), q̂(t̂

∗)
R (α))− ℓ(q(t

∗), q̂
(t∗)
R (α))| < ∆.

Important to note is that ℓ̂ is only used to select t∗, after
which we make claims on ℓ (i.e. not the estimate) for the
recalibrated quantiles in Theorem 3.8. As with Assumption
3.3, this assumption is intimately tied to specific details of
the score distribution under P(X,Θ), making its restate-
ment in more natural distributional properties of q impossi-
ble. We demonstrate its validity empirically across several
posteriors in Section 4.2.

The proof of Theorem 3.8 now follows as an extension of
Theorem 3 from (Yang & Kuchibhotla, 2021) and is explic-
itly provided in Appendix D.2. Notably, we use Corollary
3.5 to replace Assumption 3.2 with a more natural set of
conditions for this context. This requires ensuring that, for
any x, q̂(∗)C (α) and q̂

(∗)
R (α) are regular values of s(θ). We,

thus, assume for any x and θ ̸= 0, L({θ : ∇θq(θ|x)}) = 0,
which naturally holds for variational families used in prac-
tice, i.e. any non-piecewise constant density estimator.
Theorem 3.8. Suppose for any x ∈ X and t = 1, ..., T ,
q(t)(θ | x) ∈ C3(Rn) is bounded above and for θ ̸= 0,
L({θ : ∇θq

(t)(θ|x)}) = 0. Further assume P (X,Θ) is
bounded above. Let α ∈ (0, 1) and

q(∗)(Θ | X), q̂
(∗)
R (α) =

CANVI
(
{q(t)(Θ | X)}Tt=1,P(X,Θ), 1− α,NC , NT

)
If, for r ≥ max{

√
log(4T/δ)/2NC , 2/NC} and δ ∈ [0, 1],

Assumption 3.3 holds and for ∆, ϵ > 0 Assumption 3.7
holds, then with probability at least (1− ϵ)(1− δ),

ℓ(q(∗), q̂
(∗)
R (α)) ≤ min

1≤t≤T
ℓ(q(t), q̂

(t)
R (α)) + ∆

+3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
,

(7)

where γ, LW , and L[T ] = max1≤t≤T Lt are constants
defined in Assumptions 3.3 and 3.2.

Again, in any setting where it is possible to sample from
P(X,Θ), NC can be made arbitrarily large, tightening the
bound in Equation 7. Practitioners can, thus, focus on ob-
taining efficient predictors knowing that CANVI will make
the optimal selection with high probability.

4. Experiments
As discussed, the main advantages of CANVI over alterna-
tive strategies are its guaranteed calibration without the need
for tuning parameters, minimal computational overhead, and
informative prediction regions. For this reason, we present
three experiments herein. The first (Section 4.1) seeks to
validate the first two claims by comparing BNRE, BNRE C,
NPE, NRE, NRE C, and Ratio BNPE to the vanilla version
of CANVI i.e. when it is applied to a single q(Θ | X),
where no recalibration is necessary.

Notably, the informativeness of prediction regions, the fo-
cus of the third claim, is only of interest once a predic-
tor is calibrated, meaning the comparison with alternatives
is only meaningful when they are nearly calibrated. As
demonstrated in Section 4.1, however, the alternatives fail
to consistently demonstrate calibration, rendering such a
comparison moot. For this reason, the following experiment
(Section 4.2) focuses on demonstrating that applying the full
CANVI procedure to a collection {q(t)(Θ | X)}Tt=1 both
retains coverage under recalibration and ultimately recovers
the most efficient predictor. The latter hinges upon the valid-
ity of Assumption 3.7 for the Monte Carlo efficiency estima-
tor in Equation (6). We, therefore, demonstrate in the sub-
sequent experiments that this estimator exhibits the desired
estimation consistency when applied in settings where poste-
rior estimators are trained to different epochs (Section 4.2.1)
or with different training objectives (Section 4.2.2). Finally,
we demonstrate CANVI can computationally scale up to
scientific problems of interest in Section 4.3.

In all experiments, coverage for variational posteriors is
assessed using Monte Carlo estimation, namely by con-
structing the highest density credible region per xi. That
is, for a given xi, the ζ such that {θj | q(θj | xi) ≥ ζ}
captures 1−α of the probability mass is estimated by draw-
ing {θj}Nj=1 ∼ q(Θ|xi) and finding the 1 − α quantile
of {q(θj |xi)}Nj=1. Coverage of the true parameter θ can
be assessed by checking if q(θ | xi) ≥ ζ. Details are
provided in Appendix G, and code is available at https:
//github.com/yashpatel5400/canvi.git.
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Figure 2. Calibration on the SBI benchmarks across different calibration strategies. Perfect calibration corresponds to the highlighted
y = x curve. Conservative prediction regions lie above this calibrated line and overconfident ones below. Conformalized lines (CANVI)
are difficult to distinguish, as they all lie along the desired y = x curve.

4.1. Coverage Calibration

We evaluate on the standard SBI benchmark tasks, high-
lighted in (Delaunoy et al., 2023). For full descriptions of
the tasks, refer to Appendix F. Again following the prece-
dent from previous SBI works, we present the calibration
of the models trained over several simulation budgets (|D|).
CANVI was applied to an NPE, in which DC was taken to
be 10% of the simulation budgets and the remainder used for
training. Calibration was completed in under one second
for each task. Coverage was assessed 1,000 i.i.d. samples.
Figure 2 demonstrates the miscalibration of the alternative
approaches and the correction afforded with CANVI.

4.2. Predictive Efficiency

4.2.1. TRAINING EPOCHS

We now study the application of CANVI to a collection of
posteriors. In this experiment, q(t) is taken to be the t-th
iterate of training a Neural Spline Flow family against the
LFAVI objective (Durkan et al., 2019). Generally, we expect
efficiency to improve with training iterates, as q(Θ | x)
better approximates P(Θ | x); however, the most efficient
iterate may not occur at t = T . Selecting an intermediate t
is comparable to the practice of retaining the training iterate
with the best validation performance in prediction tasks.

Figure 3. ℓ(q, τ) and ℓ̂(q, τ) for τ = q̂
(t)
C (α). Error bars across

test batches are plotted.

We first study the validity of Assumption 3.7 by compar-
ing ℓ̂(q, τ) to ℓ(q, τ). To compare to ℓ(q, τ), we restrict
experiments to projected posteriors of Θ̃ = (θ1, θ2) for the
Two Moons, Gaussian Mixture, SLCP, and Gaussian Linear

7



Variational Inference with Coverage Guarantees in Simulation-Based Inference

Table 1. Coverage rates and standard errors for θ before (rows 1-4) and after conformalization (rows 5-8) by CANVI, for ARCH (left
table) and SED (right table), assessed by checking for inclusion of θ in the 1− α highest density region. Non-conformalized regions were
estimated empirically from batches of 1000 i.i.d. samples per point. ℓ(q, q̂C(0.05)) were computed with explicit gridding, discretizing
each dimension into 200 bins; such estimation was intractable for Θ ∈ R11 for SEDs. ℓ̂ was estimated using Algorithm 2, with K = 1
and K = 10 mixing discretizations.

1− α ELBO IWBO FAVI

0.50 0.0007 (0.0008) 0.1031 (0.0110) 0.5514 (0.0127)
0.75 0.0044 (0.0018) 0.1994 (0.0115) 0.7534 (0.0127)
0.90 0.0195 (0.0044) 0.3263 (0.0122) 0.8797 (0.0065)
0.95 0.0396 (0.0061) 0.4074 (0.0186) 0.9260 (0.0083)

0.50 0.4970 (0.0124) 0.5019 (0.0167) 0.5086 (0.0144)
0.75 0.7488 (0.0139) 0.7559 (0.0126) 0.7565 (0.0092)
0.90 0.8978 (0.0080) 0.9036 (0.0111) 0.9005 (0.0110)
0.95 0.9496 (0.0071) 0.9548 (0.0052) 0.9487 (0.0081)

ℓ(q, q̂C(0.05)) 1.3184 (0.2178) 1.4211 (0.1128) 0.7451 (0.0641)
ℓ̂K=1(q, q̂C(0.05)) 50.6595 (8.1313) 69.6484 (2.2495) 19.3635 (0.8868)
ℓ̂K=10(q, q̂C(0.05)) 1.4151 (0.2181) 1.5206 (0.1114) 0.8402 (0.0656)

1− α ELBO IWBO FAVI

0.50 0.1683 (0.0088) 0.6185 (0.0111) 0.4986 (0.0180)
0.75 0.4556 (0.0146) 0.7978 (0.0079) 0.7550 (0.0105)
0.90 0.5803 (0.0106) 0.8881 (0.0064) 0.9028 (0.0092)
0.95 0.6824 (0.0144) 0.9248 (0.0083) 0.9532 (0.0085)

0.50 0.4901 (0.0156) 0.4937 (0.0101) 0.5024 (0.0203)
0.75 0.7485 (0.0163) 0.7513 (0.0139) 0.7542 (0.0163)
0.90 0.8985 (0.0098) 0.9013 (0.0096) 0.9022 (0.0067)
0.95 0.9499 (0.0084) 0.9510 (0.0061) 0.9461 (0.0059)

ℓ̂(q, q̂C(0.05)) ∞ 1.3849 (1.2357) ×109 5.3732 (3.3302) ×106

Uniform tasks, for which explicit gridding was tractable.
ℓ̂(q(t), q̂

(t)
C (α)) was estimated for a fixed α = 0.05 and

t taken every 100 training steps with 5 batches of 100
test points (|DT | = 100) using S = 10, 000 importance-
weighted i.i.d. samples for each of K = 10 mixed samplers.
From Figure 3, we see that ℓ̂(q, τ) tracks closely to ℓ(q, τ)
across all tasks, giving credence to Assumption 3.7. We
visualize the credible regions in Appendix H.

4.2.2. TRAINING OBJECTIVES

We now similarly study q(t) across training objectives, tak-
ing one iterate of q trained against each of LFAVI, LELBO,
and LIWBO (K = 10), giving us three amortized posteriors
as input for CANVI, for a lag-one ARCH model:

y(m) = θ1y
(m−1)+e(m), e(m) = ξ(m)

√
0.2 + θ2

(
e(m−1)

)2
,

where y(0) = 0, e(0) = 0, M = 100, and the ξ(m) are
independent standard normal random variables (Thomas
et al., 2022), detailed in Appendix F.9.

Table 1 shows that prior to conformalization, the variational
posteriors are generally miscalibrated: training by the ELBO
or IWBO results in significant under-coverage, as targeting
either is known to find solutions that are mode-seeking.
While the variational posterior obtained by FAVI is better
calibrated, it still needs correction. As multiple posterior
approximators were considered, CANVI had to be applied
with recalibration. Table 1 shows that the recalibrated 1−α
prediction regions are nearly perfectly calibrated. Impor-
tantly, correction by CANVI can result in either larger or
smaller 1 − α regions, depending on the direction of mis-
calibration. In settings where the variational posterior is
overdispersed, applying CANVI results in smaller 1 − α
density regions, explicitly shown in Appendix I.7. Table 1
also demonstrates using the better calibrated LFAVI-trained
approximation results in higher efficiency compared to the

LELBO and LIWBO counterparts.

We also demonstrate the necessity of using mixed sampling
for ℓ̂. In particular, we compare the estimates when using
only the variational posterior as a sampler (ℓ̂K=1) and when
averaging 10 mixed samplers (ℓ̂K=10), from which we ob-
serve the estimator accuracy greatly improves with mixing,
especially in the underdispersed IWBO and ELBO cases.

4.3. Galaxy Spectral Energy Distributions

We now present the application of CANVI to an impor-
tant scientific problem. The spectrum of an astronomical
object is measured via a spectrograph, which records the
flux across a large grid of wavelength values (York et al.,
2000; Abareshi et al., 2022), which we simulate with the
Probabilistic Value-Added Bright Galaxy Survey simula-
tor (PROVABGS). PROVABGS maps θ ∈ R11 to galaxy
spectra, detailed further and visualized in Appendix J.

A mixture of 20 Gaussian distributions was used as the
variational posterior and trained against the LFAVI,LELBO,
andLIWBO objectives, as in Section 4.2.2. Table 1 shows that
the ELBO and IWBO tend to be overly concentrated, failing
to contain the entire parameter vector θ in the 1−α highest-
density region often. FAVI, on the other hand, is reasonably
well-calibrated. After applying CANVI, all three methods
achieve nearly perfect calibration across a range of desired
confidence levels. Of course, the utility of these corrected
regions depends on the level of information contained in the
original model. For the ELBO or IWBO cases, the corrected
regions achieve statistical validity, but are too large to be
informative. Notably, the underdispersion of the ELBO
approximator led to q̂C(0.05) = 0 (up to machine precision),
resulting in a volume estimate of∞. For FAVI, on the other
hand, application of CANVI results in statistical guarantees
with minimal alterations to the high-density regions.
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5. Discussion
We have presented CANVI, a framework for producing
marginally calibrated, efficient prediction regions from a
collection of variational approximators with minimal over-
head in simulation-based inference settings. We view such
guarantees on marginal coverage as an important first step
toward increasing the utility of such inference algorithms
for downstream applications, suggesting many directions
for extension. Of immediate interest would be extending
CANVI to cases of misspecified forward models P(X | Θ)
by leveraging work on conformal prediction under distri-
bution shift (Tibshirani et al., 2019; Barber et al., 2022).
Further, leveraging CANVI over functional spaces may
enable guarantees over the full posterior distributions.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. Ad-
vances in variational inference. IEEE transactions on
pattern analysis and machine intelligence, 41(8):2008–
2026, 2018.

12



Variational Inference with Coverage Guarantees in Simulation-Based Inference

A. Group Conditional CANVI
We now discuss how CANVI can be easily extended to provide a stronger notion of group conditional coverage over the
purely marginal coverage over X that was provided in the paper. Here, instead of defining a global q̂, a collection {q̂i}Ki=1

is obtained by defining centroids over the X space {ci}Ki=1, constructing balls of radius ϵ around them Bϵ(ci) ⊂ X , and
performing calibration using Di

C := {(xj , θj)}NC
j=1 with xj ∈ Bϵ(ci).

To compare, we define a global quantile q̂ using KN samples. Specifically, we take N = 100, 000 and K = 5, meaning
calibration was performed using 500,000 i.i.d. samples for the overall calibration set. Coverage was assessed over α ∈ [0, 1]
discretized at steps of .05 over K = 5 regions. Coverage was assessed over 10 batches of 100,000 i.i.d. test samples.

Figure 4. Calibration on the SBI benchmarks with overall quantile and region-specific quantiles, respectively the dashed and solid lines.
Region-specific conformalized lines are slightly difficult to distinguish, as they all lie along the desired y = x curve. Error bars from
coverage assessments across test batches are plotted, although they are difficult to see due to the low variance between estimates across
batches.

Figure 4 demonstrates the miscalibration of the regions produced using the overall quantile and subsequent correction with
region-specific calibration. We additionally plot the calibration across the X space of the Two Moons task to demonstrate
the non-uniformity of coverage across regions and subsequent corrections in Figure 5.

Figure 5. Coverage for Two Moons with the overall and region-specific quantiles with α = 0.05.
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B. CANVI Validity
Lemma B.1. Let α ∈ (0, 1) and

q(∗)(Θ | X), q̂
(∗)
R (α) =

CANVI
(
{q(t)(Θ | X)}Tt=1,P(X,Θ), 1− α,NC , NT

)
Let (x′, θ′) ∼ P(X,Θ) ⊥⊥ D ∪ DC ∪ DR ∪ DT , with D being the data used to train {q(t)(Θ|X)}Tt=1. Then 1 − α ≤
P(1/q(∗)(θ′|x′) ≤ q̂

(∗)
R (α)).

Proof. Consider the score function s(∗)(x, θ) := 1/q(∗)(θ | x). Observe that (x′, θ′) ∪ DR are jointly sampled
i.i.d. from P(X,Θ), independent of the datasets used to design s(∗)(x, θ), namely D ∪ DC ∪ DT . Denoting SR :=
{s(∗)(xi, θi)}(xi,θi)∈DR , scores s(∗)(x′, θ′)∪ SR, thus, too are i.i.d and, hence, exchangeable. The coverage guarantee then
follows from the general theory of conformal prediction, presented in (Angelopoulos & Bates, 2021).

C. Riemannian Manifolds
Let (M, g) denote a Riemannian manifold, with g denoting the metric tensor associated with this space. By definition, a
manifoldM is locally isomorphic to Euclidean space, from which we can define the notion of a tangent space TzM at each
point z ∈M. The metric tensor g then defines a local notion of distance, namely g : TzM×TzM→ R. This, therefore,
induces a local notion of length, namely for x ∈ TzM, ||x||z =

√
g(x, x).

Global distances over the manifold, therefore, can then be denoted by integrating such a local notion across a path γ.
Concretely, a path is defined between a, b ∈M by γ : [0, 1]→M such that γ(0) = a, γ(1) = b. The length of such a path
is then ℓ(γ) :=

∫ 1

0
||γ′(t)||γ(t)dt. A natural choice of distance, therefore, is the minimum length of a constant velocity path,

formally
d(a, b) = inf

γ:||γ′(t)||=1,γ(0)=a,γ(1)=b
ℓ(γ) (8)

D. CANVI: Efficiency Analysis
D.1. Lipschitz Continuity of Efficiency

Lemma D.1. Let ℓ(q, τ) be as defined in Equation 3. If ℓx(q, τ) is L-Lipschitz continuous in τ for any x ∈ X , then ℓ(q, τ)
is L-Lipschitz continuous.

Proof.

|ℓ(q, τ1)− ℓ(q, τ2)| = |EX [L ({θ : 1/q(Θ | X) ≤ τ1})− L ({θ : 1/q(Θ | X) ≤ τ2})]|

=

∣∣∣∣∫ P(x) [ℓx(q, τ1)− ℓx(q, τ2)]

∣∣∣∣ ≤ ∫ P(x) |ℓx(q, τ1)− ℓx(q, τ2)| dx ≤ L |τ1 − τ2|
∫
P(x)dx = L |τ1 − τ2| ,

completing the proof as desired.

D.2. Predictive Efficiency of CANVI

The proof emerges through a reduction of CANVI to a special case of the “Validity First Conformal Prediction for the
Smallest Prediction Set” (VFCP) algorithm presented in the (Yang & Kuchibhotla, 2021). The VFCP algorithm is provided
for convenience in Algorithm 3. Note that we made the appropriate replacements in notations to match those presented in
the main body of our paper for clarity.

To further underscore the parallel, we present an immaterially modified version of VFCP, where it is assumed the data are
split prior to the algorithm execution into disjoint sets D,DC , and DR. We assume input prediction methods A(1), ...,A(T )

have been trained on D. Finally, the presentation in (Yang & Kuchibhotla, 2021) allows for generic definitions of the
measure function of C(x), referred to as “Width” therein. We present it with the particular Lebesgue measure function as
presented in the main body to avoid confusion. These three modifications in the algorithm presentation have no manifest
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effects in the proof of (Yang & Kuchibhotla, 2021), meaning all results as presented there apply with the appropriate choices
of inputs in Algorithm 3.

We similarly consider an immaterially modified form of CANVI, that is, one in which DC and DR are pre-generated in
precisely the fashion outlined Algorithm 1 and provided as input. Thus, inputs to CANVI parallel those of VFCP, namely
{q(t)(Θ | X)}Tt=1, 1− α,DC , and DR.

Intuitively, the proof follows from the fact that CANVI is a special case of Algorithm 3, where the particular structural
assumptions we make imply the corresponding assumptions as stated in the theorem from (Yang & Kuchibhotla, 2021).
Algorithm 3 is presented using the so-called “nested set formulation” of conformal prediction. Briefly, the nested sets
formulation starts by requiring the user to specify a set-valued function Fr instead of a score function. Sets must be nested
over increasing r. Despite being seemingly more expressive, the equivalence of the nested set and split score conformal
methods was demonstrated in (Gupta et al., 2022). In particular, for a chosen score function s(x, θ), the corresponding
nested set function would be F

(t)
τ = {(x, θ) | s(t)(x, θ) ≤ τ}, where s(t) denotes the score function as defined with A(t).

The presentation of Algorithm 3 using the nested set formulation was, thus, a means to allow for the employment of relevant
proof strategies from classical learning theory. We now proceed through the formal equivalence of CANVI and a special
case of VFCP.

Algorithm 3 Validity First Conformal Prediction (VFCP) (Yang & Kuchibhotla, 2021)
1: Procedure: VFCP
2: Inputs: Predictors {A(t)}Tt=1, Target coverage 1− α, Calibration set DC , Recalibration set DR, Score s(x, θ)

3: Using A(t), construct an increasing (nested) sequence of sets {F (t)
τ }τ∈T , where T ⊂ R and

F (t)
τ = {(x, θ) | s(t)(x, θ) ≤ τ},

where s(t) denotes the score function as defined with A(t)

4: Compute conformal prediction set C(t) based on {F (t)
τ }τ∈T . Specifically, for each (xi, θi) ∈ DC and t ∈ {1, 2, ..., T},

denote its corresponding score as
s(t)(xi, θi) := inf

τ∈T
{(xi, θi) ∈ F (t)

τ }

5: Compute the corresponding conformal prediction set as

C(t)C := {(x, θ) : s(t)(x, θ) ≤ q̂
(t)
C (α)},

where q̂
(t)
C (α) is the ⌈(|DC |+ 1)(1− α)⌉-th largest element of {s(t)(xi, θi)}i∈DC

6: Let C(t)C (x) := {θ : (x, θ) ∈ C(t)C }. Set

t∗ := argmin
1≤t≤T

EX [L(C(t)C (X))]

7: For each (xi, θi) ∈ DR, define the conformal score

s(∗)(xi, θi) := inf
τ∈T
{(xi, θi) ∈ F (t∗)

τ }

8: Compute the corresponding conformal prediction set as

C(∗)R := {(x, θ) : s(∗)(x, θ) ≤ q̂
(∗)
R (α)},

where q̂
(∗)
R (α) := ⌈(|DR|+ 1)(1− α)⌉-th largest element of {s(∗)(xi, θi)}i∈DR

9: Return the prediction set C(∗)R

We first state for reference the original theorem for VFCP, which we leverage in the proof of theorem.
Theorem D.2. Suppose Assumption 3.2 holds. Let α ∈ (0, 1), DC and DR be drawn i.i.d. from P(X,Θ), and

C(∗)R = VFCP
(
A(t), 1− α,DC , DT , s(x, θ)

)
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If, for r ≥ max{
√
log(4T/δ)/2NC , 2/NC} and δ ∈ [0, 1], Assumption 3.3 holds, then with probability at least (1− δ),

EX [L(C(∗)R (X))] ≤ min
1≤t≤T

EX [L(C(t)R (X))] + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
, (9)

where γ, LW , and L[T ] = max1≤t≤T Lt are constants defined in Assumptions 3.3 and 3.2 (Yang & Kuchibhotla, 2021).

We now present the proof of our theorem. The proof proceeds in two steps. We first demonstrate the CANVI and VFCP
algorithms are equivalent if we assume access to the exact ℓ(q, τ), which, coupled with the assumptions imposed on q,
allows us to directly leverage the results of Theorem D.2. We then demonstrate, under Assumption 3.7, we recover the
desired bound even if t∗ is chosen with ℓ̂(q, τ).
Theorem D.3. Suppose for any x ∈ X and t = 1, ..., T , q(t)(θ | x) ∈ C3(Rn) is bounded above and for θ ̸= 0,
L({θ : ∇θq

(t)(θ|x)}) = 0. Further assume P (X,Θ) is bounded above. Let α ∈ (0, 1) and

q(∗)(Θ | X), q̂
(∗)
R (α) =

CANVI
(
{q(t)(Θ | X)}Tt=1,P(X,Θ), 1− α,NC , NT

)
If, for r ≥ max{

√
log(4T/δ)/2NC , 2/NC} and δ ∈ [0, 1], Assumption 3.3 holds and for ∆, ϵ > 0 Assumption 3.7 holds,

then with probability at least (1− ϵ)(1− δ),

ℓ(q(∗), q̂
(∗)
R (α)) ≤ min

1≤t≤T
ℓ(q(t), q̂

(t)
R (α)) + ∆ + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
, (10)

where γ, LW , and L[T ] = max1≤t≤T Lt are constants defined in Assumptions 3.3 and 3.2.

Proof. Let C(∗)R = VFCP
(
{q(t)(Θ | X)}Tt=1, 1− α,DC , DT , 1/q(θ | x)

)
. We first wish to demonstrate C(t),VFCP

C,R (x) =

C(t),CANVI
C,R (x) for any fixed x, where we use the C,R condensed notation to mean this equality holds both under DC and
DR. This equivalence can be shown in demonstrating the equivalence in corresponding scores, as the resulting empirical
score distributions and hence quantiles over DC and DR and finally future prediction regions follow to then be equivalent by
the algorithm structure.

This equivalence follows as a straightforward instance of the equivalence of the set-valued and standard conformal prediction
frameworks. In particular, we recover the original score formulation, as:

s(t)(xi, θi) := inf
τ∈T
{(xi, θi) ∈ F (t)

τ } = inf
τ∈T
{(xi, θi) ∈ {(x, θ) | 1/q(t)(θ | x) ≤ τ}} = 1/q(t)(θi | xi).

The bound under access to the exact ℓ(q, τ) then follows from Theorem D.2 under demonstration of the appropriate
assumptions. Assumption 3.3 holds by assumption. Assumption 3.2 holds for any ϑ(t) := {θ : ∇θq

(t)(θ|x)} by Corollary 3.5.
In the application of Assumption 3.2 for the proof of Theorem D.2, it suffices forF−1

t (1−α) ∈ ϑ(t) andF−1
t (1−α+1/(NC+

1)) ∈ ϑ(t). Since L({θ : ∇θq
(t)(θ|x)}) = 0 and P(X,Θ) is bounded above, this means PX,Θ(F−1

t (1 − α) ∈ ϑ(t)) = 1
and PX,Θ(F−1

t (1− α+ 1/(NC + 1)) ∈ ϑ(t)) = 1. Thus, if t∗ is chosen in CANVI using ℓ(q, τ), by Theorem D.2, with
probability 1(1− δ) = 1− δ,

ℓ(q(∗), q̂
(∗)
R (α)) ≤ min

1≤t≤T
ℓ(q(t), q̂

(t)
R (α)) + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
.

The extension of this to the case of interest, where t∗ is chosen using ℓ̂(q, τ), is now a straightforward application of
Assumption 3.7, from which we have that ∃∆, ϵ > 0, such that with probability at least 1− ϵ∣∣∣ℓ(q(t̂∗), q̂(t̂∗)R (α))− ℓ(q(t

∗), q̂
(t∗)
R (α))

∣∣∣ < ∆ =⇒ ℓ(q(t̂
∗), q̂

(t̂∗)
R (α)) < ℓ(q(t

∗), q̂
(t∗)
R (α)) + ∆. (11)

Switching back to denoting ℓ(q(∗), q̂
(∗)
R (α)) := ℓ(q(t̂

∗), q̂
(t̂∗)
R (α)), this implies that, with probability (1− ϵ)(1− δ),

ℓ(q(∗), q̂
(∗)
R (α)) ≤ ℓ(q(t

∗), q̂
(t∗)
R (α)) + ∆ ≤ min

1≤t≤T
ℓ(q(t), q̂

(t)
R (α)) + ∆ + 3LWL[T ]

[(
log(4T/δ)

NC

)γ/2

+

(
2

NC

)γ
]
,
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completing the proof as desired.

E. Gaussian Hölder Continuity
Theorem E.1. Let Θ and X be zero-mean unit-variance Gaussian random variables with correlation ρ. Let q(t)(θ|x) =
N (θ; tx, 1 − ρ2). Let κ := t2 − 2tρ + 1 and r > 0. Then F−1

t (z), is 1-Hölder continuous on [1 − α, 1 − α + r] with
Hölder constant

κΦ−1( 1−α
2 )

√
exp

(
κ

1−ρ2Φ−1( 1−α
2 )2 − (1−α)2

2

)
√

(1− ρ2)/2
(12)

Proof. Notice that in the bivariate Gaussian case, we have closed forms for the following:

Θ | x ∼ N (ρx, 1− ρ2) X | θ ∼ N (ρθ, 1− ρ2)

Θ ∼ N (0, 1) X ∼ N (0, 1).

We wish to find the distribution of s(X,Θ) = 1/q(Θ | X) jointly over X,Θ to find F−1
t (z) explicitly. The CDF of this

score can be computed as follows:

P (1/qt(Θ | X) ≤ q) = P
(√

2π(1− ρ2)e
(tX−Θ)2

2(1−ρ2) ≤ q

)
= P

(
R2 ≤ 2(1− ρ2) log

(√
q2

2π(1− ρ2)

))
= P

(
R ≤

√
(1− ρ2) log

(
q2

2π(1− ρ2)

))
,

where R := |tX −Θ|. From the above calculation, F−1
t (z) must satisfy:

P

R ≤

√
(1− ρ2) log

(
F−1
t (z)2

2π(1− ρ2)

) = z.

Notice now that, since (X,Θ) are bivariate Gaussian:

tX −Θ ∼ N (0, t2 + 1− 2tρ) =⇒ R ∼ HalfNormal(t2 + 1− 2tρ).

Therefore, the z quantile of R is
√
t2 + 1− 2tρΦ−1

(
1− α

2

)
. Solving for F−1

t (z) in this quantile produces the final
threshold: √

(1− ρ2) log

(
F−1
t (z)2

2π(1− ρ2)

)
=
√
t2 + 1− 2tρΦ−1

(
1− α

2

)
=⇒ log

(
F−1
t (z)2

2π(1− ρ2)

)
=

t2 + 1− 2tρ

1− ρ2

(
Φ−1

(
1− α

2

))2
=⇒ F−1

t (z) =

√
2π(1− ρ2) exp

(
t2 + 1− 2tρ

1− ρ2

(
Φ−1

(
1− α

2

))2)
.

The Hölder constant follows from bounding the derivative of F−1
t (z), namely

κΦ−1( z2 )

√
exp

(
κ

1−ρ2Φ−1( z2 )
2 − (z)2

2

)
√

(1− ρ2)/2

This expression is monotonically decreasing in z and hence maximized for z = 1− α in the interval, giving the desired
expression.
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F. Simulation-Based Inference Benchmarks
The benchmark tasks are a subset of those provided by (Lueckmann et al., 2021). For convenience, we provide brief
descriptions of the tasks curated by this library; however, a more comprehensive description of these tasks can be found in
their manuscript.

F.1. Gaussian Linear

10-dimensional Gaussian model with a Gaussian prior:

Prior: N (0, 0.1⊙ I)

Simulator: x | w ∼ N (x | w, 0.1⊙ I)

F.2. Gaussian Linear Uniform

10-dimensional Gaussian model with a uniform prior:

Prior: U(−1, 1)
Simulator: x | w ∼ N (x | w, 0.1⊙ I)

F.3. SLCP with Distractors

Simple Likelihood Complex Posterior (SLCP) with Distractors has uninformative dimensions in the observation over the
standard SLCP task:

Prior: U(−3, 3)
Simulator: x | w = p(y) where p reorders

y with a fixed random order

y[1:8] ∼ N
([

w1

w2

]
,

[
w4

3 w2
3w

2
4 tanh(w5)

w2
3w

2
4 tanh(w5) w4

4

])
,

y9:100 ∼
1

20

20∑
i=1

t2(µ
i,Σi), µi ∼ N (0, 152I),

Σi
j,k ∼ N (0, 9),Σi

j,j = 3ea, a ∼ N (0, 1),

F.4. Bernoulli GLM Raw

10-parameter GLM with Bernoulli observations and Gaussian prior. Observations are not sufficient statistics, unlike the
standard “Bernoulli GLM” task:

Prior: β ∼ N (0, 2), f ∼ N (0, (FTF )−1)

Fi,i−2 = 1, Fi,i−1 = −2

Fi,i = 1 +

√
i− 1

9
, Fi,j = 0; i ≤ j

Simulator: x(i) | w ∼ Bern(η(v(i)T f + β)),

η(⊙) = exp(⊙)/(1 + exp(⊙))
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F.5. Gaussian Mixture

A mixture of two Gaussians, with one having a much broader covariance structure:

Prior: β ∼ U(−10, 10)
Simulator: x | w ∼ 0.5N (x | w, I) + 0.5N (x | w, .01I)

F.6. Two Moons

Task with a posterior that has both global (bimodal) and local (crescent-shaped) structure:

Prior: β ∼ U(−1, 1)
Simulator: x | w =[

r cos(α) + 0.25
r sin(α)

]
+

[
−|w1 + w2|/

√
2

(−w1 + w2)/
√
2

]
α ∼ U(−π/2, π/2), r ∼ N (0.1, 0.012)

F.7. SIR

Epidemiology model with S (susceptible), I (infected), and R (recovered). A contact rate β and mean recovery rate of γ are
used as follows:

Prior: β ∼ LogNormal(log(0.4), 0.5),
γ ∼ LogNormal(log(1/8), 0.2)

Simulator: x = (x(i))10i=1;x
(i) | w ∼ Bin(1000,

I

N
),

where I is simulated from:
dS

dt
= −βSI

N
,

dI

dt
= β

SI

N
− γI,

dR

dt
= γI

F.8. Lotka-Volterra

An ecological model commonly used in describing dynamics of competing species. w parameterizes this interaction as
w = (α, β, γ, δ):

Prior: α ∼ LogNormal(−.125, 0.5)
β ∼ LogNormal(−3, 0.5), γ ∼ LogNormal(−.125, 0.5)

δ ∼ LogNormal(−3, 0.5)
Simulator: x = (x(i))10i=1,

x1,i | w ∼ LogNormal(log(X), 0.1),

x2,i | w ∼ LogNormal(log(Y ), 0.1)

where X,Y is simulated from:
dX

dt
= αX − βXY,

dY

dt
= −γY + δXY

F.9. ARCH

The two-dimensional parameter θ = (θ1, θ2) includes both an autoregressive component (θ1) and a component controlling
the level of conditional noise (θ2). Given a full realization of the time series y1:T , we aim to amortize inference over θ.
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Priors are taken to be θ1 ∼ Unif(−1, 1) and θ2 ∼ Unif(0, 1). One important change from the model of (Thomas et al.,
2022) is that we fix e(0) = 0 rather than drawing this quantity from a standard Gaussian.

The Adam optimizer was used with a learning rate of 0.0001 for 25,000 training steps for each of the three methods: IWBO
(K = 10), ELBO, FAVI. Due to constraints arising from the uniform priors on the parameters, the IWBO and ELBO
implementations rely on logit transformations of the latent random variables θ to avoid zero-density regions that result in
undefined gradients. The encoder network is trained to learn distributions on the unconstrained space of the transformed
random variable θ′, and visualizations are produced by performing the inverse transformation. While FAVI avoids these
issues because it is likelihood-free, for an apples-to-apples comparison we also implement FAVI on the unconstrained latent
space as well.

G. Training Details
All encoders were implemented in PyTorch (Paszke et al., 2019) with a Neural Spline Flow architecture. The NSF was
built using code from (Durkan et al., 2020a). Specific architecture hyperparameter choices were taken to be the defaults
from (Durkan et al., 2020a) and are available in the code. Optimization was done using Adam (Kingma & Ba, 2014) with a
learning rate of 10−3 over 5,000 training steps. Minibatches were drawn from the corresponding prior P(Θ) and simulator
P(X | Θ) as specified per task in the preceding section. Training these models required between 10 minutes and two hours
using an Nvidia RTX 2080 Ti GPUs for each of the SBI tasks.

H. Prediction Regions
Credible regions for qφ(Θ | x) (for a single x ∼ P(X)) on a subset of the SBI benchmark tasks are plotted below over
varying degrees of training, as indicated in the figures. As expected, the efficiency of the prediction regions improves over
training across all tasks, resulting in smaller regions for each target coverage 1− α.

H.1. Gaussian Linear
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H.2. Gaussian Linear Uniform

H.3. SLCP
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H.4. Bernoulli GLM Raw

H.5. Gaussian Mixture
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H.6. Two Moons

I. Posteriors
We provide visualizations of approximate and reference posteriors (produced with MCMC from (Lueckmann et al., 2021))
to justify the overdispersion claims made on the variational approximation procedure.

I.1. Gaussian Linear
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I.2. Gaussian Mixture

I.3. Gaussian Linear Uniform

I.4. Two Moons
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I.5. SLCP

I.6. Bernoulli GLM

I.7. ARCH

For selected points from the training sets, we show the exact and approximate posteriors obtained by training according to
the ELBO, IWBO, and FAVI objectives. The ground-truth parameter value is noted in red.
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Depending on the miscalibration of the variational posterior on either per-objective or per-point basis, the conformalized
1− α high-density region (HDR) either shrinks or expands, and can be visualized in two dimensions. Figure 6, Figure 7
show examples where the 50% prediction regions obtained from the FAVI-learned variational posterior shrinks and grows
after applying CANVI.

Figure 6. 50% prediction region, observation 7, before and after applying CANVI.

Figure 7. 50% prediction region, observation 8, before and after applying CANVI.

We visualize the efficiency of the iterates qφ across training iterations in Figure 8. Recalling the form of Equation 6, it is
unsurprising that FAVI tends to be more efficient, as it trains using simulated data (over which Equation 6 is computed). To
estimate Equation 6, at every 500 training steps, we simulate 20 θ, x pairs from the forward model. A larger number of
Monte Carlo samples can be used but at an increased cost. As the resulting estimates are noisy, we smooth the resulting
series with a Savitzky-Golay filter with a window length of 10 and third-degree polynomial order for better visualization.

Figure 8. Efficiency estimates for variational posteriors trained by ELBO, IWBO, and FAVI across training iterations.
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J. SED Experimental Details
The PROVABGS emulator (Section 4.3) was trained to minimize the MSE using normalized simulated PROVABGS outputs
with fixed log stellar mass parameter (Hahn et al., 2023). Training data were generated from PROVABGS with a fixed
magnitude parameter (θ0 = 10.5), resampled onto a 5 Angstrom grid, and normalized to integrate to one. After training,
forward passes through the emulator are significantly faster than the base simulator. We provide two simulated draws from
our emulator in Figure 9. We use the recommended priors from (Hahn et al., 2023) on the remaining eleven parameters.
As these are highly constrained (uniform priors, vastly different scales, and a 4-dimensional vector on the simplex), we
similarly operate on an unconstrained, 10-dimensional space by invertible transformations. All three methods were trained
for 10,000 steps using the Adam optimizer with learning rate 0.0001. K = 1000 was used for the IWBO.

Figure 9. Two example draws from our neural network emulator of PROVABGS.

We let the output of our simulator be a mean parameter µ ∈ R1400, and generate observed data independently binwise via
xi ∼ N (µi, |µi|2σ2) for a fixed hyperparameter σ = .1 and all i = 1, . . . , 1400. We adopt this noise model for simplicity,
as it imposes a fixed signal-to-noise ratio (SNR) of 1/σ = 10 across all spectra and wavelength bins.
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