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ABSTRACT

Diffusion-based generative models in SE(3)-invariant space have demonstrated
promising performance in molecular conformation generation, but typically re-
quire solving stochastic differential equations (SDEs) with thousands of update
steps. Till now, it remains unclear how to effectively accelerate this procedure
explicitly in SE(3)-invariant space, which greatly hinders its wide application in
the real world. In this paper, we systematically study the diffusion mechanism
in SE(3)-invariant space via the lens of approximate errors induced by existing
methods. Thereby, we develop more precise approximate in SE(3) in the context
of projected differential equations. Theoretical analysis is further provided as
well as empirical proof relating hyper-parameters with such errors. Altogether,
we propose a novel acceleration scheme for generating molecular conformations
in SE(3)-invariant space. Experimentally, our scheme can generate high-quality
conformations with 50x–100x speedup compared to existing methods. Code is
open-sourced at https://anonymous.4open.science/r/Fast-Sampling-41A6.

1 INTRODUCTION

Given an atom-bond molecular graph, conformation generation asks for sampling viable 3-
dimensional coordinate configurations of atoms following the Boltzmann distribution of its com-
positional free energy (Strodel, 2021). As the 3-dimensional conformation generally determines a
molecule’s macroscopic properties, conformation generation is a basic yet essential task in chemin-
formatics, drug discovery, and material engineering. Traditional solutions rely on optimizing over
potential energy surface (e.g., force field (Riniker & Landrum, 2015) and density functional theory
(Castro et al., 2004)), which suffer from a variety of drawbacks separately, such as low coverage,
high computational complexity, and heavy demand for prior knowledge.

Recently, there has been an increasing interest in applying diffusion-based generative models to
sample molecular conformations (Shi et al., 2021; Zhang et al., 2023; Luo et al., 2021; Xu et al.,
2022; Jing et al., 2022; Zhou et al., 2023; Fan et al., 2023a;b), as this line of work demonstrates
strong modeling ability to capture the wide conformation distribution, analogous to their counterparts
in computer vision area (Ho et al., 2020b; Dhariwal & Nichol, 2021). A central factor of such
success lies in incorporating the roto-translational property of SE(3)-invariant space (De Bortoli
et al., 2022), which is intrinsically equipped in 3-dimensional geometry. Unfortunately, unlike
counterparts in computer vision, diffusion-based conformation generators that explicitly incorporate
SE(3) property typically cost up to several thousand sampling steps. Till now it is vague how
to directly accelerate them with standard solvers (e.g., DPM solver and high-order solvers (Song
et al., 2020b; Dormand & Prince, 1980; Lu et al., 2022a)), while enforcing such solvers may result
in unmeaningful conformations, and the reason causing this failure remains unclear. Although
some other methods may be easily accelerated via bypassing this SE(3) riddle with much prior
knowledge (Ganea et al., 2021; Jing et al., 2022), we believe that getting to the bottom of SE(3) can
provide insightful perspectives to the future research.

In this paper, we systematically investigate how to effectively accelerate diffusion-based generation
in SE(3)-invariant space for molecule generation tasks. To this end, we analyze current modeling
methods in SE(3) (Shi et al., 2021; Xu et al., 2022; Zhou et al., 2023) and theoretically pose crucial
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mistakes shared in these methods, which inevitably bring about the failure of acceleration. From the
perspective of differential geometry and projected differential equations, we correct these mistakes
and propose more accurate approximations of score functions with a provably tight bound. This
approximation is designed to mimic a projection into SE(3)-invariant space. As such, we propose
a plausible scheme to accelerate diffusion-based generation on top of the corrected modeling with
a hyper-parameter. We further empirically demonstrate the relationship between hyper-parameter
and the model’s prediction error, which we believe can provide useful suggestions for future solver
design. Extensive experiments are conducted on QM9 and Drugs datasets (Axelrod & Gomez-
Bombarelli, 2022). Our acceleration scheme can sample high-quality molecular conformations by
slightly modifying GeoDiff (Xu et al., 2022) and SDDiff (Zhou et al., 2023), but with 50–100x
speedup. In summary, our contributions are:

• We analyze the modeling mistakes occurring in the current SE(3)-based methods and present
effective approximation to correct them therein.

• We give a theoretically tight bound of our approximation, which also empirically performs
well.

• We for the first time propose a plausible scheme for accelerating diffusion-based molecular
conformation generation in SE(3)-invariant space, achieving remarkable speedup without
sacrificing sampling quality.

2 RELATED WORKS

Molecular conformation generation. Various methods have been proposed to generate molecular
conformers. Some notable approaches include GeoMol (Ganea et al., 2021), which utilizes Graph
Neural Networks (GNNs) to predict local structures and connectivity information for subsequential
manual assembly of conformers. In contrast, DMCG (Zhu et al., 2022) offers an end-to-end solution
by directly predicting atom coordinates while maintaining roto-translational invariance through
an SE(3)-invariant loss function. Recently, a growing interest has emerged in diffusion-based
methodologies (see Appendix A). To simplify the analysis of SE(3)-invariance, some methods shift
the modeling from atom coordinates to pairwise distances. A subset of them (Shi et al., 2021; Zhang
et al., 2023; Luo et al., 2021) introduce perturbations to inter-atomic distances and subsequently
estimate the corresponding coordinate scores. On the other hand, two most closely related works to the
present study, GeoDiff (Xu et al., 2022) and SDDiff (Zhou et al., 2023) both choose to perturb atomic
coordinates, but their distance distribution modelings are distinct. Other models focuse on molecular
local structure designs. FrameDiff (Yim et al., 2023) parameterizes the diffusion of the frame
translation and torsion angles by considering diffusion on SE(3)-manifold. Torsional diffusion (Jing
et al., 2022) further eases the problem by applying RDkit to first generate local structures so that the
lengths of atom bounds and then apply the diffusion process on torsion angles. Another different
method, EC-Conf (Fan et al., 2023b), is a consistency model which can transform the conformation
distribution into a noise distribution with a tractable trajectory satisfied SE(3)-equivariance.

Sampling acceleration of diffusion-based models. The reverse diffusion process typically takes
thousands of steps. To accelerate the diffusion process, some new diffusion models such as consistency
models (Song et al., 2023) are proposed. Consistency models directly map noise to data, enabling the
generation of images in only a few steps. EC-Conf (Fan et al., 2023b) represents an application of
consistency models in substantial reduced number of steps for molecular conformation generation. A
more naive approach is simply reducing the number of sampling iterations. DDIM (Song et al., 2020a)
uses a hyper-parameter to control the sampling stochastical level and finds that the decrease of the
reverse iteration number results improved sample quality due to less stochasticity. This phenomenon
can be attributed to the existence of a probability ODE flow associated with the stochastic Markov
chain of the reverse diffusion process (Song et al., 2020b). This implies that several numerical ODE
solver methods can be applied to solve the reverse diffusion. DPM-solver (Lu et al., 2022a) leverages
the semi-linear structure of probability flow ODE to develop customized ODE solvers, and also
provides high-order solvers for the probability ODE flow which can generate high-quality samples in
only 10 to 20 iterations. Then DPM is extended as DPM-solver++ (Lu et al., 2022b) for sampling
with classifier-free guidance. However, such a dedicated solver can only be applied in Euclidean
space. To our best knowledge, there is no diffusion solver for SE(3)-invariant space or on the pairwise
distance manifold. Hence, accelerating SE(3)-diffusion process remains a challenge.
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3 PRELIMINARY

3.1 MOLECULAR CONFORMATION GENERATION

Given a specific molecular graph G, the molecular conformation generation task aims to generate
a series of independent and identically distributed sample conformations C from the conditional
probability distribution denoted as p(C|G). In this context, the distribution function p adheres to the
underlying Boltzmann distribution (Noé et al., 2019).

Each molecule is represented as an undirected graph, denoted as G = (V,E), where the set V
represents the ensemble of atoms within the molecule, while E signifies the collection of inter-atomic
chemical bonds. Additionally, the graph incorporates node features hv ∈ Rf for all nodes v ∈ V and
edge features euv ∈ Rf ′

for all edge connections (u, v) ∈ E. These features encapsulate information
about atom types, formal charges, and bond types, among other characteristics.

To streamline the notation, the set of atoms in three-dimensional Euclidean space is represented as
C = [x1, . . . ,xn] ∈ Rn×3, and the distance between nodes u and v is expressed as duv = ∥xu−xv∥.
To model the generative process effectively, the generative model is denoted as pθ(C|G).

3.2 EQUIVARIANCE WITHIN MOLECULAR CONFORMATION ANALYSIS

Equivariance with respect to translation and rotation operations, defined by the SE(3) groups, holds
significant interdisciplinary relevance across various physical systems. Therefore, it assumes a pivotal
role in the modeling and analysis of three-dimensional geometric structures, as highlighted in prior
research (Thomas et al., 2018; Weiler et al., 2018; Chmiela et al., 2019; Fuchs et al., 2020; Miller
et al., 2020; Simm et al., 2020; Batzner et al., 2022). In mathematical terms, a model sθ is considered
equivariant concerning the SE(3) group if it satisfies the condition sθ(Tf (x)) = Tg(sθ(x)) for any
arbitrary transformations f and g belonging to the SE(3) group. An effective strategy is to employ
inter-atomic distances, which naturally exhibit equivariance with respect to the SE(3) groups (Shi
et al., 2021; Xu et al., 2022; Gasteiger et al., 2020).

3.3 PAIRWISE-DISTANCE MANIFOLD

Pairwise-distance matrices (adjacent matrices) lie in a sub-manifold of Rn×n
+ . A pairwise-distance

matrix d = [dij ] ∈ Rn×n
+ is said to be valid if there is a set of coordinates C = [x1, . . . ,xn] s.t.

dij = ∥xi − xj∥,∀i, j = 1, . . . , n. The manifold of valid distance matrices is a proper sub-manifold
of Rn×n

+ . Directly applying the diffusion process, i.e., d̃ = d+ z for some z ∼ N (0n×n, I) would
result in an invalid pairwise-distance d̃. Meanwhile, in the reverse process of diffusion, enforcing the
model to generate a feasible distance matrix is non-trivial. Some previous works (Hoffmann & Noé,
2019) utilize the spectral theorem to generate valid pairwise distance but such a method involves
matrices decomposition, which would cause huge computational cost. In some other works, authors
implicitly assume that the manifold of pairwise distance is surjective to Rn×n

+ , resulting in inaccurate
computation of the score function (Shi et al., 2021; Xu et al., 2022; Zhou et al., 2023).

4 METHOD

In this work, we aim to explicitly accelerate the sampling of SE(3)-invariant diffusion models.
Surprisingly, our scheme only requires two slight modifications on top of existing models, i.e.,
GeoDiff (Xu et al., 2022) and SDDiff (Zhou et al., 2023), to enable efficient sampling in much fewer
steps: 1) replacing “summation” with “mean” term in estimating the score (Eq. 5) and 2) multiplying
a factor “scale” to correlate the error shift (Eq. 14).

We consider SE(3)-invariant diffusion models that model inter-atomic distances. Specifically, given
a molecular conformation C0 ∈ Rn×3/ SE(3) and let C0 be embedded by a n × 3 matrix, i.e.,
C0 = [x1, . . . ,xn] ∈ Rn×3, they define a forward diffusion process of the conformation embedding
(we consider C0 as a vector to simplify our notations) (Song et al., 2020b)
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q0t (Ct | C0) = N
(
Ct | C0, σ2

t I
)

⇔ ∂Ct =
√

dσ2
t

dt
∂wt (1)

where C0 ∼ q0(C0) and q0 is the distribution of the dataset, σt = σ(t) is an increasing function, and
the corresponding ODE reverse flow is

∂Ct
∂t

= −1

2

dσ2
t

dt
∇Ct log q0t (Ct | C0) , CT ∼ q0T (CT | C0) ≈ qT (CT ) , (2)

To define an equivariant reverse process, we need to compute an equivariant score function
∇Ct

log q0t(Ct|C0). By assuming that the manifold dimension of the pairwise distance is n2, existing
methods use the chain rule to compute (Shi et al., 2021; Xu et al., 2022; Zhou et al., 2023)

∇Ct log q0t(Ct|C0) ≈
n∑

i=1

∑
j∈N(i)

∂d
(t)
ij

∂Ct
∇

d
(t)
ij

log q0t(dt|d0) (3)

where d = [dij ] = [∥xi − xj∥]. They train the model sθ = sθ(Ct, t,G) = sθ(dt, t,G) satisfying
sθ(dt, t,G) = −σt∇Ct log q0t(Ct|C0) and G represents the molecular graph. In the following, for
notation simplification, we omit the input G and sθ(dt, t) = sθ(dt, t,G).
We find that applying the usual discretilization (Lu et al., 2022a) (see Appendix B)

Ct ≈ Cs + [σ(t)− σ(s)] sθ(ds, s) (4)

cannot produce substantial conformations. To enable efficient sampling, we apply two core modifica-
tions. The first modification is to replace Eq. 3 with

∇Ct log qσ(Ct|C0) =
n∑

i=1

1

degreei

∑
j∈N(i)

∂d
(t)
ij

∂Ct
∇

d
(t)
ij

log q0t(dt|d0) (5)

where degreei is the degree of node i. The second modification is to add a multiplier “scale”, ksθ to
Eq. 4:

Ct ≈ Cs + ksθ (ds, s, t) [σ(t)− σ(s)] sθ(ds, s) (6)

The reason for the first and second modifications is detailed in Sec. 4.1 and Sec. 4.2. In our empirical
investigation, we substantiate that our solver is capable of producing high-quality samples when
contrasted with the approach of sampling through thousands of iterations of Langevin dynamics.

4.1 DIFFERENTIAL FORM OF CONFORMATION SCORE

Figure 1: Mappings between
the manifolds of pairwise dis-
tances M and SE(3)-invariant
conformations N . A more
detailed introduction can be
found in Appendix C.

We examine the relationship existing between the manifold of pair-
wise distances and conformation. We define the manifold of pairwise
distance matrices or adjacent matrices to be M and the manifold
of the SE(3)-invariant conformation coordinates to be N . Consider
mappings defined in Fig 1. By definition, we have

∇Ct
log q0t(Ct|C0) = dφdt

(∇dt
log q0t(dt|d0)) (7)

Computation of dφ. For fixed t, we rewrite d̃ := dt, d := d0 and
pσ(d̃ | d) := q0t(dt | d0). Consider the mapping f : Td̃M → N .
We can write f = πN ◦ dφ = φ ◦ πM . Since we use a n× 3 matrix
to embed C ∈ N . In such an embedding, we can choose πN to be an
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identical mapping and we have dφd̃ = φ ◦ πM,d̃. The mapping φ : M → N is a function that maps
the adjacent matrix to a conformation and πM can be chosen to be a generalized multidimensional
scaling (GMD), i.e. given d̂ = d̃+

∑
i,j αijeij ∈ Td̃M , we define πM,d̃(d̂)ij = ∥x̂i − x̂j∥, where

x̂1, . . . , x̂n = argmin
x̂1,...,x̂n

∑
i<j

(
∥x̂i − x̂j∥ − d̂ij

)2
. Then,

dφd̃(d̂) = φ ◦ πM,d̃(d̂) = argmin
x̂1,...,x̂M

∑
i<j

(
∥x̂i − x̂j∥ − d̂ij

)2
. (8)

We approximate the solution of the above optimization problem as

dφd̃(d̂) = dφd̃(d̃+
∑
i,j

αijeij) ≈ C̃ +
∑
i,j

αij

2(n− 1)

∂d̃ij

∂C̃
(9)

Theorem 1. Consider the optimization problem f(d̂) := min
x̂1,...,x̂M

∑
i<j

(
∥x̂i − x̂j∥ − d̂ij

)2
, where

d̂ = d̃ + δeuv. The optimal value f(d̂) approximated by x̂ = dφd̃(d̂) from Eq. 9 is bounded by
2n2+n−1
2(n−1)2 δ2 (See Appendix D.2 for the formal proof). Hence, approximation error does not explode

with the increase of node numbers.

Then, by Eq. 9 and the linearity of dφd̃, we have

∇C̃ log pσ(C̃|C) = dφd̃(∇d̃ log pσ(d̃|d)) ≈
∑
i,j

∇d̃ij
log pσ(d̃|d)

2(n− 1)

∂d̃ij

∂C̃
(10)

Detailed intermediate steps and the reason for such an approximation, as well as approximation error
bound and tangent space assumptions, are detailed in Appendix D. Since we usually consider partially
connected conformations, the pairwise distance matrix is sparse. We thus modify Eq. 10 to

∇Ct
log q0t(Ct|C0) ≈

n∑
i=1

1

degreei

∑
j∈N(i)

∂d
(t)
ij

∂Ct
∇

d
(t)
ij

log q0t(dt|d0), (11)

where degreei denotes the degree of node i. By completing the sparse conformation into a fully
connected conformation, Eq. 11 is reduced to Eq. 10. Various methods have been proposed to
compute ∇dt

log q0t(dt|d0) and details can be seen in Appendix E. Using these methods, we can
train the model sθ(dt, t) ≈ −σt∇Ct

log q0t(Ct|C0).

4.2 MODELING OF REVERSED FLOW

As stated in Eq. 2, the reverse flow of conformations is

∂Ct
∂t

= −1

2

dσ2
t

dt
∇Ct

log q0t (Ct | C0) = −1

2

dσ2
t

dt
dφdt

(∇dt
log q0t(dt|d0)) (12)

where we assume Ct + ∇Ct
log q0t (Ct | C0) ∈ TCt

N, dt + ∇dt
log q0t (dt | d0) ∈ Tdt

M . We can
discretize the above ODE (Lu et al., 2022a) (see Appendix B) and suppose that we have a model
sθ(dt, t) = −σt∇Ct

log q0t(Ct|C0) + ϵ(dt, t), where ϵ(dt, t) is the prediction error, then we have

Ct ≈ Cs − σsσ
′(s)dφ (∇ds

log q0s (ds)) (13a)
≈ Cs + [σ(t)− σ(s)] sθ(ds, s)− [σ(t)− σ(s)] ϵ(ds, s) (13b)
:= Cs + [σ(t)− σ(s)] sθ(ds, s) + ϵ̄(ds, s, t) (13c)
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and intermediate time steps are uniformly distribution between T and 0. The term ϵ̄(ds, s, t) can be
seen as an addtional noise injected to Cs. Hence, after one iteration of the denoising process, the
obtained C̃t should be C̃t+λ(s−t) for some λ ∈ (0, 1). This motivates us to choose a larger drift of
the conformation score. Hence, we introduce a multiplier “scale” ksθ (ds, s, t) > 1 as an addition
term to remedy the model’s prediction errors, and the iteration rule becomes

Ct ≈ Cs + ksθ (ds, s, t) [σ(t)− σ(s)] sθ(ds, s) (14)

To find scale ksθ , we further assume ksθ (ds, s, t) ≈ ksθ (pdata), i.e., for each dataset, we can find a
hyper-parameter to approximate ksθ (ds, s, t) for all dt ∼ q0t(dt). From the experimental results, we
find that the magnitude of ksθ increases along with the increase of the model’s prediction error, while
other factors such as node number and node degree do not have a significant influence on the choice
of ksθ . Details of the experiments and the results can be seen in Sec. 5.1.

5 EXPERIMENTS

We first examine the influential factors associated with the newly introduced hyper-parameter “scale”
ksθ in Sec. 5.1. Then we evaluate our proposed accelerated sampling method through a comparative
analysis with the baseline sampling method in Sec. 5.3 and conduct the hyper-parameter analysis for
these two sampling method in Sec. 5.4. Finally, we assess our method’s efficacy when the number
of iterations in the sampling process is further reduced in Sec. 5.5. Appendix G provides additional
experiments, and visualization of sampling process of our method can be found in Appendix H.

5.1 MODEL ERROR ϵ̄ AND SCALE ksθ
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Figure 2: Relations between the
prediction error δ and scale ksθ .
Grid color indicates the conver-
gent time.

We develop toy datasets {Qi}ni=1 to investigate the relation-
ship between the prediction error ϵ̄ and scale ksθ and each
dataset only contains a single sample, i.e., Qi = {C(i)

0 }.
For each dataset, we denote the sigma scheduler as {σt}Tt=1
and set the forward diffusion process to be q0t(Ct | C0) =

N (Ct | C0, σ2
t I) and suppose we have a model sQi

θ (dt, δ) =

Normstd
(
dφ
(
(−dt + d0) + ϵd(δ, t)

))
, where dt is the pairwise

distance of the conformation coordinates at time t and ϵd(δ, t)
is the noise level term controlled by a hyper-parameter δ. We
assume sQi

θ (dt, δ) ≈ −σt∇Ct
log q0t(Ct|C0) when δ is small. De-

tailed reasons for such a definition and corresponding settings
can be found in Appendix F.1. To generate samples, we sample
random noise C̃T ∼ N (0, σ2

T I) and apply

C̃t ≈ C̃s + ksθ [σ(t)− σ(s)]sθ (ds, s, δ) (15)

to generate C̃0. If ∥d̃t − d0∥∞ < h for some predefined threshold
h > 0, we say that the reverse process converges at t and define
the minimal 1− t/T to be the convergent time. We aim to find the convergent time under different
noise levels δ and scale ksθ . We grid-search the above two parameters and visualize the convergence
of the model. The results can be seen in Fig. 2 and the color of each grid represents the convergent
time. Grids with no color imply that under such noise level δ and model error ksθ , the model
diverges. We can see a positive correlation between the model’s error and the scale, which matches
the hypothesis in Eq. 13. Other ablation studies show that other factors including node number and
node degree do not have a strong impact on the choice of ksθ . Detailed analysis is in Appendix F.2.

5.2 EXPERIMENT SETUP

We firstly retrain SDDiff and GeoDiff models after the modifying their conformation score as
introduced in Equation 5. Comprehensive training specifications can be found in Appendix G.1. It’s
important to note that the results presented here are derived from the modified models.
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Table 1: Comparison results between LD sampling and our fast sampling method. Note that GeoDiff
and SDDiff here refer to the revised ones with modified score estimation in Eq. 5. Higher values for
COV indicate better results, while lower values for MAT are preferable. The reported time represents
the average run time for sampling a single conformer.

Dataset Model Sampling
method

Recall Precision Time
(s)COV-R(%) ↑ MAT-R(Å) ↓ COV-P(%) ↑ MAT-P(Å) ↓

Mean Median Mean Median Mean Median Mean Median

Drugs
GeoDiff LD 78.83 89.37 1.0422 1.0346 51.13 50.00 1.3143 1.2638 4.4506

Ours 84.06 94.39 0.9693 0.9608 49.09 49.04 1.3746 1.3303 0.0868

SDDiff LD 56.88 55.85 1.3318 1.2448 60.25 65.86 1.2619 1.1446 4.2392
Ours 70.69 76.68 1.0946 1.0801 48.83 48.01 1.6397 1.4478 0.0802

QM9
GeoDiff LD 88.79 93.00 0.3285 0.3249 50.84 48.30 0.6986 0.5027 2.4608

Ours 90.62 95.09 0.2427 0.2368 52.30 50.61 0.4714 0.4588 0.0471

SDDiff LD 90.56 95.58 0.2740 0.2693 52.74 50.26 0.6210 0.4660 2.2428
Ours 88.46 92.66 0.2920 0.2905 46.94 45.07 0.8293 0.6726 0.0459

Dataset. We employ two datasets, namely GEOM-Drugs and GEOM-QM9 (Axelrod & Gomez-
Bombarelli, 2022) to validate the efficiency of our fast sampling method. The dataset split is from
GeoDiff (Xu et al., 2020). In the GEOM-Drugs dataset’s test set, we encounter a total of 14,324
conformers from 200 molecules, with an average of approximately 47 atoms per molecule. The
GEOM-QM9 test set contains 24,143 conformers originating from 200 molecules, and each molecule
has an average of around 20. In line with the previous work (Xu et al., 2020), we expand the
generation of ground truth conformers to double their original quantity, resulting in more than 20k+
and 40k+ conformers being generated. Please refer to GeoDiff (Xu et al., 2022) for more information.

Evaluation. We adopt established evaluation metrics, namely COV (Coverage) and MAT (Match-
ing), incorporating Recall (R) and Precision (P) aspects to assess the performance of sampling
methods (Xu et al., 2020; Ganea et al., 2021). COV quantifies the proportion of ground truth conform-
ers effectively matched by generated conformers, gauging diversity in the generated set. On the other
hand, MAT measures the disparity between ground truth and generated conformers, complementing
quality assessment. Furthermore, refined metrics COV-R and MAT-R place added emphasis on the
comprehensiveness of the ground truth coverage, while COV-P and MAT-P are employed to gauge
the precision and accuracy of the generated conformers. Detailed calculations are in Appendix G.1.

Baseline sampling method. To the best of our knowledge, no other fast conformation generation
methods exist. Therefore, we compare our fast sampling approach with the conventional sampling
method via Langevin dynamics (LD sampling) (Song & Ermon, 2019):

Ct−1 = Ct + αt∇Ct
log pσ(Ct) +

√
2αtzt−1, t = T, T − 1, . . . , 2, 1 (16)

where zt ∼ N (0, I) and αt = hσ2
t . h is the hyper-parameter referring to step size and σt is the

noise schedule in the forward diffusion process. We employ T = 5000 in the diffusion process,
necessitating 5000 iterations in LD sampling.

5.3 COMPARISON WITH BASELINE SAMPLING METHOD

The LD sampling method needs thousands of steps to align with the diffusion process, whereas
our fast sampling achieves the same goal with significantly fewer iterations. We compare our fast
sampling method using 100 steps with LD sampling, and the results are shown in Tab. 1. Our
evaluation criteria consist of eight metrics, and the results displayed in the table are obtained under
hyper-parameter settings that ensure a well-balanced comparison among these evaluation criteria.

Tab. 1 shows that our fast sampling method can generate conformers of comparable quality to LD
sampling while achieving a roughly 50-fold speed improvement. Overall, metrics related to Recall
are satisfying, indicating that good diversity in conformers generated by our methods. However, there
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Figure 3: Impacts of scale ksθ and step size h in our fast sampling and LD sampling. Note that in the
figures in the upper row, higher COV values signify superior performance, while in the figures below,
the opposite holds for MAT. Metrics failing to meet the predefined thresholds (COV values lower than
0.2, MAT values higher than 2.5) have been intentionally omitted from the graphical representation
for clarity and precision.

are more low-quality conformers generated, resulting in lower performance in terms of metrics under
Precision.

5.4 HYPER-PARAMETER ANALYSIS

We introduce a hyper-parameter scale, denoted as ksθ in Eq 14, to enable acceleration. In LD
sampling, the hyper-parameter is step size h in our setting. We illustrate the influence of these
hyper-parameters on Drugs dataset in Fig. 3. Notably, certain data points revealed a significant
underperformance are not depicted in the figure. A counterpart analysis on QM9 dataset is provided
in Appendix G.2.

Fig. 3 shows that our method can obtain satisfactory metrics for Recall across most hyper-parameter
values. However, metrics related to Precision consistently exhibit poorer results. Particularly, when
higher scales are employed, resulting in significantly higher values for MAT-P. This is due to the
deteriorating output of the network. We observe that part of the output occasionally start exploding
from a certain sampling iteration especially under higher scale values, leading to some generated
conformers becoming unstructured. This significantly impacts the P-series metrics but not the R-series
metrics, as P-series metrics include all generated samples but the latter only considers conformers
closely matching the ground truth. A similar phenomenon is also observed for LD sampling. When
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Fewer steps of fast sampling for GeoDiff on Drugs dataset

Our method in 80 steps Our method in 50 steps Our method in 30 steps LD sampling with 5000 stpes

Figure 4: Results of our accelerated sampling technique applied to GeoDiff with a reduced number
of steps. The dashed horizontal lines represent the results obtained through LD sampling. Data points
with MAT metrics exceeding 2.5 have been omitted from the figure for clarity and precision.

the step size h exceeds a certain range, P-series metrics quickly deteriorate. Addressing this issue
may require improved network design in future research.

In the comparison between GeoDiff and SDDiff, we observe that when applied to SDDiff, our
method demands a higher and more stringent scale ksθ . In a previous demonstration in Sec. 5.1, we
demonstrate that scale is linked to modeling error. Despite SDDiff’s more accurate distance score
distribution approximation (Zhou et al., 2023), it leads to a significantly more complex learning
objective compared to GeoDiff’s Gaussian assumption. The presence of the random variable d̃, which
can approach zero in the denominator (see Appendix E), poses a significant challenge to training.
Consequently, the error in the trained models of SDDiff is more likely to be higher, thus requiring a
higher value of scale within a narrower range.

5.5 SAMPLING IN FEWER STEPS

We evaluate the efficacy of our accelerated sampling method at further reduced steps. The results for
the GeoDiff model on Drugs dataset are shown in Fig. 4, and more complementary experiments are
detailed in Appendix G.3. As depicted in Fig. 4, our method exhibits noteworthy robustness when
subjected to fewer steps. While performance gradually diminishes with decreasing step counts, it
consistently maintains a commendable level of accuracy even under the constraint of only 30 steps.
This adaptability to reduced step conditions underscores that our approach offers a compelling solution
that strikes a commendable balance between speed and performance, indicating its considerable
potential for real-world applications.

6 CONCLUSION

This study focuses on effective acceleration of diffusion-based generation in SE(3)-invariant space
for molecular conformation generation. To this end, we first investigate the correlation between two
manifolds regarding distances and coordinates utilizing an approximated differential operator, as well
as rigorously validating this approximation through mathematical proofs and empirical experiments.
Then, we alleviate the accumulation of approximation errors in the reverse diffusion process by
introducing an additional hyper-parameter, scale. Empirical results support the validity of this
remedial strategy, and detailed analysis provided insights into hyper-parameter selection. Building
upon these findings, comparative investigations substantiate the effectiveness of our acceleration
scheme. We posit that this study has the potential to expedite the sampling procedure in real-world
applications, facilitating the practical deployment of diffusion models.
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A DIFFUSION SDES AND SCORE MATCHING OBJECTIVE

Given a random variable x0 ∈ Rn following an unknown distribution q0, diffusion probabilistic
models (Song & Ermon, 2019; Ho et al., 2020a; Song et al., 2020b) define a forward process
{xt}t∈[0,T ] following a stochastic differential equation (SDE)

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0, (17)

where wt ∈ Rn is the standard Brownian motion. Such a forward process has an equivalent reverse
process starting from time T to 0:

dxt =
[
f(t)xt − g2(t)∇x log qt(xt)

]
dt+ g(t)dw̄t, xT ∼ q0T (xT | x0), (18)

and the marginal probability densities {q0t(xt)}Tt=0 of the above SDE is the same as the following
probability flow ODE (Song et al., 2020b):

dxt

dt
= f(t)xt −

1

2
g2(t)∇x log qt(xt), xT ∼ q0T (xT | x0). (19)

This implies that if we can sample from q0T (xT ) ≈ q0T (xT | x0) and solve Eq. 19, then the
obtained x0 follows the distribution of q0(x0). The only unknown terms in Eq. 19 are q0T (xT ) and
∇x log qt(xt). By choosing some specific f(t) and g(t), the distribution q0T (xT | x0) converges to
qT (xT) as T → ∞ and qT is an easy distribution for sampling like Gaussian distribution. To model
∇x log qt(xt), we can train a score-based model sθ∗(xt, t) s.t.

θ∗ = argmin
θ

Et

{
λtEx0∼q0(x0)Ext|x0

[
∥sθ(xt, t)−∇x log q0t(xt | x0)∥22

]}
, (20)

where λt = λ(t) : [0, T ] → R++ is a weighting function, t ∼ [0, T ], . The obtained model sθ∗(xt, t)
equals ∇xt

log qt(xt) for almost all xt and t (Song et al., 2020b).

B DIFFUSION REVERSE ODE AND ACCELERATION

DPM solver (Lu et al., 2022a) is a high-order solver for the reverse diffusion ODE. Given a reverse
process

dxt

dt
= f(t)xt +

g2(t)

2σt
sθ (xt, t) , xT ∼ N

(
0, σ2

T I
)

(21)

where

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (22)

The exact solution of diffusion ODEs is

xt =
αt

αs
xs − αt

∫ λt

λs

e−λŝθ (x̂λ, λ) dλ, (23)

where λt = log (αt/σt) , ŝθ (x̂λ, λ) = sθ
(
xtλ(λ), tλ(λ)

)
and tλ(·) is the inverse function of λ(t) =

λt and satisfy t = tλ(λ(t)). If we apply a first-order Taylor expansion of ŝθ (x̂λ, λ) w.r.t. λ at λs,
we have

xt =
αt

αs
xs − αtsθ (xs, s)

∫ λt

λs

e−λdλ+O
(
(λt − λs)

2
)

(24a)
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=
αt

αs
xs − σt

(
eλt−λs − 1

)
sθ (xs, s) +O

(
(λt − λs)

2
)
. (24b)

In our case, we take α = 1 and Eq. 24 becomes

xt ≈ xs − σt

(
elog

σs
σt − 1

)
sθ (xs, s) (25a)

= xs − (σt − σs) sθ (xs, s) (25b)

C INTRODUCTION OF DIFFERENTIAL GEOMETRY

Figure 5: Mappings between
the manifolds of pairwise dis-
tances M and SE(3)-invariant
conformations N .

In differential geometry, we consider mappings between two man-
ifolds. Suppose that φ : M → N is a smooth map between smooth
manifolds. In our case, M denotes the manifold of pairwise dis-
tances and N denotes the manifold of SE(3)-invariant coordinates.
Then, φ maps a pairwise distances d̃ to a set of coordinates C̃, i.e.
φ(d̃) = C̃.

The differential of φ at a point d̃, denoted as dφd̃ is the best linear
approximation of φ near d̃. The differential is analogous to the total
derivative in calculus. Mathematically speaking, the differential dφ
is a linear mapping from the tangent space of M at d̃ to the tangent
space of N at φ(d̃), which is dφd̃ : Td̃M → Tφ(d̃)N .

If tangent vectors are defined as equivalence classes of the curves γ for which γ(0) = d̃ and
we consider γ(t) as the flow of the reversed diffusion process, then the differential is given by
dφd̃ (γ

′(0)) = (φ ◦ γ)′(0), which means that dφd̃ maps the reversed flow of pairwise distance to

the flow of the SE(3)-invariant coordinates. Hence, we write dφd̃

(
d̃+∇d̃ log pσ(d̃ | d)

)
= C̃ +

∇C̃ log pσ(C̃ | C), where we assume that d̃+∇d̃ log pσ(d̃ | d) ∈ TM and C̃+∇C̃ log pσ(C̃ | C) ∈ TN .

The above equation also implies that dφd̃

(
∇d̃ log pσ(d̃ | d)

)
= ∇C̃ log pσ(C̃ | C) by linearity. Since

we use an n× 3 matrix to embed C ∈ Rn×3/ SE(3). We can choose πN as an identical mapping.

D APPROXIMATION OF dφ(d̂)

D.1 APPROXIMATION FORMULA

Mathematically speaking, the dimension of the tangent space at every point of a connected manifold
is the same as the dimension of the manifold itself. However, since there is no constraint on model’s
output ∇d̃ log pσ(d̃ | d), we still consider the tangent space of pairwise distance manifold has the
dimension of n2 and we assume d̃+δeuv ∈ Td̃M for all δ > 0. We consider πN ◦dφ(d̂) = dφ(d̂) =

argmin
x̂1,...,x̂M

∑
i<j

(
∥x̂i − x̂j∥ − d̂ij

)2
. Given a pairwise distance d̃ ∈ M and associated coordinate

C̃ = [x̃1, . . . , x̃n]
⊤ ∈ Rn×3, we first consider d̃ + δeuv ∈ Td̃M and approximate the solution of

πN ◦ dφ(d̃+ δeuv) = [x̂1, . . . , x̂n]
⊤ to be


x̂u = x̃u +

δ

2(n− 1)
λuv,

x̂v = x̃v −
δ

2(n− 1)
λuv,

x̂k = x̃k, k ̸= u, v.

where λuv = x̃u−x̃v

∥x̃u−x̃v∥ .
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Figure 6: The illustration of approximating the solution of dφ(d̃+ δeuv)

Note that we can also write the solution of above as πN ◦ dφ(d̃+ δeuv) = C̃ + δ
2(n−1)

∂d̃uv

∂C̃ , since

(
∂d̃uv

∂C̃
)u = (

∂∥x̃u − x̃v∥
∂C̃

)u =
∂∥x̃u − x̃v∥

∂x̃u
=

x̃u − x̃v

∥x̃u − x̃v∥
= λuv (26a)

(
∂d̃uv

∂C̃
)v = (

∂∥x̃u − x̃v∥
∂C̃

)v =
∂∥x̃u − x̃v∥

∂x̃v
= − x̃u − x̃v

∥x̃u − x̃v∥
= −λuv (26b)

(
∂d̃uv

∂C̃
)k = (

∂∥x̃u − x̃v∥
∂C̃

)k =
∂∥x̃u − x̃v∥

∂x̃k
= 0, k ̸= u, v (26c)

Since dφ(d̂) is linear,

πN ◦ dφ(d̂) = dφ(d̃+
∑
i,j

αijeij) (27a)

= (1− n2)dφ(d̃) +
∑
i,j

dφ(d̃+ αijeij) (27b)

= (1− n2)C̃ + n2C̃ +
∑
i,j

αij

2(n− 1)

∂d̃ij

∂C̃
(27c)

= C̃ +
∑
i,j

αij

2(n− 1)

∂d̃ij

∂C̃
, (27d)

and

∇C̃ log pσ(C̃|C) = dφd̃(∇d̃ log pσ(d̃|d)) (28a)

= dφd̃(d̃+∇d̃ log pσ(d̃|d))− dφd̃(d̃) (28b)

= C̃ +
∑
i,j

∇d̃ij
log pσ(d̃|d)

2(n− 1)

∂d̃ij

∂C̃
− C̃ (28c)

=
∑
i,j

∇d̃ij
log pσ(d̃|d)

2(n− 1)

∂d̃ij

∂C̃
(28d)

15



Under review as a conference paper at ICLR 2024

Finally, we have

∇Ct
log q0t(Ct) =

∑
i,j

∇
d
(t)
ij

log q0t(dt | d0)
2(n− 1)

∂d
(t)
ij

∂Ct
(29)

D.2 ERROR BOUND ANALYSIS

We compute the maximum objective function value of
∑

i<j

(
∥x̂i − x̂j∥ − d̂ij

)2
under our approxi-

mation in the case of d̂ = d̃+δeuv . Let ∼ denote the adjacent relation and SN (i) = {(i, j) | xi ∼ xj}
denotes the neighbors of node i, S∅(i, j) = {(p, q) | p ̸∈ (i, j), q ̸∈ (i, j)} denote the set of nodes
that are nonadjacent to i and j, and degreei denote the degree of node i. We use Ĉ = [x̂1, . . . , x̂n] to

denote our approximated optimal solution, i.e. Ĉ = C̃ +
∑

i,j
δ

2(n−1)
∂d̃ij

∂C̃ . Formally, we have

min
x1,...,xn

∑
i<j

(
∥xi − xj∥ − d̂ij

)2
(30a)

≤
(
∥x̂u − x̂v∥ − d̂uv

)2
+

∑
(i,j)∈S∅(u,v)

(
∥x̂i − x̂j∥ − d̂ij

)2
(30b)

+
∑

(i,j)∈SN (u)\{(u,v)}

(
∥x̂i − x̂j∥ − d̂ij

)2
+

∑
(i,j)∈SN (v)\{(u,v)}

(
∥x̂i − x̂j∥ − d̂ij

)2
(30c)

≤
(∥∥∥∥(x̃u +

δ

2(n− 1)
λuv)− (x̃v −

δ

2(n− 1)
λuv)

∥∥∥∥− d̃uv − δ

)2

(30d)

+
∑

(i,j)∈S∅(u,v)

(
∥x̃i − x̃j∥ − d̃ij

)2
(30e)

+
∑

(i,j)∈SN (u)\{(u,v)}

(∥∥∥∥(x̃u +
δ

2(n− 1)
λuv)− x̃j

∥∥∥∥− d̃uj

)2

(30f)

+
∑

(i,j)∈SN (v)\{(u,v)}

(∥∥∥∥(x̃v −
δ

2(n− 1)
λuv)− x̃j

∥∥∥∥− d̃vj

)2

(30g)

≤
(
∥x̃u − x̃v∥ − d̃uv −

δ

n− 1
− δ

)2

+ 0 (30h)

+ max
±(i,j)

∑
(i,j)∈SN (u)\{(u,v)}

(
∥x̃u − x̃j∥ ±

∥∥∥∥ δ

2(n− 1)
λuv

∥∥∥∥− d̃uj

)2

(30i)

+ max
±(i,j)

∑
(i,j)∈SN (v)\{(u,v)}

(
∥x̃v − x̃j∥ ±

∥∥∥∥ δ

2(n− 1)
λuv

∥∥∥∥− d̃vj

)2

(30j)

=

(
n

n− 1

)2

δ2 +
∑

(i,j)∈SN (u)\{(u,v)}

(
δ

2(n− 1)

)2

+
∑

(i,j)∈SN (v)\{(u,v)}

(
δ

2(n− 1)

)2

(30k)

=

((
n

n− 1

)2

+
degreeu −1

4(n− 1)2
+

degreev −1

4(n− 1)2

)
δ2 (30l)

≤
((

n

n− 1

)2

+
n− 1

4(n− 1)2
+

n− 1

4(n− 1)2

)
δ2 (30m)

=
2n2 + n− 1

2(n− 1)2
δ2 (30n)
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Hence, the approximated optimal value is bounded above by 2n2+n−1
2(n−1)2 δ2.

D.3 EXPERIMENTS OF APPROXIMATED OPTIMAL VALUE

Experiment settings. We randomly generate Ci ∼ N (0n×3, I) with n nodes, where n ∼
Uniform([10, 19]). We compute the adjacent matrix d of the obtained coordinates and randomly
perturb the adjacent matrix to obtain d̂ = d+ δeuv . We aim to compare the magnitude of the optimal
values computed under different algorithms or approximations. The optimal value is defined as the

solution of the optimization problem f(d̂) = min
x̂1,...,x̂n

∑
i<j

(
∥x̂i − x̂j∥ − d̂ij

)2
.

Algorithms. To our best knowledge, there is no simple algorithm for solving the metric MDS

problem x̂1, . . . , x̂n = argmin
x̂1,...,x̂n

∑
i<j

(
∥x̂i − x̂j∥ − d̂ij

)2
. The usual gradient descent algorithm is

inapplicable in such case since ∥x∥ is not differentiable at x = 0. Usual convergence theorems for
gradient methods are invalid under such cases and local minimum points do not need to satisfy the
stationary equations (De Leeuw, 2005). Hence, we slightly modify the gradient descent process to

Ĉ(t+1) = Ĉ(t) +∇Ĉ(t)

∑
i<j

(∥∥∥x̂(t)
i − x̂

(t)
j + ϵ

∥∥∥− d̂ij

)2
, (31)

for some sufficiently small ϵ > 0. Then, we set Ĉ(0) = C̃ = [x̃1, . . . , x̃n] as the initialized value and
apply the gradient descent algorithm. We visualize the magnitude of the MDS objective function
obtained at Ĉapprox , ĈG , Ĉc-MDS , computed from the proposed approximation (Eq. 9), gradient descent
(Eq. 31) and the algorithm for the classic MDS problem, respectively. We also visualize the error
bound proved in Eq. 30. The results can be seen in Fig 7. The algorithm for the classic MDS problem
(c-MDS) is stated below (Wickelmaier, 2003):

• 1. Set up the squared proximity matrix D =
[
d2ij
]

• 2. Apply double centering: B = − 1
2PDP using the centering matrix P = I − 1

nJn, where
n is the number of objects, I is the n× n identity matrix, and Jn is an n× n matrix of all
ones.

• 3. Determine the 3 largest eigenvalues λ1, λ2, λ3 and corresponding eigenvectors e1, e2, e3
of B.

• 4. Now, C = E3Λ
1/2
3 , where E3 is the matrix of 3 eigenvectors and Λ3 is the diagonal

matrix of 3 eigenvalues of B.

Metric MDS and c-MDS seek to find C = [x1, . . . ,xn] such that ∥xi − xj∥ ≈ dij but the optimal
solution of c-MDS generally differs from the metric MDS.

Experimental results. We see that our approximation leads to a much smaller loss than the c-
MDS’s, and compared with the optimal value, the gap is acceptable. As there is still improvement
for optimal values, this further suggests that applying a more refined projection operator can yield
additional improvements in the model’s performance (Zhou & Yu, 2023).
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Figure 7: Optimization loss of MDS w.r.t. different optimization algorithm. f(d̂) is the objective
function of the optimization problem.

E COMPUTATION OF ∇dt log q0t(dt|d0).
We consider the score of ∇dt

log q0t(dt|d0) where dij = ∥xi − xj∥ when i.i.d. Gaussian noise is
injected to conformation coordinates. GeoDiff (Xu et al., 2022) naively assumes that the perturbed
distances follow a Gaussian distribution. In SDDiff (Zhou et al., 2023), authors proposed a shifting
probability density to approximate the distribution of q0t(dt|d0). In this work, we consider both of
the above two modeling methods and train two separate models with their own loss function:

L
(
θ; {σi}Tt=1

)
≜

1

T

T∑
t=1

1

2
Epdata(d0)Eq0t(dt|d0) ∥sθ(dt, t) + σtdφdt (∇dt log q0t(dt|d0))∥

2
2 (32)

GeoDiff: ∇dt log q0t(dt|d0) := −dt − d0
σ2
t

(33)

SDDiff: ∇dt log q0t(dt|d0) :=
(
1− e−σt/d0

) 8

dt
− 2

dt − d0
σ2
t

(34)

If a model sθ(dt, t) minimizes the above loss, then sθ(dt, t) ≈ −σt∇Ct
log q0t(Ct|C0).

F FACTORS RELATED TO SCALE ksθ

In this section, we study factors that may influence the choice of scale ksθ . We mainly study factors
including prediction error, node number, and node degree.

F.1 SUPPLEMENTARY FOR POSITIVE CORRELATION BETWEEN PREDICTION ERROR AND
SCALE ksθ

Dataset settings. We develop datasets Qi = {C(i)
0 } that only contain one conformation of 20 nodes.

Each conformation is a 4-regular graph (so that SE(3)-invariant conformation and pairwise distance
manifolds are surjective) and C(i)

0 ∼ N (0, I),∀i = 1, . . . , n. Thus, the ground truth of the denoising
process is fixed. The sigma scheduler {σt}Tt=1 is chosen to be the same as that in the GeoDiff and we
try to sample conformations in 100 steps.

Model settings. During the denoising process, our model has the access to the ground truth
d0 and following GeoDiff’s assumption of the distance distribution, we want to develop a model
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sθ(dt, t) = σtdφ (∇dt
log p0t(dt | d0)) = dφ

(
dt−d0

σt

)
. As discussed in Eq. 13, we cannot access

the accurate information about the denoising timestamp during the denoising process, hence, we
assume that sθ(dt, t) ≈ Normstd (dφ (dt − d0)). Such assumption comes from the fact that the
standard deviation of the score matching ground truth σtdφ (∇dt log p0t(dt | d0)) approximately
equals 1. Thus, the obtained model trends to output a score whose std equals 1. So, we force the
output std of our model to be 1. Also, we use a hyperparameter δ to add prediction errors by letting
sθ(dt, t, δ) = Normstd

(
dφ (dt − d0) + ϵd(δ, t)

)
. But note that when δ = 0, there are still prediction

errors due to the approximated projection operator and the inaccurate distance distribution hypothesis.
Finally, we define ϵd(δ, t) = 2(sigmoid(σt · δ)-0. 5)δz, where z ∼ N (0, I).

Detailed settings of convergence. We find that even with access to the ground truth of d0, our
model cannot always converge to the ground truth at the end of the reverse process. Hence, we
only consider the convergence for most samples (90% samples). Given a noise level δ and ksθ , we
repeatedly apply the denoising process. If at time t0, at least 90% samples have converged, then we
say that under δ, ksθ , the model converges at time t0.

F.2 REVERSE FLOW ANALYSIS

In the context of our investigation, we employ ∥dt − d0∥∞ as a reduced-dimensional representation
of the reversed flow phenomenon, where dt denotes the edge lengths of the graph at time t, d0 denotes
the ground truth edge lengths and ∥ · ∥∞ denotes the maximum difference. It is well-established that
the selection of the scale ksθ exerts a notable influence on the characteristics of the flow. Our primary
objective is to systematically investigate whether while maintaining a constant scale parameter ksθ ,
other variables such as the number of nodes and node degrees exhibit substantial alterations in the
reverse flow patterns. Should our findings indicate minimal variation in the reverse flow with respect
to these aforementioned factors, it would enable us to posit that the choice of scale ksθ is relatively
independent of their influence. We use the same settings of the sigma scheduler and the model, as
discussed in the Appendix. F.1 but develop different toy datasets that contain graphs of distinct node
numbers and distinct node degrees.

Dataset settings. We develop two datasets with one containing a fixed node number of [10, 20, 50,
100], and each graph is a 4-regular graph and the other contains conformations of 20 nodes, and each
graph is a k-regular graph, where k = 4, 5, 6.

Experimental results. We visualize the flow (represented by ∥dt − d0∥∞) under different node
numbers and node degrees and find that these two factors have a limited effect on the flow when
the scale ksθ is fixed. Results can be seen in Fig. 8a and 8b. We also visualize the reverse flow
of 4-regular graphs with 20 nodes under different prediction errors. Results are shown in Fig. 8c.
Compared with Fig. 8a and 8b, we can see that the flow under different settings of the model’s error
shows great difference and we conclude that prediction error is the main factor that affects the choice
of scale ksθ .

G EXPERIMENT EXTENSION

G.1 SETTINGS

Evaluation. We use the COV and MAT metrics for Recall (R) and Precision (P) to evaluate the
diversity and quality of generated conformers. These metrics are built on the root-mean-square-
deviation (RMSD) of heavy atoms. COV can reflect the converge status of ground truth conformers,
and MAT denotes the average minimum RMSD. The calculation for COV-R and MAT-R is:

COV-R =
1

|Sr|
{C ∈ Sr|RMSD(C, C′) < τ, ∃C′ ∈ Sg}, MAT-R =

1

|Sr|
∑

C′∈Sg

RMSD(C, C′)

where Sg and Sr denote generated and ground truth conformations. Sweeping Sg and Sr, we obtain
the COV-P and MAT-P. The MAT is calculated under RMSD threshold τ . Following previous work,
we set τ = 0.5Å for GEOM-QM9 and τ = 1.25Å for GEOM-Drugs.
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Figure 8: Ablation study of factors that may affect the scale ksθ . The y-axis denotes the flow
represented by ∥dt − d0∥∞ and the x-axis denotes the denoising steps t. We can clearly see that the
prediction error greatly affects the reverse flow.

Training details We adopt the same backbone network from GeoDiff. The backbone consists of
local and global parts. The local part is GIN (Xu et al., 2018) and the global part is SchNet (Schütt
et al., 2017). We trained the model on a single NVIDIA GeForce RTX 3090 GPU and Intel(R)
Xeon(R) Silver 4210R CPU @ 2.40GHz CPU. We use the Adam optimizer for training, with a
maximum of 1000 epochs. We set the learning rate to 0.001, and it decreases by a factor of 0.6
every 2 epochs. The batch size is 64. For SDDiff, the parameter only updates when loss satisfies
two conditions: loss of the global part is lower than 0.75 on QM9 dataset or 2 on Drugs dataset, and
total loss is lower than 10. We set the steps of the diffusion process to 5000, the noise scheduler to
σt =

√
ᾱt

1−ᾱt
where ᾱt =

∏t
i(1− βi) and βt = sigmoid(t). t is uniformly selected in [1e-7, 2e-3],

and the magnitude of σt is in the range of 0 to around 12.

G.2 MORE HYPER-PARAMETER ANALYSIS

In Sec. 5.4 we have investigated the influence of the hyper-parameter in LD sampling and our fast
sampling. We conduct the same hyper-parameter analysis on QM9 dataset here. As shown in Fig. 9,
we can draw a similar conclusion, that when ksθ and h are over a certain value, the P-series metrics
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Figure 9: The influence of hyper-parameter, namely scale ksθ and step size h. Note that higher
values of COV in the row above are preferable, whereas in the row below, higher MAT values are
undesirable. Values falling below the defined thresholds (COV lower than 0.2 or MAT higher than
2.5) are disregarded and indicated as missing points in the figure.

become very poor. We think the reason is due to the low robustness of the network we use, details
have been introduced in Sec. 5.4.

G.3 MORE EXPERIMENTS IN FEWER STEPS

We have shown results on fewer steps for GeoDiff on Drugs dataset in Sec. 5.5 to illustrate that our
methods have a certain level of robustness. Here we report the more experiments in fewer steps in
Fig. 10.
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Figure 10: Results of our fast sampling method in fewer steps. The results of LD sampling in 5000
steps are shown as dashed horizontal lines. Points with poor MAT metric (higher than 2.5) are
dropped in the figure.
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H VISUALIZATION OF SAMPLING PROCESS

We visualize the generation process of an example conformer via our fast sampling process. As shown
in Fig. 11, the conformer will determine the basic structure in very early steps, and the structure will
undergo only minor adjustments in the subsequent majority of steps. This indicates that it is possible
to obtain a faster sampling method.

(a) Sampling process in 100 steps
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(b) Sampling process in 80 steps

(c) Sampling process in 50 steps

(d) Sampling process in 30 steps

Figure 11: Visualization of sampling process in different steps for GeoDiff on Drugs
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