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Figure 1: We visualize forward processes within our anisotropic diffusion framework. From top to bottom:
(1) isotropic drift with anisotropic noise, (2) anisotropic drift without noise, and (3) both anisotropic drift
and noise. Different anisotropy settings influence the preservation of geometric structures during the forward
process, thereby affecting their reconstructability during generative sampling.

ABSTRACT

Score-based generative modeling (SBGM) has achieved state-of-the-art performance in im-
age generation, with the quality of generated images highly dependent on the design of the
forward (diffusion) process. Among these, models based on stochastic differential equa-
tions (SDEs) have proven particularly effective. While traditional methods aim to progres-
sively destroy all image information to enable reconstruction from pure noise, we introduce
a novel class of anisotropic stochastic partial differential equations (SPDEs) that preserve
the geometric structure of the data throughout the transformation. These SPDEs consist of
a drift term that enforces deterministic destruction via structured smoothing, and a diffusion
coefficient that enables random destruction through noise injection. Both components are
governed by anisotropy coefficients, enabling controlled, direction-dependent information
degradation. This framework provides the theoretical foundation for a novel anisotropic
SBGM. Due to geometry-aware degradation, the data generation process can exploit resid-
ual geometric cues, leading to improved fidelity in image reconstruction. We empirically
validate this improvement in a proof-of-concept implementation on unconditional image
generation, showing that anisotropic diffusion can achieve superior image quality metrics.

1 INTRODUCTION

Diffusion-based generative models (Song & Ermon, 2019; Ho et al., 2020) have gained significant traction due
to their remarkable ability for high-quality image synthesis in both conditional and unconditional settings. Their
impressive performance in modeling high-dimensional datasets of considerable size has led to their adoption
across various other fields, such as video synthesis (Xing et al., 2024), speech and audio synthesis (Kong et al.,
2020; Huang et al., 2022), medical imaging (Song et al., 2021a; Kazerouni et al., 2023), and molecular design
(Weiss et al., 2023; Schneuing et al., 2024).

Broadly, diffusion-based generative models can be categorized into two classes. The first class comprises
SBGMs, which are based on learning the gradient of the log-density (the score) of the data transformation.
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These models are further divided into two subcategories: The first category, ordinary score matching (OSM)
(Song & Ermon, 2019), directly estimates the score of the data distribution itself. The second category, Denois-
ing Score Matching (DSM), learns instead the score of perturbed data, which includes methods such as Score
Matching with Langevin Dynamics (SMLD) (Song & Ermon, 2019), Denoising Diffusion Probabilistic Models
(DDPM) (Ho et al., 2020), and SDE-driven score-based diffusion models (SDE-driven SBGMs) (Song et al.,
2021c). In this paradigm, a noise perturbation is applied to the data, and the model learns to approximate the
score of this transformed distribution at each noise level. This learned score can then be used within various
sampling algorithms to generate new data points.

The second class of diffusion-based generative models follows an alternative approach, as introduced by Sohl-
Dickstein et al. (2015). Rather than explicitly estimating the score function, these models define a latent variable
hierarchy and optimize a variational bound to maximize the likelihood of the data. While these methods share
conceptual similarities with DDPM, their formulation does not rely on score estimation and instead focuses on
parameterizing the forward and reverse processes explicitly.

In this work, we adopt the approach of the former class. More precisely, we build up on and extend the
framework of SDE-driven SBGMs. These SDE-driven models provide a powerful mathematical framework
with fine-grained control and flexibility when it comes to designing the generative process. The framework
we introduce allows us to consider anisotropic diffusion processes that are aware of the geometrical structures
present in the underlying data. Inspired by promising results from previous work (Yu et al., 2023; Vandersanden
et al., 2024) on anisotropic diffusion processes, our hope is that our framework enables the design of better
performing generative diffusion models.

Our main contributions are the following:

• Anisotropic Diffusion Framework: We introduce a novel anisotropic diffusion framework that re-
spects geometric structures during data destruction, facilitating the resemblance of geometric features
in the generative sampling process (Section 4).

• Empirical Validation: We demonstrate the potential of our theoretical framework through a numer-
ical study of a proof-of-concept implementation on unconditional image generation (Section 5).

In addition, we provide a unifying formulation of SBGM that is a straightforward generalization of existing
work (Lim et al., 2023; 2024) (Section 3), extending it to encompass our class of anisotropic diffusion processes
as well. This serves primarily as a by-product: it allows us to describe training and generative sampling in a
common framework that subsumes both existing approaches and our anisotropic diffusion framework, thereby
avoiding a separate, framework-specific presentation.

2 RELATED WORK

Conceptually related models Song et al. (2021c) first used time SDEs for SBGMs and showed how
existing diffusion models can be unified by an SDE framework. However, they only considered linear SDEs
with spatially independent diffusion coefficients.

Rissanen et al. (2023) considered a stochastic heat equation with isotropic noise, which is effectively destroying
the data by blurring up to complete dissipation. This is in contrast to earlier approaches that typically destroyed
data into pure noise. Hoogeboom & Salimans (2022) extended this idea by introducing a temporally increasing
isotropic noise term, further refining the blurring process over time.

State-of-the-art models Lipman et al. (2022) propose Flow Matching (FM), a simulation-free training
method for continuous normalizing flows (CNFs) that regresses vector fields along predefined probability paths.
FM enables training CNFs with more efficient paths such as optimal transport interpolations, yielding faster
sampling and superior sample quality. We refer to Section B for a discussion on introducing anisotropy in FM.

Zhou et al. (2023) introduce Denoising Diffusion Bridge Models (DDBM), which generalize diffusion mod-
els to map between arbitrary endpoint distributions using learned diffusion bridges. This framework unifies
generative modeling paradigms and enables tasks like image translation, achieving strong performance while
remaining competitive with state-of-the-art models in standard generation settings. Conditional generative
modeling through anisotropic diffusion bridges is part of future work; we elaborate on that in Section C.

Anisotropic models Several studies (Voleti et al., 2022; Yu et al., 2023; Vandersanden et al., 2024) ex-
plored the role of anisotropic noise in diffusion models. Vandersanden et al. (2024) propose a structure-aware
anisotropic diffusion process that preserves edges longer, improving sample quality, particularly in shape-
oriented generative tasks.

Our approach shares similarities with this work, as the anisotropic SPDE we introduce is also guided by struc-
tural image content in both the drift and diffusion terms. However, our method differs in that it models a
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genuinely anisotropic and nonlinear diffusion process, where both the drift and diffusion coefficients evolve
dynamically based on the current state, rather than being fixed by the initial state.

SPDE-based models Lim et al. (2023; 2024) also consider generative modeling using SPDEs. The
parabolic SPDE studied in Lim et al. (2024) is restricted to spatially-independent diffusion coefficients. This
limitation prevents the modeling of spatially varying or anisotropic effects in the forward process, and therefore
represents a more constrained setting than our framework that allows for general anisotropic diffusion.

3 UNIFIED FORMULATION OF SBGM

In this section, we establish a unified formulation of SBGM that encompasses existing approaches on SBGM,
including OSM, SMLD, DDPM and SDE-driven SBGMs, as well as our anisotropic diffusion framework,
which we propose in Section 4. Our unifying formulation is a straightforward generalization of existing work
(Lim et al., 2023; 2024), extending it to encompass our class of anisotropic diffusion processes as well.

This unifying perspective allows training and data generation to be described in a common, high-level fashion
that applies uniformly across all existing SBGMs — including ours. In this way, our framework can be pre-
sented within the same generic algorithmic structure as prior work, rather than through bespoke descriptions
that might suggest a fundamental methodological departure.

Overview Generative modeling operates as a two-pass procedure: In the first (forward) pass, considered
in Section 3.1, the information in the data is systematically destroyed to a certain extent. During this pass,
the score (i.e. the log-density) of the forward process is learned (by a neural network) — as explained in
Section 3.2.

In the backward pass, the destroyed data is stochastically reconstructed, resulting in new, previously unseen
samples resembling the original data. Because of this dual perspective, the transformation (Ut)t∈I is called the
forward process, while its time reversal

U t := UT−t for t ∈ I. (1)

is referred to as the backward process. In Section 3.4, we explain how it can be used for generative sampling.

3.1 FORWARD PASS (DATA DESTRUCTION)

In generative modeling, the goal is to learn a data distribution µ and generate new samples that closely resemble
the data. Conceptually, the data distribution µ is a probability measure on RD , where D is a finite (index) set.
In practice, µ is unknown and only implicitly given by a dataset, where we assume that this dataset is an
independent and identically µ-distributed sequence.

More specifically, in score-based generative modeling, the (complex) data is mapped by a (stochastic) transform
to a simpler representation, and the score (i.e., the log-density) of this transformation is learned. Conceptually,
the information in the data is progressively destroyed until fully degraded, after which the objective is to gen-
erate new data resembling the original distribution. From an analytical perspective, the data is smoothed over
time, progressively simplifying the learning task — a practice referred to as regularization by noise.

Historically, various types of transformations have been explored in SBGM. To describe all of them, including
our approach proposed in Section 4, in a unified manner, let I ⊆ [0,∞) denote the time index set of the trans-
formation, and let (Ut)t ∈ I represent the transformation itself. Formally, (Ut)t∈I is an RD-valued (stochastic)
process with initial distribution µ , i.e., it begins by sampling its initial state from the data distribution µ.

3.2 LEARNING THE SCORE FUNCTION

The score of the forward process provides the necessary information for reconstructing samples in the gener-
ative sampling process. Without a score, the reconstruction would be purely deterministic, meaning that the
generative sampling process would have to exactly invert the forward transformation. However, exact inver-
sion is often impossible, as the forward process is designed to progressively degrade information in a way that
cannot be deterministically undone.

By incorporating stochasticity into the forward dynamics, we ensure that the degradation is probabilistic, ren-
dering the reverse process well-posed in a statistical sense. We approximate the score using a neural network
trained during the forward pass (Section 3.1) and leverage it to guide generative sampling, the generative sam-
pling process, as described in Section 3.4.

That is, for SBGM, we need to make sure that the score of the forward process actually exists. Consequentially,
we assume that Ut has a positive differentiable density pt with respect to the D-dimensional Lebesgue measure
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for all t ∈ I . The score of the transformation at time t ∈ I is now defined to be
s(t, · ) := ∇ ln pt. (2)

The goal of SBGM is now to train a (time-dependent) score-based model to find an approximation of s. To this
end, we need a suitable metric measuring the distance between any given approximation s̃ to the true score s.
Existing approaches have consistently relied on an L2-norm for that purpose. We now derive a loss measure,
unifying OSM, SMLD, DDPM and SDE-driven SBGMs, with respect to which this L2-norm is defined.

The time domain I of the forward process can either be discrete or continuous. We assume that 0 ∈ I and
T := sup I ∈ [0,∞) \ I (3)

for a smaller subset I ⊂ I , which is actually used during the learning process as we will describe now. Intro-
ducing a loss measure

η(A×B) :=

∫
A

UI(dt)ζ(t) P[Ut ∈ B] (4)

for measurable (A,B) ⊆ I × Rd, the typical loss function L is the L2(η)-distance to the actual score s; i.e.

L(s̃) := ∥s̃− s∥2L2(η) =

∫
UI(dt)ζ(t) E

[
∥(s̃− s)(Ut)∥2

]
(5)

for measurable s̃ : I × Rd → Rd, where UI denotes the uniform distribution on I . In this definition, ζ : I →
[0,∞) is a weighting function allowing us to put more importance on certain parts of the transformation.

3.3 UNIFYING PRIOR WORK

As apparent from the definition, the loss is not considered over the entire time domain I of the transformation,
but only over the smaller subset I . With this description, we capture all of the previous works. They differ in
how they handle the forward process and score estimation. With our unified formulation, we got

◦ I = {0} and I = I ⊎ {1} = {0, 1} in OSM;

◦ I = {1, . . . , k − 1} and I = {0} ⊎ I ⊎ {k} = {0, . . . , k}
for some k ∈ N with k ≥ 2 in SMLD and DDPM; and

◦ I = [t0, T ) for some 0 < t0 < T < ∞ and I = [t0, T ] in SDE-driven SBGMs.

That is, in OSM, the data from µ is not actually transformed, but remains unchanged. Instead, the score
s(0, · ) of the data distribution µ is tried to be learned directly. To generate samples, we initialize from a prior
distribution, which corresponds to the distribution of UT — the state of the forward process at the final time T .
In this setting, the transformation by the forward process is effectively performed in a single step by drawing
from the prior, without dependence on an initial dataset sample. Thus, the index set of the transformation is
given by I = {0, 1}.

In contrast, SMLD, DDPM, and SDE-driven SBGMs do not aim to learn the score of the data distribution di-
rectly. Instead, they transform dataset samples through a nontrivial forward process, producing representations
at multiple (potentially infinitely many) noise, or — more generally — diffusivity levels, and not at the initial
stage corresponding to the data distribution directly. These models then learn the score of the transformed
distributions at each diffusivity level.

In SMLD and DDPM, the forward process operates at a discrete set of diffusivity levels, indexed by I =
{0, . . . , k}. In contrast, in SDE-driven SBGMs, the forward process is continuous, resulting in a continuous
range of diffusivity levels with index set I = {0}∪ [t0,∞) for some t0 > 0, where score learning begins at t0.

Prior sampling The distribution of UT is being referred to as the prior distribution of the backward, data
generation pass. A sample from the prior distribution UT is formally obtained by initializing the forward
process (Ut)t∈I with a random sample from the data distribution µ and simulating it up to the terminal time T .
Depending on the complexity of the prior, this may be the only practical sampling procedure; for example, this
is the approach taken in Rissanen et al. (2023).

However, in OSM, the prior distribution is completely decoupled from the initial data distribution µ from which
U0 is initialized. In fact, in traditional methods, the prior distribution is typically (approximately) Gaussian.

3.4 BACKWARD PASS (DATA GENERATION)

Once we have trained a time-dependent score-based model to approximately minimize L, we can generate new,
previously unseen data that resembles the training data distribution µ.

This generation process follows an iterative sampling scheme. It begins with a draw from the prior distribution.
At each iteration, the scheme applies an optional predictor step, followed by an optional corrector step.
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◦ The predictor step, if applied, propagates the sample backward in time by simulating a step of the
backward process. This step may incorporate information from previous samples, which is particu-
larly beneficial when the backward process has a Markov property.

◦ The corrector step, if applied, refines the sample using unadjusted Langevin algorithm (ULA), treat-
ing the sample from the previous iteration as the initial state and targeting the distribution at the
corresponding time step. This is feasible because ULA only requires the gradient of the log-density,
which can be estimated using the learned score function. However, using the Metropolis-adjusted
ULA would necessitate additional density estimation techniques.

The full procedure is summarized in Algorithm 3.1. Depending on the specific score-based generative frame-
work, only the predictor step (e.g., DDPM, SDE-driven SBGMs), only the corrector step (e.g., OSM, SMLD),
or both (as in SDE-driven SBGMs) may be used. However, at least one of these steps must be applied.

How sampling in the predictor step can be performed, completely depends on the complexity of the forward
process. If it has a Markov property or is given as the solution of an SDE, as it is the case for our forward
process introduced in Section 4, special sampling techniques are available. For details, we refer to Section D.

Algorithm 3.1 Generative sampling process

Output: Sample u0 from the data distribution µ
1: if I is continuous
2: Choose k ∈ N and (strictly) increasing t0, . . . , tk−1 ∈ I;
3: else
4: Enumerate I = {t0 < · · · < tk−1}, where k := |I|;
5: Sample uk from the prior distribution UT ;
6: for i = k, . . . , 1
7: Sample ui−1 from Uti−1

given ui, . . . , uk;
{Optional predictor step}

8: Correct ui−1 by applying ULA with initial state ui−1 and target density pti−1
;

{Optional corrector step}

With Algorithm 3.1, we capture all of the existing work. In OSM, Algorithm 3.1 employs only the corrector
step, using ULA iterations with the learned score and the prior sample as the starting point. In SMLD, Algo-
rithm 3.1 also applies only the corrector step, meaning ULA iterations are performed sequentially, descending
through diffusivity levels from an initial prior sample.

In contrast, in DDPM and SDE-driven SBGMs, the predictor step in Algorithm 3.1 is used, where samples are
generated by sequentially following the dynamics of the learned backward process, which is a Markov process
in those frameworks.

SDE-driven SBGMs can also incorporate a corrector step. Unlike DDPM, where exact sampling from the
backward process is feasible, SDE-driven SBGMs only allow approximate sampling due to continuous-time
dynamics. Consequently, ULA can be interleaved with predictor steps to correct bias introduced by approxi-
mation errors.

4 ANISOTROPIC DIFFUSION FRAMEWORK

In this section, we describe our anisotropic diffusion framework. We extend conventional SDE-based ap-
proaches by formulating the forward process as the solution of an SPDE. This formulation naturally incorpo-
rates spatial derivatives, enabling structured and anisotropic transformations of images.

Unlike conventional SBGMs that operate directly on the discrete pixel grid, we formally treat each color channel
of the image as a function Λ → R evolving over a continuous spatial domain Λ.

Mathematically, we define Λ as a bounded open subset of Rd, where d ∈ N represents the spatial dimension.
In our application, images are naturally two-dimensional, so we have d = 2. A common choice is to model
the image space Λ as (0, 1)2 for normalized coordinates or as Λ = (0,width)× (0,height) in the physical
pixel space, where width and height denote the dimensions of the image in pixels.

4.1 ANISOTROPIC FORWARD PROCESS: THE THEORETICAL MODEL

We now define the specific SPDE our forward process will satisfy. The equation describes how information
is progressively diffused in an anisotropic manner, ensuring a structured degradation of images and enhanced
reconstruction capability of geometric features in the generative sampling process (Algorithm 3.1).

5
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To this end, we propose to model the forward process (Ut)t∈I as the formal solution of

dUt = b(t, Ut) dt+ σ(t, Ut) dWt for all t ∈ I, (6)

where
b(t, u) := ∇ · g1(t,∇u)∇u (7)

for (t, u) ∈ I ×H2(Λ),
σ(t, u)v := g2(t,∇u)v (8)

for (t, u) ∈ I ×H1(Λ) and v ∈ Q1/2L2(Λ),

gi(t, x) :=
αi(t)√

1 +

∥∥∥∥ x

λi(t)

∥∥∥∥2
(9)

for (t, x) ∈ I × Rd, αi : I → [0,∞) and λi : I → (0,∞] are continuous and nondecreasing and (Wt)t∈I is
a Q-Wiener process (Da Prato & Zabczyk, 2014, Definition 4.2) with

(Qf)(x) :=

∫
Λ

q(x, y)f(y) dy for x ∈ Λ (10)

for f ∈ L2(Λ) and, for some ℓ ∈ [0,∞),

q(x, y) := exp

(
−∥x− y∥

ℓ

)
for x, y ∈ Rd. (11)

As usual, Hr(Λ) denotes the Hilbert Sobolev space (Renardy & Rogers, 2004, Chapter 7) of order r ∈ N0.

The reader, which is interested in, but unfamiliar with, stochastic analysis can just think about an Q-Wiener
process as a generalization of a standard Wiener process (or Brownian motion) whose covariance operator is
given by Q and refer to (Da Prato & Zabczyk, 2014; Lord et al., 2014) for details. Especially, integral operators
of the form (10) are considered in (Lord et al., 2014, Definition 1.64). A discussion on the Cameron-Martin
space Q1/2L2(Λ) can be found in Section F.

(6) is the natural stochastic generalization of the deterministic Perona—Malik diffusion Perona & Malik (1990).
In Section A, we provide design guidelines by detailing how the individual ingredients — the diffusivity coef-
ficients αk (Section A.1.1), intensity coefficient (Section A.1.2), anisotropy coefficient λi (Section A.1.3) and
correlation length ℓ (Section E.2) — of our anisotropic diffusion framework control the image transformations
described by our forward process. A classification of the SPDE types arising from different parameter choices
is provided in Section G.

4.2 PRACTICAL FORWARD AND BACKWARD PROCESSES

From a strictly mathematical perspective, ensuring correctness of the generative modeling methodology re-
quires that the backward process is the exact time-reversal of the forward process and that both forward and
backward processes are exact simulatable. However, for a complex SPDE like (6), exact simulation is impossi-
ble. Both spatial and temporal discretization must be performed to obtain a practically simulatable process.

Spatial discretization, whether by Galerkin methods (as in (Lim et al., 2024)) or finite differences (as in our
numerical scheme), inevitably leads to a projection onto a finite-dimensional SDE of the form

dŨt = b̃
(
t, Ũt

)
dt+ σ̃

(
t, Ũt

)
dW̃t for all t ∈ I, (12)

where b̃ : RD → RD , σ̃ : RD → RD×D , and (W̃t)t≥0 is a D-dimensional Brownian motion for some D ∈ N.

This procedure unavoidably introduces approximation error, which is further compounded by the subsequent
temporal discretization. In special cases — such as the parabolic SPDEs with additive noise considered in Lim
et al. (2024) — this may be acceptable. Nevertheless, if one uses the time-reversal of the infinite-dimensional
SPDE as the backward process, a mismatch arises between the processes that can actually be simulated and the
theoretical foundation of their use, and exact correctness of the backward process is no longer guaranteed.

In our framework, we consider a substantially more complex SPDE — with gradient-dependent nonlinear drift
and gradient-dependent multiplicative noise — than in previous SPDE-based SBGMs (e.g., Lim et al. (2024)).
In our case, no fixed eigenbasis diagonalizes the drift operator or the noise, and modal decoupling is unavailable.

We therefore adopt a different strategy: we first apply spatial discretization, thereby defining the actual forward
process directly as the finite-dimensional SDE (12). The backward process is then taken as the time-reversal of
this SDE, ensuring that both forward and backward dynamics are defined at the same level of approximation.

6
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As a result, the only simulation error arises from temporal discretization, rather than from a combination of
spatial and temporal discretizations.

The concrete numerical scheme leading to the SDE (12) used in our experiments in Section 5 is described in
Section H. Theoretical existence of a solution to (12) is verified by Pascucci (2011, Theorem 9.11). That the
corresponding backward process also satisfies an SDE follows from classical results (Haussmann & Pardoux,
1986; Anderson, 1982). For the explicit form of this SDE we refer to Section D.

4.3 RESIDUAL DEPENDENCE ON THE INITIAL STATE

Introducing anisotropy inherently induces a residual dependence on the initial state. Our framework contains
many user-definable parameters. For meaningful use in a generative modeling context, the modeling process
that determines these parameters should ensure that the information contained in the initial state is almost en-
tirely destroyed by the terminal time T . Conceptually, anisotropy should only serve to prolong the preservation
of certain structures (such as edges) to facilitate the reconstruction of geometric features during data generation.

For specific parameter choices in our framework, the forward process reduces to an Ornstein–Uhlenbeck pro-
cess (as in the instance described in Section 5.3), or it can be designed such that the distribution at the terminal
time T is close to a known Gaussian distribution (as in the instance described in Section 5.2). In such cases,
the prior distribution can be replaced by this closed-form distribution when performing Algorithm 3.1.

Whether the prior distribution admits a closed form (or a tractable approximation) depends on the chosen
parameters. If not, a sample from the prior can be generated by simulating the forward process up to the
terminal time. In either case, mathematical correctness is ensured; see our discussion in Section 3.3.

5 NUMERICAL STUDY

Intuitively, the anisotropy introduced by our anisotropic diffusion framework helps preserve structural infor-
mation over longer time scales during the forward transformation. This, in turn, facilitates learning and recon-
struction of geometric features during data generation.

In this section, we empirically validate this intuition through a numerical study on unconditional image gener-
ation. We compare our framework against three baselines: Rissanen et al. (2023), the variance exploding SDE
(VESDE) from Song et al. (2021c), and the flow matching / optimal transport method of Lipman et al. (2022),
which is state of the art at the time of writing.

We focus on two specific instances of our framework: an isotropic version (Ours (isotropic) described in Sec-
tion 5.3) and an anisotropic version (Ours (anisotropic) described in Section 5.2) of a stochastic heat equation.
The isotropic variant is included primarily for educational purposes, as it demonstrates that the model equation
of Rissanen et al. (2023) arises as a special case of our framework.

Both Rissanen et al. (2023) and Song et al. (2021c) provide especially relevant baselines, since they are likewise
based on S(P)DEs. In contrast to our approach, however, their drift and diffusion coefficients are isotropic. Con-
ceptually, the only difference between their methods and Ours (anisotropic) is the introduction of anisotropy.
This design choice allows us to attribute observed improvements directly to anisotropy.

We now describe the specific instances of our framework considered in the numerical study (Sections 5.1 to 5.3),
followed by a detailed account of the experiments in Section 5.4.

5.1 PURE ISOTROPIC NOISE (SONG ET AL. (2021C))

dUt = α2(t) dWt for all t ∈ I. (13)

The SPDE formulated in (13) defines a Gaussian process, of which the VESDE considered in Song et al. (2021c)
is a specific instance. It has a vanishing drift term, b = 0, and an isotropic diffusion coefficient, σ. Intuitively,
this corresponds to a process in which an increasing amount of noise is added to the data over time.

5.2 ANISOTROPIC STOCHASTIC HEAT EQUATION WITH ISOTROPIC NOISE (OURS
(ANISOTROPIC))

dUt = ∇ · α1(t)√
1 +

∥∥∥∥∇Ut

λ1

∥∥∥∥2
∇Ut dt+ α2(t) dWt for all t ∈ I (14)
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The SPDE in (14) is a genuinely anisotropic instance of our general anisotropic diffusion framework (6), where
the drift gradually transitions from anisotropy to isotropy while the diffusion coefficient remains isotropic. We
consider geometric transitions of the form

αi(t) := αmin
i

(
αmax
i

αmin
i

) t
T

for t ∈ I (15)

for 0 < αmin
i < αmax

i (other common transitions are shown in Figure 5). Specifically, α1 increases geometrically
from αmin

1 = 0.5 to αmax
1 = 2 · image size, while the anisotropy coefficient λ1 ensures a slow transition

from anisotropy to isotropy via

λ1(t) := λmin
1

ekT − 1

ek(T−t) − 1
for t ∈ I (16)

with λmin
1 = 0.025 and k = 1/2 (see Figure 5 for a visualization). The intensity coefficient α2 also in-

creases geometrically, from αmin
2 = 0.01 to αmax

2 = 2.0. With λ2 ≡ ∞, the diffusion coefficient remains
spatially isotropic throughout. We set the noise correlation length to ℓ = 0, leading to a cylindrical Wiener
process (Wt)t∈I and hence spatially white noise. The corresponding forward and backward processes are
visualized in Figure 8.

Since λ1(t) → ∞ as t → T , the numerical simulation (12) of the SPDE (14) is, at least approximatively,
conditionally Gaussian given the initial state. Hence, prior sampling can be performed from a closed-form
(Gaussian) distribution in the implementation.

5.3 STOCHASTIC HEAT EQUATION WITH ISOTROPIC NOISE
(RISSANEN ET AL. (2023) AND OURS (ISOTROPIC))

dUt = α1(t)∆Ut dt+ α2(t) dWt for all t ∈ I. (17)

The SPDE in (17) has an isotropic drift b and a small-scale isotropic diffusion coefficient σ. It closely resembles
the forward process considered by Rissanen et al. (2023). Intuitively, the data is smoothed over time, and a small
amount of noise is injected to make the forward process stochastic, which is required to ensure that the reverse
process is well-posed (see Section 3.2).

For α1, we again use a geometric transition (15) with αmin
1 = 0.5 and αmax

1 = 2 · image size. A minor
difference from Rissanen et al. (2023) is that we do not keep the intensity coefficient α2 constant; instead, it
increases slightly over time (while remaining small) under a geometric transition equation 15 with αmin

2 = 0.01
and αmax

2 = 0.5. Formally, the anisotropy coefficients are fixed as λ1 = λ2 ≡ ∞. The noise correlation length
is again set to ℓ = 0, so we also work with a cylindrical Wiener process (Wt)t∈I here.

With the parameter choices described above, the numerical simulation (12) of the SPDE (17) is conditionally
Gaussian given the initial state. Consequently, prior sampling can be carried out from a closed-form (Gaussian)
distribution in the implementation.

5.4 EXERPIMENTS

In our experiments, our methods Ours (anisotropic) and Ours (isotropic) used both the predictor and corrector
steps of Algorithm 3.1. Each corrector step consists of a single ULA iteration. We simulated up to a final time
of T = 2 with a numerical step size of 0.001 in the predictor step, resulting in 1999 score function evaluations.

Limitations The flexibility of our framework opens the door to exploring a wide range of anisotropic for-
ward processes beyond Ours (anisotropic), which may further enhance quality. However, due to hardware
resource limitations, this study is limited to the single parameter configuration given by Ours (anisotropic), a
small number of datasets listed below, and the restricted set of baseline methods mentioned above.

Test datasets We trained all generative models on the CIFAR-10 (Krizhevsky et al., 2009), CelebA (Liu
et al., 2015), ImageNet2012 (Russakovsky et al., 2015), and LSUN/church outdoor (Yu et al., 2015) datasets.

Evaluation We assess the quality of generated samples using standard metrics in generative image model-
ing: the Inception Score (IS) (Salimans et al., 2016), Fréchet Inception Distance (FID) (Heusel et al., 2017),
and Kernel Inception Distance (KID) (Bińkowski et al., 2021). To ensure consistent evaluation, we used the
implementation (Song et al., 2021b) provided by Song et al. (2021c) and regenerated all samples — including
those for baseline methods — to compute these metrics. Because metric implementations vary slightly across
toolsets, our reported values may differ from those originally published. This makes it particularly important
that all models are evaluated under identical conditions.
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Figure 2: Evaluation metrics on CIFAR-10 between 10k and 100k training iterations with Ours (anisotropic).
We employed a fine-tuning strategy, initializing training from the checkpoint of Song et al. (2021c). For ref-
erence, applying our sampling procedure directly to the Song et al. (2021c) checkpoint –— without additional
training -—- results in an IS of 1, FID of 678.258, and KID of 0.872. After 100k training iterations, these
values improve substantially to an IS of 9.978, FID of 2.041, and KID of 6.411.

Quantitative comparison In Table 1, we report the evaluation metrics of samples generated by the dif-
ferent methods on the test datasets. All values reported for Ours (isotropic) and Ours (anisotropic) are based
on training from scratch for 200,000 steps. Since no checkpoints are provided by the authors, we retrained the
method of Lipman et al. (2022) on all datasets using the official configuration from their codebase for the same
number of steps. The same procedure was applied to Rissanen et al. (2023), although we restricted evaluation
to CIFAR-10, given the method’s already non-competitive performance on this dataset. For Song et al. (2021c),
we trained CelebA and ImageNet2012 from scratch, while for CIFAR-10 and LSUN/church outdoor we relied
on the official checkpoints released by the authors.

Figure 2 illustrates how quickly (i.e., after how few training iterations) Ours (anisotropic) improves the eval-
uation metrics when initialized from a model pretrained with Song et al. (2021c). Notably, according to the
original authors, continuing training with their own method did not yield further metric improvements.

IS ↑ FID ↓ KID ↓
Ours (anisotropic) 10.2 / 3.1 / 13.5 / 3.6 2.0 / 2.4 / 19.1 / 5.9 6.1e-4 / 1.7e-3 / 1.9e-2 / 4.6e-3
Lipman et al. (2022) 9.2 / 2.4 / 10.5 / - 2.0 / 2.3 / 26.8 / - 7.1e-4 / 1.4e-3 / 3.4e-2 / -
Song et al. (2021c) 9.8 / 2.5 / 12.3 / 2.5 7.1 / 3.7 / 24.0 / 16.7 6.6e-4 / 2.6e-3 / 2.5e-2 / 1.2e-2
Vandersanden et al. (2024) 7.1 / 2.7 / - / 3.4 28.7 / 12.0 / - / 49.1 2.2e-2 / 8.4e-3 / - / 4.3e-2

Table 1: Each column within the IS, FID, and KID metrics corresponds, in order, to results on CIFAR-10
(32×32), CelebA (64x64), ImageNet2012 (64x64), and LSUN/church outdoor (256x256). Higher IS is better,
while lower FID and KID are better. On CIFAR-10, we also compared Ours (isotropic) with Rissanen et al.
(2023). Ours (isotropic) achieved metrics of 8.8 / 19.6 / 1.6e-02, while Rissanen et al. (2023) produced the
worse metrics 5.9 / 84.3 / 7.2e-2. Ours (isotropic) and Ours (anisotropic) refer to the isotropic and anisotropic
stochastic heat equation with isotropic noise described in Section 5.3 and Section 5.2, respectively.

Hardware resources All experiments were conducted on a server equipped with 8× NVIDIA Tesla H100
NVL GPUs (94 GB HBM3 each, PCIe 5.0) and 2× AMD EPYC 9554 CPUs (64 cores / 128 threads each,
3.1–3.75 GHz, Genoa microarchitecture, 256 MB L3 cache).
Hyperparameters and architecture For the implementation of our framework, we adopted the NCSN++
(continuous) network architecture from Song et al. (2021c). The training parameters —– in particular, a learning
rate of 2e-4 using the Adam optimizer (Kingma, 2014) —– are taken from Song et al. (2021c) for both CIFAR-
10, CelebA and LSUN/church outdoor. For ImageNet2012, we reuse the parameter settings for CelebA.

6 CONCLUSION
This work demonstrated that introducing anisotropy into SBGM can be practically superior to traditional
isotropic approaches. We extended SBGM by proposing a novel class of anisotropic diffusion processes
theoretically founded on SPDEs. These processes generalize the conventional isotropic setting by enabling
geometry-aware transformations that align the generative sampling dynamics more closely with intrinsic ge-
ometric structures in the data. Beyond the theoretical model, we presented a proof-of-concept implementa-
tion showing that this anisotropic framework can preserve fine-grained structural information over longer time
scales and achieve competitive generative performance, supporting the underlying intuition. Exploring the
broader parameter space of our anisotropic diffusion framework therefore constitutes a promising direction for
future work. Together, these contributions broaden the design space of SBGMs and indicate that anisotropic
transformations have the potential to further improve sample quality and convergence.
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7 REPRODUCIBILITY STATEMENT

The theoretical framework underlying our approach is presented in Section 4. The specific instances used
in our experiments, Ours (isotropic) and Ours (anisotropic), are described in (17) and Section 5.2, including
the corresponding parameter choices. The numerical simulation scheme for both forward and backward pro-
cesses is detailed in Section H. Finally, the training hyperparameters and network architecture are specified in
Section 5.4.

8 ETHICS STATEMENT

We acknowledge that diffusion-based generative models carry potential risks. In particular, they can be misused
for generating deepfakes, which may facilitate misinformation, deception, or harassment, and they pose privacy
risks if applied to generate images of individuals without consent. Our method is not intended for such purposes,
and we ensured that our experiments relied solely on publicly available benchmark datasets without personally
identifiable information. Moreover, our models are trained in a way that avoids replication or memorization of
specific training images.

At the same time, diffusion models also offer positive contributions, including applications in medical imaging,
scientific visualization, and artistic content creation. We believe that, with responsible use, the potential benefits
of this line of research outweigh its risks.
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A DESIGN GUIDELINE: CONTROLLING IMAGE TRANSFORMATIONS IN OUR
FRAMEWORK

In this section, we provide design guidelines by detailing how the individual ingredients of our anisotropic
diffusion framework control the image transformations described by our forward process.

A.1 HOW DRIFT AND DIFFUSION COEFFICIENT CONTRIBUTE TO DEGRADING INFORMATION

The drift b (7) introduces deterministic smoothing that respects the anisotropy defined by the anisotropy coeffi-
cient λ1. This smoothing is controlled by the diffusivity coefficent α1, with its strength and direction determined
by the local image structure (captured by the gradients ∇Ut).

The diffusion coefficient σ (8) injects random noise into the image, which is also modulated anisotropically by
λ2. The intensity of the noise is modulated by the intensity coefficient α2 and destroys fine-grained details in a
controlled manner, complementing the drift’s smoothing effect.

While the drift b (7) focuses on smoothing (deterministic destruction), the diffusion coefficient σ introduces
stochasticity (random destruction). Together they degrade information in a controlled manner, providing an
excellent framework for SBGM.

To enable (stochastic) reconstruction, we need to make sure that the forward process destroys the data suffi-
ciently. Anisotropy can be seen as preserving information to some extent. This preserved data can be destroyed
in various ways. For example, if the anisotropy is in the drift, we can either the destroy the information over
time by spreading a lot of isotropic noise at later time points or by transitioning to isotropy in the drift. The
latter can be achieved by letting λ1(t) → ∞ as t → T .

Subsequently, we will give details on the effect of the diffusivity coefficients αk (Section A.1.1), intensity
coefficient (Section A.1.2), anisotropy coefficient λi (Section A.1.3) and correlation length ℓ (Section E.2).

A.1.1 DIFFUSIVITY COEFFICIENT α1

α1 = 0 α1 = 1 α1 = .5 → 1k

(a) Impact of the diffusivity coefficient α1.
α2 = 1e−2 α2 = 1e−1 α2 = 1

(b) Impact of the intensity coefficient α2.

The diffusivity coefficient α1 crucially controls the rate of the (an-)isotropic smoothing in the drift (7) in the
diffusion coefficient (8) of the SPDE (6), respectively.

In the drift (7), a larger α1 results in stronger smoothing, leading to a faster elimination of high-frequency
details (e.g., geometric structure, like edges and corners, and textures) in the image. Conversely, smaller values
of α1 preserve more of the fine-grained details, slowing down the destruction of information.

In Figure (a) we visualized the impact of α1, disabling the effect of the diffusion coefficient σ by setting
α2 = 0. The third column is using a geometric transition α1(t) = αmin

1

(
αmax
1 /αmin

1

)t/T
with αmin

1 = .5 and
αmax
1 = 1k. In Figure 5 (b) we show more choices for the diffusivity/intensity coefficients. The original image

had a resolution of 128x128 pixels and the forward process was simulated up to time T = 8.

A.1.2 INTENSITY COEFFICIENT α2

The intensity coefficient α2 determines the intensity of the injected noise in the diffusion coefficient (8) of the
SPDE (6).

In the diffusion coefficient (8), larger α2 increases the randomness in the image transformation, introducing
more noise and accelerating the destruction of structured information. On the other hand, smaller α2 reduces
the randomness, preserving some of the original structure while still degrading information.

In Figure 3b we visualized the impact of α2, disabling the effect of the drift b by setting α1 = 0.

Impact on generative modeling The progression of the αi over time determines how quickly the image
is degraded by the forward process.
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By modulating αi, we can design a destruction process that aligns with the objective of generative modeling:
creating a sequence of progressively smoother / less noise images while maintaining enough structure for the
model to learn the reconstruction of meaningful samples with a high resemblance to the images from the dataset.

A suitable balance between α1 in the drift (7) and α2 in the diffusion diffusion coefficient (8) ensures that
the degradation is smooth but irreversible, providing a structured data destruction trajectory for training the
generative model.

A.1.3 ANISOTROPY COEFFICIENT λi

λ1 = ∞ λ1 = 1e−2 λ1 = 1e−3

(a) Impact of the anisotropy coefficient α1.
λ2 = ∞ λ2 = 1e−2 λ2 = 1e−3

(b) Impact of the anisotropy coefficient α2.

The anisotropy coefficients αi control the directional sensitivity of both the drift and diffusion terms by mod-
ulating the degree of anisotropy in the transformation. The drift term (7) depends on g1(t,∇Ut), which intro-
duces directional weighting to the smoothing property of the drift.

When λ1 is small, the smoothing from the drift term (7) is highly anisotropic, meaning the process prefers
certain directions for smoothing while preserving others (e.g., along edges in the image). This ensures that
geometric structures are degraded in a structured manner. As λ1 grows larger, the smoothing becomes more
isotropic, uniformly degrading all directions and gradually eliminating all structural features.

The diffusion coefficient term (8), modulated by g2(t,∇Ut), introduces anisotropic noise. For smaller λ2, the
noise is injected along specific directions, preserving certain patterns while destroying others. As λ2 increases,
the noise becomes isotropic, introducing randomness uniformly across the image and further accelerating struc-
tured information loss. In the limit, when λ2 = ∞, noise is injected isotropically.

In Figure 4a and Figure 4b we visualized the impact of λ1 and λ2, disabling the effect of the diffusion coefficient
σ and the drift b by setting α2 = 0 and α1 = 0, respectively. In Figure 5 (a) we depicted common choices for
these anisotropy coefficients.

Impact on generative modeling The anisotropy coefficients λi allow for a structured destruction of in-
formation. For example, by preserving geometric structures, like edges or corners, for longer time, the forward
process provides richer intermediate representations, which can enhance the model’s ability to reconstruct these
structures during sampling.

Structured anisotropic degradation may lead to better generative sampling, as the score-based model learns to
reverse transformations that align with natural image statistics (e.g., edge preservation and texture destruction).

In contrast, overly isotropic processes (corresponding to large up to infinite λi) degrade the images uniformly,
which may simplify the forward process but could result in reduced resemblance of the dataset images, espe-
cially if they admit significant geometric patterns.
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B INCORPORATING ANISOTROPY IN FLOW MATCHING (FM)

Flow matching methods (Lipman et al., 2022) offer a flexible framework for generative modeling by con-
structing probability paths between distributions without requiring explicit SPDE formulations. In particular,
they support structured perturbations via non-isotropic noise, as demonstrated in edge-aware extensions such
as (Vandersanden et al., 2024). However, these perturbations remain spatially uniform and are typically con-
ditioned only on the initial dataset sample. This limits their ability to adapt to the evolving geometry of the
sample during generation.

In contrast, our SPDE-based framework allows for spatially dependent, anisotropic diffusion that reacts dy-
namically to the evolving image gradients. As a result, structural features such as edges are preserved not only
based on their presence in the initial image but also as they emerge, weaken, or shift throughout the transfor-
mation. For example, if an initially weak edge becomes stronger over time, our formulation naturally reduces
diffusion across it. Conversely, if a previously strong edge fades, the diffusion increases, enabling appropriate
smoothing. In flow matching, by contrast, structural information is fixed at the start of the transformation and
cannot adapt to changes during generation. This may result in the preservation of features that should fade
away or in the undesired blurring of structures that only become salient later in the process.

C CONDITIONAL GENERATIVE MODELING THROUGH ANISOTROPIC
DIFFUSION BRIDGES

DDBM (Zhou et al., 2023) address a fundamentally different task from ours. Rather than generating images
unconditionally from noise, DDBM learn mappings between two given image distributions by modeling the
bridge dynamics connecting them. While their method can, in principle, be applied to unconditional generation
by choosing noise as the source distribution, their framework is primarily designed for conditional tasks such as
image-to-image translation or editing. In this first application of our framework, however, we focus exclusively
on unconditional image generation and therefore do not include a direct comparison.

Extending our framework to enable bridging between arbitrary source and target distributions, akin to DDBMs
is part of future work.
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D SAMPLING FROM THE BACKWARD PROCESS

If
(
U t

)
t∈I

is a Markov process, sampling in the predictor step is done by following its transition dynamics.
This is the case, for example, in DDPM and in the situation we encounter in our anisotropic diffusion framework
from Section 4 as well.

In SDE-driven SBGMs, we are in the special situation, where the forward process is the solution to an SDE of
the form

dUt = b(t, Ut) dt+ σ(t, Ut) dWt for all t ∈ I (18)

for some Q-Wiener process. If a suitable regularity condition (Haussmann & Pardoux, 1986) is in place, then

dU t = b
(
t, U t

)
dt+ σ

(
t, U t

)
dWt for all t ∈ I, (19)

where

b(t, u) := trDuΣ(T − t, u) + Σ(T − t, u)s(T − t, u)− b(T − t, u); (20)
σ(t, u) := σ(T − t, u) (21)

for (t, x) ∈ I × RD and

Σ :=
(
σQ

1
2

)(
σQ

1
2

)∗
. (22)

In this case, the sampling in the predictor step is performed using a method for the numerical solution of a SDE,
with the Euler-Maruyama method (Kloeden & Platen, 1992) being the simplest approach.

Discussion We emphasize that, in the practical application of our framework, it is the finite-dimensional
SDE — obtained via the numerical scheme simulating our SPDE (6) described in Section H — that must be
reversed in time, not the SPDE (6) itself. While — under a suitable set of assumptions — time-reversal of the
SPDE (6) is theoretically possible (Föllmer & Wakolbinger, 1986; Millet et al., 1989), the results presented in
Haussmann & Pardoux (1986); Anderson (1982) are sufficient for our purposes, as they apply directly to the
finite-dimensional SDE setting.

E FURTHER VISUALIZATIONS OF THE
PARAMETERS OF OUR ANISOTROPIC DIFFUSION FRAMEWORK

E.1 DIFFUSIVITY, INTENSITY AND ANISOTROPY COEFFICIENTS α1, α2 AND λi

(a) Transition from λ(0) = 1 to λ(1) = ∞ (b) Transition from α(0) = 1 to α(1) = 100

Figure 5: (a) Visualization of the common choice λ(t) := λmin ekT−1

ek(T−t)−1
for the anisotropy coefficients (Sec-

tion A.1.3). (b) Visualization of the common choice α(t) := αmin +
(
αmax − αmin)( t

T

)r for the diffusivity
(Section A.1.1) and intensity coefficients (Section A.1.2).
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E.2 WIENER PROCESS COVARIANCE CORRELATION LENGTH ℓ

ℓ = 0 ℓ = 1 ℓ = 4
Figure 6: Noise spread by the Wiener process W for correlation lengths ℓ = 0, 1, 4.

With the correlation length ℓ we effectively set the spatial extent of correlation among the spread noise. A
large ℓ means noise at a given pixel is correlated with noise in a broader region around that pixel. In contrast,
a small ℓ means the correlation is localized, and noise at a pixel primarily affects nearby pixels. A given pixel
is roughly strongly (correlation > .8), moderately (correlation > .5) and weakly (correlation > .1 correlated
to all pixels in a radius of .22ℓ, .69ℓ and 2.3ℓ, respectively (cf. Figure 7). For our experiments in Section 5,
we only considered the border case ℓ = 0 in which (11) formally reduces to the Dirac delta δx(y) and hence
Q = idL2(Λ) and hence (Wt)t∈I is actually cylindrical. In Figure 6 we compared different choices for ℓ.
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Figure 7: Spatial exponential decay of correlations in the Wiener process W for correlation lengths ℓ =
1, 2, 4, 8. For ℓ = 0, the noise spread between pixels is independent.

F THE CAMERON-MARTIN SPACE Q
1
2L2(Λ)

The space Q
1
2L2(Λ) is usually called a Cameron-Martin space; see (Da Prato & Zabczyk, 2014, Chapter I.4)

or (Lord et al., 2014, Definition 10.15). To understand and apply our paper, it is only important to be aware
of the set-theoretic definition Q

1
2L2(Λ) := {Q

1
2 u : u ∈ L2(Λ)}. In plain English, it is the space of all

transformations of L2(Λ)-function under the operator Q
1
2 . For more theoretical considerations, one important

aspect is that it inherits a Hilbert space structure from L2(Λ).

G SPDE CLASSIFICATION

In general, (6) is a quasilinear parabolic SPDE with multiplicative noise.

If g1 does not depend on the second argument, (6) is a semilinear parabolic SPDE with multiplicative noise:

dUt = α1(t)∆Ut dt+ σ(t, Ut) dWt for all t ∈ I. (23)

If g2 does not depend on the second argument, (6) is a quasilinear parabolic SPDE with additive noise:

dUt = b(t, Ut) dt+ α2(t) dWt for all t ∈ I. (24)

Finally, if g1 and g2 both do not depend on the second argument, (6) is a linear parabolic SPDE with additive
noise:

dUt = α1(t)∆Ut dt+ α2(t) dWt for all t ∈ I. (25)
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t = 0 t = 1
3
T t = 2

3
T t = T

Forward process (data destruction)

Backward process (data generation)

Figure 8: Visualization of the forward and backward processes corresponding to our anisotropic stochastic heat
equation with isotropic noise (Section 5.2).

H NUMERICAL SIMULATION

For the numerical simulation of the forward and backward processes, (6) and (1), we modeled the image space
Λ as Λ = (0, d1)× (0, d2) and decomposed the boundary ∂Λ according to

∂LΛ := {0} × [0, d2); (26)
∂TΛ := [0, d1)× {d2}; (27)
∂RΛ := {d1} × (0, d2]; (28)
∂BΛ := (0, d1]× {0} (29)

into its left, top, right and bottom part. We discretized the derivatives using a mixture of forward, backward and
central finite differences, respecting Neumann boundary conditions.

H.1 DOMAIN DISCRETIZATION

After discretization, we decomposed the discretized domain D = {0, . . . , d1}×{0, . . . , d2} in the same spirit
into its interior, left, top, right and bottom part:

D◦ := {1, . . . , d1 − 2} × {1, . . . , d2 − 2}; (30)
∂LD := {0} × {0, . . . , d2 − 2); (31)
∂TD := {0, . . . , d2 − 2} × {d2 − 1}; (32)
∂RD := {d1 − 1} × {1, . . . , d2 − 1}; (33)
∂BD := {1, . . . , d1 − 1} × {0}. (34)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

H.2 SPATIAL DISCRETIZATION

For the specific finite difference approximation we have chosen, we ended up with the discretized drift being
given by

b̃(t, u)i :=



g1

(
t,

(
ui1+2 ∧ d1−1, i2 − ui

ui1+1, i2+1 − ui1+1, i2−1

))
(ui1+1, i2 − ui)

− g1

(
t,

(
ui − ui1−2 ∨ 0, i2

ui1−1, i2+1 − ui1−1, i2−1

))
(ui − ui1−1, i2)

+ g1

(
t,

(
ui1+1, i2+1 − ui1−1, i2+1

ui1, i2+2 ∧ d2−1 − ui

))
(ui1, i2+1 − ui)

− g1

(
t,

(
ui1+1, i2−1 − ui1−1, i2−1

ui − ui1, i2−2 ∨ 0

))
(ui − ui1, i2−1) , if i ∈ D◦;(

g1

(
t,

(
ui1+2 ∧ d1−1, i2 − ui

0

))
+ g1(t, 0)

)
(ui1+1, i2 − ui)

+

(
g1

(
t

(
0

ui1, i2+2 ∧ d2−1 − ui

))
+ g1(t, 0)

)
(ui1, i2+1 − ui) , if i ∈ ∂LD with i2 = 0;(

g1

(
t,

(
ui1+2 ∧ d1−1, i2 − ui

ui1+1, i2+1 − ui1+1, i2−1

))

+ g1

(
t,

(
0

ui1+1, i2+1 − ui1+1, i2−1

)))
(ui1+1, i2 − ui)

+ g1

(
t,

(
0

ui1, i2+2 ∧ D2−1 − ui

))
(ui1, i2+1 − ui)

− g1

(
t,

(
0

ui − ui1, i2−2 ∨ 0

))
(ui − u1, 2−1) , if i ∈ ∂LD with i2 > 0;(

g1

(
t,

(
ui1+2 ∧ d1−1, i2 − ui

0

))
+ g1(t, 0)

)
(ui1+1, i2 − ui)

+

(
g1

(
t,

(
0

ui − ui1, i2 ∨ 0

))
+ g1(t, 0)

)
(ui1, i2−1 − ui) , if i ∈ ∂TD with i1 = 0;

g1

(
t,

(
ui1+2 ∧ d1−1, i2 − ui

0

))

− g1

(
t,

(
ui − ui1−2 ∨ 0, i2

0

))
(ui − ui1−1, i2)

+

(
g1

(
t,

(
ui1+1, i2−1 − ui1−1, i2−1

0

))

+ g1

((
ui1+1, i2−1 − ui1−1, i2−1

ui − ui1, i2−2 ∨ 0

)))
(ui1, i2−1 − ui) , if i ∈ ∂TD with i1 > 0

(35)
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and

b̃(t, u)i :=



(
g1

(
t,

(
ui − ui1−2 ∨ 0, i2

0

))
+ g1(t, 0)

)
(ui1−1, i2+1 − ui)

+

(
g1

(
t,

(
0

ui − ui1, i2−2 ∨ 0

))
+ g1(t, 0)

)
(ui1, i2−1 − ui) , if i ∈ ∂RD with i2 = d2 − 1;(

g1

(
t,

(
0

ui1−1, i2+1 − ui1−1, i2−1

))

+ g1

(
t,

(
ui − ui1−2 ∨ 0, i2

ui1−1, i2+1 − ui1−1, i2−1

)))
(ui1−1, i2 − ui)

+ g1

(
t,

(
0

ui1, i2+2 ∧ d2−1 − ui

))
(ui1, i2+1 − ui)

− g1

(
t,

(
0

ui − ui1, i2−2 ∨ 0

))
(ui − ui1, i2−1) , if i ∈ ∂RD with i2 < d2 − 1;(

g1

(
t,

(
ui − ui1−2 ∨ 0, i2

0

))
+ g1(t, 0)

)
(ui1−1, i2 − ui)

+

(
g1

(
t,

(
0

ui1, i2+2 ∧ d2−1 − ui

))
+ g1(t, 0)

)
(ui1, i2+1 − ui) , if i ∈ ∂BD with i1 = d1 − 1;

g1

(
t,

(
ui1+2 ∧ d1−1, i2 − ui

0

))
(ui1+1, i2 − ui)

− g1

(
t,

(
ui − ui1−2 ∨ 0, i2

0

))
(ui − ui1−1, i2)

+

(
g1

(
t,

(
ui1+1, i2+1 − ui1−1, i2+1

ui1, i2+2 ∧ d2−1 − ui

))

+ g1

(
t,

(
ui1+1, i2+1 − ui1−1, i2+1

0

)))
(ui1, i2+1 − ui) , if i ∈ ∂BD with i1 < d1 − 1

(36)
for (t, u) ∈ I × RD and i ∈ D and the discretized diffusion coefficient being given by

(σ̃(t, u)v)i :=



g2

(
t,

(
ui1+1, i2 − ui1−1,i2

ui1,i2+1 − ui1,i2−1

))
, if i ∈ D◦;

g2

(
t,

(
0

ui1,i2+1 − ui1,i2−1

))
, if i ∈ ∂LD with i2 > 0 or

i ∈ ∂RD with i2 < d2 − 1;

g2

(
t,

(
ui1+1,i2 − ui1−1,i2

0

))
, if i ∈ ∂TD with i1 > 0 or

i ∈ ∂BD with i1 < d1 − 1;

g2(t, 0) , if i ∈ ∂LD with i2 = 0 or
i ∈ ∂TD with i1 = 0 or
i ∈ ∂RD with i2 = d2 − 1 or
i ∈ ∂BD with i1 = d1 − 1



vi (37)

for v ∈ RD , (t, u) ∈ I × RD and i ∈ D.

H.3 TEMPORAL DISCRETIZATION

For temporal discretization, we used a drift-termed (explicit) Euler-Maruyama scheme (Hutzenthaler & Jentzen,
2015), where given a generic SDE of the form

dŨt = b̃
(
t, Ũt

)
dt+ σ̃

(
t, Ũt

)
dW̃t for all t ∈ I, (38)
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the time stepping is given by

Ũt+∆t = Ũt +
b
(
t, Ũt

)
1 + ∆t

∥∥∥b(t, Ũt

)∥∥∥γ + σ̃
(
t, Ũt

)(
W̃t+∆t − W̃t

)
(39)

for all t,∆t ≥ 0 with t+∆t ∈ I , where γ is a taming coefficient usually chosen to be 1.

I SPDE TRAJECTORY VISUALIZATIONS
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Figure 9: We visualize the core ingredients of our generalized anisotropic SPDE diffusion framework. The dif-
fusion process is governed by two fundamental components: the drift term, driven by the drift coefficient b and
the diffusion term, driven by the diffusion coefficient σ. Both terms can take on isotropic or anisotropic forms,
and their combinations open the door to a vast spectrum of processes. These processes destroy (and regenerate,
for the reverse process) the signal’s information in ways that range from subtle to profoundly distinct. The
interplay between these terms offers the designer of the generative process fine control over how information is
destroyed.
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J UNCURATED GENERATED SAMPLES ON CIFAR-10

Rissanen et al. (2023)
(FID: 84.256)

Song et al. (2021c)
(FID: 7.094)

Ours (isotropic)
(FID: 19.631)

Ours (anisotropic)
(FID: 2.041)

Figure 10: Uncurated samples for the baselines Rissanen et al. (2023), Song et al. (2021c) and two of our
SPDEs: one with isotropic drift b and isotropic diffusion coefficient σ (see Section 5.3) and one with anisotropic
b and isotropic σ (see Section 5.2). Note that Rissanen et al. (2023) and Ours (isotropic) essentially represent
the same SPDE, but our score-based approach performs significantly better.
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K UNCURATED GENERATED SAMPLES ON CELEBA

Figure 11: Uncurated samples for Ours (anisotropic) (see Section 5.2). The generated images are produced by
a model trained from scratch — without initialization from a pre-trained network — for 100,000 iterations.
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Figure 12: Uncurated samples for Song et al. (2021c). The generated images are produced from the checkpoint
provided by the authors.
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Figure 13: Uncurated samples for Lipman et al. (2022). The generated images are produced by a model trained
from scratch — without initialization from a pre-trained network — for 100,000 iterations.
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L UNCURATED GENERATED SAMPLES ON IMAGENET2012

Figure 14: Uncurated samples for Ours (anisotropic) (see Section 5.2). The generated images are produced by
a model trained from scratch — without initialization from a pre-trained network — for 100,000 iterations.
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Figure 15: Uncurated samples for Song et al. (2021c). The generated images are produced from the checkpoint
provided by the authors.
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Figure 16: Uncurated samples for Lipman et al. (2022). The generated images are produced by a model trained
from scratch — without initialization from a pre-trained network — for 100,000 iterations.
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M UNCURATED GENERATED SAMPLES ON LSUN/CHURCH OUTDOOR

Figure 17: Uncurated samples for Ours (anisotropic) (see Section 5.2). The generated images are produced by
a model trained from scratch — without initialization from a pre-trained network — for 100,000 iterations.
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Figure 18: Uncurated samples for Song et al. (2021c). The generated images are produced from the checkpoint
provided by the authors.
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N COMPUTATIONAL COSTS

To contextualize our computational costs relative to Song et al. (2021c), we report the normalized training
times per 10k steps on CelebA (64×64):

Model Time / 10k steps (s)

Song et al. (2021c) 2506.55
Ours (anisotropic) 4658.63

Additionally, the following inference costs arise during sample generation:

Model Time / generated image (s)

Song et al. (2021c) 0.5726
Ours (anisotropic) 0.1649

As these timings indicate, our method achieves significantly improved inference times compared to Song
et al. (2021c), due to our numerical implementation explained in Appendix H –— despite having a theoret-
ically more demanding drift and diffusion coefficient.

O LATENT SPACE EXPERIMENT

We conducted a latent space experiment using Ours (anisotropic) on the LSUN/church outdoor
dataset. For the latent representation, we employed the pretrained variational autoencoder from
stabilityai/sd-vae-ft-mse. The resulting generative performance metrics are:

Inception Score = 3.880973

FID = 3.936322

KID = 2.387085× 10−3

These results demonstrate that our anisotropic SPDE framework can be successfully applied in latent space
as well.
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P UNCURATED GENERATED SAMPLES ON LSUN/CHURCH OUTDOOR FROM
OUR LATENT SPACE EXPERIMENT

Figure 19: Uncurated samples for Ours (anisotropic) (see Section 5.2) from our latent space experiment. The
generated images are produced by a model trained from scratch — without initialization from a pre-trained
network — for 100,000 iterations.
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