
Published as a workshop paper at SCOPE - ICLR 2025

ACCELERATION MULTIPLE HEADS DECODING FOR
LLM VIA DYNAMIC TREE ATTENTION

Zhendong Zhang
Vivo Mobile Communication Co. Ltd
zhd.zhang.ai@gmail.com

ABSTRACT

Multiple heads decoding accelerates the inference of Large Language Models
(LLMs) by predicting next several tokens simultaneously. It generates and verifies
multiple candidate sequences in parallel via tree attention with a fixed structure. In
this paper, we replace the fixed tree attention with dynamic tree attention on multi-
ple head decoding, specifically in the context of MEDUSA. We propose a simple
and low complexity strategy to generate candidates and construct the dynamic
tree structure. Preliminary experiments show that the proposed method improves
the decoding efficiency of multiple head decoding for LLMs while maintaining
the generation quality. This result demonstrates the potential for improvement of
multiple head decoding in candidate generation.

1 INTRODUCTION

The scale of Large Language Models (LLMs) has been growing rapidly in recent years (Radford
et al., 2019; Brown et al., 2020; Achiam et al., 2023). However, this growth leads to an increase
in inference latency. From a system perspective, the main latency bottleneck of LLM inference is
memory bandwidth rather than arithmetic computations (Shazeer, 2019). This bottleneck is inherent
to the sequential nature of auto-regressive decoding, which generates only a single token at a time,
underutilizes the arithmetic computation potential of modern accelerators (Cai et al., 2024).

Researchers have explored generating multiple tokens simultaneously, which follows a guess-verify
approach. Depending on the methods used for initial token guessing and subsequent verification,
recent techniques can be classified into three categories: speculative decoding, Jacobi decoding,
and multiple head decoding. Speculative decoding uses a smaller draft model to generate a token
sequence, which is subsequently verified by the original model (Leviathan et al., 2022; Chen et al.,
2023). Jacobi decoding typically initiates a new sequence with [PAD] tokens, then iteratively veri-
fies and updates the sequence by solving Jacobi equations until a fixed point is reached (Song et al.,
2020; Santilli et al., 2023). Multiple heads decoding predicts multiple next tokens by extra output
heads. It then constructs multiple candidate sequences by combining these heads, and verifies them
in parallel by the original model (Stern et al., 2018; Cai et al., 2024).

This paper focus on multiple head decoding, particularly MEDUSA proposed in (Cai et al., 2024).
Given the original model’s last hidden states ht at last input position t, MEDUSA introduces K
additional decoding heads to ht. The k-th head is designed to predict the token in the (t + k + 1)-
th position, while the original head predicts the (t + 1)-th position. Denote p(k) as the predicted
vocabulary distribution of k-th head. The top predictions from p(k) are used to generate candidate
sequences, with each candidate being a combination of the top predictions from different heads.
MEDUSA uses a fixed set of combining patterns. By merging their common parts, these patterns are
represented as a tree. This tree structure is constructed by estimating the accuracy via a calibration
dataset. After generating candidates using the fixed tree structure, MEDUSA verifies them in parallel
through tree attention (Miao et al., 2023; Cai et al., 2024), which involves incorporating the tree
structure into the attention mask.

Although the fixed tree structure captures certain inherent biases of MEDUSA heads, it may not
fully account for context-dependent variations. We believe that a dynamic tree structure can handle
context dependency better and improve the decoding efficiency of LLMs. In this paper, we propose
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Table 1: MT-Bench results with Vicuna-7B model
Method Speed up Generation Quality

MEDUSA-1 2.50 5.21
MEDUSA-1 Dynamic 2.66 5.17

MEDUSA-2 3.32 5.24
MEDUSA-2 Dynamic 3.51 5.21

a simple and efficient strategy to dynamically construct the tree structure: selecting top-n candidates
from all possible combinations (we will show how to efficiently do this). Experiments demonstrate
that dynamic tree improves the decoding efficiency in terms of tokens per inference. Our code is
available at https://github.com/zzd1992/MEDUSA-Plus.

2 METHODOLOGY

The proposed method first dynamically generates candidates, then prepares the buffers of dynamic
tree attention based on those candidates. Ideally, candidates should be sampled according to their
joint distribution. However, it is not directly accessible. As an alternative, we approximate the joint
distribution using the Cartesian product of marginal distributions, which is provided by MEDUSA
heads. Let p(k)i be the i-th top prediction of k-th MEDUSA head. Then the probability of sequence
(i1, i2, . . . ik) is

P (i1, i2, . . . ik) =

k∏
j=1

p
(j)
ij

(1)

By emulating the Cartesian Product of marginal distributions, we generate all possible candidates.
We only consider the top-m predictions of each marginal distribution, i.e. there are

∑K
k=1 m

k

possible candidates. Then we select top-n candidates with the highest probability. This can be
done efficiently by a priority queue, as shown in algorithm 1. The computational complexity is
O(Knm log n). Following (Cai et al., 2024), we set K = 4, n = 64. We set m = 32. Thus,
the actual complexity for candidates generating is quite small. The selected candidates form the
structure of a tree due to the Cartesian product of marginal distributions.

P (i1, i2, . . . ik) = P (i1, i2, . . . ik−1)P (ik) ≤ P (i1, i2, . . . ik−1) (2)

If candidate (i1, i2, . . . ik) is selected, then it’s parent (i1, i2, . . . ik−1) is also selected. Once the
candidates are generated, we prepare the buffers of dynamic tree attention, specifically the position
embedding and attention mask. This is achieved by emulating the generated candidates with a
computational complexity of O(Kn). Thus, the overall computational complexity is quite small.

3 EXPERIMENTS

We evaluate the proposed method in terms of tokens per inference (i.e. speed up) and genera-
tion quality. The evaluation is carried out using MT-Bench (Zheng et al., 2023), a multi-turn,
conversational-format benchmark. We use the same model of MEDUSA-1 and MEDUSA-2 which
are trained with fixed backbone and trainable backbone respectively. Currently, our evaluation is
limited to Vicuna-7B model (Chiang et al., 2023). Generation quality is measured using the single
judgment method on MT-Bench. The results are presented in Table 1. The proposed method im-
proves the decoding efficiency of MEDUSA-1 and MEDUSA-2 while maintaining the generation
quality. We provide a visualization of tree attention mask in Figure B. The dynamic tree structure
shares common parts with the fixed tree structure, but can adapt to context dependencies. In terms
of tokens per second, our method is approximately 10% slower than MEDUSA. However, our im-
plementation is not yet optimized. We are confident that the overhead associated with dynamic tree
construction can be substantially reduced through further engineering efforts (see appendix C).
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4 DISCUSSION

In this paper, we replace the fixed tree attention with dynamic tree attention on multiple head de-
coding, specifically in the context of MEDUSA. We propose a simple and low complexity strategy
to generate candidates and construct the dynamic tree structure. Preliminary experiments show that
the proposed method improves the decoding efficiency of multiple head decoding for LLMs while
maintaining the generation quality. This result demonstrates the potential for improvement of mul-
tiple head decoding in candidate generation. For future work, we plan to improve the proposed
method in the following ways:

• Optimize the overhead: optimize candidate generation process to make our method more
competitive in terms of wall time.

• Improve joint distribution approximation: currently, the joint distribution is approxi-
mated by the Cartesian product of marginal distributions. We will explore better strategies
to approximate it.
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Algorithm 1 Candidate Generation
Require: Top-m probability of K MEDUSA heads P ∈ RK×m and number of candidates n
Ensure: candidate set S

Initialize candidate set S ∈ ∅
for i = 1 to m do

Add (P[1, i], i, 1) to S
end for
for k = 2 to K do

Initialize a priority queue Q with maximum size n
for (p, idx, depth) ∈ S do

Push (p, idx, depth) to Q
if depth = k − 1 then

for i = 1 to m do
Push (p ·P[k, i], idx×m+ i, k) to Q

end for
end if

end for
S ← set(Q)

end for
Return S

A CANDIDATE GENERATION ALGORITHM

B VISUALIZATION OF TREE ATTENTION MASK

Prompt

Compose an engaging travel blog
post about a recent trip to Hawaii,
highlighting cultural experiences

and must-see attractions.

Describe a vivid and unique character,
using strong imagery and creative

language. Please answer in
fewer than two paragraphs.

MEDUSA-1

MEDUSA-2

Fixed Dynamic Dynamic

C OVERHEAD ANALYSIS

The overhead of MEDUSA comprises two components: candidate generation and posterior evalua-
tion. For the Vicuna-7B, it occupies 20% of the model’s pure inference time. MEDUSA-Dynamic,
on the other hand, has three components contributing to its overhead: candidate generation, buffer
modification, and posterior evaluation. In the case of Vicuna-7B, it accounts for 33% of the model’s
pure inference time. It is worth noting that the posterior evaluation process is identical for both
MEDUSA and MEDUSA-Dynamic.
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At present, the candidate generation in MEDUSA-Dynamic is not implemented using Algorithm 1.
Instead, we have employed a trivial top-K sorting approach for all possible candidates. The compu-
tational complexity associated with Algorithm 1 and buffer modification is low. We are convinced
that, with an optimized implementation, the overhead of MEDUSA-Dynamic would be nearly com-
parable to that of MEDUSA.
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