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Abstract

Policy search is one of the most effective reinforcement learning classes of methods
for solving continuous control tasks. These methodologies attempt to find a good
policy for an agent by fixing a family of parametric policies and then searching
directly for the parameters that optimize the long-term reward. However, this
parametric policy space represents just a subset of all possible Markovian policies,
and finding a good parametrization for a given task is a challenging problem
in its own right, typically left to human expertise. In this paper, we propose a
novel, model-free, adaptive-space policy search algorithm, GAPS. We start from a
simple policy space; then, based on the observations we receive from the unknown
environment, we build a sequence of policy spaces of increasing complexity,
yielding more sophisticated optimized policies at each epoch. The final result is a
parametric policy whose structure (including the number of parameters) is fitted on
the problem at hand without any prior knowledge of the task. Finally, our algorithm
is tested on a selection of continuous control tasks, evaluating the resulting policy
sequence and comparing the results with traditional policy optimization methods
that use a fixed policy space.

1 Introduction

Artificial intelligence, at its core, addresses the challenge of enabling an agent to make optimal
decisions to accomplish specific tasks. Reinforcement Learning (RL) [25] tackles this by having
the agent learn the best behavior through direct interaction with the environment and evaluating the
performance by accumulating a reward signal. Among RL approaches, policy gradient (PG) methods
have proven particularly effective in real-world control scenarios. PG methods have demonstrated
success in continuous control tasks [22, 23, 24], robotics [26], and partially observable environments
[16]. These algorithms work by directly searching within a space of parametric policies to find the
one that maximizes a performance index.

However, determining an appropriate parametric policy space remains a significant challenge. A
policy space that is too small may converge quickly but will likely result in poor performance due to
its limited ability to represent the optimal behavior for the problem. On the other hand, a very large
policy space might devise more effective policies, but it comes with high computational and sample
costs.

Usually, this decision is based on domain-dependent practices or is left to human expertise, leveraging
existing knowledge about the nature of the task to solve. However, in the real world, it is quite
uncommon to have access to the information needed to suitably design the policy space before
the learning process starts. Indeed, such a decision would require an apriori knowledge of the
environment in which the agent operates, contrasting with the usual setting in which RL has proved
beneficial.
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With the advent of Deep RL (DRL) [13], new methods have emerged that use complex neural
networks to define parametric policies. These policies are often characterized by a very large number
of parameters. Despite their capacity and flexibility, using neural networks to model policy spaces
incurs a high computational cost and demands massive data to reduce the variance that affects policy
gradient estimators. This makes DRL impractical for some applications, particularly those with
limited resources or real-time constraints. Thus, the research question: Can we shape the policy
space during learning in an effective way? remains open.

In this paper, we follow a different approach to identify a parametric space of appropriate complexity
for the task at hand. We formulate the search for the most appropriate parametric space as a sequence
of curricula by starting small [6] and gradually devising more complex policy spaces. The philosophy
of starting small is widely embraced in several fields. Curriculum learning (CL) [28], is based on the
concept of learning by iteratively moving from simpler instances to more complex ones. The original
concept of CL [2] proposed "training from easier to harder data", i.e., training the machine learning
model with subsets of easy examples from the dataset, then gradually increasing the difficulty until
the whole training dataset is considered. Some works tried to adapt the concept of curriculum to RL,
considering a sequence of control tasks of increasing complexity [e.g., 14]. On a very general level,
curriculum can be thought of as an ordering of experience samples. The latter can be used to produce
methods that start in a goal state and iteratively expand the start state distribution assuming reversible
dynamics [12] or access to an approximate dynamics model [7]. Other approaches generate the
curriculum from demonstration states [21] or through online exploration [5]. However, a curriculum
can also be represented at a task level, organizing a set of tasks into a sequence [15] or in a graph of
tasks which also specifies the order of learning [10].

An alternative approach, adopted in this paper, is to apply the curriculum concept at the agent level
rather than at the task level, training a sequence of policies of increasing complexity. An existing
example of agent curricula is [4], based on training and mixing a sequence of given policy networks
of increasing complexity. The main limitation of this approach is that the sequence must be carefully
designed in advance. In this work, we introduce the concept of expanding policy spaces. Embracing
the philosophy of starting small, we begin with a simple policy parametrization and gradually expand
the policy space, automatically adapting to the task’s difficulty while learning the optimal parameters.

This is achieved by deploying copies of the same simple policy, with independent parameters, in each
element of a state space partition, composing a piece-wise policy whose complexity depends only on
the complexity of the partition. Starting from the whole state space, we partition it into finer and finer
regions every time the optimization of the current parametrization reaches convergence. Each time,
the partition is refined to maximize the potential performance improvement, and the optimization
of the augmented piece-wise policy starts again. We can prove that each policy expansion leads
to a potential performance improvement, even if the previous piece-wise policy has already been
optimized to convergence. Eventually, the algorithm can find an appropriate policy space and a set of
parameters without prior knowledge of the environment, with the advantage of focusing on simpler,
faster-to-optimize policies at the beginning of the learning process.

Contribution. In this paper, we introduce a novel, model-free, actor-only policy optimization
algorithm named Gradient-based Adaptive Policy Search (GAPS) that combines PG with the agent-
curriculum idea to efficiently find (and optimize) the optimal policy parametrization for a given task.
The contributions of this paper encompass theoretical, algorithmic, and experimental aspects. After
providing some background on policy gradient in Section 2, we present the key insights motivating
our algorithm in Section 3, and describe the details of GAPS in Section 4. In Section 5, we provide
a one-step policy update analysis to show the improvement guarantees unlocked by policy space
expansion. Finally, in section 6, we empirically assess the performance of our method on popular
continuous RL tasks. The proofs of our theoretical results are reported in Appendix A.

2 Preliminaries

Markov Decision Processes. A reinforcement learning task [25] can be modeled as a discrete-time
Markov Decision Process (MPD), which is defined as a tupleM := (S,A, P,R, γ, µ0) where S
is the state space, A is the action space, P (·|s, a), is a Markovian transition model which defines
for each state-action pair (s, a) the probability to reach the next state s′, R(s, a) ∈ [−Rmax, Rmax]
assigns the expected reward for performing action a in state s, γ ∈ [0, 1] is a discount factor
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and µ0 is the distribution of the initial state. In this framework, the behavior of an agent is de-
scribed by a policy π(·|s) that assigns to each state s the probability of performing a certain
action a. We consider episodic MDPs with effective horizon H ∈ N. A trajectory τ ∈ T is
a a sequence of states and actions τ = (sτ,0, aτ,0, ..., sτ,H−1, aτ,H−1, sτ,H) and T is the set of
collected trajectories. We evaluate the performance of an agent in terms of the expected return,
i.e., the expected discounted sum of the rewards collected along τ : J(π) = Eτ∼p(·|π)[R(τ)], with
R(τ) =

∑H−1
t=0 γtr(st, at) and the expectation is computed over the trajectory distribution, whose

density function is p(τ |π) := µ0(s0)
∏H−1

t=0 π(at|st)P (st+1|st, at). The objective of an RL task is
to find a policy π⋆ ∈ argmaxπ{J(π)}. In our work, we focus on policies that belong to a parametric
policy space ΠΘ = {πθ : θ ∈ Θ ⊆ Rd}, Θ being the parameter space. In such a case, we abbreviate
J(θ) := J(πθ) and p(·|θ) := p(·|πθ) for any θ ∈ Θ.

Policy Gradient Methods. Policy gradients are a class of methods for searching the best-performing
policy over a class of parametrized policies ΠΘ. We will denote with J(θ) the performance of a
parametric policy and with p(τ |θ) the probability of a trajectory τ . The search of a locally optimal
policy is performed through gradient ascent, where the policy gradient is [29]:

∇θJ(θ) = Eτ∼p(·|θ) [∇θ logθ(τ |θ)R(τ)] . (1)

At each iteration p > 0, a dataset of trajectories T p
N = {τi}Ni=1, with N ∈ N, is collected using

policy πθ. The policy parameter is iteratively updated as θk+1 = θk + η∇̂θkJ(θk), where η > 0

is the step size and ∇̂θkJ(θk) is an estimate of the policy gradient (Eq. (1)) using T p
N . The most

common policy gradient estimator (e.g., REINFORCE [29] and GPOMDP [1]) can be expressed as
∇̂θJ(θ) =

1
N

∑N
i=1 g(τi|θ) for τi ∈ T p

N , where g(τi|θ) is ∇ log p(τi)R(τi). In this work, we refer
to g as the GPOMDP estimator, which is preferred due to its smaller variance and is given by:

∇̂θJ(θ) =
1

N

N∑
i=1

H−1∑
t=0

γtr(si,t, ai,t)

t∑
l=0

∇θ log πθ(ai,l|si,l), τi ∈ T p
N . (2)

3 Policy Space Expansion

In this section, we introduce key concepts of policy space expansion, the building blocks of GAPS. The
high-level idea involves enlarging the policy space by progressively partitioning the environment’s
state space into finer regions and deploying a distinct simple policy πθ within each region. We refer
to this procedure as policy space expansion and the resulting overall policy as piece-wise policy.

State Space Partition and Piece-Wise Policies. We define a region as a subset of the state space
E ⊆ S. We consider a partition E = {Ei}Mi=1 of the state space, i.e., a set of M regions Ei, such
that S = ∪Mi=1Ei and Ei ∩ Ej = ∅ for every i ̸= j. We denoted the set of indexes of the regions
of the partition E as [M ] = {1, ...,M}. Let E,E ′ be two partitions of S, containing M and M ′

regions, respectively. We say that E ′ is a subpartition of E , and denote it with E ′ ⊑ E , if there
exists a partition I = {Ii}Mi=1 of [M ′] such that for every i ∈ [M ] we have ∪E′

j :j∈Ii
E ′j = Ei, i.e.,

we can reconstruct a bigger region Ei as the union of {E ′j}j∈Ii
. We will call the latter a split of Ei.

We consider a base policy space ΠΘ = {πθ, θ ∈ Θ}, where Θ should be thought of (a subset of)
a low-dimensional Euclidean space.1 Given a partition E = {Ei}Mi=1, we construct the piece-wise
policy space by associating to every region Ei a policy parameter θi ∈ Θ. Thus, the complete policy
parametrization is given by θ = (θ1, . . . , θM )⊤. This way, whenever the environment is in a state
s ∈ Ei, the piece-wise policy executes the simple policy πθi , leading to the following definition.

Definition 1 (Piece-Wise Policy). Given a fixed policy space ΠΘ, a partition E = {Ei}Mi=1 of S , and
a policy parametrization θ = (θ1, . . . , θM )⊤ ∈ ΘM . The piece-wise policy πθ is defined as:

∀s ∈ S : πθ(·|s) =
M∑
i=1

1{s ∈ Ei}πθi(·|s).

1In all our examples, either Θ ⊆ R or Θ ⊆ RdA , where dA is the action-space dimension.
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Figure 1: State space splitting and reallocation of parameters in a one-dimensional state space.

For policy πθ, we straightforwardly extend the notations J(θ) for the expected return and p(·|θ)
for the trajectory density function. This construction of the piece-wise policy allows us to obtain a
particularly convenient expression of the policy gradient. Indeed, for every i ∈ [M ], we have:

∇θiJ(θ) = Eτ∼p(·|θ)

[
H−1∑
t=0

γtr(st, at)

t∑
l=0

1{sl ∈ Ei}∇θi log πθi(al|sl)

]
. (3)

In words, the terms in the sum of the score functions are filtered to retain only the scores where the
policy πθi is played, i.e., when sn,l ∈ Ei.
Policy Space Expansion. The idea behind GAPS consists in splitting the current state partition E
(made of M regions) to create a subpartion E ′ ⊑ E (made of M ′ > M regions), whenever policy πθ ,
with θ ∈ ΘM , approaches a stationary point of the performance measure for the policy space defined
over partition E , i.e., whenever∇J(θ) ≈ 0.2 This amounts to deploying a new piece-wise policy πθ′

where θ′ ∈ ΘM ′
, replicating the parameters θi of θ for the regions Ei that are split into {E ′j}j∈Ii

.
Formally, for every i ∈ [M ], we have that θ′j = θi for every j ∈ Ii. When this holds, we introduce
the equivalence relation θ ≡I θ′. Consequently, even though the resulting policy remains the same
(just with a different parametrization), the expanded policy space has the potential to achieve higher
performance, being defined over a finer partition of the state space. Replicating the parameter values
offers the convenient opportunity to estimate the policy gradient of πθ′ (post-splitting) using samples
collected with πθ (pre-splitting) only.
Lemma 3.1. Let I = {Ii}Mi=1 be a partition of [M ′] with M ′ > M , θ ∈ ΘM , and θ′ ∈ ΘM ′

. If
θ ≡I θ′, for every i ∈ [M ] and j ∈ Ii, it holds that:

∇θ′
j
J(θ′) = Eτ∼p(·|θ)

[
H−1∑
t=0

γtr(st, at)

t∑
l=0

1{sl ∈ E ′j}∇θi log πθi(al|sl)

]
. (4)

Furthermore, it holds that:

∇θiJ(θ) =
∑
j∈Ii

∇θ′
j
J(θ′). (5)

Thus, we can compute the gradient right after the splitting, ∇θ′
j
J(θ′), using samples collected

just before the splitting with policy πθ. This is crucial as it allows for the evaluation of multiple
candidate splits (i.e., different subpartitions) without the need to collect new samples, facilitating the
selection of the one that offers the most promising learning opportunities. Indeed, as can be seen from
Equation (5), even when the pre-splitting gradient is zero, ∇θiJ(θ) = 0, the individual post-splitting
terms ∇θ′

j
J(θ′) may be non-zero, potentially unlocking new learning opportunities. A graphical

description of the splitting operation is shown in Figure 1.

4 Gradient-based Adaptive Policy Search

In this section, we discuss a novel model-free actor-only policy search algorithm named GAPS,
explaining the structure and criteria to determine the optimal policy expansion (Algorithm 1).

Notation. We denote the parameter associated with the newly built region on the left side of the split
point s with the subscript l and the superscript s, while its counterpart on the right side is denoted
with the subscript r. The split points considered valid are stored in a set noted as Dv. Eventually,
with the notation θ ← (θs

⋆

l , θs
⋆

r ) and E ← (Es⋆l , Es⋆r ) we denote the policy and region expansion.
2This way, we may stop at a suboptimal local optimum. This is an inherent limitation of policy gradient

methods, which attempt to solve a non-convex optimization problem via gradient descent. However, in many
cases, locally optimal policies are actually (close to) global optima [3].
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Splitting Criterion. A key point for the algorithm is to determine when and where to split the state
space to maximize the potential performance improvement resulting from policy expansion. Before
seeking a splitting point, we optimize until convergence of the current policy parameters θ. Ideally,
in this scenario, ∇J(θ) = 0, and the objective of splitting is to find a new parametrization θ′ with
the greatest potential for improvement. To achieve this, we propose focusing on the single most
promising region of the environment and then assessing the magnitude and direction of the resulting
post-splitting gradients for each potential split point. This approach comprises four phases.

Phase 1 — Region selection. Firstly, we identify a region in our current state space partition that
offers the greatest potential for improvement. To gauge this potential, we consider the variance of the
gradient estimate components for the current parametrization θ. A higher variance for a component
indicates greater variability in the gradient for that specific parameter, suggesting the presence of
distinctively different “left” and “right” gradients for some split points. Note that each parameter θi
is directly associated with a region Ei. The selection of the region is determined by:

i∗ ∈ argmax
i∈[M ]

Var[∇̂θiJ(θ)].

Phase 2 — Generation of split point candidates. In our work, we focus on state spaces S ⊆ Rd,
thus each region is also Ei ⊆ Rd. We restrict the partition of the region Ei∗ to a split along a single
orthogonal coordinate ξ ∈ [d]. The coordinate ξ for each epoch is selected in a round-robin fashion
across the state space dimensions. We now generate a set of candidate splitting points, which, with
a little abuse of notation, we denote as Ssplit ∈ T ∩ Ei∗ , i.e., the states appearing in the observed
trajectories that belong to region Ei∗ . Since this may be a very large set and evaluating candidate split
points is computationally expensive, we sample a subset of the visited states Ssplit. To respect the
(discounted) visitation probabilities, we sample a fixed number of states from each trajectory with
replacement, where the probability of sampling the t-th state in the trajectory is γt(1− γ).

Phase 3 — Selection of valid split points. After identifying the region to be split Ei∗ and the set
of candidate splitting points Ssplit, we search for split points s ∈ Ssplit that induce two subregions
with post-splitting gradients with diverging directions. We test the null hypothesis that the angle
between the two gradient vectors is in [0, π/2] against the alternative hypothesis that it is in [π/2, π],
indicating that the gradients point in contrasting directions. When the null hypothesis is rejected,
it means that no direction allows for the simultaneous improvement in the two subregions, and the
two corresponding sets of parameters will move to significantly different values, resulting in a more
expressive policy. To perform this test, we convert the set of gradient pairs into a set of random angles
[11], representing the angle between each pair of gradients.

We first test for uniformity using the Rayleigh test [11]. Rejecting the null hypothesis means that
there is a preferred direction—the measured angles concentrate around some significant value. Next,
we assume that the angular data follow a Von Mises distribution [11]. Based on this assumption,
we construct a confidence interval at level α for the mean of the Von Mises distribution. A detailed
description of how to compute the confidence interval can be found in Appendix B. If the confidence
interval is entirely contained in (π/2, π), the two gradients point in opposite directions, so we can
conclude that the observed split has the potential to yield a performance improvement. We refer to
such a point as valid split point s and we denote the corresponding set as Svalid ⊆ Ssplit.

Phase 4 — Split point selection. The fourth phase consists of maximizing the expected performance
improvement derived from the division. After collecting the valid split points Svalid in the previous
phase, we look for the optimal split point as

s⋆ = argmax
s∈Svalid

∥∥∥∇̂θJ(θ
s
l )
∥∥∥
2
+
∥∥∥∇̂θJ(θ

s
r)
∥∥∥
2
.

Using the coordinate ξ of s⋆, we generate a new pair of regions and their associated parameters.

Algorithm Structure. The algorithm is structured as a double loop, consisting of policy space
expansion (Algorithm 2) and policy parameter optimization (Algorithm 1). The outer loop is repeated
for a fixed number of epochs P , during which we optimize the current policy θ until convergence.
Using the latest estimate of the gradient ∇̂θkJ(θ) from policy optimization, we measure the variance
of the gradient components to select the region to split. Once a region E has been selected, the inner
loop searches for a valid split point. Using the batch of trajectories T ∩ E generated from experience
with the policy πθ and a split point s, the algorithm computes the corresponding gradients. These
gradients are evaluated based on their directional difference. If at least one valid split point is found
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Algorithm 1 GAPS (Gradient-based Adaptive Policy Search)
Inputs: Max number of epochs P, initial policy space Θ1, initial parameter θ
1: for p = 1, 2, ..., P do
2: Optimize πθ with GPOMDP until convergence, storing trajectories in T p

3: Sort regions of state-space partition by descending order of Var[∇̂θJ(θ)]
4: k = 1
5: repeat
6: Θd+1 = EXPAND_POLICY_SPACE (Θd, Ek, θk, T ) {Algorithm 2}
7: k ← k + 1
8: until Θd+1 ̸= Θd or k = d
9: if Θd+1 = Θd then

10: return πθ

11: end if
12: end for

Algorithm 2 EXPAND_POLICY_SPACE
Inputs: Policy space Θ, region E to split and corresponding parameter θ, batch of trajectories T
Outputs: new policy space Θ′

1: for a = shuffle(0, 1, 2, ..., dS ) do
2: Initialize Dv = ∅ as the set of valid points
3: for s in T ∩ E do
4: Split space in s along axis ξ to obtain new regions Esl , Esr
5: Initialize new parameters θsl ← θ and θsr ← θ

6: Compute ∇̂θJ(θ
s
l ) and ∇̂θJ(θ

s
r) with GPOMDP

7: if ∇̂θJ(θ
s
l ) and ∇̂θJ(θ

s
r) are significantly different directions then

8: Dv = Dv ∪ {s}
9: end if

10: end for
11: if Dv ̸= ∅ then
12: s⋆ = argmaxs∈Dv

∥∥∥∇̂θJ(θ
s
l )
∥∥∥+

∥∥∥∇̂θJ(θ
s
r)
∥∥∥
2

13: Update parameters θs
∗

l ← θs
∗

l + η∇̂θJ(θ
s∗
l ) and θs

∗
r ← θs

∗
r + η∇̂θJ(θ

s∗
r )

14: Expand Θ into Θ′ by splitting:
15: θ ← (θs

⋆

l , θs
⋆

r )

16: E ← (Es
⋆

l , Es
⋆

r )
17: return Θ′

18: end if
19: end for
20: return Θ

within the region, we then construct two new sub-regions and compute their associated parameters,
thereby expanding the policy parametrization to θ′ as described in Section 3.

5 Guaranteed Policy Improvement after Policy Expansion

In this section, we outline the policy improvement guarantees that result from expanding the policy
space. We present a one-step performance improvement analysis, starting from a scenario where the
current policy θ has converged, resulting in a gradient ∇J(θ) = 0, indicating no further room for
improvement. From this initial condition, we perform a state space split, leading to an associated
expansion of the policy θ and a subsequent policy update θ′.

Lemma 5.1. Let θold ∈ Θ be the policy parametrization before the splitting operation, θ ∈ Θ be the
expanded but not yet updated policy, and θ′ ∈ Θ the expanded policy parametrization after a single
update. Then, the improvement given by the new policy can be expressed as:

J(θ′)− J(θold) = J(θ′)− J(θ) = (θ′ − θ)T∇J(θ) + 1

2
(θ′ − θ)T∇2J(θ̃)(θ′ − θ),

where θ̃ = λθ + (1− λ)θ′ for some λ ∈ [0, 1] and ∇2J(·) denotes the Hessian matrix.

This result follows directly from the mean value theorem and the observation that J(θold) = J(θ),
as the policy space expansion does not alter the policy itself, but only its parametrization.
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(b) Piece-wise constant policy learned in 1-
dimensional LQR.

The following assumptions on the smoothness of the performance function and the bounded variance
of policy gradient estimators are standard in the study of sample complexity [30] and monotonic
improvement [17]. We will justify both assumptions for our choice of policies in the following.

Assumption 1 (Smoothness). For any value of θ there exists a constant L < ∞ such that:∥∥∇2J(θ)
∥∥
2
≤ L, where ∥ · ∥2 denotes the spectral norm.

Assumption 2 (Bounded variance). For any policy πθ there exists a constant V < ∞ such that:
Var[g(·|θ)] ≤ V .

Thus, under Assumption 2, the policy gradient estimated from a batch of N trajectories has a variance
bounded by V/N . We can now state the policy improvement guarantees for GAPS.

Theorem 5.2. Assume the REINFORCE or GPOMDP gradient estimator is used in GAPS (see
Equation 2). Under Assumption 1 and 2, the expanded parameter vector θ′ computed by Algorithm 2
has, for an ideal step size η defined as:

η =
∥∇J(θ)∥2

L
(
∥∇J(θ)∥2 + V

N

) ,
the following inequality holds:

J(θ′)− J(θold) ≥
∥∇J(θ)∥2

2L
(
1 + V

N∥∇J(θ)∥2

) .
This shows that if the gradient is non-zero, as it is after any valid expansion performed by our
algorithm, a non-zero performance improvement is guaranteed by a sufficiently small update to the
expanded policy’s parameters. Refer to Appendix A for a detailed proof of Theorem 5.2.

Example. We now provide a minimal example illustrating how expanding the policy space by
splitting the state space can transform a zero gradient into a nonzero one. A more concrete example
can be found in Appendix D. Consider the two-state, two-action deterministic MDP from Figure 2a
(squares denote terminal states), with a uniform starting state distribution and γ = 1. Let S = {s1, s2}
and A = {a1, a2}. We start with a policy space that does not differentiate between the two states,
specifically using a softmax policy of the following form:

πθ(a1) =
exp(θ)

1 + exp(θ)
, πθ(a2) = 1− πθ(a1). (6)

Using Equation 1, we verify that ∇J(θ) = 0 regardless of the value of θ. Now, imagine the state
space is split into two regions E1 = {s1} and E2 = {s2}. The resulting piecewise softmax policy is:

πθ(a1|s) =
exp(θ1)

1 + exp(θ1)
1{s = s1}+

exp(θ2)

1 + exp(θ2)
1{s = s2}, πθ(a2|s) = 1−πθ(a1|s). (7)

It is easy to check that the gradient now becomes:

∇J(θ) =
[

exp(θ1)
(1+exp(θ1))2

− exp(θ2)
(1+exp(θ2))2

]⊤
, (8)
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which is nonzero even if θ1 = θ2 = θ, which is the case right after a split. For instance, θ = 0, which
is (locally) optimal before the split, yields∇J(θ) = [1/4,−1/4] after the split. Additionally, note
that the two derivatives have opposite signs, qualifying this as a valid split according to our method.

Piecewise-constant Gaussian policies. We specialize our theoretical analysis to Gaussian policies
with piecewise constant mean, the class used in our numerical simulations.

Definition 2. Given the definition of piecewise policies in Definition 1, we can write piecewise-
constant Gaussian policy as a linear Gaussian policy with state features ϕ : S → RM representing a
one-hot encoding of the M regions:

πθ(·|s) = N (θTϕ(s);σ2), ϕi(s) := 1{s ∈ Ei}, i ∈ [M ],

where σ > 0 is the (constant) standard deviation of the Gaussian policy, and θi ∈ R is the constant
expected action for the region Ei.3

From Definition 2, we apply the bound on the smoothness constant L for linear Gaussian policies [30]:∥∥∇2J(θ)
∥∥
2
≤

2Rmax sups∈S ∥ϕ(s)∥2

σ2(1− γ)2
=

2Rmax

σ2(1− γ)2
. (9)

Similarly, we can use an upper bound on the variance of the GPOMDP estimator for Gaussian linear
policies [17, Lemma 29]:

Var
[
∇̂J(θ)

]
≤

sups∈S ∥ϕ(s)∥2R2
max(1− γH)

σ2N(1− γ)3
=
R2

max(1− γH)

σ2N(1− γ)3
. (10)

Note that neither the smoothness constant (Eq. 9) nor the variance upper bound (Eq. 10) depend on
the number of parameters M of the piece-wise policy. This implies that the curvature of the objective
function and the variance of the gradient estimates remain stable across epochs. In other words,
expanding the policy space does not disrupt the ongoing optimization process.

6 Numerical Simulations

In this section, we evaluate the performance of GAPS and compare it with policy gradient on well-
known continuous control tasks: Linear Quadratic Regulator (LQR) ([9]) in both its scalar and
multi-dimensional formulation, Swimmer, Half-Cheetah and Ant from the MuJoCo ([27]) and the
Minigolf ([18]) environment. We consider GPOMDP as the estimator due to its smaller variance,
also employing baselines ([19]) to reduce gradient variance further. Details on the implementation of
both GPOMDP and GAPS can be found in Appendix C. Additional experimental results and further
details on the experimental setting are provided in Appendix D.

We run both GPOMDP and GAPS for a variable number P iterations, with a batch size N , an an
epoch length H tailored to the specific task (a detailed description of parameters used for training
is provided in Appendix C). We consider both an adaptive step size η computed using Adam ([8])
algorithm and a constant learning rate chosen based on the observed problem. For the policy gradient
algorithm, we adopted a Gaussian policy linear in the state, while for GAPS we use Piecewise-constant
Gaussian policies defined in Section 5. We keep a fixed σ2 = 0.1 for both algorithm policies.

From Figure 2, we observe that for a linear problem like LQR, the policy learned from GAPS converges
faster, reaching the same performance as a linear policy. Consistent with the explanation in Section
5, we can observe that each policy space expansion (highlighted with a red dotted line) leads to
performance improvements. For the one-dimensional LQR case, we also visually represent the policy
in Figure 2b (which eventually resembles the optimal linear solution). The same considerations are
also valid in the multidimensional LQR (2)

We also observe how, in settings where a linear policy is not suitable, such as the Minigolf environment,
the policy produced by GAPS with a small number of splits manages to outperform GPOMDP (Figure
3). Additionally, the Swimmer experiment in Figure 3 provides an interesting observation on the
policy complexity. We can appreciate the trade-off between GPOMDP and GAPS w.r.t. the parameter
dimensionality dθ. In Figure 3, we note that GAPS with just one iteration of policy expansion not
only finds a policy that yields positive performance but also surpasses GPOMDP with a linear policy

3For dA-dimensional actions, each θi corresponds to a vector of dA action variables, and the total dimension
of ϕ(s) is MdA.
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Table 1: Policy space dimension and mean performance for each environment
(a) Results for GPOMDP

Environment dΘ Jθ 95% C.I.
LQR 1-dimensional 1 -16.8 [-16.97, -16.74]
LQR 2-dimensional 4 -35.1 [-35.35, -34.68]

Minigolf 1 -73.16 [-74.73, -71.59]
Swimmer 16 24.2 [23.59, 24.80]

Half-Cheetah 102 176.58 [153.06, 200.09]
Ant 216 331.5 [315.42, 347.57]

(b) Results for GAPS
Environment dΘ Jθ 95% C.I.

LQR 1-dimensional 10 -15.3 [-15.76, -15.07]
LQR 2-dimensional 14 -41.0 [-44.22, -37.81]

Minigolf 6 -6.2 [-7.45, -4.98]
Swimmer 4 27.26 [26.63, 27.88]

Half-Cheetah 12 98.46 [97.86, 99.05]
Ant 16 134.58 [116.07, 152.68]
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(a) 1-dimensional LQR
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(b) 2-dimensional LQR

Figure 2: Learning curve in 1d and 2d LQR

that exploits a higher number of parameters. The exact number of parameters adopted for each
environment and their relative performance are shown in Table 1.
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(a) Minigolf environment
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(b) Swimmer environment

Figure 3: Learning curves of Minigolf and Swimmer environments

7 Conclusions

In this paper, we introduced GAPS, a novel model-free policy search algorithm. The algorithm is
based on the concept of policy space expansion, following a starting small philosophy. By adaptively
learning from a simple policy, we construct an efficient policy space and derive an optimal policy
without prior knowledge of the environment or task. Theoretical analysis demonstrates how expanding
the policy space can improve performance, and extensive numerical simulations validate our claims.
Our work paves the way for several promising research directions. Firstly, our implementation could
be coupled with the design of an adaptive step size mechanism capable of handling an expanding
parameter space. Furthermore, our approach is versatile enough to accommodate other types of policy,
thereby extending its applicability beyond piecewise constant policies. Lastly, a parameter-based
approach that autonomously adapts the parameter space represents another research direction.
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A Proofs

Lemma 3.1. Let I = {Ii}Mi=1 be a partition of [M ′] with M ′ > M , θ ∈ ΘM , and θ′ ∈ ΘM ′
. If

θ ≡I θ′, for every i ∈ [M ] and j ∈ Ii, it holds that:

∇θ′
j
J(θ′) = Eτ∼p(·|θ)

[
H−1∑
t=0

γtr(st, at)

t∑
l=0

1{sl ∈ E ′j}∇θi log πθi(al|sl)

]
. (4)

Furthermore, it holds that:

∇θiJ(θ) =
∑
j∈Ii

∇θ′
j
J(θ′). (5)

Proof. First of all, since θ ≡I θ′, we have that θ′j = θi and, consequently:

∇θ′
j
log πθ′

j
(a|s) = ∇θ log πθ(a|s)|θ=θ′

j
= ∇θ log πθ(a|s)|θ=θi = ∇θi log πθi(a|s). (11)

The first statement follows from the policy gradient expression (Eq. 1) recalling that p(·|θ′) = p(·|θ).
For the second statement, we simply observe that

∑
j∈Ii

1{s ∈ E ′j} = 1{s ∈ Ei}.

Theorem 5.2. Assume the REINFORCE or GPOMDP gradient estimator is used in GAPS (see
Equation 2). Under Assumption 1 and 2, the expanded parameter vector θ′ computed by Algorithm 2
has, for an ideal step size η defined as:

η =
∥∇J(θ)∥2

L
(
∥∇J(θ)∥2 + V

N

) ,
the following inequality holds:

J(θ′)− J(θold) ≥
∥∇J(θ)∥2

2L
(
1 + V

N∥∇J(θ)∥2

) .
Proof. To better display our reasoning, we first present a proof for the simpler but unrealistic case in
which the exact gradient is used in the policy parameter update:

θ′ = θ + η(θ),

then we move to the stochastic gradient case:

θ′ = θ + η∇̂J(θ),
where ∇̂J(θ) is estimated from a batch of N trajectories, proving our main result.

Exact gradient. Starting from the result of Lemma 5.1,

J(θ′)− J(θold) = J(θ′)− J(θ) = (θ′ − θ)⊤∇J(θ) + 1

2
(θ′ − θ)⊤∇2J(θ̃)(θ′ − θ),

we can apply the Cauchy–Schwarz inequality and Assumption 1:

J(θ′)− J(θ) ≥ (θ′ − θ)⊤∇J(θ)− L

2
∥θ′ − θ∥2 (12)

= η ∥∇J(θ)∥2 − η2
L

2
∥∇J(θ)∥2 (13)

= ∥∇J(θ)∥2
(
η − L

2
η2
)

(14)

=
1

2L
∥∇J(θ)∥2 ≥ C2

2L
. (15)

where the η that maximizes (14) was computed as
∂

∂η
[∥∇J(θ)∥2 (η − L

2
η2)] = ∥∇J(θ)∥2 − 2η

L

2
∥∇J(θ)∥2 = 0, (16)

=⇒ η =
1

L
. (17)
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Stochastic gradient. Starting from the result of Lemma 5.1, under Assumption 1 and 2, applying the
Cauchy–Schwarz inequality on Lemma 5.1:

J(θ′)− J(θ) ≥ (θ′ − θ)⊤∇J(θ)− L

2
∥θ′ − θ∥2 (18)

= η∇̂J(θ)⊤J(θ)−∇J(θ)− η2
L

2

∥∥∥∇̂J(θ)∥∥∥2 . (19)

We apply the expectation (conditional on θ) on both sides:

E[J(θ′)− J(θ)] ≥ ηE[∇̂J(θ)]⊤∇J(θ)− η2
L

2
E
[∥∥∥∇̂J(θ)∥∥∥2] (20)

= η ∥∇J(θ)∥2 − η2
L

2
∥∇J(θ)∥2 − η2

L

2
Var[∇̂J(θ)], (21)

since the gradient estimate is unbiased, and from the definition of Var[∇̂J(θ)]:
Var[∇̂J(θ)] = Tr(Cov[∇̂J(θ)]) (22)

= E
[∥∥∥∇̂J(θ)−∇J(θ)∥∥∥2] (23)

= E
[∥∥∥∇̂J(θ)∥∥∥2]− ∥∇J(θ)∥2 . (24)

Then, applying Assumption 2 to Equation (21):

E[J(θ′)− J(θ)] ≥ η ∥∇J(θ)∥2 − η2
L

2

(
∥∇J(θ)∥2 + V

N

)
(25)

=
∥∇J(θ)∥4

2L
(
∥∇J(θ)∥2 + V

N

) (26)

=
∥∇J(θ)∥2

2L
(
1 + V

∥∇J(θ)∥2N

) (27)

≥ C2

2L
(
1 + V

NC2

) , (28)

where the η that maximizes (25) is computed as
∂

∂η

(
η ∥∇J(θ)∥2 − η2

L

2

(
∥∇J(θ)∥2 + V

N

))
(29)

= ∥∇J(θ)∥2 − ηL

(
∥∇J(θ)∥2 + V

N

)
= 0 (30)

=⇒ η =
∥∇J(θ)∥2

L
(
∥∇J(θ)∥2 + V

N

) . (31)

B Statistics on Angles

In this section we report the tools from directional statistics [11] that we used to detect valid splitting
points in our algorithm. We refer the reader to Chapter 7 of [11] for further details.

Construction of angle dataset. Given a batch of n trajectories, we can compute n estimates of
the left gradient, say {gl1, . . . , gln}, and n estimates of the right gradient, {gr1, . . . , grn}. We denote
with ∠(v, w) the smallest angle between vectors v and w, measured (in the plane spanned by the
two vectors) between 0 and π radians. We construct a dataset of n angles {ϑ1, . . . , ϑn} where
ϑi = ∠(gli, g

r
i ) for i = 1, . . . , n. We will work with this dataset of angles in the following.
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Preliminary definitions. From our dataset of angles we can compute the following statistics:

R =
√
C2 + S2, C =

n∑
j=1

cos(ϑj), S =

n∑
j=1

sin(ϑj), (32)

and their normalized versions:

R̄ =
R

n
, C̄ =

C

n
, S̄ =

S

n
. (33)

Uniformity test. First we need to make sure that our angles concentrate around some value. We
perform a uniformity test known as Rayleigh test, where the null hypothesis is that the angles follow
a uniform distribution. The null hypothesis is rejected when:

2R2

n
> χ2

1,α, (34)

where χ2
1,α is the upper α quantile of the Chi-square distribution with one degree of freedom.

Maximum likelihood angle. After rejecting the uniformity hypothesis, we assume that the angles
follow a Von Mises distributionM(µ, κ) with unknown mean µ and variance κ [11], and compute
the maximum likelihood estimate of its mean µ as:

ϑ̄ =

{
tan−1(S̄/C̄) if C̄ ≥ 0,

π + tan−1(S̄/C) if C̄ < 0,
(35)

where the inverse tangent is assumed to return values in [−π/2, π/2], which yields ϑ̄ ∈ [−π/2, 3π/2].
The angle is opportunely converted into the [0, π] range to represent the minimum angle between two
vectors: if ϑ̄ < 0, ϑ̄← −ϑ̄, and if ϑ̄ > π, ϑ̄← ϑ̄− π.

Confidence interval. Finally, we compute an approximate 100(1− α)% confidence interval for
the mean µ of the Von Mises distribution as:

ϑ̄± cos−1

(√
2n
(
2R2 − nχ2

1;α

)
R2
(
4n− χ2

1;α

) ) if R̄ ≤ 2

3
, (36)

or

ϑ̄± cos−1


√
n2 − (n2 −R2) exp

(
χ2
1;α/n

)
R

 if R̄ >
2

3
, (37)

making sure once again that it refers to the [0, π] range.

If the confidence interval is entirely contained in (π/2, π), we can say with the desired confidence
that

∠
(
E[gli],E[gri ]

)
>

π

2
, (38)

that is to say, the left and right gradients point in opposite directions.

C Experimental Setting

In this section, we present the implementation details for what concerns the experiment shown in
Section 6 and in Appendix D.

Algorithm Settings To fatherly reduce the variance in the estimation of the gradients, we adopt a
version of GPOMDP with the optimal baseline ([20]).

∇̂θtJθt = Epθ(τ)

T−1∑
j=0

j∑
t=0

∇θ log πθ (at | st) (rj − bj)



bj =

Epθ
(τ)

[(∑j
t=0∇θh log πθ (at | st)

)2
rj

]
Epθ

(τ)

[(∑j
t=0∇θh log πθ (at | st)

)2]
(39)
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We tested our algorithm on 5 environment of increasing complexity. Linear Quadratic Regulator
(LQR) ([9]); Minigolf in which the agent tries to throw a ball as near as possible to a target, here
the cost is proportional to the distance from the target; Swimmer-v4, HalfCheetah-v4, Ant-v4 from
the MuJoCo suite ([27]). Details on the environmental parameters are shown in Table 2. In order to
facilitate the exploration, since it is not a concern in this work, we added an action clipping to the
MuJoCo environment, i.e., before computing the reward a clipping, on the limits of the action space,
is performed from the drawn action. We adopted different learning rates η depending on the task
we were observing, employing in some cases Adam ([8]) to adaptively set the step size. The exact
method adopted for each environment is shown in Table 3. Moreover, for GAPS we set the limit of 50
split point candidates per iteration in every environment.

Computational Resources All the experiments were run on a 2023 14-inches MacBook Pro. The
machine was equipped as follows:

• CPU: Apple M2 Pro (10 cores, 3.4 GHz);
• RAM: 16 GB;
• GPU: 16-core GPU.

In particular, N = 1000 trajectories of the MuJoCo environments with H = 100 scored ≈ 4
iterations per second for GPOMDP, while ≈ 3 iterations per second for GAPS. N = 1000 trajectories
of the LQR environment with H = 10 scored ≈ 5 iterations per second respectively for both GAPS
and GPOMDP. All the performance are run over a single CPU core.

Environment Epoch N H dS dA
LQR 1-dimensional 1000 100 10 1 1
LQR 2-dimensional 1000 100 10 2 2

Minigolf 1000 100 200 1 1
Swimmer 1000 100 200 8 2

Half-Cheetah 1000 100 100 17 6
Ant 1500 100 200 27 8
Table 2: Parameters of the environment

Environment η Type
LQR 1-dimensional 0.01 Adam
LQR 2-dimensional 0.01 Adam

Minigolf 0.1 Adam
Swimmer 0.01 Adam

Half-Cheetah 0.01 Adam
Ant 0.01 Adam

(a) Learning rates for GPOMDP

Environment η Type
LQR 1-dimensional 0.001 Constant
LQR 2-dimensional 0.001 Constant

Minigolf 0.01 Constant
Swimmer 0.001 Constant

Half-Cheetah 1 Adam
Ant 0.0001 Constant
(b) Learning rates for GAPS

Table 3: Learning rates for the environment

D Additional Experimental Results

In this section we present some additional experimental results for what concerns the comparison
between GAPS and GPOMDP, and the policy analysis.

We show the results gainend by learning in two high-dimensional environment taken from the
MuJoCo suite ([27]): Ant-v4 and Half-Cheetah-v4. Details on the environment parameters are shown
in Appendix C. Here we show the learning curve obtained by the two algorithm, for Half-Cheetah
in Figure 4 and for Ant in Figure 4. Although GPOMDP’s performance is higher w.r.t. GAPS,
it is interesting to notice how with significantly smaller parameters space (Table 2), the policies
devised from GAPS manage to keep the performance positive, i.e., managing to sufficiently fullfil the
environment task.
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We also present a policy analysis on a one dimensional LQR case. Here for better comprehension
GAPS was run for P = 300 iteration. From Figure 5, we show at first the learning curve with its
various policy expasion step, to then visualize how without other division the policy remain stable
without any kind of improvement. This result proves our claims of Section 5. We can in fact notice
how without any further expansion the performance remains stable as the resulting gradient tend to
be close to zero.
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(a) Half-Cheetah
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(b) Ant

Figure 4: Learning curves on Half-Cheetah-v4 and And-v4 environments
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(a) Complete policy learning curve

0 50 100 150 200 250 300
Iteration

40

35

30

25

20

15

10

Pe
rfo

rm
an

ce
 V

al
ue

Performance

GAPS
Policy Expansion
0-policy

(b) First split learning curve
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(c) Second split learning curve
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(d) Third split learning curve
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(e) Fourth split learning curve
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(f) Fifth split learning curve

Figure 5: 1-dimension LQR policy sequence
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