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Abstract

Value Iteration (VI) is foundational to the theory and practice of modern reinforce-
ment learning, and it is known to converge at a O(γk)-rate, where γ is the discount
factor. Surprisingly, however, the optimal rate in terms of Bellman error for the
VI setup was not known, and finding a general acceleration mechanism has been
an open problem. In this paper, we present the first accelerated VI for both the
Bellman consistency and optimality operators. Our method, called Anc-VI, is
based on an anchoring mechanism (distinct from Nesterov’s acceleration), and it
reduces the Bellman error faster than standard VI. In particular, Anc-VI exhibits
a O(1/k)-rate for γ ≈ 1 or even γ = 1, while standard VI has rate O(1) for
γ ≥ 1− 1/k, where k is the iteration count. We also provide a complexity lower
bound matching the upper bound up to a constant factor of 4, thereby establishing
optimality of the accelerated rate of Anc-VI. Finally, we show that the anchoring
mechanism provides the same benefit in the approximate VI and Gauss–Seidel VI
setups as well.

1 Introduction

Value Iteration (VI) is foundational to the theory and practice of modern dynamic programming
(DP) and reinforcement learning (RL). It is well known that when a discount factor γ < 1 is used,
(exact) VI is a contractive iteration in the ∥·∥∞-norm and therefore converges. The progress of VI is
measured by the Bellman error in practice (as the distance to the fixed point is not computable), and
much prior work has been dedicated to analyzing the rates of convergence of VI and its variants.

Surprisingly, however, the optimal rate in terms of Bellman error for the VI setup was not known, and
finding a general acceleration mechanism has been an open problem. The classical O(γk)-rate of VI
is inadequate as many practical setups use γ ≈ 1 or γ = 1 for the discount factor. (Not to mention
that VI may not converge when γ = 1.) Moreover, most prior works on accelerating VI focused on
the Bellman consistency operator (policy evaluation) as its linearity allows eigenvalue analyses, but
the Bellman optimality operator (control) is the more relevant object in modern RL.

Contribution. In this paper, we present the first accelerated VI for both the Bellman consistency
and optimality operators. Our method, called Anc-VI, is based on an “anchoring” mechanism (distinct
from Nesterov’s acceleration), and it reduces the Bellman error faster than standard VI. In particular,
Anc-VI exhibits a O(1/k)-rate for γ ≈ 1 or even γ = 1, while standard VI has rate O(1) for
γ ≥ 1− 1/k, where k is the iteration count. We also provide a complexity lower bound matching the
upper bound up to a constant factor of 4, thereby establishing optimality of the accelerated rate of
Anc-VI. Finally, we show that the anchoring mechanism provides the same benefit in the approximate
VI and Gauss–Seidel VI setups as well.
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1.1 Notations and preliminaries

We quickly review basic definitions and concepts of Markov decision processes (MDP) and reinforce-
ment learning (RL). For further details, refer to standard references such as [69, 84, 81].

Markov Decision Process. Let M(X ) be the space of probability distributions over X . Write
(S,A, P, r, γ) to denote the MDP with state space S, action space A, transition probability P : S ×
A → M(S), reward r : S × A → R, and discount factor γ ∈ (0, 1]. Denote π : S → M(A)
for a policy, V π(s) = Eπ[

∑∞
t=0 γ

tr(st, at) | s0 = s] and Qπ(s, a) = Eπ[
∑∞

t=0 γ
tr(st, at) | s0 =

s, a0 = a] for V - and Q-value functions, where Eπ denotes the expected value over all trajectories
(s0, a0, s1, a1, . . . ) induced by P and π. We say V ⋆ and Q⋆ are optimal V - and Q- value functions if
V ⋆ = supπ V

πand Q⋆ = supπ Q
π. We say π⋆

V and π⋆
Q are optimal policies if π⋆

V = argmaxπ V
π

and π⋆
Q = argmaxπ Q

π . (If argmax is not unique, break ties arbitrarily.)

Value Iteration. Let F(X ) denote the space of bounded measurable real-valued functions over
X . With the given MDP (S,A, P, r, γ), for V ∈ F(S) and Q ∈ F(S × A), define the Bellman
consistency operators Tπ as

TπV (s) = Ea∼π(· | s),s′∼P (· | s,a) [r(s, a) + γV (s′)] ,

TπQ(s, a) = r(s, a) + γEs′∼P (· | s,a),a′∼π(· | s′) [Q(s′, a′)]

for all s ∈ S, a ∈ A, and the Bellman optimality operators T ⋆ as
T ⋆V (s) = sup

a∈A

{
r(s, a) + γEs′∼P (· | s,a) [V (s′)]

}
,

T ⋆Q(s, a) = r(s, a) + γEs′∼P (· | s,a)

[
sup
a′∈A

Q(s′, a′)

]
for all s ∈ S, a ∈ A. For notational conciseness, we write TπV = rπ + γPπV and TπQ =
r + γPπQ, where rπ(s) = Ea∼π(· | s) [r(s, a)] is the reward induced by policy π and Pπ(s) and
Pπ(s, a) defined as

Pπ(s → s′) = Prob(s → s′ | a ∼ π(· | s), s′ ∼ P (· | s, a))
Pπ((s, a) → (s′, a′)) = Prob((s, a) → (s′, a′) | s′ ∼ P (· | s, a), a′ ∼ π(· | s′)),

are the transition probabilities induced by policy π. We define VI for Bellman consistency and
optimality operators as

V k+1 = TπV k, Qk+1 = TπQk, V k+1 = T ⋆V k, Qk+1 = T ⋆Qk for k = 0, 1, . . . ,

where V 0, Q0 are initial points. VI for control, after executing K iterations, returns the near-optimal
policy πK as a greedy policy satisfying

TπKV K = T ⋆V K , TπKQK = T ⋆QK .

For γ < 1, both Bellman consistency and optimality operators are contractions, and, by Banach’s
fixed-point theorem [5], the VIs converge to the unique fixed points V π, Qπ, V ⋆, and Q⋆ with
O(γk)-rate. For notational unity, we use the symbol U when both V and Q can be used. Since∥∥TUk − Uk

∥∥
∞ ≤

∥∥TUk − U⋆
∥∥
∞ +

∥∥Uk − U⋆
∥∥
∞ ≤ (1 + γ)

∥∥Uk − U⋆
∥∥
∞, VI exhibits the rate

on the Bellman error:∥∥TUk − Uk
∥∥
∞ ≤ (1 + γ)γk

∥∥U0 − U⋆
∥∥
∞ for k = 0, 1, . . . , (1)

where T is Bellman consistency or optimality operator, U0 is a starting point, and U⋆ is fixed point
of T . We say V ≤ V ′ or Q ≤ Q′ if V (s) ≤ V ′(s) or Q(s, a) ≤ Q′(s, a) for all s ∈ S and a ∈ A,
respectively.

Fixed-point iterations. Given an operator T , we say x⋆ is fixed point if Tx⋆ = x⋆. Since Banach
[5], the standard fixed-point iteration

xk+1 = Txk for k = 0, 1, . . .

has been commonly used to find fixed points. Note that VI for policy evaluation and control are
fixed-point iterations with Bellman consistency and optimality operators. In this work, we also
consider the Halpern iteration

xk+1 = βk+1x
0 + (1− βk+1)Tx

k for k = 0, 1, . . . ,

where x0 is an initial point and {βk}k∈N ∈ (0, 1).
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1.2 Prior works

Value Iteration. Value iteration (VI) was first introduced in the DP literature [8] for finding optimal
value function, and its variant approximate VI [11, 30, 56, 32, 19, 90, 81] considers approximate
evaluations of the Bellman optimality operator. In RL, VI and approximate VI have served as the
basis of RL algorithms such as fitted value iteration [29, 57, 52, 87, 50, 36] and temporal difference
learning [80, 89, 41, 94, 54]. There is a line of research that emulates VI by learning a model of the
MDP dynamics [85, 83, 62] and applying a modified Bellman operator [7, 33]. Asynchronous VI,
another variation of VI updating the coordinate of value function in asynchronous manner, has also
been studied in both RL and DP literature [11, 9, 88, 100].

Fixed-point iterations. The Banach fixed-point theorem [5] establishes the convergence of the
standard fixed-point iteration with a contractive operator. The Halpern iteration [39] converges for
nonexpansive operators on Hilbert spaces [96] and uniformly smooth Banach spaces [70, 97]. (To
clarify, the ∥ · ∥∞-norm in Rn is not uniformly smooth.)

The fixed-point residual ∥Txk − xk∥ is a commonly used error measure for fixed-point problems. In
general normed spaces, the Halpern iteration was shown to exhibit O(1/ log(k))-rate for (nonlinear)
nonexpansive operators [48] and O(1/k)-rate for linear nonexpansive operators [17] on the fixed-
point residual. In Hilbert spaces, [72] first established a O(1/k)-rate for the Halpern iteration and the
constant was later improved by [49, 43]. For contractive operators, [65] proved exact optimality of
Halpern iteration through an exact matching complexity lower bound.

Acceleration. Since Nesterov’s seminal work [61], there has been a large body of research on
acceleration in convex minimization. Gradient descent [15] can be accelerated to efficiently reduce
function value and squared gradient magnitude for smooth convex minimization problems [61, 44, 45,
46, 102, 21, 60] and smooth strongly convex minimization problems [59, 91, 64, 86, 73]. Motivated
by Nesterov acceleration, inertial fixed-point iterations [51, 22, 75, 70, 42] have also been suggested
to accelerate fixed-point iterations. Anderson acceleration [2], another acceleration scheme for
fixed-point iterations, has recently been studied with interest [6, 74, 93, 101].

In DP and RL, prioritized sweeping [55] is a well-known method that changes the order of updates
to accelerate convergence, and several variants [68, 53, 95, 3, 18] have been proposed. Speedy Q-
learning [4] modifies the update rule of Q-learning and uses aggressive learning rates for acceleration.
Recently, there has been a line of research that applies acceleration techniques of other areas to VI:
[34, 79, 28, 67, 27, 76] uses Anderson acceleration of fixed-point iterations, [92, 37, 38, 12, 1] uses
Nesterov acceleration of convex optimization, and [31] uses ideas inspired by PID controllers in
control theory. Among those works, [37, 38, 1] applied Nesterov acceleration to obtain theoretically
accelerated convergence rates, but those analyses require certain reversibility conditions or restrictions
on eigenvalues of the transition probability induced by the policy.

The anchor acceleration, a new acceleration mechanism distinct from Nesterov’s, lately gained
attention in convex optimization and fixed-point theory. The anchoring mechanism, which retracts
iterates towards the initial point, has been used to accelerate algorithms for minimax optimization
and fixed-point problems [71, 47, 98, 65, 43, 20, 99, 78], and we focus on it in this paper.

Complexity lower bound. With the information-based complexity analysis [58], complexity lower
bound on first-order methods for convex minimization problem has been thoroughly studied [59, 23,
25, 13, 14, 24]. If a complexity lower bound matches an algorithm’s convergence rate, it establishes
optimality of the algorithm [58, 44, 73, 86, 26, 65]. In fixed-point problems, [16] established
Ω(1/k1−

√
2/q) lower bound on distance to solution for Halpern iteration with a nonexpansive

operator in q-uniformly smooth Banach spaces. In [17], a Ω(1/k) lower bound on the fixed-point
residual for the general Mann iteration with a nonexpansive linear operator, which includes standard
fixed-point iteration and Halpern iterations, in the ℓ∞-space was provided. In Hilbert spaces, [65]
showed exact complexity lower bound on fixed-point residual for deterministic fixed-point iterations
with γ-contractive and nonexpansive operators. Finally, [37] provided lower bound on distance to
optimal value function for fixed-point iterations satisfying span condition with Bellman consistency
and optimality operators and we discussed this lower bound in section 4.
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2 Anchored Value Iteration

Let T be a γ-contractive (in the ∥ · ∥∞-norm) Bellman consistency or optimality operator. The
Anchored Value Iteration (Anc-VI) is

Uk = βkU
0 + (1− βk)TU

k−1 (Anc-VI)

for k = 1, 2, . . . , where βk = 1/(
∑k

i=0 γ
−2i) and U0 is an initial point. In this section, we present

accelerated convergence rates of Anc-VI for both Bellman consistency and optimality operators for
both V - and Q-value iterations. For the control setup, where the Bellman optimality operator is used,
Anc-VI returns the near-optimal policy πK as a greedy policy satisfying TπKUK = T ⋆UK after
executing K iterations.

Notably, Anc-VI obtains the next iterate as a convex combination between the output of T and the
starting point U0. We call the βkU0 term the anchor term since, loosely speaking, it serves to pull
the iterates toward the starting point U0. The strength of the anchor mechanism diminishes as the
iteration progresses since βk is a decreasing sequence.

The anchor mechanism was introduced [39, 72, 49, 65, 17, 48] for general nonexpansive operators
and ∥ · ∥2-nonexpansive and contractive operators. The optimal method for ∥ · ∥2-nonexpansive
and contractive operators in [65] shares the same coefficients with Anc-VI, and convergence results
for general nonexapnsive operators in [17, 48] are applicable to Anc-VI for nonexpansive Bellman
optimality and consistency operators. While our anchor mechanism does bear a formal resemblance to
those of prior works, our convergence rates and point convergence are neither a direct application nor
a direct adaptation of the prior convergence analyses. The prior analyses for ∥ · ∥2-nonexpansive and
contractive operators do not apply to Bellman operators, and prior analyses for general nonexpansive
operators have slower rates and do not provide point convergence while our Theorem 3 does. Our
analyses specifically utilize the structure of Bellman operators to obtain the faster rates and point
convergence.

The accelerated rate of Anc-VI for the Bellman optimality operator is more technically challenging
and is, in our view, the stronger contribution. However, we start by presenting the result for the
Bellman consistency operator because it is commonly studied in the prior RL theory literature on
accelerating value iteration [37, 38, 1, 31] and because the analysis in the Bellman consistency setup
will serve as a good conceptual stepping stone towards the analysis in the Bellman optimality setup.

2.1 Accelerated rate for Bellman consistency operator

First, for general state-action spaces, we present the accelerated convergence rate of Anc-VI for the
Bellman consistency operator.
Theorem 1. Let 0 < γ < 1 be the discount factor and π be a policy. Let Tπ be the Bellman
consistency operator for V or Q. Then, Anc-VI exhibits the rate∥∥TπUk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − Uπ
∥∥
∞

=

(
2

k + 1
+

k − 1

k + 1
ϵ+O(ϵ2)

)∥∥U0 − Uπ
∥∥
∞ for k = 0, 1, . . . ,

where ϵ = 1− γ and the big-O notation considers the limit ϵ → 0. If, furthermore, U0 ≤ TπU0 or
U0 ≥ TπU0, then Anc-VI exhibits the rate∥∥TπUk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − Uπ
∥∥
∞

=

(
1

k + 1
+

k

k + 1
ϵ+O(ϵ2)

)∥∥U0 − Uπ
∥∥
∞ for k = 0, 1, . . . .

If γ ≥ 1
2 , both rates of Theorem 1 are strictly faster than the standard rate (1) of VI, since(

γ−1 − γ
) (

1 + 2γ − γk+1
)

(γk+1)
−1 − γk+1

= γk

(
1− γ2

) (
1 + 2γ − γk+1

)
(1− γ2k+2)

< γk(1 + γ).
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The second rate of Theorem 1, which has the additional requirement, is faster than the standard rate
(1) of VI for all 0 < γ < 1. Interestingly, in the γ ≈ 1 regime, Anc-VI achieves O(1/k)-rate while
VI has a O(1)-rate. We briefly note that the condition U0 ≤ TU0 and U0 ≥ TU0 have been used in
analyses of variants of VI [69, Theorem 6.3.11], [77, p.3].

In the following, we briefly outline the proof of Theorem 1 while deferring the full description to
Appendix B. In the outline, we highlight a particular step, labeled ▲, that crucially relies on the
linearity of the Bellman consistency operator. In the analysis for the Bellman optimality operator of
Theorem 2, resolving the ▲ step despite the nonlinearity is the key technical challenge.

Proof outline of Theorem 1. Recall that we can write Bellman consistency operator as TπV =
rπ + γPπV and TπQ = r + γPπQ. Since Tπ is a linear operator1, we get

TπUk − Uk = TπUk − (1− βk)T
πUk−1 − βkT

πUπ − βk(U
0 − Uπ)

▲
= γPπ(Uk − (1− βk)U

k−1 − βkU
π)− βk(U

0 − Uπ)

= γPπ(βk(U
0 − Uπ) + (1− βk)(T

πUk−1 − Uk−1))− βk(U
0 − Uπ)

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ) +
(
Πk

j=1(1− βj)
)
(γPπ)

k+1
(U0 − Uπ),

where the first equality follows from the definition of Anc-VI and the property of fixed point, while
the last equality follows from induction. Taking the ∥·∥∞-norm of both sides, we conclude∥∥TπUk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − Uπ
∥∥
∞ .

2.2 Accelerated rate for Bellman optimality operator

We now present the accelerated convergence rate of Anc-VI for the Bellman optimality operator.

Our analysis uses what we call the Bellman anti-optimality operator, defined as

T̂ ⋆V (s) = inf
a∈A

{
r(s, a) + γEs′∼P (· | s,a) [V (s′)]

}
T̂ ⋆Q(s, a) = r(s, a) + γEs′∼P (· | s,a)

[
inf
a′∈A

Q(s′, a′)

]
,

for all s ∈ S and a ∈ A. (The sup is replaced with a inf.) When 0 < γ < 1, the Bellman anti-
optimality operator is γ-contractive and has a unique fixed point Û⋆ by the exact same arguments
that establish γ-contractiveness of the standard Bellman optimality operator.

Theorem 2. Let 0 < γ < 1 be the discount factor. Let T ⋆ and T̂ ⋆ respectively be the Bellman
optimality and anti-optimality operators for V or Q. Let U⋆ and Û⋆ respectively be the fixed points
of T ⋆ and T̂ ⋆. Then, Anc-VI exhibits the rate∥∥T ⋆Uk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1
max

{∥∥U0 − U⋆
∥∥
∞ ,
∥∥∥U0 − Û⋆

∥∥∥
∞

}
for k = 0, 1, . . . . If, furthermore, U0 ≤ T ⋆U0 or U0 ≥ T ⋆U0, then Anc-VI exhibits the rate∥∥T ⋆Uk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ if U0 ≤ T ⋆U0

∥∥T ⋆Uk − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

if U0 ≥ T ⋆U0

for k = 0, 1, . . . .
1Arguably, Tπ is affine, not linear, but we follow the convention of [69] say Tπ is linear.
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Anc-VI with the Bellman optimality operator exhibits the same accelerated convergence rate as
Anc-VI with the Bellman consistency operator. As in Theorem 1, the rate of Theorem 2 also becomes
O(1/k) when γ ≈ 1, while VI has a O(1)-rate.

Proof outline of Theorem 2. The key technical challenge of the proof comes from the fact that the
Bellman optimality operator is non-linear. Similar to the Bellman consistency operator case, we have

T ⋆Uk − Uk = T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT

⋆U⋆ − βk(U
0 − U⋆)

▲
≤ γPπk

(
Uk − (1− βk)U

k−1 − βkU
⋆
)
− βk(U

0 − U⋆)

= γPπk(βk

(
U0 − U⋆

)
+ (1− βk)(T

⋆Uk−1 − Uk−1))− βk(U
0 − U⋆)

≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγPπl

)
(U0 − U⋆)

]
− βk(U

0 − U⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kγPπl

)
(U0 − U⋆),

where πk is the greedy policy satisfying TπkUk = T ⋆Uk, we define Πi
l=kγPπl =

γPπkγPπk−1 · · · γPπi , and last inequality follows by induction and monotonicity of Bellman op-
timality operator. The key step ▲ uses greedy policies {πl}l=0,1,...,k, which are well defined when
the action space is finite. When the action space is infinite, greedy policies may not exist, so we use
the Hahn–Banach extension theorem to overcome this technicality. The full argument is provided in
Appendix B.

To lower bound T ⋆Uk − Uk, we use a similar line of reasoning with the Bellman anti-optimality
operator. Combining the upper and lower bounds of T ⋆Uk −Uk, we conclude the accelerated rate of
Theorem 2.

For γ < 1, the rates of Theorems 1 and 2 can be translated to a bound on the distance to solution:∥∥Uk − U⋆
∥∥
∞ ≤ γk (1 + γ)

(
1 + 2γ − γk+1

)
(1− γ2k+2)

∥∥U0 − U⋆
∥∥
∞

for k = 1, 2, . . . . This O(γk) rate is worse than the rate of (classical) VI by a constant factor.
Therefore, Anc-VI is better than VI in terms of the Bellman error, but it is not better than VI in terms
of distance to solution.

3 Convergence when γ = 1

Undiscounted MDPs are not commonly studied in the DP and RL theory literature due to the
following difficulties: Bellman consistency and optimality operators may not have fixed points, VI
is a nonexpansive (not contractive) fixed-point iteration and may not convergence to a fixed point
even if one exist, and the interpretation of a fixed point as the (optimal) value function becomes
unclear when the fixed point is not unique. However, many modern deep RL setups actually do not
use discounting,2 and this empirical practice makes the theoretical analysis with γ = 1 relevant.

In this section, we show that Anc-VI converges to fixed points of the Bellman consistency and
optimality operators of undiscounted MDPs. While a full treatment of undiscounted MDPs is beyond
the scope of this paper, we show that fixed points, if one exists, can be found, and we therefore argue
that the inability to find fixed points should not be considered an obstacle in studying the γ = 1 setup.

We first state our convergence result for finite state-action spaces.
Theorem 3. Let γ = 1. Let T : Rn → Rn be the nonexpansive Bellman consistency or optimality
operator for V or Q. Assume a fixed point exists (not necessarily unique). If, U0 ≤ TU0, then
Anc-VI exhibits the rate∥∥TUk − Uk

∥∥
∞ ≤ 1

k + 1

∥∥U0 − U⋆
∥∥
∞ for k = 0, 1, . . . .

2As a specific example, the classical policy gradient theorem [82] calls for the use of ∇J(θ) =
E
[∑∞

t=0 γ
t∇θ log πθ(at | st)Qϕ

γ(st, at)
]
, but many modern deep policy gradient methods use γ = 1 in

the first instance of γ (so γt = 1) while using γ < 1 in Qϕ
γ(st, at) [63].
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for any fixed point U⋆ satisfying U0 ≤ U⋆. Furthermore, Uk → U∞ for some fixed point U∞.

If rewards are nonnegative, then the condition U0 ≤ TU0 is satisfied with U0 = 0. So, under this
mild condition, Anc-VI with γ = 1 converges with O(1/k)-rate on the Bellman error. To clarify, the
convergence Uk → U∞ has no rate, i.e., ∥Uk − U∞∥∞ = o(1), while

∥∥TUk − Uk
∥∥
∞ = O(1/k).

In contrast, standard VI does not guarantee convergence in this setup.

We also point out that the convergence of Bellman error does not immediately imply point conver-
gence, i.e., TUk − Uk → 0 does not immediately imply Uk → U⋆, when γ = 1. Rather, we show
(i) Uk is a bounded sequence, (ii) any convergent subsequence Ukj converges to a fixed point U∞,
and (iii) Uk is elementwise monotonically nondecreasing and therefore has a single limit.

Next, we state our convergence result for general state-action spaces.

Theorem 4. Let γ = 1. Let the state and action spaces be general (possibly infinite) sets. Let T
be the nonexpansive Bellman consistency or optimality operator for V or Q, and assume T is well
defined.3 Assume a fixed point exists (not necessarily unique). If U0 ≤ TU0, then Anc-VI exhibits
the rate ∥∥TUk − Uk

∥∥
∞ ≤ 1

k + 1

∥∥U0 − U⋆
∥∥
∞ for k = 0, 1, . . .

for any fixed point U⋆ satisfying U0 ≤ U⋆. Furthermore, Uk → U∞ pointwise monotonically for
some fixed point U∞.

The convergence Uk → U∞ pointwise in infinite state-action spaces is, in our view, a non-trivial
contribution. When the state-action space is finite, pointwise convergence directly implies conver-
gence in ∥ · ∥∞, and in this sense, Theorem 4 is generalization of Theorem 3. However, when the
state-action space is infinite, pointwise convergence does not necessarily imply uniform convergence,
i.e., Uk → U∞ pointwise does not necessarily imply Uk → U∞ in ∥ · ∥∞.

4 Complexity lower bound

We now present a complexity lower bound establishing optimality of Anc-VI.

Theorem 5. Let k ≥ 0, n ≥ k + 2, 0 < γ ≤ 1, and U0 ∈ Rn. Then there exists an MDP with
|S| = n and |A| = 1 (which implies the Bellman consistency and optimality operator for V and Q all
coincide as T : Rn → Rn) such that T has a fixed point U⋆ satisfying U0 ≤ U⋆ and∥∥TUk − Uk

∥∥
∞ ≥ γk∑k

i=0 γ
i

∥∥U0 − U⋆
∥∥
∞

for any iterates {U i}ki=0 satisfying

U i ∈ U0 + span{TU0 − U0, TU1 − U1, . . . , TU i−1 − U i−1} for i = 1, . . . , k.

Proof outline of Theorem 5. Without loss of generality, assume n = k + 2 and U0 = 0. Consider
the MDP (S,A, P, r, γ) such that

S = {s1, . . . , sk+2}, A = {a1}, P (si | sj , a1) = 1{i=j=1, j=i+1}, r(si, a1) = 1{i=2}.

Then, T = γPπU + [0, 1, 0, . . . , 0]⊺, U⋆ = [0, 1, γ, . . . , γk]⊺, and
∥∥U0 − U⋆

∥∥
∞ = 1. Under the

span condition, we can show that
(
Uk
)
1
=
(
Uk
)
k+2

= 0. Then, we get

TUk − Uk =
(
0, 1−

(
Uk
)
2
, γ
(
Uk
)
2
−
(
Uk
)
3
, . . . , γ

(
Uk
)
k
−
(
Uk
)
k+1

, γ
(
Uk
)
k+1

)
and this implies(

TUk − Uk
)
1
+
(
TUk − Uk

)
2
+ γ−1

(
TUk − Uk

)
3
+ · · ·+ γ−k

(
TUk − Uk

)
k+2

= 1.

3Well-definedness of T requires a σ-algebra on state and action spaces, expectation with respect to transition
probability and policy to be well defined, boundedness and measurability of the output of Bellman operators, etc.
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Taking the absolute value on both sides,

(1 + · · ·+ γ−k) max
1≤i≤k+2

{|TUk − Uk|i} ≥ 1.

Therefore, we conclude

∥TUk − Uk∥∞ ≥ γk∑k
i=0 γ

i

∥∥U0 − U⋆
∥∥
∞ .

Note that the case γ = 1 is included in Theorem 5. When γ = 1, the lower bound of Theorem 5
exactly matches the upper bound of Theorem 3.

Since
γk∑k
i=0 γ

i
≤
(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1
≤ 4γk∑k

i=0 γ
i

for all 0 < γ < 1,

the lower bound establishes optimality of the second rates Theorems 1 and 2 up to a constant of factor
4. Theorem 5 improves upon the prior state-of-the-art complexity lower bound established in the
proof of [37, Theorem 3] by a factor 1− γk+1. (In [37, Theorem 3], a lower bound on the distance to
optimal value function is provided. Their result has an implicit dependence on the initial distance to
optimal value function ∥U0 − U⋆∥∞, so we make the dependence explicit, and we translate their
result to a lower bound on the Bellman error. Once this is done, the difference between our lower
bound of Theorem 5 and of [37, Theorem 3] is a factor of 1− γk+1. The worst-case MDP of [37,
Theorem 3] and our worst-case MDP primarily differ in the rewards, while the states and the transition
probabilities are almost the same.)

The so-called “span condition” of Theorem 5 is arguably very natural and is satisfied by standard VI
and Anc-VI. The span condition is commonly used in the construction of complexity lower bounds on
first-order optimization methods [59, 23, 25, 13, 14, 65] and has been used in the prior state-of-the-art
lower bound for standard VI [37, Theorem 3]. However, designing an algorithm that breaks the
lower bound of Theorem 5 by violating the span condition remains a possibility. In optimization
theory, there is precedence of lower bounds being broken by violating seemingly natural and minute
conditions [40, 35, 98].

5 Approximate Anchored Value Iteration

In this section, we show that the anchoring mechanism is robust against evaluation errors of the
Bellman operator, just as much as the standard approximate VI.

Let 0 < γ < 1 and let T ⋆ be the Bellman optimality operator. The Approximate Anchored Value
Iteration (Apx-Anc-VI) is

Uk
ϵ = T ⋆Uk−1 + ϵk−1

Uk = βkU
0 + (1− βk)U

k
ϵ

(Apx-Anc-VI)

for k = 1, 2, . . . , where βk = 1/(
∑k

i=0 γ
−2i), U0 is an initial point, and the {ϵk}∞k=0 is the error

sequence modeling approximate evaluations of T ⋆.

Of course, the classical Approximate Value Iteration (Apx-VI) is

Uk = T ⋆Uk−1 + ϵk−1 (Apx-VI)

for k = 1, 2, . . . , where U0 is an initial point.

Fact 1 (Classical result, [11, p.333]). Let 0 < γ < 1 be the discount factor. Let T ⋆ be the Bellman
optimality for V or Q. Let U⋆ be the fixed point of T ⋆. Then Apx-VI exhibits the rate∥∥T ⋆Uk − Uk

∥∥
∞ ≤ (1 + γ)γk

∥∥U0 − U⋆
∥∥
∞ + (1 + γ)

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞ for k = 1, 2, . . . .
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Theorem 6. Let 0 < γ < 1 be the discount factor. Let T ⋆ and T̂ ⋆ respectively be the Bellman
optimality and anti-optimality operators for V or Q. Let U⋆ and Û⋆ respectively be the fixed points
of T ⋆ and T̂ ⋆. Then Apx-Anc-VI exhibits the rate∥∥T ⋆Uk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1
max

{∥∥U0 − U⋆
∥∥
∞ ,
∥∥∥U0 − Û⋆

∥∥∥
∞

}
+

1 + γ

1 + γk+1

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞ for k = 1, 2, . . . .

If, furthermore, U0 ≥ T ⋆U0, then (Apx-Anc-VI) exhibits the rate∥∥T ⋆Uk − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

+
1 + γ

1 + γk+1

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞
for k = 1, 2, . . . .

The dependence on max ∥ϵi∥∞ of Apx-Anc-VI is no worse than that of Apx-VI. In this sense,
Apx-Anc-VI is robust against evaluation errors of the Bellman operator, just as much as the standard
Apx-VI. Finally, we note that a similar analysis can be done for Apx-Anc-VI with the Bellman
consistency operator.

6 Gauss–Seidel Anchored Value Iteration

In this section, we show that the anchoring mechanism can be combined with Gauss–Seidel-type
updates in finite state-action spaces. Let 0 < γ < 1 and let T ⋆ : Rn → Rn be the Bellman optimality
operator. Define T ⋆

GS : Rn → Rn as

T ⋆
GS = T ⋆

n · · ·T ⋆
2 T

⋆
1 ,

where T ⋆
j : Rn → Rn is defined as

T ⋆
j (U) = (U1, . . . , Uj−1, (T

⋆(U))j , Uj+1, . . . , Un)

for j = 1, . . . , n.
Fact 2. [Classical result, [69, Theorem 6.3.4]] T ⋆

GS is a γ-contractive operator and has the same
fixed point as T ⋆.

The Gauss–Seidel Anchored Value Iteration (GS-Anc-VI) is

Uk = βkU
0 + (1− βk)T

⋆
GSU

k−1 (GS-Anc-VI)

for k = 1, 2, . . . , where βk = 1/(
∑k

i=0 γ
−2i) and U0 is an initial point.

Theorem 7. Let the state and action spaces be finite sets. Let 0 < γ < 1 be the discount factor. Let
T ⋆ and T̂ ⋆ respectively be the Bellman optimality and anti-optimality operators for V or Q. Let U⋆

and Û⋆ respectively be the fixed points of T ⋆ and T̂ ⋆. Then GS-Anc-VI exhibits the rate

∥∥T ⋆
GSU

k − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1
max

{∥∥U0 − U⋆
∥∥
∞ ,
∥∥∥U0 − Û⋆

∥∥∥
∞

}
for k = 0, 1, . . . . If, furthermore, U0 ≤ T ⋆

GSU
0 or U0 ≥ T ⋆

GSU
0, then GS-Anc-VI exhibits the rate

∥∥T ⋆
GSU

k − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ if U0 ≤ T ⋆

GSU
0

∥∥T ⋆
GSU

k − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

if U0 ≥ T ⋆
GSU

0

for k = 0, 1, . . . .

We point out that GS-Anc-VI cannot be directly extended to infinite action spaces since Hahn–Banach
extension theorem is not applicable in the Gauss–Seidel setup. Furthermore, we note that a similar
analysis can be carried out for GS-Anc-VI with the Bellman consistency operator.
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7 Conclusion

We show that the classical value iteration (VI) is, in fact, suboptimal and that the anchoring mechanism
accelerates VI to be optimal in the sense that the accelerated rate matches a complexity lower bound
up to a constant factor of 4. We also show that the accelerated iteration provably converges to a fixed
point even when γ = 1, if a fixed point exists. Being able to provide a substantive improvement upon
the classical VI is, in our view, a surprising contribution.

One direction of future work is to study the empirical effectiveness of Anc-VI. Another direction is
to analyze Anc-VI in a model-free setting and, more broadly, to investigate the effectiveness of the
anchor mechanism in more practical RL methods.

Our results lead us to believe that many of the classical foundations of dynamic programming
and reinforcement learning may be improved with a careful examination based on an optimization
complexity theory perspective. The theory of optimal optimization algorithms has recently enjoyed
significant developments [44, 43, 45, 98, 66], the anchoring mechanism being one such example
[49, 65], and the classical DP and RL theory may benefit from a similar line of investigation on
iteration complexity.
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A Preliminaries

For notational unity, we use the symbol U when both V and Q can be used.

Lemma 1. [10, Lemma 1.1.1] Let 0 < γ ≤ 1. If U ≤ Ũ , then TπU ≤ TπŨ , T ⋆U ≤ T ⋆Ũ .

Lemma 2. Let 0 < γ ≤ 1. For any policy π, Pπ is a nonexpansive linear operator such that if
U ≤ Ũ , PπU ≤ PπŨ .

Proof. If r(s, a) = 0 for all s ∈ S and a ∈ A, Tπ = γPπ. Then by Lemma 1 and γ-contraction of
Tπ , we have the desired result.

Lemma 3. Let 0 < γ < 1. Let T ⋆ and T̂ ⋆ respectively be the Bellman optimality and anti-optimality
operators. Let U⋆ and Û⋆ respectively be the fixed points of T ⋆ and T̂ ⋆. Then Û⋆ ≤ U⋆.

Proof. By definition, Û⋆ = T̂ ⋆Û⋆ ≤ T ⋆Û⋆. Thus, Û⋆ ≤ limm→∞ (T ⋆)
m
Û⋆ = U⋆.

B Omitted proofs in Section 2

First, we prove the following lemma by induction.
Lemma 4. Let 0 < γ ≤ 1, and if γ = 1, assume a fixed point Uπ exists. For the iterates {Uk}k=0,1,...

of Anc-VI,

TπUk − Uk =

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ) +
(
Πk

j=1(1− βj)
)
(γPπ)

k+1
(U0 − Uπ)

where
(
Πk

j=k+1(1− βj)
)
= 1 and β0 = 1.

Proof. If k = 0, we have

TπU0 − U0 = TπU0 − Uπ − (U0 − Uπ)

= TπU0 − TπUπ − (U0 − Uπ)

= γPπ
(
U0 − Uπ

)
− (U0 − Uπ)

If k = m, since Tπ is a linear operator,

TπUm − Um = TπUm − (1− βm)TπUm−1 − βmU0

= TπUm − (1− βm)TπUm−1 − βmUπ − βm(U0 − Uπ)

= TπUm − (1− βm)TπUm−1 − βmTπUπ − βm(U0 − Uπ)

= γPπ(Um − (1− βm)Um−1 − βmUπ)− βm(U0 − Uπ)

= γPπ(βm(U0 − Uπ) + (1− βm)(TπUm−1 − Um−1))− βm(U0 − Uπ)

= (1− βm)γPπ
m−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πm−1

j=i+1(1− βj)
)
(γPπ)

m−1−i+1
(U0 − Uπ)

]
− (1− βm)γPπβm−1(U

0 − Uπ) + (1− βm)γPπ
(
Πm−1

j=1 (1− βj)
)
(γPπ)

m
(U0 − Uπ)

+ βmγPπ(U0 − Uπ)− βm(U0 − Uπ)

=

m−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πm

j=i+1(1− βj)
)
(γPπ)

m−i+1
(U0 − Uπ)

]
− βm−1(1− βm)γPπ(U0 − Uπ) + βmγPπ(U0 − Uπ)

− βm(U0 − Uπ) +
(
Πm

j=1(1− βj)
)
(γPπ)

m+1
(U0 − Uπ)
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=

m∑
i=1

[
(βi − βi−1(1− βi))

(
Πm

j=i+1(1− βj)
)
(γPπ)

m−i+1
(U0 − Uπ)

]
− βm(U0 − Uπ) +

(
Πm

j=1(1− βj)
)
(γPπ)

m+1
(U0 − Uπ)

Now, we prove the first rate of Theorem 1.

Proof of first rate in Theorem 1. Taking ∥·∥∞-norm both sides of equality in Lemma 4, we get

∥∥TπUk − Uk
∥∥
∞ ≤

k∑
i=1

|βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
) ∥∥∥(γPπ)

k−i+1
(U0 − Uπ)

∥∥∥
∞

+ βk

∥∥U0 − Uπ
∥∥
∞ +

(
Πk

i=1(1− βi)
) ∥∥∥(γPπ)

k+1
(U0 − Uπ)

∥∥∥
∞

≤
( k∑

i=1

γk−i+1 |βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
)
+ βk + γk+1Πk

j=1(1− βj)

)
∥∥U0 − U⋆

∥∥
∞

=

(
k∑

i=1

γk+i−1

(
1− γ2

)2
1− γ(2k+2)

+ γ2k 1− γ2

1− γ2k+2
+ γk+1 1− γ2

1− γ2k+2

)∥∥U0 − Uπ
∥∥
∞

=

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − Uπ
∥∥
∞ ,

where the first inequality comes from triangular inequality, second inequality is from Lemma 2, and
equality come from calculations.

For the second rate of Theorem 1, we introduce following lemma.
Lemma 5. Let 0 < γ < 1. Let T be Bellman consistency or optimality operator. For the iterates
{Uk}k=0,1,... of Anc-VI, if U0 ≤ TU0, then Uk−1 ≤ Uk ≤ TUk−1 ≤ TUk ≤ U⋆ for 1 ≤ k. Also, if
U0 ≥ TU0, then Uk−1 ≥ Uk ≥ TUk−1 ≥ TUk ≥ U⋆ for 1 ≤ k.

Proof. First, let U0 ≤ TU0. If k = 1, U0 ≤ β1U
0 + (1− β1)TU

0 = U1 ≤ TU0 by assumption.
Since U0 ≤ U1, TU0 ≤ TU1 by monotonicity of Bellman consistency and optimality operators.

By induction,
Uk = βkU

0 + (1− βk)TU
k−1 ≤ TUk−1,

and since βk ≤ βk−1,

βkU
0 + (1− βk)TU

k−1 ≥ βk−1U
0 + (1− βk−1)TU

k−1

≥ βk−1U
0 + (1− βk−1)TU

k−2

= Uk−1.

Also, Uk−1 ≤ Uk implies TUk−1 ≤ TUk by monotonicity of Bellman consistency and optimality
operators, and Uk ≤ TUk implies that Uk ≤ limm→∞ (T )

m
Uk = U⋆ for all k = 0, 1, . . . .

Now, suppose U0 ≥ TU0. If k = 1, U0 ≥ β1U
0 + (1 − β1)TU

0 = U1 ≥ TU0 by assumption.
Since U0 ≥ U1, TU0 ≥ TU1 by monotonicity of Bellman consistency and optimality operators.

By induction,
Uk = βkU

0 + (1− βk)TU
k−1 ≥ TUk−1,

and since βk ≤ βk−1,

βkU
0 + (1− βk)TU

k−1 ≤ βk−1U
0 + (1− βk−1)TU

k−1

≤ βk−1U
0 + (1− βk−1)TU

k−2

= Uk−1.

17



Also, Uk−1 ≥ Uk implies TUk−1 ≥ TUk by monotonicity of Bellman consistency and optimality
operators, and Uk ≥ TUk implies that Uk ≥ limm→∞ (T )

m
Uk = U⋆ for all k = 0, 1, . . . .

Now, we prove following key lemmas.

Lemma 6. Let 0 < γ ≤ 1, and assume a fixed point Uπ exists if γ = 1. For the iterates {Uk}k=0,1,...

of Anc-VI, if U0 ≤ Uπ ,

TπUk − Uk ≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ),

where
(
Πk

j=k+1(1− βj)
)
= 1 and β0 = 1.

Lemma 7. Let 0 < γ < 1. For the iterates {Uk}k=0,1,... of Anc-VI, if U0 ≥ TπU0,

TπUk − Uk ≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ),

where
(
Πk

j=k+1(1− βj)
)
= 1 and β0 = 1.

Proof of Lemma 6. If U0 ≤ Uπ, we get

TπUk − Uk =

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ) +
(
Πk

j=1(1− βj)
)
(γPπ)

k+1
(U0 − Uπ)

≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ),

by Lemma 4 and the fact that
(
Πk

j=1(1− βj)
)
(γPπ)

k+1
(U0 − Uπ) ≤ 0.

Proof of Lemma 7. If U0 ≥ TU0, U0 − Uπ ≥ 0 by Lemma 5. Hence, by Lemma 4, we have

TπUk − Uk ≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ),

since 0 ≤
(
Πk

j=1(1− βj)
)
(γPπ)

k+1
(U0 − Uπ).

Now, we prove the second rates of Theorem 1.

Proof of second rates in Theorem 1. Let 0 < γ < 1. By Lemma 5, if U0 ≤ TπU0, then U0 ≤ Uπ.
Hence,

0 ≤ TπUk − Uk

≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ),

by Lemma 6. Taking ∥·∥∞-norm both sides, we have

∥∥TπUk − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − Uπ
∥∥
∞ .
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Otherwise, if U0 ≥ TU0, Uk ≥ TUk by Lemma 5. Since

0 ≥ TπUk − Uk

≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
)
(γPπ)

k−i+1
(U0 − Uπ)

]
− βk(U

0 − Uπ),

by Lemma 7, taking ∥·∥∞-norm both sides, we obtain same rate as before.

Lastly, Taylor series expansion for both rates at γ = 1 is

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1
=

2

k + 1
− k − 1

k + 1
(γ − 1) +O((γ − 1)2),(

γ−1 − γ
) (

1 + γ − γk+1
)

(γk+1)
−1 − γk+1

=
1

k + 1
− k

k + 1
(γ − 1) +O((γ − 1)2).

For the analyses of Anc-VI for Bellman optimality operator, we first prove following two lemmas.

Lemma 8. Let 0 < γ ≤ 1. If γ = 1, assume a fixed point U⋆ exists. Then, if 0 ≤ α ≤ 1 and
U − (1− α)Ũ − αU⋆ ≤ Ū , there exist nonexpansive linear operator PH such that

T ⋆U − (1− α)T ⋆Ũ − αT ⋆U⋆ ≤ γPH Ū .

Lemma 9. Let 0 < γ < 1. If 0 ≤ α ≤ 1 and Ū ≤ U − (1 − α)Ũ − αÛ⋆, then there exist
nonexpansive linear operator P̂H such that

γP̂H(Ū) ≤ T ⋆U − αT ⋆Ũ − (1− α)T̂ ⋆Û⋆.

Proof of Lemma 8. First, let U = V, Ũ = Ṽ , U⋆ = V ⋆, Ū = V̄ , and V − (1− α)Ṽ − αV ⋆ ≤ V̄ .

If action space is finite,

T ⋆V − (1− α)T ⋆Ṽ − αT ⋆V ⋆ ≤ TπV − (1− α)TπṼ − αTπV ⋆

= γPπ
(
V − (1− α)Ṽ − αV ⋆

)
≤ γPπV̄

where π is the greedy policy satisfying TπV = T ⋆V , first inequality is from TπṼ ≤ T ⋆Ṽ and
TπV ⋆ ≤ T ⋆V ⋆, and second inequality comes from Lemma 1. Thus, we can conclude PH = Pπ .

Otherwise, if action space is infinite, define P(cV̄ ) = c sups∈S V̄ (s) for c ∈ R and previously
given V̄ . Let M be linear space spanned by V̄ with ∥·∥∞-norm. Then, P is linear functional on

M and ∥P∥op ≤ 1 since |c sups∈S V̄ (s)|
∥cV̄ ∥∞

≤ 1. Due to Hahn–Banach extension Theorem, there exist

linear functional Ph : F(S) → R with Ph(V̄ ) = sups∈S V̄ (s) and ∥Ph∥op ≤ 1. Furthermore,
we can define PH : F(S) → F(S) such that PHV (s) = Ph(V ) for all s ∈ S. Then, since
∥PH(V )∥∞ = |Ph(V )| ≤ ∥Ph∥op ≤ 1 for ∥V ∥∞ ≤ 1, we have ∥PH∥∞ ≤ 1. Therefore, PH is
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nonexpansive linear operator in ∥·∥∞-norm. Then,

T ⋆V (s)− (1− α)T ⋆Ṽ (s)− αT ⋆V ⋆(s)

= sup
a∈A

{
r(s, a) + γEs′∼P (· | s,a) [V (s′)]

}
− sup

a∈A

{
(1− α)r(s, a) + (1− α)γEs′∼P (· | s,a)

[
Ṽ (s′)

]}
− sup

a∈A

{
αr(s, a) + αγEs′∼P (· | s,a) [V

⋆(s′)]

}
≤ sup

a∈A

{
r(s, a) + γEs′∼P (· | s,a) [V (s′)]− (1− α)r(s, a)− (1− α)γEs′∼P (· | s,a)

[
Ṽ (s′)

]}
− sup

a∈A

{
αr(s, a) + αγEs′∼P (· | s,a) [V

⋆(s′)]

}
≤ γ sup

a∈A

{
Es′∼P (· | s,a)

[
V (s′)− (1− α)Ṽ (s′)− αV ⋆(s′)

]}
≤ γ sup

s′∈S
{V (s′)− (1− α)Ṽ (s′)− αV ⋆(s′)}

≤ γ sup
s′∈S

V̄ (s′).

for all s ∈ S. Therefore, we have
T ⋆V − (1− α)T ⋆Ṽ − αT ⋆V ⋆ ≤ γPH(V̄ ).

Similarly, let U = Q, Ũ = Q̃, U⋆ = Q⋆, Ū = Q̄, and Q− (1− α)Q̃− αQ⋆ ≤ Q̄.

If action space is finite,

T ⋆Q− (1− α)T ⋆Q̃− αT ⋆Q⋆ ≤ γPπ
(
Q− (1− α)Q̃− αQ⋆

)
≤ γPπQ̄

where π is the greedy policy satisfying TπQ = T ⋆Q, first inequality is from TπQ̃ ≤ T ⋆Q̃ and
TπQ⋆ ≤ T ⋆Q⋆, and second inequality comes from Lemma 1. Then, we can conclude PH = Pπ .

Otherwise, if action space is infinite, define P(cQ̄) = c sup(s′,a′)∈S×A Q̄(s′, a′) for c ∈ R and
previously given Q̄. Let M be linear space spanned by Q̄ with ∥·∥∞-norm. Then, P is linear func-
tional on M and ∥P∥op ≤ 1. Due to Hahn–Banach extension Theorem, there exist linear functional
Ph : F(S × A) → R with Ph(Q̄) = sup(s′,a′)∈S×A Q̄(s′, a′) and ∥Ph∥op ≤ 1. Furthermore, we
can define PH : F(S ×A) → F(S ×A) such that PHQ(s, a) = Ph(Q) for all (s, a) ∈ S ×A and
∥PH∥∞ ≤ 1. Therefore, PH is nonexpansive linear operator in ∥·∥∞-norm. Then,

T ⋆Q(s, a)− (1− α)T ⋆Q̃(s, a)− αT ⋆Q⋆(s, a)

= r(s, a) + γEs′∼P (· | s,a)

[
sup
a′∈A

Q(s′, a′)

]
− (1− α)r(s, a)− (1− α)γEs′∼P (· | s,a)

[
sup
a′∈A

Q̃(s′, a′)

]
− αr(s, a)− αγEs′∼P (· | s,a)

[
sup
a′∈A

Q⋆(s′, a′)

]
≤ γEs′∼P (· | s,a)

[
sup
a′∈A

{
Q(s′, a′)− (1− α)Q̃(s′, a′)

}]
− γEs′∼P (· | s,a)

[
sup
a′∈A

αQ(s′, a′)

]
≤ γEs′∼P (· | s,a)

[
sup
a′∈A

{
Q(s′, a′)− (1− α)Q̃(s′, a′)− αQ⋆(s′, a′)

}]
≤ γ sup

(s′,a′)∈S×A

{
Q(s′, a′)− (1− α)Q̃(s′, a′)− αQ⋆(s′, a′)

}
,

≤ γ sup
(s′,a′)∈S×A

Q̄(s′, a′)

for all (s, a) ∈ S ×A. Therefore, we have

T ⋆Q− (1− α)T ⋆Q̃− αT ⋆Q⋆ ≤ γPH(Q̄).
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Proof of Lemma 9. Note that T̂ ⋆ is Bellman anti-optimality operators for V or Q, and Û⋆ is the fixed
point of T̂ ⋆. First, let U = V, Ũ = Ṽ , Û⋆ = V̂ ⋆, Ū = V̄ , and V̄ ≤ V − (1− α)Ṽ − αV̂ ⋆. Then,

T ⋆V (s)− (1− α)T ⋆Ṽ (s)− αT̂ ⋆V̂ ⋆(s)

= sup
a∈A

{
r(s, a) + γEs′∼P (· | s,a) [V (s′)]

}
− sup

a∈A

{
(1− α)r(s, a) + (1− α)γEs′∼P (· | s,a)

[
Ṽ (s′)

]}
− inf

a∈A

{
αr(s, a) + αγEs′∼P (· | s,a)

[
V̂ ⋆(s′)

]}
≥ inf

a∈A

{
r(s, a) + γEs′∼P (· | s,a) [V (s′)]− (1− α)r(s, a)− (1− α)γEs′∼P (· | s,a)

[
Ṽ (s′)

]}
− inf

a∈A

{
αr(s, a) + αγEs′∼P (· | s,a)

[
V̂ ⋆(s′)

]}
≥ γ inf

a∈A

{
Es′∼P (· | s,a)

[
V (s′)− (1− α)Ṽ (s′)− αV̂ ⋆(s′)

]}
.

Then, if action space is finite,

T ⋆V − (1− α)T ⋆Ṽ − αT ⋆V ⋆ ≥ γP π̂
(
V − (1− α)Ṽ − αV̂ ⋆

)
≥ γP π̂V̄

where π̂ is the policy satisfying π̂(· | s) = argmina∈A Es′∼P (· | s,a)

[
V (s′)− (1− α)Ṽ (s′)− αV̂ ⋆(s′)

]
and second inequality comes from Lemma 1. Thus, we can conclude PH = Pπ .

Otherwise, if action space is infinite, define P̂(cV̄ ) = c infs∈S V̄ (s) for c ∈ R and previously given
V̄ . Let M be linear space spanned by V̄ with ∥·∥∞-norm. Then, P̂ is linear functional on M and
∥P̂∥op ≤ 1 since |c infs∈S V̄ (s)|

∥cV̄ ∥∞

≤ 1. Due to Hahn–Banach extension Theorem, there exist linear

functional P̂h : F(S) → R with P̂h(V̄ ) = infs∈S V̄ (s) and ∥P̂h∥op ≤ 1. Furthermore, we can
define P̂H : F(S) → F(S) such that P̂HV (s) = P̂h(V ) for all s ∈ S. Then ∥P̂H∥∞ ≤ 1 since
∥P̂H(V )∥∞ = |P̂h(V )| ≤ ∥P̂h∥op ≤ 1 for ∥V ∥∞ ≤ 1. . Thus, P̂H is nonexpansive linear operator
in ∥·∥∞-norm. Then, we have

T ⋆V (s)− (1− α)T ⋆Ṽ (s)− αT̂ ⋆V̂ ⋆(s) ≥ γ inf
a∈A

{
Es′∼P (· | s,a)

[
V (s′)− (1− α)Ṽ (s′)− αV̂ ⋆(s′)

]}
≥ γ inf

s′∈S
{V (s′)− (1− α)Ṽ (s′)− αV̂ ⋆(s′)}

≥ γ inf
s′∈S

{V̄ (s′)}

for all s ∈ S. Therefore, we have

γP̂H(V̄ ) ≤ T ⋆V (s)− (1− α)T ⋆Ṽ (s)− αT̂ ⋆V̂ ⋆(s).

Similarly, let U = Q, Ũ = Q̃, Û⋆ = Q̂⋆, Ū = Q̄, and Q̄ ≤ Q− (1− α)Q̃− αQ̂⋆. Then,

T ⋆Q(s, a)− αT ⋆Q̃(s, a)− (1− α)T̂ ⋆Q̂⋆(s, a)

= r(s, a) + γEs′∼P (· | s,a)

[
sup
a′∈A

Q(s′, a′)

]
− (1− α)r(s, a)− (1− α)γEs′∼P (· | s,a)

[
sup
a′∈A

Q̃(s′, a′)

]
− αr(s, a)− αγEs′∼P (· | s,a)

[
inf
a′∈A

Q̂⋆(s′, a′)

]
≥ γEs′∼P (· | s,a)

[
inf
a′∈A

{
Q(s′, a′)− (1− α)Q̃(s′, a′)

}]
− γEs′∼P (· | s,a)

[
inf
a′∈A

αQ̂(s′, a′)

]
≥ γEs′∼P (· | s,a)

[
inf
a′∈A

{
Q(s′, a′)− (1− α)Q̃(s′, a′)− αQ̂⋆(s′, a′)

}]
.
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Hence, if action space is finite,

T ⋆Q− (1− α)T ⋆Q̃− αT ⋆Q⋆ ≥ γP π̂
(
Q− (1− α)Q̃− αQ⋆

)
,

≥ γP π̂Q̄,

where π̂ is the policy satisfying π̂(· | s) = argmina∈A Es′∼P (· | s,a)

[
Q(s′)− (1− α)Q̃(s′)− αQ⋆(s′)

]
and second inequality comes from Lemma 1. Then, we can conclude PH = P π̂ .

Otherwise, if action space is infinite, define P̂(cQ̄) = c inf(s′,a′)∈S×A Q̄(s′, a′) for c ∈ Rn and
previously given Q̄. Let M be linear space spanned by Q̄ with ∥·∥∞-norm. Then, P is linear func-
tional on M with ∥P̂∥op ≤ 1. Due to Hahn–Banach extension Theorem, there exist linear functional
P̂h : F(S ×A) → R with P̂h(Q̄) = inf(s′,a′)∈S×A Q̄(s′, a′) and ∥P̂h∥op ≤ 1. Furthermore, we can
define P̂H : F(S × A) → F(S × A) such that PHQ(s, a) = P̂h(Q) for all (s, a) ∈ S × A and
∥P̂H∥∞ ≤ 1. Thus P̂H is nonexpansive linear operator in ∥·∥∞-norm. Then, we have

T ⋆Q(s, a)− αT ⋆Q̃(s, a)− (1− α)T̂ ⋆Q̂⋆(s, a)

≥ γEs′∼P (· | s,a)

[
inf
a′∈A

{
Q(s′, a′)− (1− α)Q̃(s′, a′)− αQ̂⋆(s′, a′)

}]
≥ γ inf

(s′,a′)∈S×A

{
Q(s′, a′)− (1− α)Q̃(s′, a′)− αQ̂⋆(s′, a′)

}
≥ γ inf

(s′,a′)∈S×A
Q̄(s′, a′),

for all (s, a) ∈ S ×A. Therefore, we have

γP̂H(Q̄) ≤ T ⋆Q− (1− α)T ⋆Q̃− αT̂ ⋆Q̂⋆.

Now, we present our key lemmas for the first rate of Theorem 2.
Lemma 10. Let 0 < γ ≤ 1. If γ = 1, assume a fixed point U⋆ exists. For the iterates {Uk}k=0,1,...

of Anc-VI, there exist nonexpansive linear operators {P l}l=0,1,...,k such that

T ⋆Uk − Uk ≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP l

)
(U0 − U⋆)

]
− βk(U

0 − U⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kγP l

)
(U0 − U⋆)

where Πk
j=k+1(1− βj) = 1 and β0 = 1.

Lemma 11. Let 0 < γ < 1. For the iterates {Uk}k=0,1,... of Anc-VI, there exist nonexpansive linear
operators {P̂ l}l=0,1,...,k such that

T ⋆Uk − Uk ≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kγP̂ l

)
(U0 − Û⋆),

where Πk
j=k+1(1− βj) = 1 and β0 = 1.

We prove previous lemmas by induction.

Proof of Lemma 10. If k = 0,

T ⋆U0 − U0 = T ⋆U0 − U⋆ − (U0 − U⋆)

= T ⋆U0 − T ⋆U⋆ − (U0 − U⋆)

≤ γP0(U0 − U⋆)− (U0 − U⋆).
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where inequality comes from first inequality in Lemma 8 with α = 1, U = U0, Ū = U0 − U⋆.

By induction,

Uk − (1− βk)U
k−1 − βkU

⋆

= βk

(
U0 − U⋆

)
+ (1− βk)(T

⋆Uk−1 − Uk−1)

≤ (1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP l

)
(U0 − U⋆)

]
− (1− βk)βk−1(U

0 − U⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP l

)
(U0 − U⋆)

+ βk(U
0 − U⋆),

and let Ū be the entire right hand side of inequality. Then, we have

T ⋆Uk − Uk

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkU

0

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkU

⋆ − βk(U
0 − U⋆)

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT

⋆U⋆ − βk(U
0 − U⋆)

≤ γPk

(
(1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP l

)
(U0 − U⋆)

]
− (1− βk)βk−1(U

0 − U⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP l

)
(U0 − U⋆)

+ βk(U
0 − U⋆)

)
− βk(U

0 − U⋆)

=

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP l

)
(U0 − U⋆)

]
− βk−1(1− βk)γPk(U0 − U⋆) + βkγPk

(
U0 − U⋆

)
− βk(U

0 − U⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kγP l

)
(U0 − U⋆)

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP l

)
(U0 − U⋆)

]
− βk(U

0 − U⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kγP l

)
(U0 − U⋆).

where inequality comes from first inequality in Lemma 8 with α = βk, U = Uk, Ũ = Uk−1, and
previously defined Ū .

Proof of Lemma 11. Note that T̂ ⋆ is Bellman anti-optimality operators for V or Q, and Û⋆ is the
fixed point of T̂ ⋆. If k = 0,

T ⋆U0 − U0 = T ⋆U0 − Û⋆ − (U0 − Û⋆)

= T ⋆U0 − T̂ ⋆Û⋆ − (U0 − Û⋆)

≥ γP̂0(U0 − Û⋆)− (U0 − Û⋆).

where inequality comes from second inequality in Lemma 9 with α = 1, U = U0, Ū = U0 − Û⋆.
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By induction,

Uk − (1− βk)U
k−1 − βkÛ

⋆

= βk(U
0 − Û⋆) + (1− βk)(T

⋆Uk−1 − Uk−1)

≥ (1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP̂ l

)
(U0 − Û⋆)

]
− (1− βk)βk−1(U

0 − Û⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP̂ l

)
(U0 − Û⋆)

+ βk(U
0 − Û⋆),

and let Ū be the entire right hand side of inequality. Then, we have

T ⋆Uk − Uk

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkU

0

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkÛ

⋆ − βk(U
0 − Û⋆)

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT̂

⋆Û⋆ − βk(U
0 − Û⋆)

≥ γP̂k

(
(1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP̂ l

)
(U0 − Û⋆)

]
− (1− βk)βk−1(U

0 − Û⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP̂ l

)
(U0 − Û⋆)

+ βk(U
0 − Û⋆)

)
− βk(U

0 − Û⋆)

=

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk−1(1− βk)γP̂k(U0 − Û⋆) + βkγP̂k

(
U0 − Û⋆

)
− βk(U

0 − Û⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kγP̂ l

)
(U0 − Û⋆)

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kγP̂ l

)
(U0 − Û⋆).

where inequality comes from second inequality in Lemma 9 with α = βk, U = Uk, Ũ = Uk−1, and
previously defined Ū .

Now, we prove the first rate of Theorem 2.
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Proof of first rate in Theorem 2. Since B1 ≤ A ≤ B2 implies ∥A∥∞ ≤ sup{∥B1∥∞ , ∥B2∥∞} for
A,B ∈ F(X ), if we take ∥·∥∞ right side first inequality of Lemma 10, we have

k∑
i=1

|βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
) ∥∥(Πi

l=kγP l
)
(U0 − U⋆)

∥∥
∞

+ βk

∥∥U0 − Uπ
∥∥
∞ +

(
Πk

j=1(1− βj)
) ∥∥(Π0

l=kγP l
)
(U0 − U⋆)

∥∥
∞

≤

(
k∑

i=1

γk−i+1 |βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
)
+ βk + γk+1Πk

j=1(1− βj)

)
∥∥U0 − U⋆

∥∥
∞

=

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ ,

where the first inequality comes from triangular inequality, second inequality is from nonexpansive-
ness of P l, and last equality comes from calculations.

If we take ∥·∥∞ right side of second inequality of Lemma 10, similarly, we have
k∑

i=1

|βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
) ∥∥∥(Πi

l=kγP̂ l
)
(U0 − Û⋆)

∥∥∥
∞

+ βk

∥∥U0 − Uπ
∥∥
∞ +

(
Πk

j=1(1− βj)
) ∥∥∥(Π0

l=kγP̂ l
)
(U0 − Û⋆)

∥∥∥
∞

≤

(
k∑

i=1

γk−i+1 |βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
)
+ βk + γk+1Πk

j=1(1− βj)

)

=

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

,

where the first inequality comes from triangular inequality, second inequality is from from nonexpan-
siveness of P̂ l, and last equality comes from calculations. Therefore, we conclude∥∥T ⋆Uk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1
max

{∥∥U0 − U⋆
∥∥
∞ ,
∥∥∥U0 − Û⋆

∥∥∥
∞

}
.

Next, for the second rate in Theorem 2, we prove following lemmas by induction.
Lemma 12. Let 0 < γ ≤ 1. If γ = 1, assume a fixed point U⋆ exists. For the iterates {Uk}k=0,1,...

of Anc-VI, if T ⋆U0 ≤ U⋆, there exist nonexpansive linear operators {P l}l=0,1,...,k such that

T ⋆Uk − Uk ≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP l

)
(U0 − U⋆)

]
− βk(U

0 − U⋆)

where Πk
j=k+1(1− βj) = 1 and β0 = 1.

Lemma 13. Let 0 < γ < 1. For the iterates {Uk}k=0,1,... of Anc-VI, if U0 ≥ T ⋆U0, there exist
nonexpansive linear operators {P̂ l}l=0,1,...,k such that

T ⋆Uk − Uk ≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆),

where Πk
j=k+1(1− βj) = 1 and β0 = 1.

Proof of Lemma 12. If k = 0,

T ⋆U0 − U0 = T ⋆U0 − U⋆ − (U0 − U⋆)

≤ −(U0 − U⋆)
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where the second inequality is from the condition.

By induction,

Uk − (1− βk)U
k−1 − βkU

⋆

≤ (1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP l

)
(U0 − U⋆)

]
− (1− βk)βk−1(U

0 − U⋆) + βk(U
0 − U⋆),

and let Ū be the entire right hand side of inequality. Then, we have

T ⋆Uk − Uk

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT

⋆U⋆ − βk(U
0 − U⋆)

≤ γPk

(
(1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP l

)
(U0 − U⋆)

]
− (1− βk)βk−1(U

0 − U⋆) + βk(U
0 − U⋆)

)
− βk(U

0 − U⋆)

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP l

)
(U0 − U⋆)

]
− βk(U

0 − U⋆),

where inequality comes from first inequality in Lemma 8 with α = βk, U = Uk, Ũ = Uk−1, and
previously defined Ū .

Proof of Lemma 13. If k = 0,

T ⋆U0 − U0 = T ⋆U0 − Û⋆ − (U0 − Û⋆)

≥ −(U0 − Û⋆).

where the second inequality is from the fact that U0 ≥ T ⋆U0 implies T ⋆U0 ≥ U⋆ by Lemma 5 and
U⋆ ≥ Û⋆ by Lemma 3.

By induction,

Uk − (1− βk)U
k−1 − βkÛ

⋆

≥ (1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP̂ l

)
(U0 − Û⋆)

]
− (1− βk)βk−1(U

0 − Û⋆) + βk(U
0 − Û⋆),

and let Ū be the entire right hand side of inequality. Then, we have

T ⋆Uk − Uk

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT̂

⋆Û⋆ − βk(U
0 − Û⋆)

≥ γP̂k

(
(1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP̂ l

)
(U0 − Û⋆)

]
− (1− βk)βk−1(U

0 − Û⋆) + βk(U
0 − Û⋆)

)
− βk(U

0 − Û⋆)

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆),

where inequality comes from second inequality in Lemma 9 with α = βk, U = Uk, Ũ = Uk−1, and
previously defined Ū .
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Now, we prove the second rates of Theorem 2.

Proof of second rates in Theorem 2. Let 0 < γ < 1. Then, if U0 ≤ T ⋆U0, then T ⋆U0 ≤ U⋆ and
Uk ≤ T ⋆Uk by Lemma 5. Hence, taking ∥·∥∞-norm both sides of first inequality in Lemma 12, we
have ∥∥T ⋆Uk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ .

Otherwise, if U0 ≥ TU0, Uk ≥ TUk by Lemma 5. taking ∥·∥∞-norm both sides of second
inequality in Lemma 13, we have∥∥T ⋆Uk − Uk

∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

.

C Omitted proofs in Section 3

First, we present the following lemma.
Lemma 14. Let γ = 1. Assume a fixed point U⋆ exists. For the iterates {Uk}k=0,1,... of Anc-VI,∥∥Uk − U⋆

∥∥
∞ ≤

∥∥U0 − U⋆
∥∥
∞.

Proof. If k = 0, it is obvious. By induction,∥∥Uk − U⋆
∥∥
∞ =

∥∥βkU
0 + (1− βk)TU

k−1 − U⋆
∥∥
∞

=
∥∥(1− βk)(TU

k−1 − U⋆) + βk

(
U0 − U⋆

)∥∥
∞

≤ (1− βk)
∥∥TUk−1 − U⋆

∥∥
∞ + βk

∥∥U0 − U⋆
∥∥
∞

≤ (1− βk)
∥∥Uk−1 − U⋆

∥∥
∞ + βk

∥∥U0 − U⋆
∥∥
∞

=
∥∥U0 − U⋆

∥∥
∞

where the second inequality comes form nonexpansiveness of T .

Now, we present the proof of Theorem 3.

Proof of Theorem 3. First, if U0 ≤ TU0, with same argument in proof of Lemma 5, we can show
that Uk−1 ≤ Uk ≤ TUk−1 ≤ TUk for k = 1, 2, . . . .

Since fixed point U⋆ exists by assumption, Lemma 4 and 10 hold. Note that γ = 1 implies βk = 1
k+1

and if we take ∥·∥∞-norm both sides for those inequalities in lemmas, by simple calculation, we have∥∥TUk − Uk
∥∥
∞ ≤ 2

k + 1

∥∥U0 − U⋆
∥∥
∞

for any fixed point U⋆ (since 0 ≤ T ⋆Uk − Uk, we can get upper bound of
∥∥T ⋆Uk − Uk

∥∥
∞ from

Lemma 10).

Suppose that there exist {kj}j=0,1,... such that Ukj converges to some Ũ⋆. Then, limj→∞(T −
I)Ukj = (T − I)Ũ⋆ = 0 since T − I is continuous. This implies that Ũ⋆ is a fixed point. By Lemma
14 and previous argument, Uk is increasing and bounded sequence in Rn. Thus, Uk has single limit
point, some fixed point Ũ⋆. Furthermore, the fact that U0 ≤ TU0 ≤ Ũ⋆ implies that Lemma 6 and
12 hold. Therefore, we have ∥∥TUk − Uk

∥∥
∞ ≤ 1

k + 1

∥∥∥U0 − Ũ⋆
∥∥∥
∞

.

Next, we prove the Theorem 4.
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Proof of Theorem 4. By same argument in the proof of Theorem 3, if U0 ≤ TU0, we can show that
Uk−1 ≤ Uk ≤ TUk−1 ≤ TUk for k = 1, 2, . . . ., and∥∥TUk − Uk

∥∥
∞ ≤ 2

k + 1

∥∥U0 − U⋆
∥∥
∞

for any fixed point U⋆. Since Uk is increasing and bounded by Lemma 14 and previous argument,
Uk converges pointwise to some Ũ⋆ in general action-state space. We now show that TUk also
converges pointwise to T Ũ⋆. First, let T be Bellman consistency operator and U = V, Ũ⋆ = Ṽ π . By
monontone convergence theorem,

lim
k→∞

TπV k(s) = lim
k→∞

Ea∼π(· | s)
[
Es′∼P (· | s,a)

[
r(s, a) + γV k(s′)

]]
= Ea∼π(· | s)

[
lim
k→∞

Es′∼P (· | s,a)
[
r(s, a) + γV k(s′)

]]
= Ea∼π(· | s)

[
Es′∼P (· | s,a)

[
r(s, a) + γ lim

k→∞
V k(s′)

]]
= TπṼ π(s)

for any fixed s ∈ S. With same argument, case U = Q also holds. If T is Bellman optimality
operator, we use following lemma.

Lemma 15. Let W,W k ∈ F(X ) for k = 0, 1, . . . . If W k(x) ≤ W k+1(x) for all x ∈ X , and
{W k}k=0,1,..., converge pointwise to W , then limk→∞{supx W k(x)} = supx W (x).

Proof. W k(x) ≤ W (x) implies that supx W
k(x) ≤ supx W (x). If supx W (x) = a, there exist x

which satisfying a−W (x) < ϵ
2 , and by definition of W , there exist W k such that a−W k(x) < ϵ

for any ϵ > 0.

If U = V and Ũ⋆ = Ṽ ⋆, by previous lemma and monotone convergence theorem, we have

lim
k→∞

T ⋆V k(s) = lim
k→∞

sup
a

{
Es′∼P (· | s,a)

[
r(s, a) + γV k(s′)

]}
= sup

a

{
lim
k→∞

Es′∼P (· | s,a)
[
r(s, a) + γV k(s′)

]}
= sup

a

{
Es′∼P (· | s,a)

[
r(s, a) + γ lim

k→∞
V k(s′)

]}
= T ⋆Ũ⋆(s)

for any fixed s ∈ S. With similar argument, case U = Q also holds.

Since TUk → T Ũ⋆ and Uk → Ũ⋆ pointwisely, TUk − Uk converges pointwise to T Ũ⋆ − Ũ⋆ = 0.
Thus, Ũ⋆ is indeed fixed point of T . Furthermore, the fact that U0 ≤ TU0 ≤ Ũ⋆ implies that Lemma
6 and 12 hold. Therefore, we have∥∥TUk − Uk

∥∥
∞ ≤ 1

k + 1

∥∥∥U0 − Ũ⋆
∥∥∥
∞

.

D Omitted proofs in Section 4

We present the proof of Theorem 5.

Proof of Theorem 5. First, we prove the case U0 = 0 for n ≥ k+2. Consider the MDP (S,A, P, r, γ)
such that

S = {s1, . . . , sn}, A = {a1}, P (si | sj , a1) = 1{i=j=1, j=i+1}, r(si, a1) = 1{i=2}.

Then, T = γPπU + [0, 1, 0, . . . , 0]⊺, U⋆ = [0, 1, γ, . . . , γn−2]⊺, and
∥∥U0 − U⋆

∥∥
∞ = 1. Under the

span condition, we can show that
(
Uk
)
1
=
(
Uk
)
l
= 0 for k + 2 ≤ l ≤ n by following lemma.
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Lemma 16. Let T : Rn → Rn be defined as before. Then, under span condition,
(
U i
)
1
= 0 for

0 ≤ i ≤ k, and
(
U i
)
j
= 0 for 0 ≤ i ≤ k and i+ 2 ≤ j ≤ n.

Proof. Case k = 0 is obvious. By induction,
(
U l
)
1
= 0 for 0 ≤ l ≤ i− 1. Then

(
TU l

)
1
= 0 for

0 ≤ l ≤ i− 1. This implies that
(
TU l − U l

)
1
= 0 for 0 ≤ l ≤ i− 1. Hence

(
U i
)
1
=
(
U0
)
1
= 0.

Again, by induction,
(
U l
)
j
= 0 for 0 ≤ l ≤ i−1, l+2 ≤ j ≤ n. Then

(
TU l

)
j
= 0 for 0 ≤ l ≤ i−1,

l + 3 ≤ j ≤ n and this implies that
(
TU l − U l

)
j
= 0 for 0 ≤ l ≤ i− 1, l + 3 ≤ j ≤ n. Therefore,(

U i
)
j
= 0 for i+ 2 ≤ j ≤ n.

Then, we get

TUk − Uk =
(
0, 1−

(
Uk
)
2
, γ
(
Uk
)
2
−
(
Uk
)
3
, . . . , γ

(
Uk
)
k
−
(
Uk
)
k+1

, γ
(
Uk
)
k+1

, 0, . . . , 0︸ ︷︷ ︸
n−k−2

)
,

and this implies(
TUk − Uk

)
2
+ γ−1

(
TUk − Uk

)
3
+ · · ·+ γ−k

(
TUk − Uk

)
k+2

= 1.

Taking the absolute value on both sides,

(1 + · · ·+ γ−k) max
1≤i≤n

{|TUk − Uk|i} ≥ 1.

Therefore, we conclude

∥TUk − Uk∥∞ ≥ γk∑k
i=0 γ

i

∥∥U0 − U⋆
∥∥
∞ .

Now, we show that for any initial point U0 ∈ Rn, there exists an MDP which exhibits same lower
bound with the case U0 = 0. Denote by MDP(0) and T0 the worst-case MDP and Bellman consistency
or opitmality operator constructed for U0 = 0. Define an MDP(U0) (S,A, P, r, γ) for U0 ̸= 0 as

S = {s1, . . . , sn}, A = {a1}, P (si | sj , a1) = 1{i=j=1, j=i+1}, r(si, a1) =
(
U0 − PπU0

)
i
+ 1{i=2}.

Then, Bellman consistency or optimality operator T satisfies

TU = T0(U − U0) + U0.

Let Ũ⋆ be fixed point of T0. Then, if U⋆ = Ũ⋆+U0, U⋆ is fixed point of T . Furthermore, if {U i}ki=0
satisfies span condition

U i ∈ U0 + span{TU0 − U0, TU1 − U1, . . . , TU i−1 − U i−1}, i = 1, . . . , k,

Ũ i = U i − U0 is a sequence satisfying

Ũ i ∈ Ũ0︸︷︷︸
=0

+span{T0Ũ
0 − Ũ0, T0Ũ

1 − Ũ1, . . . , T0Ũ
i−1 − Ũ i−1}, i = 1, . . . , k,

which is the same span condition in Theorem 5 with respect to T0. This is because

TU i − U i = T0(U
i − U0)− (U i − U0) = TŨ i − Ũ i

for i = 0, . . . , k. Thus, {Ũ i}ki=0 is a sequence starting from 0 and satisfy the span condition for T0.
This implies that ∥∥TUk − Uk

∥∥
∞ =

∥∥∥T Ũk − Ũk
∥∥∥
∞

≥ γk∑k
i=0 γ

i

∥∥∥Ũ0 − Ũ⋆
∥∥∥
∞

=
γk∑k
i=0 γ

i

∥∥U0 − U⋆
∥∥
∞ .

Hence, MDP(U0) is indeed our desired worst-case instance. Lastly, the fact that U0 − U⋆ =
Ũ0 − Ũ⋆ = −(0, 1, γ, . . . , γn−2) implies U0 ≤ U⋆.
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E Omitted proofs in Section 5

First, we prove following key lemma.

Lemma 17. Let 0 < γ < 1. For the iterates {Uk}k=0,1,... of Anc-VI, there exist nonexpansive linear
operators {P l}l=0,1,...,k and {P̂ l}l=0,1,...,k such that

T ⋆Uk − Uk ≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP l

)
(U0 − U⋆)

]
− βk(U

0 − U⋆)

+ Πk
j=1(1− βj)Π

0
l=kγP l(U0 − U⋆)−

k∑
i=1

Πk
j=i(1− βj)Π

i+1
l=kγP

l
(
I − γPi

)
ϵi−1,

T ⋆Uk − Uk ≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆)

+ Πk
j=1(1− βj)Π

0
l=kγP̂ l(U0 − Û⋆)−

k∑
i=1

Πk
j=i(1− βj)Π

i+1
l=kγP̂

l
(
I − γP̂i

)
ϵi−1,

for 1 ≤ k, where Πk
j=k+1(1− βj) = 1, Πk+1

l=k γP l = Πk+1
l=k γP̂ l = I , and β0 = 1.

Proof of Lemma 17. First, we prove the first inequality in Lemma 17 by induction.

If k = 1,

U1 − (1− β1)U
0 − β1U

⋆ = (1− β1)ϵ
0 + β1(U

0 − U⋆) + (1− β1)(T
⋆U0 − U0)

≤ (1− β1)ϵ
0 + (1− β1)γP0(U0 − U⋆) + (2β1 − 1)(U0 − U⋆),

where inequality comes from Lemma 8 with α = 1, U = U0, Ū = U0 − U⋆, and let Ū be the entire
right hand side of inequality. Then, we have

T ⋆U1 − U1 = T ⋆U1 − (1− β1)T
⋆U0 − β1U

⋆ − β1(U
0 − U⋆)− (1− β1)ϵ

0

≤ γP1((1− β1)ϵ
0 + (1− β1)γP0(U0 − U⋆) + (2β1 − 1)(U0 − U⋆))− β1(U

0 − U⋆)

− (1− β1)ϵ
0

= (1− β1)γP1γP0(U0 − U⋆) + γP1(2β1 − 1)(U0 − U⋆)− β1(U
0 − U⋆)

− (I − γP1)(1− β1)ϵ
0.

where inequality comes from Lemma 8 with α = β1, U = U1, Ũ = U0, and previously defined Ū .

By induction,

Uk − (1− βk)U
k−1 − βkU

⋆

= βk

(
U0 − U⋆

)
+ (1− βk)(T

⋆Uk−1 − Uk−1) + (1− βk)ϵ
k−1

≤ (1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP l

)
(U0 − U⋆)

]
− (1− βk)βk−1(U

0 − U⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP l

)
(U0 − U⋆)

+ βk(U
0 − U⋆)− (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP

l
(
I − γPi

)
ϵi−1 + (1− βk)ϵ

k−1,

30



and let Ū be the entire right hand side of inequality. Then, we have

T ⋆Uk − Uk

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkU

0 − (1− βk)ϵ
k−1

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT

⋆U⋆ − βk(U
0 − U⋆)− (1− βk)ϵ

k−1

≤ γPk

(
(1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP l

)
(U0 − U⋆)

]
− (1− βk)βk−1(U

0 − U⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP l

)
(U0 − U⋆)

+ βk(U
0 − U⋆)− (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP

l
(
I − γPi

)
ϵi−1 + (1− βk)ϵ

k−1

)
− βk(U

0 − U⋆)− (1− βk)ϵ
k−1

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP l

)
(U0 − U⋆)

]
− βk(U

0 − U⋆)

+ Πk
j=1(1− βj)Π

0
l=kγP l(U0 − U⋆)−

k∑
i=1

Πk
j=i(1− βj)Π

i+1
l=kγP

l
(
I − γPi

)
ϵi−1,

where inequality comes from Lemma 8 with α = βk, U = Uk, Ũ = Uk−1, and previously defined
Ū .

Now, we prove second inequality in Lemma 17 by induction.

If k = 1,

U1 − (1− β1)U
0 − β1Û

⋆ = (1− β1)ϵ
0 + β1(U

0 − Û⋆) + (1− β1)(T
⋆U0 − U0)

≥ (1− β1)ϵ
0 + (1− β1)γP̂0(U0 − Û⋆) + (2β1 − 1)(U0 − Û⋆),

where inequality comes from Lemma 9 with α = 1, U = U0, Ū = U0 − Û⋆, and let Ū be the entire
right hand side of inequality. Then, we have

T ⋆U1 − U1 = T ⋆U1 − (1− β1)T
⋆U0 − β1Û

⋆ − β1(U
0 − Û⋆)− (1− β1)ϵ

0

≥ γP̂1((1− β1)ϵ
0 + (1− β1)γP̂0(U0 − Û⋆) + (2β1 − 1)(U0 − Û⋆))− β1(U

0 − Û⋆)

− (1− β1)ϵ
0

= (1− β1)γP̂1γP̂0(U0 − Û⋆) + γP̂1(2β1 − 1)(U0 − Û⋆)− β1(U
0 − Û⋆)

− (I − γP̂1)(1− β1)ϵ
0.

where inequality comes from Lemma 9 with α = β1, U = U1, Ũ = U0, and previously defined Ū .

By induction,

Uk − (1− βk)U
k−1 − βkÛ

⋆

= βk

(
U0 − Û⋆

)
+ (1− βk)(T

⋆Uk−1 − Uk−1) + (1− βk)ϵ
k−1

≥ (1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP̂ l

)
(U0 − Û⋆)

]
− (1− βk)βk−1(U

0 − Û⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP̂ l

)
(U0 − Û⋆)

+ βk(U
0 − Û⋆)− (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP̂

l
(
I − γP̂i

)
ϵi−1 + (1− βk)ϵ

k−1,
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and let Ū be the entire right hand side of inequality. Then, we have

T ⋆Uk − Uk

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkU

0 − (1− βk)ϵ
k−1

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT

⋆Û⋆ − βk(U
0 − Û⋆)− (1− βk)ϵ

k−1

≥ γP̂k

(
(1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP̂ l

)
(U0 − Û⋆)

]
− (1− βk)βk−1(U

0 − Û⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP̂ l

)
(U0 − Û⋆)

+ βk(U
0 − Û⋆)− (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP̂

l
(
I − γP̂i

)
ϵi−1 + (1− βk)ϵ

k−1

)
− βk(U

0 − Û⋆)− (1− βk)ϵ
k−1

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆)

+ Πk
j=1(1− βj)Π

0
l=kγP̂ l(U0 − Û⋆)−

k∑
i=1

Πk
j=i(1− βj)Π

i+1
l=kγP̂

l
(
I − γP̂i

)
ϵi−1,

where inequality comes from Lemma 9 with α = βk, U = Uk, Ũ = Uk−1, and previously defined
Ū

Now, we prove the first rate in Theorem 6.

Proof of first rate in Theorem 6. Since B1 ≤ A ≤ B2 implies ∥A∥∞ ≤ sup{∥B1∥∞ , ∥B2∥∞} for
A,B ∈ F(X ), if we take ∥·∥∞ right side of first inequality in Lemma 17, we have(

γ−1 − γ
) (

1 + 2γ − γk+1
)

(γk+1)
−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ + (1 + γ)

k∑
i=1

(
Πk

j=i(1− βj)
)
γk−i

∥∥ϵi−1
∥∥
∞

≤
(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ +

1 + γ

1 + γk+1

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞ .

If we apply second inequality of Lemma 17 and take ∥·∥∞-norm right side, we have(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

+
1 + γ

1 + γk+1

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞ .

Therefore, we get

∥∥T ⋆Uk − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1
max

{∥∥U0 − U⋆
∥∥
∞ ,
∥∥∥U0 − Û⋆

∥∥∥
∞

}
+

1 + γ

1 + γk+1

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞ .

Now, for the second rate in Theorem 6, we present following key lemma.
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Lemma 18. Let 0 < γ < 1. For the iterates {Uk}k=0,1,... of Anc-VI, if U0 ≥ T ⋆U0, there exist
nonexpansive linear operators {P l}l=0,1,...,k and {P̂ l}l=0,1,...,k such that

T ⋆Uk − Uk ≤ Πk
j=1(1− βj)Π

0
l=kγP l(U0 − U⋆)−

k∑
i=1

Πk
j=i(1− βj)Π

i+1
l=kγP

l
(
I − γPi

)
ϵi−1

− βk(U0 − U⋆),

T ⋆Uk − Uk ≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆)

−
k∑

i=1

Πk
j=i(1− βj)Π

i+1
l=kγP̂

l
(
I − γP̂i

)
ϵi−1,

for 1 ≤ k, where Πk
j=k+1(1− βj) = 1, Πk+1

l=k γP l = Πk+1
l=k γP̂ l = I , and β0 = 1.

Proof of Lemma 18. If U0 ≥ T ⋆U0, U0 ≥ limm→∞(T ⋆)mU0 = U⋆ by Lemma 1. By Lemma 3,
this also implies U0 ≥ Û⋆.

First, we prove first inequality in Lemma 18 by induction. If k = 1,

U1 − (1− β1)U
0 − β1U

⋆ = (1− β1)ϵ
0 + β1(U

0 − U⋆) + (1− β1)(T
⋆U0 − U0)

≤ (1− β1)ϵ
0 + (1− β1)γP0(U0 − U⋆) + (2β1 − 1)(U0 − U⋆)

≤ (1− β1)ϵ
0 + (1− β1)γP0(U0 − U⋆),

where the second inequality is from the (2β1 − 1)(U0 − U⋆) ≤ 0, and first inequality comes from
Lemma 8 with α = 1, U = U0, Ū = U0 − U⋆, and let Ū be the entire right hand side of inequality.
Then, we have

T ⋆U1 − U1 = T ⋆U1 − (1− β1)T
⋆U0 − β1U

⋆ − β1(U
0 − U⋆)− (1− β1)ϵ

0

≤ γP1((1− β1)ϵ
0 + (1− β1)γP0(U0 − U⋆))− β1(U

0 − U⋆)− (1− β1)ϵ
0

= (1− β1)γP1γP0(U0 − U⋆)− β1(U
0 − U⋆)− (I − γP1)(1− β1)ϵ

0.

where inequality comes from Lemma 8 with α = β1, U = U1, Ũ = U0, and previously defined Ū .

By induction,

Uk − (1− βk)U
k−1 − βkU

⋆

= βk

(
U0 − U⋆

)
+ (1− βk)(T

⋆Uk−1 − Uk−1) + (1− βk)ϵ
k−1

≤ βk(U
0 − U⋆)− (1− βk)βk−1(U

0 − U⋆) + (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP l

)
(U0 − U⋆)

+ (1− βk)ϵ
k−1 − (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP

l
(
I − γPi

)
ϵi−1

≤ (1− βk)
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP l

)
(U0 − U⋆) + (1− βk)ϵ

k−1

− (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP

l
(
I − γPi

)
ϵi−1,
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where the second inequality is from βk − (1− βk)βk−1 ≤ 0 and let Ū be the entire right hand side
of inequality. Then, we have

T ⋆Uk − Uk

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT

⋆U⋆ − βk(U
0 − U⋆)− (1− βk)ϵ

k−1

≤ γPk

(
(1− βk)

(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1γP l

)
(U0 − U⋆) + (1− βk)ϵ

k−1

− (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP

l
(
I − γPi

)
ϵi−1

)
− βk(U

0 − U⋆)− (1− βk)ϵ
k−1

= Πk
j=1(1− βj)Π

0
l=kγP l(U0 − U⋆)−

k∑
i=1

Πk
j=i(1− βj)Π

i+1
l=kγP

l
(
I − γPi

)
ϵi−1

− βk(U0 − U⋆),

where the first inequality comes from Lemma 8 with α = βk, U = Uk, Ũ = Uk−1, and previously
defined Ū .

For the second inequality in Lemma 18, if k = 1,

U1 − (1− β1)U
0 − β1Û

⋆ = (1− β1)ϵ
0 + β1(U

0 − Û⋆) + (1− β1)(T
⋆U0 − U0)

= (1− β1)ϵ
0 + β1(U

0 − Û⋆) + (1− β1)(T
⋆U0 − Û⋆ − (U0 − Û⋆))

≥ (1− β1)ϵ
0 + β1(U

0 − Û⋆)− (1− β1)(U
0 − Û⋆)

where the second inequality is from U0 ≥ T ⋆U0 ≥ Û⋆, and let Ū be the entire right hand side of
inequality. Then, we have

T ⋆U1 − U1 = T ⋆U1 − (1− β1)T
⋆U0 − β1U

⋆ − β1(U
0 − Û⋆)− (1− β1)ϵ

0

≥ γP1((1− β1)ϵ
0 + β1(U

0 − Û⋆)− (1− β1)(U
0 − Û⋆))− β1(U

0 − Û⋆)− (1− β1)ϵ
0

= (2β1 − 1)γP1(U0 − Û⋆)− β1(U
0 − Û⋆)− (I − γP1)(1− β1)ϵ

0.

where inequality comes from Lemma 9 with α = β1, U = U1, Ũ = U0, and previously defined Ū .

By induction,

Uk − (1− βk)U
k−1 − βkÛ

⋆

≥ (1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP̂ l

)
(U0 − Û⋆)

]
+ (βk − (1− βk)βk−1)(U

0 − Û⋆) + (1− βk)ϵ
k−1

− (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP̂

l
(
I − γP̂i

)
ϵi−1,

and let Ū be the entire right hand side of inequality. Then, we have
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T ⋆Uk − Uk

= T ⋆Uk − (1− βk)T
⋆Uk−1 − βkT̂

⋆Û⋆ − βk(U
0 − Û⋆)− (1− βk)ϵ

k−1

≥ γP̂k

(
(1− βk)

k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1γP̂ l

)
(U0 − Û⋆)

]
+ (βk − (1− βk)βk−1)(U

0 − Û⋆)− (1− βk)

k−1∑
i=1

Πk−1
j=i (1− βj)Π

i+1
l=k−1γP̂

l
(
I − γP̂i

)
ϵi−1

+ (1− βk)ϵ
k−1

)
− (1− βk)ϵ

k−1 − βk(U
0 − Û⋆)

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kγP̂ l

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆)

−
k∑

i=1

Πk
j=i(1− βj)Π

i+1
l=kγP̂

l
(
I − γP̂i

)
ϵi−1,

where inequality comes from Lemma 9 with α = βk, U = Uk, Ũ = Uk−1, and previously defined
Ū .

Now, we prove the second rate in Theorem 6.

Proof of second rate in Theorem 6. If we take ∥·∥∞ right side of first inequality in Lemma 18, we
have (

γ−1 − γ
)
γ

(γk+1)
−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ +

1 + γ

1 + γk+1

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞ .

If we apply second inequality of Lemma 18 and take ∥·∥∞-norm right side, we have(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

+
1 + γ

1 + γk+1

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞ .

Therefore, we get∥∥T ⋆Uk − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

+
1 + γ

1 + γk+1

1− γk

1− γ
max

0≤i≤k−1

∥∥ϵi∥∥∞ ,

since Û⋆ ≤ U⋆ ≤ U0 implies that(
γ−1 − γ

)
γ

(γk+1)
−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

.

F Omitted proofs in Section 6

For the analyses, we first define T̂ ⋆
GS : Rn → Rn as

T̂ ⋆
GS = T̂ ⋆

n · · · T̂ ⋆
2 T̂

⋆
1 ,

where T̂ ⋆
j : Rn → Rn is defined as

T̂ ⋆
j (U) = (U1, . . . , Uj−1,

(
T̂ ⋆(U)

)
j
, Uj+1, . . . , Un)

for j = 1, . . . , n, where T̂ ⋆ is Bellman anti-optimality operator.
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Fact 3. [Classical result, [10, Proposition 1.3.2]] T̂ ⋆
GS is a γ-contractive operator and has the same

fixed point as T̂ ⋆.

Now, we introduce the following lemmas.

Lemma 19. Let 0 < γ < 1. If 0 ≤ α ≤ 1, then there exist γ-contractive nonnegative matrix PGS

such that

T ⋆
GSU − (1− α)T ⋆

GSŨ − αT ⋆
GSU

⋆ ≤ PGS(U − (1− α)Ũ − αU⋆).

Lemma 20. Let 0 < γ < 1. If 0 ≤ α ≤ 1, then there exist γ-contractive nonnegative matrix P̂GS

such that

P̂GS(U − (1− α)Ũ − αÛ⋆) ≤ T ⋆
GSU − (1− α)T ⋆

GSŨ − αT̂ ⋆
GSÛ

⋆.

Proof of Lemma 19. First let U = V, Ũ = Ṽ , U⋆ = V ⋆. For 1 ≤ i ≤ n, we have

T ⋆
i V (si)− (1− α)T ⋆

i Ṽ (si)− αT ⋆
i V

⋆(si) ≤ Tπi
i V (si)− (1− α)Tπi

i Ṽ (si)− αTπi
i V ⋆(si)

= γPπi

(
V − (1− α)Ṽ − αV ⋆

)
(si),

where πi is the greedy policy satisfying TπiV = T ⋆V and first inequality is from Tπi Ṽ ≤ T ⋆Ṽ and
TπiV ⋆ ≤ T ⋆V ⋆. Then, define matrix Pi as

Pi(V ) = (V1, . . . , Vi−1, (γPπi(V ))i , Vi+1, . . . , Vn)

for i = 1, . . . , n. Note that Pi is nonnegative matrix since Pπi is nonnegative matrix. Then, we have

T ⋆
i V − (1− α)T ⋆

i Ṽ − αT ⋆
i V

⋆ ≤ Pi(V − (1− α)Ṽ − αV ⋆).

By induction, there exist a sequence of matrices {Pi}i=1,...,n satisfying

T ⋆
GSV − (1− α)T ⋆

GS Ṽ − αT ⋆
GSV

⋆ ≤ Pn · · · P1(V − (1− α)Ṽ − αV ⋆)

since T ⋆
i V

⋆ = V ⋆ for all i. Denote PGS as Pn · · · P1. Then, PGS is γ-contractive nonnegative
matrix since

n∑
j=1

(PGS)ij =

n∑
j=1

(Pi · · · P1)ij ≤
n∑

j=1

(Pi)ij = γ

for 1 ≤ i ≤ n, where first equality is from definition of Pl for i+ 1 ≤ l ≤ n, inequality comes from
definition of Pl for 1 ≤ l ≤ i− 1, and last equality is induced by definition of Pi. Therefore, this
implies that ∥PGS∥∞ ≤ γ.

If U = Q, with similar argument of case U = V , let πi be the greedy policy, define matrix Pi as

Pi(Q) = (Q1, . . . , Qi−1, (γPπi(Q))i , Qi+1, . . . , Qn),

and denote PGS as Pn · · · P1. Then, PGS is γ-contractive nonnegative matrix satisfying

T ⋆
GSQ− (1− α)T ⋆

GSQ̃− αT ⋆
GSQ

⋆ ≤ PGS(Q− (1− α)Q̃− αQ⋆).

Proof of Lemma 20. First let U = V, Ũ = Ṽ , Û⋆ = V̂ ⋆. For 1 ≤ i ≤ n, we have

T ⋆
i V (si)− (1− α)T ⋆

i Ṽ (si)− αT̂ ⋆
i V̂

⋆(si)

= sup
a∈A

{
r(si, a) + γEs′∼P (· | si,a) [V (s′)]

}
− sup

a∈A

{
(1− α)r(si, a) + (1− α)γEs′∼P (· | si,a)

[
Ṽ (s′)

]}
− inf

a∈A

{
αr(si, a) + αγEs′∼P (· | si,a)

[
V̂ ⋆(s′)

]}
≥ γ inf

a∈A

{
Es′∼P (· | si,a)

[
V (s′)− (1− α)Ṽ (s′)− αV̂ ⋆(s′)

]}
.
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Let π̂i(· | s) = argmina∈A Es′∼P (· | s,a)

[
V (s′)− (1− α)Ṽ (s′)− αV̂ ⋆(s′)

]
and define matrix P̂i

as

P̂i(V ) = (V1, . . . , Vi−1,
(
γP π̂i(V )

)
i
, Vi+1, . . . , Vn)

for i = 1, . . . , n. Note that P̂i is nonnegative matrix since P π̂i is nonnegative matrix. Then, we have

P̂i(V − (1− α)Ṽ − αV̂ ⋆) ≤ T ⋆
i V − (1− α)T ⋆

i Ṽ − αT ⋆
i V̂

⋆.

By induction, there exist a sequence of matrices {P̂i}i=1,...,n satisfying

P̂n · · · P̂1(V − (1− α)Ṽ − αV̂ ⋆) ≤ T ⋆
GSV − (1− α)T ⋆

GS Ṽ − αT̂ ⋆
GS V̂

⋆,

and denote P̂GS as P̂n · · · P̂1. With same argument in proof of Lemma 19, P̂GS is γ-contractive
nonnegative matrix.

If U = Q, with similar argument, let π̂i(· | s) = argmina∈A{Q(s, a)− (1−α)Q̃(s, a)−αQ̂⋆(s, a)}
and define matrix P̂i as

Pi(Q) = (U1, . . . , Qi−1,
(
γP π̂i(Q)

)
i
, Qi+1, . . . , Qn).

Denote P̂GS as P̂n · · · P̂1. Then, with same argument in proof of Lemma 19, P̂GS is γ-contractive
nonnegative matrix satisfying

P̂GS(Q− (1− α)Q̃− αQ̂⋆) ≤ T ⋆
GSQ− (1− α)T ⋆

GSQ̃− αT̂ ⋆
GSQ̂

⋆.

Next, we prove following key lemma.

Lemma 21. Let 0 < γ < 1. For the iterates {Uk}k=0,1,... of (GS-Anc-VI), there exist γ-contractive
nonnegative matrices {P l

GS}l=0,1,...,k and {P̂ l
GS}l=0,1,...,k such that

T ⋆
GSU

k − Uk ≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kP l

GS

)
(U0 − U⋆)

]
− βk(U

0 − U⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kP l

GS

)
(U0 − U⋆),

T ⋆
GSU

k − Uk ≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kP̂ l

GS

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kP̂ l

GS

)
(U0 − Û⋆),

where Πk
j=k+1(1− βj) = 1 and β0 = 1.

Proof of Lemma 21. First, we prove first inequality in Lemma 21 by induction.

If k = 0,

T ⋆
GSU

0 − U0 = T ⋆
GSU

0 − U⋆ − (U0 − U⋆)

= T ⋆
GSU

0 − T ⋆
GSU

⋆ − (U0 − U⋆)

≤ P0
GS(U

0 − U⋆)− (U0 − U⋆).

where inequality comes from Lemma 19 with α = 1, U = U0.
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By induction,

T ⋆
GSU

k − Uk

= T ⋆
GSU

k − (1− βk)T
⋆
GSU

k−1 − βkT
⋆
GSU

⋆ − βk(U
0 − U⋆)

≤ Pk
GS(U

k − (1− βk)U
k−1 − βkU

⋆)− βk(U
0 − U⋆)

= Pk
GS(βk(U

0 − U⋆) + (1− βk)(T
⋆
GSU

k−1 − Uk−1))− βk(U
0 − U⋆)

≤ (1− βk)Pk
GS

( k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1P l

GS

)
(U0 − U⋆)

]
− βk−1(U

0 − U⋆) +
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1P l

GS

)
(U0 − U⋆)

)
+ βkPk

GS(U
0 − U⋆)− βk(U

0 − U⋆)

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kP l

GS

)
(U0 − U⋆)

]
− βk(U

0 − U⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kP l

GS

)
(U0 − U⋆)

where the first inequality comes from Lemma 19 with α = βk, U = Uk, Ũ = Uk−1, and second
inequality comes from nonnegativeness of Pk

GS .

First, we prove second inequality in Lemma 21 by induction.

If k = 0,

T ⋆
GSU

0 − U0 = T ⋆
GSU

0 − Û⋆ − (U0 − Û⋆)

= T ⋆
GSU

0 − T̂ ⋆
GSÛ

⋆ − (U0 − Û⋆)

≥ P̂0
GS(U

0 − Û⋆)− (U0 − Û⋆),

where inequality comes from Lemma 20 with α = 1, U = U0.

By induction,

T ⋆
GSU

k − Uk

= T ⋆
GSU

k − (1− βk)T
⋆
GSU

k−1 − βkT̂
⋆
GSÛ

⋆ − βk(U
0 − Û⋆)

≥ P̂k
GS(U

k − (1− βk)U
k−1 − βkÛ

⋆)− βk(U
0 − Û⋆)

= P̂k
GS(βk(U

0 − Û⋆) + (1− βk)(T
⋆
GSU

k−1 − Uk−1))− βk(U
0 − Û⋆)

≥ (1− βk)P̂k
GS

( k−1∑
i=1

[
(βi − βi−1(1− βi))

(
Πk−1

j=i+1(1− βj)
) (

Πi
l=k−1P̂ l

GS

)
(U0 − Û⋆)

]
− βk−1(U

0 − Û⋆) +
(
Πk−1

j=1 (1− βj)
) (

Π0
l=k−1P̂ l

GS

)
(U0 − Û⋆)

)
+ βkP̂k

GS(U
0 − Û⋆)− βk(U

0 − Û⋆)

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kP̂ l

GS

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆) +
(
Πk

j=1(1− βj)
) (

Π0
l=kP̂ l

GS

)
(U0 − Û⋆)

where the first inequality comes from Lemma 20 with α = βk, U = Uk, Ũ = Uk−1, and nonnega-
tiveness of P̂k

GS .

Now, we prove the first rate in Theorem 7.
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Proof of first rate in Theorem 7. Since B1 ≤ A ≤ B2 implies ∥A∥∞ ≤ sup{∥B1∥∞ , ∥B2∥∞} for
A,B ∈ F(X ), if we take ∥·∥∞ right side of first inequality in Lemma 21, we have

k∑
i=1

|βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
) ∥∥(Πi

l=kP l
GS

)
(U0 − U⋆)

∥∥
∞

+ βk

∥∥U0 − Uπ
∥∥
∞ +

(
Πk

j=1(1− βj)
) ∥∥(Π0

l=kP l
GS

)
(U0 − U⋆)

∥∥
∞

≤

(
k∑

i=1

γk−i+1 |βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
)
+ βk + γk+1Πk

j=1(1− βj)

)
∥∥U0 − U⋆

∥∥
∞

=

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ ,

where the first inequality comes from triangular inequality, second inequality is from γ-contraction
of P l

GS , and last equality comes from calculations. If we take ∥·∥∞ right side of second inequality in
Lemma 21, we have

k∑
i=1

|βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
) ∥∥∥(Πi

l=kP̂ l
GS

)
(U0 − Û⋆)

∥∥∥
∞

+ βk

∥∥U0 − Uπ
∥∥
∞ +

(
Πk

j=1(1− βj)
) ∥∥∥(Π0

l=kP̂ l
GS

)
(U0 − Û⋆)

∥∥∥
∞

≤

(
k∑

i=1

γk−i+1 |βi − βi−1(1− βi)|
(
Πk

j=i+1(1− βj)
)
+ βk + γk+1Πk

j=1(1− βj)

)

=

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

,

where the first inequality comes from triangular inequality, second inequality is from from γ-
contraction of P̂ l

GS , and last equality comes from calculations. Therefore, we conclude∥∥T ⋆
GSU

k − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + 2γ − γk+1

)
(γk+1)

−1 − γk+1
max

{∥∥U0 − U⋆
∥∥
∞ ,
∥∥∥U0 − Û⋆

∥∥∥
∞

}
.

For the second rates of Theorem 7, we introduce following lemma.
Lemma 22. Let 0 < γ < 1. For the iterates {Uk}k=0,1,... of (GS-Anc-VI), if U0 ≤ T ⋆

GSU
0,

then Uk−1 ≤ Uk ≤ T ⋆
GSU

k−1 ≤ T ⋆
GSU

k ≤ U⋆ for 1 ≤ k. Also, if U0 ≥ T ⋆
GSU

0, then
Uk−1 ≥ Uk ≥ T ⋆

GSU
k−1 ≥ T ⋆

GSU
k ≥ U⋆ for 1 ≤ k.

Proof. By Fact 3, limm→∞ T ⋆
GSU = U⋆. By definition, if U ≤ Ũ , T ⋆

i U ≤ T ⋆
i Ũ for any 1 ≤ i ≤ n

and this implies that if U ≤ Ũ , then T ⋆
GSU ≤ T ⋆

GSŨ . Hence, with same argument in proof of Lemma
5, we can obtain desired results.

Now, we prove the second rates in Theorem 7.

Proof of second rates in Theorem 7. If U0 ≤ T ⋆
GSU

0, then U0 − U⋆ ≤ 0 and Uk ≤ T ⋆
GSU

k by
Lemma 22. Hence, by Lemma 21, we get

0 ≤ T ⋆
GSU

k − Uk

=

k∑
i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kP l

GS

)
(U0 − U⋆)

]
− βk(U

0 − Uπ) +
(
Πk

j=1(1− βj)
) (

Π0
l=kP l

GS

)
(U0 − U⋆)

≤
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kP l

GS

)
(U0 − U⋆)

]
− βk(U

0 − U⋆),
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where the second inequality follows from
(
Πk

j=1(1− βj)
) (

Πi
l=kP l

GS

)
(U0 − U⋆) ≤ 0. Taking

∥·∥∞-norm both sides, we have∥∥T ⋆
GSU

k − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥U0 − U⋆
∥∥
∞ .

Otherwise, if U0 ≥ T ⋆
GSU

0, Uk ≥ T ⋆
GSU

k and U0 ≥ U⋆ ≥ Û⋆ by Lemma 22 and 3. Thus, by
Lemma 21, we get

0 ≥ T ⋆
GSU

k − Uk

≥
k∑

i=1

[
(βi − βi−1(1− βi))

(
Πk

j=i+1(1− βj)
) (

Πi
l=kP̂ l

GS

)
(U0 − Û⋆)

]
− βk(U

0 − Û⋆),

where the second inequality follows from 0 ≤
(
Πk

j=1(1− βj)
) (

Π0
l=kP̂ l

GS

)
(U0 − Û⋆). Taking

∥·∥∞-norm both sides, we have∥∥T ⋆
GSU

k − Uk
∥∥
∞ ≤

(
γ−1 − γ

) (
1 + γ − γk+1

)
(γk+1)

−1 − γk+1

∥∥∥U0 − Û⋆
∥∥∥
∞

.

G Broader Impacts

Our work focuses on the theoretical aspects of reinforcement learning. There are no negative social
impacts that we anticipate from our theoretical results.

H Limitations

Our analysis concerns value iteration. While value iteration is of theoretical interest, the analysis of
value iteration is not sufficient to understand modern deep reinforcement learning practices.
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