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ABSTRACT

Machine learning for early prediction in medicine has recently shown breakthrough
performance, however, the focus on improving prediction accuracy has led to a
neglect of faithful explanations that are required to gain the trust of medical prac-
titioners. The goal of this paper is to teach LLMs to follow medical consensus
guidelines step-by-step in their reasoning and prediction process. Since consensus
guidelines are ubiquitous in medicine, instantiations of verbalized medical infer-
ence rules to electronic health records provide data for fine-tuning LLMs to learn
consensus rules and possible exceptions thereof for many medical areas. Con-
sensus rules also enable an automatic evaluation of the model’s inference process
regarding its derivation correctness (evaluating correct and faithful deduction of a
conclusion from given premises) and value correctness (comparing predicted val-
ues against real-world measurements). We exemplify our work using the complex
Sepsis-3 consensus definition. Our experiments show that small fine-tuned models
outperform one-shot learning of considerably larger LLMs and of models that are
trained on medical texts including consensus definitions under all evaluation met-
rics. Since fine-tuning on verbalized rule instantiations of a specific medical area
yields nearly perfect derivation correctness for rules (and exceptions) on unseen
patient data in that area, the bottleneck for early prediction is not out-of-distribution
generalization, but the orthogonal problem of generalization into the future by
forecasting sparsely and irregularly sampled clinical variables. We show that the
latter results can be improved by integrating the output representations of a time
series forecasting model with the LLM in a multimodal setup.

1 INTRODUCTION

Medical consensus definitions are guidelines stated by a representative group of experts on how to
diagnose and treat a disease based on clinical evidence. From the perspective of logical inference,
consensus guidelines include deductive and inductive inference rules. Deductive rules have the
form of if-then relations where the conclusion is certain given the correctness of the premise, for
example, in mapping thresholds on clinical measurements to step functions of diseases. If used for
early prediction purposes (a.k.a. prognosis), inductive inference rules are required where the if-then
relation between premise and conclusion is probabilistic. An illustrative example for a complex
consensus guideline is the Sepsis-3 definition that identifies an organ dysfunction as an acute change
in total SOFA score > 2 points consequent to an infection (Singer et al.| 2016} [Seymour et al., 2016)).
The SOFA (Sepsis-Related Organ Failure Assessment) score is based on definitions for six organ
system subscores, depending for their part on thresholded clinical variables observed during a 24h
window ((Vincent et al| [1996), see Table[5]in Appendix [A.T)). These calculations comprise a logical
rule system where time series forecasting (TSF) of clinical variables represents inductive rules, which
are composed with deductive rules that calculate extrema over time, map clinical measurements onto
step functions, and calculate changes of scores over time (see Figure ).

The goal of this work is teach LLMs to follow the deductive and inductive rules of medical consensus
guidelines step-by-step in their prediction and reasoning processﬂ in order to foster the trust of
medical practitioners in the generated diagnosis or prognosis. We exemplify our work using the

'In the following, in order to avoid an anthropomorphic attribution of "reasoning” capabilities to LLMs, we
will speak of medical "rules" that are taught, and of an "inference process" that is being evaluated for the LLM.
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Figure 1: Inductive and deductive inference rules in the Sepsis-3 Consensus Definition (Singer et al.,
2016; |Seymour et al.l 2016). Deductive rules calculate extrema over time, map thresholds onto step
functions for SOFA scores, and calculate total SOFA and changes over time. Inductive rules involve
time series forecasting of clinical variables 24 hours into the future.

complex Sepsis-3 consensus definition. Instantiations of verbalized medical inference rules to clinical
patient data allow the model to learn the consensus rule and possible exceptions to the rule from
patient examples in many medical areas (see Figure ). Our work transfers learning of compositional
inference tasks from mathematical problems to medical inference, with several advantages.

First, consensus definitions are ubiquitous in medicine, ranging from guidelines for mental disorders
(American Psychiatric Association, |2013)) to neurological (McDonald et al.,|2001)) and physiological
diseases (KDIGO Acute Kidney Injury Work Group, 2012). For each area, verbalization of consensus
rules can be done automatically by using templates that describe each step of an application of a
consensus rule system to patient data. Furthermore, human curation can be integrated by annotating
verbalized inference chains with possible exceptions and corrections to the rule. In contrast to
prompting LL.Ms, supervised fine-tuning allows learning of rules and exceptions from example
instantiations to patient data.

Second, the use of consensus rules enables an exact and automatic evaluation of the model’s inference
process against a trusted medical gold standard. We present an evaluation setup that differentiates the
derivation correctness of a trained model — measuring a model’s ability to learn to correctly deduce
a conclusion from a given premise — from a model’s value correctness — comparing the numerical
value predicted in each inference step against real-world measurements. An evaluation of derivation
correctness also can be seen to measure the faithfulness of the model’s inference process in the sense
of checking for an accurate representation of the reasoning process behind the model’s prediction.

Our results show that small fine-tuned models (LLaMA 8B parameters) outperform one-shot learning
of considerably larger LLMs (LLaMA 70B parameters) and LLMs that are trained on medical
texts including the original consensus definitions (Me-LLaMA 8B parameters) under all evaluation
metrics. In particular, fine-tuned LLMs show nearly perfect generalization to unseen patient data
with respect to derivation correctness of rules and exceptions. This demonstrates that an adaptation
of an LLM to verbalized rule instantiations for a specific medical area likely guarantees consistent
results in that area, whereas training on the abstract definition texts themselves is not sufficient. We
conjecture that generalization across consensus definitions in areas as different as psychiatry (based
on interviews (American Psychiatric Association, [2013))), neurology (based partially on magnetic
resonance imaging (McDonald et al.,|2001)), or physiological diseases (based on vital signals and
lab tests (KDIGO Acute Kidney Injury Work Group, 2012 |Cederholm et al., 2019; Singer et al.,
20165 [Seymour et al., [2016))) is difficult to bridge without supervision. The bottleneck is thus not
out-of-distribution generalization (Chu et al.,|2025)), but the orthogonal problem of generalization
into the future, i.e., the inherent complexity of time series forecasting of sparsely and irregularly
sampled clinical variables. The latter results can be improved by moving from a text-based encoding
of clinical measurements to a multi-modal approach where the output representations of a time series
forecasting model are fed as additional input to the LLM.
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2 RELATED WORK

Reasoning in LLMs Recent evaluations of the "reasoning" process of LLMs have shown that they
are able to correctly solve sub-tasks of multi-step inference tasks, but fail to compose them into a fully
correct inference path, especially in extrapolation to more complex out-of-distribution data (Dziri
et al.| 2023} Zhang et al.} 2023} Saparov & He, [2023}; [Yang et al., [2024;|Mondorf & Plank} [2024). For
compositional inference problems in mathematics or logics, fine-tuning on so-called "scratchpads”
has been shown to yield consistently strong generalization (Nye et al., 2021; [Hochlehnert et al., [2025).
To our knowledge, our work is the first one to apply an automatic generation of scratchpads for
fine-tuning and step-by-step evaluation to the inference process of medical LLMs. Recent works
have addressed the aspect of faithfulness of chain-of-thought explanations of LLMs, asking whether
they accurately represent the underlying inference process of the model (Jacovi & Goldberg, [2020).
Faithfulness in chain-of-thought reasoning has been enforced by incorporating deterministic solvers
into the inference process (Lyu et al.| [2023; | Xu et al.,[2024)). Evaluation of faithfulness has been done
manually for LLMs with explicit (Turpin et al.,|2023) and implicit biases (Arcuschin et al.,[2025)),
or by defining automatic evaluation metrics of chain-of-thought inference processes (Lanham et al.,
2023} Wang et al.,[2025; (Chen et al.}|2025). The latter metrics are based on accuracy or confidence of
the generated LLM outputs, and can thus be considered "reference-free" evaluation metrics, whereas
a consensus rule can be used as a unique gold standard reference for evaluation.

Medical Reasoning Medical reasoning has been been characterized to include two contrasting
mechanisms, termed analytic versus non-analytic strategies (Eval 2005])), causal versus example-based
knowledge (Norman, |20035), or contrasting external clinical evidence with individual clinical expertise
(Sackett et al [1996). To our knowledge, no attempt has been made so far to differentiate these
aspects in teaching and evaluating LL.Ms for healthcare. Instead, most evaluations are based on
medical question-answering (Liu et al., 2023; Singhal et al., |2025), while it has been shown that the
vast majority of questions in medical QA benchmarks can be answered by factual recall, not requiring
multi-step inference at all (Thapa et al.| 2025)). While excelling in medical question-answering tasks,
few-shot LLMs suffer from prompt brittleness (Hochlehnert et al.| 2025} |Reese et al.,|2024) and fail
in basic TSF tasks (Merrill et al.| [2024; |Tan et al.|[2024) and lack adherence to consensus guidelines
(Hager et al.||2024])). This discrepancy calls for evaluations of medical LLMs that go beyond the final
result and instead evaluate the inference process itself. Various approaches have been presented to
teach LLMs medical inference rules, e.g., by pre-training or fine-tuning on medical texts including
consensus guidelines (Chen et al., 2023} |[Xie et al., [2025)), or by incorporating rule-based knowledge
in knowledge graphs (Wu et al.| 2025)), reward models (Yun et al., 2025} |Chen et al.| 2024} |[Zhang
et al 2025), or by manual annotation by clinical experts (Liu et al., [2025). However, with the
exception of the last work which relies on manual evaluation, all works are evaluated on standard
medical question-answering benchmarks. Our work uses trusted consensus rules as training data and,
instantiated to different patients, as gold standard references for evaluation, and obviates the need for
manual evaluation.

Early Prediction of Sepsis Machine learning for early prediction of sepsis starts by labeling clinical
dat by applying a Sepsis consensus deﬁnitionto future clinical observations that are unseen to
the model, and then training models to predict the label based on clinical measurements observed
several hours before. Examples are the machine learning approaches taken by the 104 participants in
the PhysioNet Challenge on "Early Prediction of Sepsis from Clinical Data" (Reyna et al.,[2019), or
the 21 approaches described in a recent overview (Moor et al., 2021). Machine learning for early
prediction of sepsis includes a broad variety of learning algorithms, from linear learners to deep
learning (see Reyna et al.|(2019) and Moor et al.| (2021)), up to most recent works using Transformers
(Choi et al., [2024), graph neural networks (Yin et al.||2025)), and pretrained LLMs (Li et al.,|2024).
The setup of predicting a label that is the outcome of a consensus definition can be abstractly viewed
as the prediction of an effect that is caused by applying a consensus definition to future values of
clinical variables. Another option is to directly predict the causes by forecasting clinical variables,
and determine the effect by applying the consensus definition to the forecasted values (Staniek et al.,
2024). Our approach is most similar to the latter, with the important difference that our approach not
only learns rules, but also exceptions thereof from patient data.

2E.g., MIMIC-III (Johnson et al.,[2016), MIMIC-IV (Johnson et al.,[2023)), or eICU (Pollard et al., [2018)).
3Sepsis-3 or Sepsis-2 (Levy et al.,|2003; Dellinger et al.||2013)) in earlier works.
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3 TEACHING LLMS TO DIAGNOSE ACCORDING TO THE SEPSIS-3 DEFINITION

Deductive Inference Sepsis-3 contains several deductive inference steps: A first step is a calculation
of "worst" values (minima or maxima) of clinical variables over 24 hours. The crucial deductive
task in Sepsis-3 can be seen as a deductive syllogism consisting of rules (the major premises)
that are instantiated to thresholds on clinical variables (the minor premises) that are mapped to
step functions for six SOFA subscores, yielding scores from 0 — 4 (the conclusions). Each SOFA
subscore corresponds to an organ system, namely the central nervous system, and the cardiovascuolar,
respiratory, coagulation, liver, and renal organ systems. The rules themselves are abbreviated as Scs,
Scardio» Sresp> Scoags Sliver> aNd Srenar in the lower part of Figure |1)and shown in the columns in Table
[in Appendix[A.T] The total SOFA score is calculated by summing these six subscores to a score
ranging from 0 — 24, once for clincial measurements during the first 24 hours (SOFA; _24), and for
predicted measurements in the next 24 hours (SOFA25_45). A further deductive inference step is the
computation of a change > 2 as

SOFA it := [(SOFAg5.458 — SOFA1.24) > 2], (1

where [a] = 1 if a is true, 0 otherwise. Finally, a binary Sepsis label is assessed by combining the
indicator function in Equation |1| with a binary indicator suspected_infectionﬂ yielding

SEPSIS := SOFA;sr /A suspected_infection. 2)

Inductive Inference Sepsis-3 is laid out to detect a life-threatening organ dysfunction by an acute
change in the total SOFA score. Measuring an increase in SOFA score over time requires TSF of
future values of a set of clinical features I’ (see upper part of Figure[I), and an application of the
SOFA definition to current and future clinical values. Formally, given a representation x of an input
time series, an output vector of predicted clinical values §; € RI¥l is produced. The features used
in our experiments are 131 clinical measurements extracted from the MIMIC-III database (Johnson
et all [2016). A full list is given in Appendix [A.4] The TSF task in our experiments is defined to
predict the next 24 hours from a history of preceding 24 hours. Dedicated models to perform the TSF
task are described in Appendix

Teaching Verbalized Consensus Rules to Autoregressive LLMs The key requirement in teaching
LLMs to generate a chain of inference rules that adheres to a certain definition is to deploy an
autoregressive architecture where next-token prediction is based on a history of previously predicted
tokens, and token-wise errors on a target inference chain can be backpropagated through the system.
This procedure coincides with standard supervised fine-tuning, where an input question, a gold-
standard verbalization of the inference process, and the answer, is provided to the model during
training. An example for fine-tuning data including inference rules following the Sepsis-3 definition
is shown in Figure 2] left column. The data starts with a verbalization of a sparse multivariate input
time series of measurements for a 24 hour window, followed by an instruction to classify the patient
as septic in the next 24 hours, given information about suspected infectiorﬂ The third text block
in the fine-tuning data consists of a gold standard inference chain explaining the scores of the six
SOFA systems from the corresponding clinical measurements, and computing their sum, given the
measurements of the first 24 hour window. The fourth text block includes forecasts of the clinical
variables relevant for SOFA for the next 24 hours, and the corresponding inference about the six
SOFA subscores, and their sum. The last text block contains a gold standard inference about the
Sepsis prediction and the responsible SOFA system, if applicable.

Handling Exceptions to the Rules Since consensus rules cannot capture every individual disease
progression, it is important to consider the possibility of manual corrections to consensus-based
inference. Imagine a feedback loop where a medical practitioner edits the output of an LLM trained
on a consensus definition: While corrections and additions to the inference process can be handled
by repeated fine-tuning on manually curated inference chains, exceptions to the consensus rule

*Following |Singer et al.|(2016); |Seymour et al{(2016)), a suspected infection is defined as a combination of
antibiotics treatment and blood cultures, starting within the first 24 hours after admission.

>The onset of suspicion of infection is thus given prior to the onset of salient organ dysfunction in our
approach, corresponding to labeling scheme H1 of |Cohen et al.|(2024)), and consistent with other work on early
prediction of sepsis where suspected infection is included in the list of input features (Nemati et al., [2018)).
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Patient is 75.0 years old and is male. Given all the information in
this text, answer the question at the end. Here are the measurements:
DBP at time -22.37: 49.0, SBP at time -22.37: 105.0, DBP at time
-20.37: 52.0, GCS_eye at time -20.37: 4.0, GCS_motor at time
-20.37: 6.0, GCS_verbal at time -20.37: 1.0, SBP at time -20.37:
117.0, DBP at time -19.37: 56.0, FiO2 at time -19.37: 0.5, SBP at
time -19.37: 127.0, DBP at time -18.37: 43.0,...

Now answer the following question: The doctors suspect an
infection, based on this information and the other information in this
text, will the patient be classified as septic tomorrow?

First we need to calculate the SOFA scores given the extracted
values. The SOFA scores for the current time are the following:
The minimum value of GCS_eye is 4.0, GCS_motor is 6.0 and
GCS_verbal is 1.0, this produces the sum 11.0 and means the CNS
SOFA is 2. Because minimum MAP is 55.333, max Dopamine is 0,
max Dobutamine is 0, max Epinephrine is 0 and max Norepinephrine
is 0 with a patient weight of 62.8 kg, the cardiovascular SOFA is
1. Given that minimum PO2 is 100.0 and minimum FiO2 is 0.5 the
calculated PAO2FIO2 is 200.0, this means the respiratory SOFA is 2.
Because the minimum Platelet count is 310.0 the coagulation SOFA
is 0. The maximum Bilirubin (Total) is 1 leading to a liver SOFA of
0. Because total Urine output is 1095.0 and maximum creatinine in
the blood is 0.4 the renal SOFA is 0. To summarize: the patient has a
total SOFA score of 5.

Now we need to calculate the SOFA scores with forecasted
values. The SOFA scores in the future based on the forecasted values
are the following: The minimum value of GCS_eye will be 4.0,
GCS_motor will be 6.0 and GCS_verbal will be 1.0, this produces
the sum 11.0 and means the CNS SOFA will be 2. Because future
minimum MAP will be 65.333, future max Dopamine will be 0,
future max Dobutamine will be 0, future max Epinephrine will be O
and future max Norepinephrine will be 0 with a patient weight of
62.8 kg, the cardiovascular SOFA will be 1. Given that minimum
PO2 will be 100.0 and minimum FiO2 will be 0.5 the forecasted
PAO2FIO2 will be 200.0, this means the respiratory SOFA will be 2.
Because the Platelet count will be 310.0 the coagulation SOFA is
going to be 0. The maximum Bilirubin (Total) will be 1 leading to a
liver SOFA of 0. Because Urine output will be 150.0 and maximum
creatinine in the blood will be 0.4 the renal SOFA will be 4. To
summarize: the patient will have a future total SOFA score of 9.

This calculation means that the patient will likely experi-
ence a kidney failure since SOFA increased by 4. The patient will
develop sepsis in the next 24 hours, because total SOFA increased
by 4 and infection is suspected.

Patient is 75.0 years old and is male. Given all the information in
this text, answer the question at the end. Here are the measurements:
DBP at time -22.37: 49.0, SBP at time -22.37: 105.0, DBP at time
-20.37: 52.0, GCS_eye at time -20.37: 4.0, GCS_motor at time
-20.37: 6.0, GCS_verbal at time -20.37: 1.0, SBP at time -20.37:
117.0, DBP at time -19.37: 56.0, FiO2 at time -19.37: 0.5, SBP at
time -19.37: 127.0, DBP at time -18.37: 43.0,...

Now answer the following question: The patient has an
existing precondition given by the ICD-10 code N18.9. The
doctors suspect an infection, based on this information and the
other information in this text, will the patient be classified as septic
tomorrow?

First we need to calculate the SOFA scores given the extracted
values. The SOFA scores for the current time are the following:
The minimum value of GCS_eye is 4.0, GCS_motor is 6.0 and
GCS_verbal is 1.0, this produces the sum 11.0 and means the CNS
SOFA is 2. Because minimum MAP is 55.333, max Dopamine is 0,
max Dobutamine is 0, max Epinephrine is 0 and max Norepinephrine
is 0 with a patient weight of 62.8 kg, the cardiovascular SOFA is
1. Given that minimum PO2 is 100.0 and minimum FiO2 is 0.5 the
calculated PAO2FIO?2 is 200.0, this means the respiratory SOFA is 2.
Because the minimum Platelet count is 310.0 the coagulation SOFA
is 0. The maximum Bilirubin (Total) is 1 leading to a liver SOFA of
0. Because total Urine output is 1095.0 and maximum creatinine in
the blood is 0.4 the renal SOFA is 0. To summarize: the patient has a
total SOFA score of 5.

Now we need to calculate the SOFA scores with forecasted
values. The SOFA scores in the future based on the forecasted values
are the following: The minimum value of GCS_eye will be 4.0,
GCS_motor will be 6.0 and GCS_verbal will be 1.0, this produces
the sum 11.0 and means the CNS SOFA will be 2. Because future
minimum MAP will be 65.333, future max Dopamine will be 0,
future max Dobutamine will be 0, future max Epinephrine will be 0
and future max Norepinephrine will be O with a patient weight of
62.8 kg, the cardiovascular SOFA will be 1. Given that minimum
PO2 will be 100.0 and minimum FiO2 will be 0.5 the forecasted
PAO2FIO2 will be 200.0, this means the respiratory SOFA will be 2.
Because the Platelet count will be 310.0 the coagulation SOFA is
going to be 0. The maximum Bilirubin (Total) will be 1 leading to a
liver SOFA of 0. Because Urine output will be 150.0 and maximum
creatinine in the blood will be 0.4 the renal SOFA will be 4. To
summarize: the patient will have a future total SOFA score of 5.

The patient will not develop sepsis in the next 24 hours,
because total SOFA increased by 0 and infection is suspected.

Figure 2: Fine-tuning data including a verbalization of Sepsis-3 inference (left column) and inference
under an exception due to medical preconditions (right column). Differences are shown in bold blue
font. The general prompt is shown above the horizontal line, the gold standard answer below.

might cause conflicts in machine learning. A possible example are medical preconditions with
specific treatments, for example, dialysis in case of chronic kidney disease, which will alter clinical
measurements and thus the kidney SOFA score. A medical practitioner might decide to disregarded
the kidney SOFA in the calculation of total SOFA, leading to an exception to the Sepsis-3 definition.
We test this hypothetical scenario by synthetic data. We synthesized fine-tuning data including
exceptions to the rule by adding preconditions for five organ systems in form of ICD-10 codes.
During data generation, each datapoint was randomly assigned a precondition, either one of the
predefined types or the no-precondition option, with equal probability. An example for a verbalization
is shown in Figure 2] right column. The format is the same as for inference according to the definition,
except for the inclusion of a precondition in the second text block — in our example, the ICD code
N18.9 indicating chronic kidney disease — implying an exception to the rule to disregard the SOFA
score of the corresponding organ system in the fourth and fifth text blocks. We prepared the data such
that some preconditions are seen during training and testing, while we also chose some codes from
the same ICD class as out-of-distribution data that were only seen at test time. The codes and their
distribution are shown in Tables [ and [I0]in Appendix [A.6]
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Table 1: Derivation correctness of predicted values. Forced derivation correctness in brackets.

variable one-shot one-shot-70B  me-1lama | fine-tuned pipeline multimodal
Scns 0.613 0.651 0.508 1.000 1.000 1.000
Scardio 0.485 0.634 0.382 0.998 0.998 0.975
Sresp 0.389 0.291 0.466 0.995 0.996 0.996
Scoag 0.622 0.615 0.611 0.966 0.966 0.970
Stiver 0.546 0.860 0.710 0.993 0.992 0.992
Srenal 0.502 0.675 0.483 1.000 0.998 1.000
SOFA .24 0.639 0.886 0.953 1.000 1.000 0.999

future Scns  0.444 (0.817)  0.472(0.839)  0.412 (0.782) | 1.000 (1.000)  1.000 (1.000)  1.000 (1.000)
future Scargio 0.565 (0.660)  0.583 (0.668)  0.483 (0.655) | 0.987 (0.997) 0.975 (0.997)  0.965 (0.997)
future Spesp  0.508 (0.735)  0.285 (0.802)  0.456 (0.715) | 0.995 (0.996) 0.996 (0.996) 0.995 (0.996)
future Seoge ~ 0.747 (0.800)  0.616 (0.787)  0.644 (0.800) | 0.967 (1.000) 0.970 (0.999)  0.966 (1.000)
future Spver  0.529 (0.797)  0.843 (0.952)  0.703 (0.627) | 0.992 (0.999) 0.992 (0.999)  0.992 (1.000)
future Spepyr 0.632 (0.689)  0.694 (0.714)  0.505 (0.695) | 1.000 (1.000) 1.000 (1.000)  1.000 (1.000)
SOFAzs5.45  0.568 (0.916) 0.860 (0.996) 0.935 (0.992) | 1.000 (1.000) 0.999 (1.000) 1.000 (1.000)
SOFA it 0.799 (0.667)  0.831(0.703)  0.947 (0.722) | 1.000 (1.000) 1.000 (1.000)  1.000 (1.000)

SEPSIS 0.816 (0.728)  0.893 (0.738)  0.895 (0.593) | 1.000 (1.000) 1.000 (1.000)  1.000 (1.000)

4 EXPERIMENTAL SETUP

Data and Models In our experiments, we use electronic health records (EHRs) from the MIMIC-III
data (Johnson et al [2016)). After filtering for patients with an ICU stay of at least 24 hours with
reported gender and age of at least 18 years, our dataset contained 44,858 ICU stays with 56 million
data points. We split the data into partitions for fine-tuning (28,708), development (7,270), and testing
(8,880). For computational reasons, we further subsampled 15,000 datapoints for fine-tuning, and
3,000 datapoints for development and testing, respectively. The resulting percentage of positive
Sepsis cases in the test set was 7.33%. As features, we considered 131 clinical variables and the
demographic variables gender and age (see Appendix[A.4). This selection comprises all vital signs
and laboratory values used in the PhysioNet challenge for early prediction of sepsis (Reyna et al.|
2019)), together with information on suspected infection as in Nemati et al.| (2018). The time series
of clinical observations in the data were split into a 24 hour observation window, followed by a 24
hour prediction window. During training and testing, we use a sliding window of 24 hours so that
full admission days are given as input and output. Using the consensus definition given by Table[3]
and Equation 2] SOFA scores and Sepsis label were calculated deterministically for the given data.
Following this, features and SOFA scores were verbalized into texts as seen in Figure@ In TSF,
missing values are being carried forward from the previous day only.

The basic LLM used in our experiments is a pretrained Llama-3 model with 8B parameters (Grattafiori
et al., [2024) E] We use the 8B LLM in one-shot mode using the prompt shown in Appendix Our
fine-tuned model uses LORA adapters (Hu et al., 2022) on verbalizations of inference processes.
Furthermore, we use a dedicated medical TSF forecaster, pre-trained on MIMIC-III to improve the
inductive inference part of the LLM (see Appendix [A.2). The TSF model is used in two ways: First,
we extract predictions from the forecaster and augment the prompt with those predictions in a pipeline
approach. In this approach, the Llama-3 model is still finetuned using LORA, but the forecaster is
kept fixed. Second, we use a multimodal setup to connect the forecaster with the Llama-3 model.
We extract the full decoder prediction from the forecaster. The output vectors are then fed into a
connector MLP to produce vectors with Llama-3 embedding dimensionality. These time series "token
embeddings" are then prepended to the actual text embeddings. The LORA adapters in the Llama-3
model, the connector MLP, and the TSF model get updated during the finetuning process. A list of
hyperparameter settings chosen on the validation set (except the default setting for the Llama-3 8B
model) is given in Appendix [A.3] For further comparison, we use an 8B parameters LLM pretrained
on medical texts, including publications and wikipedia texts on consensus guidelines (me-llama (Xie
et al.} 2025)7), and 70B pretrained Llama-3 model in one-shot mode (one-shot-70B).

Gmeta—llama/Llamaf 3.1-8B-Instruct
7https ://huggingface.co/YBXL/Med-LLaMA3-8B
8https ://huggingface.co/meta-1llama/Llama-3.1-70B-Instruct


meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/YBXL/Med-LLaMA3-8B
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
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Table 2: Derivation correctness for in- and out-of-distribution exceptions to inference rules.
variable % changes ID % changes OOD ID score OOD score

SOFA1.04  0.404 0.424 1.000 1.000
SOFA25.45  0.433 0.452 1.000 1.000
Ground Truth Prediction
firubin Urine Creatinine e ‘ Thore e ‘ Bilirubin ‘ Urine Creatinine ‘ giure ‘ Fiure e
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Figure 3: Derivation correctness (dashed blue arrows) checks for the predicted inference graph
whether each child node (conclusion) follows from the parent node (premise) according to the con-
sensus rule. Value correctness (dotted red arrows) maps each node in the predicted inference graph
to its corresponding node in the ground truth graph, consisting of real-world clinical measurements
for first and second 24 hours, and deterministic calculation of SOFA and SEPSIS on these values.

Evaluation Metrics We evaluate the generated output of LLMs in three different ways. First,
we evaluate the LLM output according to derivation correctness (dashed blue arrows in Figure [3)
which checks whether each child node (conclusion) in the predicted inference graph follows from the
parent node (premise) according to the consensus rule. This evaluation measures the ability of the
LLM to learn the deductive inference rules of the consensus definition. Furthermore, it measures
faithfulness of the model’s inference process in the sense of checking for an accurate representation
of the reasoning process behind the model’s prediction. In order to avoid trivial cases of derivation
correctness, for example, inference of unchanged SOFA scores from unchanged future measurement
predictions, we measure in addition forced derivation correctness. This is done by forcing the
decoder to use the correct inference chain up to a last measurement token of a SOFA system as
context, then continuing the decoding process until the specified target node. Furthermore, we conduct
an evaluation according to value correctness (dotted red arrows in Figure 3) which compares the
numerical value of each partial inference node in the prediction graph with a corresponding real-world
output. Since errors earlier in the inference necessarily propagate through the inference chain, this
evaluation measures the utility of the LLM output in practical applications. Comparison in all three
cases is done by parsing the LLM output for relevant keywords, extracting numbers, and checking if
the predicted number lies in a specific interval around the true value. A match is considered positive if
the result deviates from the true value by 5%. In case of value correctness, we calculate a contingency
table by comparing the application of the Sepsis-3 definition to a model involving forecasted clinical
measurements with Sepsis-3 calculated for real-world clinical measurements in the second 24 hours
block. From this, metrics such as accuracy, specificity, sensitivity and F1 are computed.

5 RESULTS AND DISCUSSION

LLMs Shine in Deductive Inference According to Consensus Rules Our first research question
asks whether LLMs can learn the deductive inference rules underlying medical consensus definitions
by fine-tuning on verbalized instantiations of the inference process to patient data. Table [I]shows
that all fine-tuned models, from basic fine-tuning with text encoding to pipeline and multimodal
approaches, achieve nearly perfect derivation correctness. This includes mapping clinical variables to
SOFA step functions for the first 24 hours (rows 1-7), mapping forecasted clinical variables to future
SOFA scores (rows 8-15), and computing a Sepsis label (row 16). In contrast, one-shot learning
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Table 3: Value correctness of predicted clinical variables compared to real-world measurements.
All fine-tuning improvements over one-shot learning are statistically significant according to an
approximate randomization test.

variable one-shot one-shot-70B  me-llama | fine-tuned pipeline  multimodal
GCS-eye 0.830 0.924 0.931 0.998 0.997 0.998
GCS-motor 0.928 0.939 0.904 0.998 0.998 0.998
GCS-verbal 0.953 0.963 0.916 0.999 0.998 0.999
MAP 0.049 0.275 0.068 0.993 0.976 0.994
Dopamine 0.870 0.951 0913 0.972 0.964 0.968
Dobutamine 0.901 0.980 0.948 0.993 0.991 0.992
Epinephrine 0.890 0.967 0.934 0.979 0.980 0.980
Norepinephrine 0.802 0.876 0.846 0.909 0.895 0.906
Weight 0.906 0.809 0.876 0.999 0.999 0.999
PaO2/Fi02 0.262 0.540 0.124 0.998 0.997 0.997
PaO2 0.537 0.553 0.400 0.998 0.997 0.997
FiO2 0.877 0.714 0.848 1.000 1.000 1.000
Platelet 0.915 0.963 0.808 0.997 0.996 0.996
Bilirubin 0.301 0.281 0.311 0.999 0.998 0.999
Urine 0.114 0.245 0.114 0.966 0.761 0.880
Creatinine 0.896 0.968 0.790 0.998 0.998 0.998
future GCS-eye 0.684 0.701 0.653 0.712 0.743 0.789
future GCS-motor 0.777 0.800 0.759 0.811 0.832 0.869
future GCS-verbal 0.758 0.838 0.791 0.848 0.871 0.895
future MAP 0.076 0.225 0.151 0.274 0.289 0.294
future Dopamine 0.969 0.964 0.928 0.978 0.987 0.988
future Dobutamine 0.984 0.983 0.953 0.994 0.993 0.993
future Epinephrine 0.979 0.978 0.944 0.989 0.989 0.989
future Norepinephrine  0.906 0.888 0.865 0.913 0.914 0.913
future Weight 0.906 0.809 0.876 0.915 0.916 0914
future PaO2/FiO2 0.082 0.168 0.068 0.565 0.584 0.596
future PaO2 0.139 0.187 0.174 0.616 0.659 0.715
future FiO2 0.685 0.549 0.738 0.821 0.840 0.867
future Platelet 0.216 0.261 0.266 0.364 0.383 0.396
future Bilirubin 0.159 0.169 0.201 0.811 0.832 0.866
future Urine 0.058 0.090 0.084 0.133 0.152 0.183
future Creatinine 0.299 0.305 0.344 0.395 0.424 0.455

does not perform nearly as good, even for models that include abstract consensus definitions in their
training data (me-1lama) or use significantly larger pre-training data (one-shot-70B). Forced derivation
correctness (in brackets in Table|1)) shows that predictions using correct histories are very similar to
using predicted histories. Again, all one-shot learners underperform compared to fine-tuning.

LLMs Can Learn Exceptions to Consensus Rules The next question we ask is whether LLMs
can learn exceptions to the inference rules that might conflict with the consensus definition. In our
hypothetical scenario, we synthesize examples where ICD codes indicate a medical precondition
related to an organ system, with the exception to the rule implying that the SOFA score for the
respective organ system should be disregarded in the calculation of total SOFA and Sepsis. Table
shows that the addition of preconditions to the premises caused changes in 40-45% of the cases,
however, the derivation correctness of total SOFA scores was 100% without losing performance on
examples without preconditions. This shows that fine-tuning can indeed handle exceptions to the
rule, opening the doors to possible extensions of our work to include human feedback in the loop.

The Bottleneck Lies in Inductive Inference, not Out-of-Distribution Generalization Our final
evaluation compares the results of partial inference steps to real-world clinical measurements and to
SOFA and Sepsis scores derived from these. As shown in the first half of Table 3] the numerical values
that the LLM decoder has to extract from time series encodings are nearly perfect for fine-tuning
approaches. The second half of Table [3]reveals the bottleneck of teaching medical inference rules to
LLMs: Correctness of predicting values of 131 clinical variables 24 hours into the future drops from
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Table 4: Value correctness of predicted SOFA and SEPSIS scores compared to derivations from real-
world clinical measurements. All fine-tuning improvements over one-shot learning are significant.

variable one-shot one-shot-70B  me-llama | fine-tuned pipeline multimodal
Scns 0.565 0.620 0.476 0.998 0.997 0.997
Scardio 0.406 0.577 0.359 0.985 0.971 0.987
Sresp 0.262 0.397 0.183 0.996 0.994 0.996
Scoag 0.625 0.640 0.593 0.999 0.999 0.999
Stiver 0.478 0.812 0.591 1.000 0.999 1.000
Srenal 0.532 0.687 0.530 0.997 0.992 0.996
SOFA .24 0.132 0.228 0.095 0.979 0.958 0.981
future Scns 0.516 0.543 0.475 0.701 0.732 0.760
future Scardio 0.439 0.525 0.406 0.700 0.738 0.745
future Syeqp 0.228 0.330 0.175 0.746 0.754 0.780
future S¢oag 0.635 0.624 0.589 0.839 0.823 0.834
future Siiver 0.478 0.812 0.591 0.945 0.945 0.945
future Srenat 0.477 0.585 0.467 0.553 0.451 0.473
SOFA5.43 0.117 0.159 0.106 0.203 0.220 0.243
SOFA gift 0.124 0.122 0.120 0.151 0.147 0.163
SEPSIS Accuracy  0.788 0.849 0.860 0.868 0.873 0.886
SEPSIS Specificity 0.823 0.899 0.910 0.936 0.920 0.922
SEPSIS Sensitivity  0.350 0.209 0.227 0.263 0.336 0.386
SEPSIS F1 0.195 0.169 0.192 0.254 0.272 0.309

the high nineties to values in the tens and twenties, especially for sparsely and irregularly observed
lab values. The same is true for value correctness of predicted SOFA scores and Sepsis labels: As
shown in Table[d} the numerical values produced by mapping clinical measurements in the first 24
hours to SOFA scores are nearly perfect, however, mapping values of forecasted clinical variables
to step functions severely impacts correctness, especially on metrics like F1 that are sensitive to
imbalanced data. One-shot learning is impacted even more, while fine-tuning results can be improved
by moving from a text-based encoding to coupling dedicated TSF encoders with the LLM.

Discussion Leveraging consensus rules that exist for many medical areas, consistent diagnoses
for unseen patients and faithful medical inference even including exceptions to the rules can be
achieved by fine-tuning LLLMs on instantiations of the respective consensus rule system to patient
data. In contrast, training on abstract expositions of the rule system or on very large general-domain
data is insufficient. Since an adaptation of an LLM to consensus rules for a specific medical area
yields consistent results and faithful medical inference in that area, the bottleneck in consensus-based
medical prediction lies the orthogonal problem of generalization into the future, i.e., in the inherent
complexity of forecasting of sparsely and irregularly sampled clinical variables for early prediction.
This problem hinders medical prognosis, and needs to be addressed by improved TSF.

6 CONCLUSION

LLMs have been shown to excel at various health-related tasks, however, diagnostic Al has not
realized the potential to actually reduce the cognitive demand and associated diagnostic errors of
clinicians, due to a focus on predictive accuracy of final diagnostic labels (Adler-Milstein et al., [2021)).
Furthermore, instead of defining diagnostic excellence by perfect labeling based on fully established
clinical criteria, |]Angus & Bindman| (2022)) advocate to learn patterns of clinical data that are yet
unrecognized but still predictive of sepsis. Our approach can be seen as a first step towards these goals
by putting a focus on teaching LLMs inference rules that support clinicians, and to learn exceptions to
the rules that can capture new clinical patterns. Our experiments show that LLMs perfectly generalize
deductive inference to unseen patients, while the bottleneck lies in inductive inference. Future work
shall address the TSF bottleneck of early prediction models, and elevate our work from simulating
exceptions to the rule to learning them from real-world clinical data. Furthermore, we will investigate
the potential of task association learning (Cai et al., [2025]) applied to related consensus definitions.
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A APPENDIX

A.1 SOFA SCORE

Table 5: SOFA score for six organ systems, calculated by thresholding corresponding clinical
measurements (Vincent et al.l [1996). In our setting, we had to recalculate MAP (mean arterial
pressure) from SBP and DBP (systolic and diastolic blood pressure), the Horowitz coefficient from
Pa0O2 and FiO2, and had no knowledge about the kind of mechanical ventilation. If no value for
calculation in a SOFA subsystem was available, we took a value of 0. Abbreviations: CNS = Central
nervous system; GCS = Glasgow Coma Scale; MV = mechanically ventilated including CPAP; MAP
= mean arterial pressure, UO = Urine output.

» CNS Cardiovascular Respiratory ~ Coagulation Liver Renal
9]
@ GCS MAP PaO2/FiO2  Platelets  Bilirubin Creatinine
Or Vasopressors (mmHg) (x 103/ul) (mg/dl) (mg/dl) or UO
+0 15 MAP > 70 mmHg > 400 > 150 <12 <12
+1 13-14 MAP < 70 mmHg < 400 < 150 1.2-1.9 1.2-1.9
+2 10-12  dopamine < 5 pg/kg/min < 300 < 100 2.0-5.9 2.0-3.4
OR dobutamine (any dose)
+3 69 dopamine > 5 pg/kg/min <200 <50 6.0-11.9 3.5-4.9
OR epinephrine < 0.1 pg/kg/min AND MV OR < 500 ml/day
OR  norepinephrine < 0.1
pg/kg/min
+4 <6 dopamine > 15 pg/kg/min < 100 <20 > 12.0 >5.0
OR epinephrine > 0.1 pg/kg/min AND MV OR < 200 ml/day
OR  norepinephrine > 0.1
pg/kg/min
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A.2 TIME SERIES FORECASTING

Our TSF model uses the implementation of |Staniek et al.|(2024)) which is based on a Transformer
encoder-decoder architecture (Vaswani et al.,2017). First, sparse multivariate input time series are
represented as quadruplets S = {(f;, t;, v;,n;)}7,, where f; € F is a clinical variable identifier,
t; € R>q is a time index, v; € R the observed value of f; at ¢;, and n; the unique stay identifier.
Then the quadruplets for a 24 hour time series are encoded into a dense representation = where every
timestep is a vector of feature values representing one hour. We construct this vector by choosing
the first observed value during the represented hour for each feature. If no value was observed, we
impute zero which corresponds to the mean value due to standardization of the data. Additionally,
a mask indicating whether a value was imputed is generated and appended to the vector. For TSF,
we use a Transformer model with an autoregressive iterative multistep (IMS) decoder that generates
an output vector §; € RIF|. The predicted output i is a function of the history jj; of predicted
timesteps until time ¢, the encoded input z, and the model parameters 0: §; = fo(§<¢, x). To perform
long-term TSF using the autoregressive setup, the outputs ¢; from each time stept = 1,...,T are
concatenated. The complete model is trained with masked mean squared error (MSE).
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Figure 4: Time Series Forecasting using a dense encoder and iterative multistep decoder architecture.
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A.3 HYPERPARAMETERS AND COMPUTE INFRASTRUCTURE

Table 6: Hyperparameter settings of the time series forecaster.

Hyperparameter value
Embedding Size 512
Hidden size encoder 512
Hidden size decoder 512

# Encoder layers 2

# Decoder layers 1
learning rate 0.0005

attention heads encoder 8
attention heads decoder 1

dropout
max epochs

0.05
100

patience (early stopping) 6

Random Seed
# GPUs

Training all clock time

GPU type

unixtime variation

1

5 hours

Nvidia GTX 1080 Ti

Table 7: Hyperparameter settings of the multi-modal and LLM finetuning architectures.

Hyperparameter value
optimizer adam
learning rate 0.000002
max epochs 10
connector first layer 131x2096
connector second layer  2096x4096
lora-r 16
lora-alpha 16
lora-dropout 0.1
lora-target-modules all-linear

# GPUs 1

Training all clock time 40 hours
GPU type NVIDIA A100

Starting model

meta-llama/Llama-3.1-8B-Instruct
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A.4 CLINICAL FEATURES

Table 8: Feature list for MIMIC-III: Besides the following 131 dynamic variables, only age and
The 15 variables marked with an asterisk are directly used for calculating the

gender were extracted.

SOFA score.
ALP Epinephrine* LDH Packed RBC
ALT Famotidine Lactate Pantoprazole
AST Fentanyl Lactated Ringers Phosphate
Albumin FiO2* Levofloxacin Piggyback
Albumin 25% Fiber Lorazepam Piperacillin
Albumin 5% Free Water Lymphocytes Platelet Count*
Amiodarone Fresh Frozen Plasma Lymphocytes (Absolute) Potassium
Anion Gap Furosemide MBP Pre-admission Intake
BUN GCS_eye* MCH Pre-admission Output
Base Excess GCS_motor* MCHC Propofol
Basophils GCS_verbal* MCV RBC
Bicarbonate GT Flush Magnesium RDW
Bilirubin (Direct) Gastric Magnesium Sulfate (Bolus) RR
Bilirubin (Indirect)  Gastric Meds Magnesium Sulphate Residual
Bilirubin (Total)* Glucose (Blood) Mechanically ventilated SBP*
CRR Glucose (Serum) Metoprolol SG Urine
Calcium Free Glucose (Whole Blood) Midazolam Sodium
Calcium Gluconate HR Milrinone Solution
Calcium Total Half Normal Saline Monocytes Sterile Water
Cefazolin Hct Morphine Sulfate Stool
Chest Tube Heparin Neosynephrine TPN
Chloride Hgb Neutrophils Temperature
Colloid Hydralazine Nitroglycerine Total CO2
Creatinine Blood* = Hydromorphone Nitroprusside Ultrafiltrate
Creatinine Urine INR Norepinephrine* Urine*
D5W Insulin Humalog Normal Saline Vancomycin
DBP* Insulin NPH 02 Saturation Vasopressin
Dextrose Other Insulin Regular OR/PACU Crystalloid WBC
Dobutamine* Insulin largine PCO2 Weight
Dopamine* Intubated PO intake pH Blood
EBL Jackson-Pratt PaO2* pH Urine
Emesis KCl PT
Eoisinophils KCI (Bolus) PTT
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A.5 ONE-SHOT PROMPT

Please answer in the following style, where current time values are the correct summary values of the given measurements according to
the Sepsis-3 definition. The future values should be your best guesses on how the values develop. The SOFA scores should be calculated
according to the Sepsis-3 definition. Only answer like in the given example. Here is the example:

Patient is 63.0 years old and is male. Given all the information in this text, answer the question at the end.

Here are the measurements: DBP at time -23.68: 36.0, SBP at time -23.68: 71.0...

Now answer the following question in the given format:

Doctors suspect an infection, based on this information and the other information in this text, will the patient be classified as septic tomorrow?
First we need to calculate the SOFA scores given the extracted values. The SOFA scores for the current time are the following:

The minimum value of GCS_eye is 4.0, GCS_motor is 6.0 and GCS_verbal is 5.0, this produces the sum 15.0 and means the CNS SOFA is 0.
Because minimum MAP is 43.333, max Dopamine is 0, max Dobutamine is 0, max Epinephrine is 0 and max Norepinephrine is O with a
patient weight of 80 kg, the cardiovascular SOFA is 1.

Given that minimum PO2 is 141.0 and minimum FiO2 is 1 the calculated PAO2FIO2 is 141.0, this means the respiratory SOFA is 3.
Because the minimum Platelet count is 235.0 the coagulation SOFA is 0.

The maximum Bilirubin (Total) is 1.8 leading to a liver SOFA of 1.

Because total Urine output is 1585.0 and maximum creatinine in the blood is 1.4 the renal SOFA is 1.

To summarize: the patient has a total SOFA score of 6.

Now we need to calculate the SOFA scores with forecasted values. The SOFA scores in the future based on the forecasted values are the
following:

The minimum value of GCS_eye will be 4.0, GCS_motor will be 6.0 and GCS_verbal will be 5.0, this produces the sum 15.0 and means the
CNS SOFA will be 0.

Because future minimum MAP will be 55.667, future max Dopamine will be 0, future max Dobutamine will be 0, future max Epinephrine
will be 0 and future max Norepinephrine will be 0 with a patient weight of 80 kg, the cardiovascular SOFA will be 1.

Given that minimum PO2 will be 141.0 and minimum FiO2 will be 1 the forecasted PAO2FIO2 will be 141.0, this means the respiratory
SOFA will be 3.

Because the Platelet count will be 295.0 the coagulation SOFA is going to be 0. The maximum Bilirubin (Total) will be 1.8 leading to a liver
SOFA of 1.

Because Urine output will be 1635.0 and maximum creatinine in the blood will be 1.1 the renal SOFA will be 0.

To summarize: the patient will have a future total SOFA score of 5.

The patient will not develop sepsis in the next 24 hours, because total SOFA increased only by -1 and infection is suspected.

The example is now finished. Say "The patient will develop sepsis" in the last sentence if the criteria are met (if total SOFA changed by 2 and
infection is suspected).

Patient is 76.0 years old and is female. Given all the information in this text, answer the question at the end.

Here are the measurements: DBP at time -22.97: 56.0, GCS_eye at time -22.97: 4.0, GCS_motor at time -22.97: 6.0...

Now answer the following question in the given format:

The doctors don’t suspect an infection, based on this information and the other information in this text, will the patient be classified as septic
tomorrow?
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A.6 SETUP FOR LEARNING FROM PRECONDITIONS

Table 9: Medical preconditions for five organ systems indicated by ICD-10 codes. In-distribution
(ID) data were seen, out-of-distribution (OOD) data were unseen during fine-tuning.

lung kidney coagulation liver cardiovascular
ID  J40,J41,J42 NI18.9,N28 D68.4,D68.5 K70.0,K70.41  150.0,150.9
OOD J44.9 N19 D68.6 K70.3 150.1

Table 10: ICD-10 Code frequency for in- and out-of-distribution testsets.
ICD-10 Code #1D Test # OOD Test

J40 263 194
J41 239 173
J42 253 194
J44.9 - 166
N18.9 266 172
N19 - 204
N28 281 151
D68.4 242 171
D68.5 244 162
D68.6 - 176
150.0 264 185
150.1 - 193
150.9 229 162
K70.0 230 165
K70.3 - 162
K70.41 215 182
No-Preexisting 274 189
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