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Abstract

Humans can understand stories, and the rich interactions between agents, locations,
and events, seamlessly. However, state-of-the-art reasoning models struggle with under-
standing, completing, or explaining stories, often due to the complexity of the underlying
common sense necessary for comprehension. One potential reason models perform poorly
is the lack of large-scale training data that supplies annotations of the common sense nec-
essary for story understanding. In this paper, we investigate the generation of stories at
scale, by combining commonsense axioms with commonsense knowledge graphs to produce
stories annotated with common sense. We first demonstrate that commonsense axioms
and commonsense knowledge graphs are sufficient to capture the underlying narratives in
a popular story corpus. Our method aligns story types with commonsense axioms, and
queries to a commonsense knowledge graph, enabling the generation of hundreds of thou-
sands of stories. We evaluate these stories for sensibility and interestingness through a
crowdsourcing task. Using our story corpus, we also design a probing task with questions
for three exemplar story types. Our results show that our method generates story endings
of a higher quality compared to the current generative language models. This work points
to key open challenges around generating better stories, providing more comprehensive
explanations, and building models that can explain any story with axioms.

1. Introduction

Humans can understand stories, and the rich interactions between agents, locations, and
events, seamlessly. Being able to fill in the blanks with background, commonsense (CS)
knowledge about agents and events is required for understanding and explaining stories [Char-
niak, 1972, Schank and Abelson, 1975], in accordance with pragmatic principles of non-
redundancy of information and avoiding to state the obvious [Grice, 1975]. For example, in
order to understand that forming a new friendship causes a person to be happy, we need
to understand both the key axioms about human psychology and goals (e.g., happiness
is a consequence of achieving a goal), as well as universal human knowledge (e.g., people
generally have an intrinsic goal to make friends).

State-of-the-art AI reasoning models struggle with understanding, completing, or ex-
plaining stories, often due to the complexity of the underlying common sense necessary for
comprehension. Neural (language) models could be tuned to understand or explain sto-
ries [Narang et al., 2020], but this is hindered by the lack of large-scale training data that
supplies annotations of the common sense necessary for story understanding.
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Creating large-scale data for training neural models is an open challenge. High-quality
story understanding and completion tasks [Mostafazadeh et al., 2017, Urbanek et al., 2019]
can be created by crowdsourcing, but this remains an expensive and laborious process, and
it is unclear which dimensions of narration are captured by the crowdsourced stories. Intu-
itively, commonsense axioms [Gordon and Hobbs, 2017] can explain stories, yet, grounding
stories to these axioms is non-trivial. A cheap way to generate substantial quantities of data
for question answering is by leveraging large-scale, freely available knowledge graphs [Ma
et al., 2021], but this idea has not been employed to generate stories at scale so far.

In this paper, we investigate the generation of stories at scale, by combining com-
monsense axioms with commonsense knowledge graphs to produce stories annotated with
common sense. The commonsense axioms serve as a well-understood and limited set of
primitives that can explain agent behavior and expectations in a given eventative circum-
stance. Commonsense knowledge graphs guarantee that the content of the story corresponds
to interesting phenomena, such as causality or object properties. The generated stories can
then be used to enhance the ability of language models to understand stories and explain
their decisions. The contributions of this paper are as follows:

1. We investigate the role of commonsense axioms for understanding stories. Our anal-
ysis shows that axioms can describe a useful set of phenomena in the ROCSto-
ries [Mostafazadeh et al., 2017] story completion corpus, and they can be grounded
to knowledge types in modern commonsense knowledge graphs. (Section 2)

2. We demonstrate the potential of generating stories by combining axioms with com-
monsense knowledge graphs. We associate three exemplar story types with their
underlying axioms, and extract hundreds of thousands of questions from an existing
knowledge graph. (Section 3)

3. Our human evaluation reveals that the generated stories are of good quality and that
they can be explained by the underlying axioms, thus supporting the overall approach.
We also show that our method generates more sensible stories compared to generative
language models. (Section 4)

4. We discuss future research towards generating better stories, providing more compre-
hensive explanations, and building models that can explain any story with axioms.
(Section 5)

2. Understanding stories with axioms

2.1 Commonsense axioms

Gordon and Hobbs [2017] consolidate theories of commonsense knowledge into a set of ax-
iomatic formalizations, i.e., abstract commonsense relations between concepts in first-order
logic, aiming for both high competency and coverage. They devise 1,400 axioms organized
into 29 commonsense psychology theories and 16 background theories. A human-readable
description of 16 axioms that we use in this paper is provided in Table 1. The axioms facili-
tate exploration of human-like commonsense reasoning by artificial intelligence researchers,
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Substitution (7.1) Two items, I and I2, are substitutes for each other if they play the same
role in their corresponding eventualities.
Change of state to (14.8) One eventuality E may change into another, inconsistent one, by
modifying (M) the properties for a common entity O. The change is performed by an instrument
I at a location of the change, L.
Agent causality (15.6) The chief property of an agent A is that they, defeasibly, are capable
of causing some events.
Object of (15.9) O is the object of an event E if E is a change in O, or recursively if the event
is a causal chain of subevents, the final event of which has O as its object.
Instrument of (15.10) I is an instrument of an event E if the agent causes a change in O, and
that causes E or the end state in E.
At location (18.9) An external entity I can be at component C within a spatial system L,
where C is a physical object, and I is unspecified.
Similar in that (22.1) Two things, I and I2, can be similar with respect to a specific property
G, allowing them to substitute each other with respect to this property.
Different in that (22.2) Two things, I and I2, can be different with respect to a specific
property G, which means that they cannot substitute each other with respect to this property.
Expectation (26.1) Agent A at time T0 expects E to happen at time T1.
Expectation confirmation (26.8) A’s expectation that E will happen at time T1 is confirmed.
Expectation violation (26.9) A’s expectation that E will happen at time T1 is disconfirmed.
Achieved goal (28.21) G is a goal that A has at time T0 and achieves by time T1. A goal that
has been achieved is an eventuality that was once a goal and now really exists.
Unachieved goal (28.22) G is a goal that A has at time T0 that does not obtain by time T1,
i.e., the eventuality G was a goal of A’s at time T0 and it does not really exist at time T1.
Good for (28.37) Eventuality E is good for agent A, as it contributes causally somehow to the
achievement of one of its goals, G.
Bad for (28.38) Eventuality E is bad for agent A, as it it contributes causally somehow to the
nonachievment of one of its goals, G.
Disappointed (49.67) An agent A is disappointed that eventuality E occurred. Disappointment
results when an event and its negation are both anticipated, the event is good for the person, and
the event does not actually occur.

Table 1: Axioms from [Gordon and Hobbs, 2017], which are used in our story types.

linguists, and cognitive and social psychologists. The focus is primarily on naive psychol-
ogy, albeit the complexity of this aspect of human intelligence led to inclusion of additional,
non-psychological aspects. For instance, defining agent goals requires axioms on causality
and temporality. The axiomatic theories are broadly divided into two groups: 1) fundamen-
tal theories, such as eventualities, sets, and defeasibility; 2) content theories, which include
high-level areas of abstraction, describing aspects of causality, structure of complex events,
and agent goals and plans. In contrast to prior work that has used event sequences, com-
monsense axioms are focused on agent-based psychology, more comprehensively capturing
the motivations, reasoning, and goals of an agent in the context of a narrative.

2.2 Axioms in ROCStories

We test the applicability of these axioms by assessing whether they can explain stories
from a popular corpus: ROCStories. ROCStories contains 98,162 five-sentence stories for
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Unmet expectations Alternatives

story There was this amazing Italian place
down the street from Alice. She
used to go there almost every week.
She loves the pastas that they serve
there. One day she tried to go there
and found out they closed down.

Ben was excited to go fishing with his grandfather
for the first time. However, he found putting the
worms on the hook to be disgusting. He acciden-
tally pricked his finger with one of the hooks, too.
Ben soon realized that fishing was not for him.

correct Alice was upset she had to settle for
Chinese food.

Ben asked his grandfather if they could watch a
movie instead.

wrong She invited all her friends to join her
at that restaurant.

Ben asked his grandfather when they could go fish-
ing next.

axioms Unexpect, Prefer, Prevent Anticipate happy, Disgusted, Painful, Substitution

Table 2: Example stories from ROCStories, with their corresponding axioms.

evaluating story understanding. This corpus has been created by crowdsourcing, and covers
a wide range of story domains. Its Cloze task is to select a correct story ending from two
possible candidates, and contains 3,744 instances. For our analysis, we randomly sample 50
stories from the ROCStories Cloze task stories, and manually annotate them with applicable
axioms that explain why a story ending is (not) expected.

Our analysis shows that the stories can be explained with the CS axioms defined by Gor-
don and Hobbs [2017]. They mainly involve reasoning about agent goals, plans, and emo-
tions, as well as event sequences. A smaller portion relies on complementary axioms about
actions under constraints, changes of an agent’s mental state, or modeling of another agent’s
mental state. The majority of the incorrect endings can be explained by counterfactual rea-
soning, e.g., having little money is contradictory to having no money at all. Table 2 presents
example stories with their corresponding axioms. The story about unmet expectations is
explained by axioms about unexpected events, agent preferences, and prevented events due
to causality. The story about alternatives is based on understanding about anticipation of
positive events, disgust, pain, and substitution of activities.

While axioms can explain various phenomena of storytelling, we note that some gaps
need to be filled by commonsense knowledge. For instance, the stories in Table 2 assume
understanding of temporality (e.g., a closed down restaurant will likely not re-open soon)
and similarity (e.g., both fishing and watching a movie are leisure activities).

3. Generating stories with axioms and commonsense knowledge

Inspired by the analysis in the previous section, here we investigate how axioms can be
combined with CS knowledge graphs in order to generate a large number of stories. Our
method is presented in Figure 1. We consider three story types: unmet expectations,
alternatives, and object modifications. We formalize a story type by associating it with
underlying axioms and commonsense knowledge relations. We use the formalization to
extract paths from a commonsense knowledge graph. The path objects are used to fill
a story type template, resulting ultimately in a story in natural language. In addition,
the paths, combined with the underlying axioms, are used to generate a human readable
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Figure 1: Overview of our story generation method.

explanation. Next, we define and formalize the three story types, we describe the leveraged
commonsense knowledge graphs, and we detail our data collection procedure.

3.1 Story type formalization

Type I: Unmet expectations Situations come with particular expectations. One expects
that a refrigerator is located in the kitchen, that it is not empty, and that its contents are
colder compared to other items in the room. We formalize a version of unmet expectations,
consisting of three elements: a location L, a container C that is found in that location, and
an item I which is often found in the container C. We connect the three elements in a
natural language sentence based on a template, namely:

Q: I went to the (L). There was a (C) but it had no (I). Am I disappointed? A: Y/N

Type II: Alternatives Navigating in the world requires agents to be flexible in terms
of their plans, and able to understand the contextual suitability to replace one item with
another. For instance, if one wants to eat and is unable to find a restaurant nearby, a
café is likely to be a suitable substitute. We formalize stories about alternatives with four
elements: a location L, a goal G, an item I, and its potential alternative I2. We connect
the four elements in a natural language sentence based on a template, namely:

Q: I went to (L) and I wanted to (G). There was no (I), can I use (I2) instead? A: Y/N

Type III: Object modifications Understanding the typical effect of one object on another
is another key aspect of grasping situations. A coffee in a microwave is likely to get warmed
up, popcorn grow in a microwave, while a refrigerator will get both the coffee and the
popcorn cold. We define four elements in the object modification scenario: a location L, an
item I, an affected object O, and state modification M . We use the following template:

Q: There is (I) in the (L). Can it (M) the (O)? A: Y/N

3.2 Commonsense knowledge graphs

The structured sources of commonsense knowledge can be categorized into: commonsense
knowledge graphs, common knowledge graphs, visual sources, and lexical sources [Ilievski
et al., 2021a]. These sources typically represent knowledge in the form of a directed triple
< h, r, t >, consisting of a head (h), relation (r), and a tail (t). We instantiate candidate
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Unmet expectations Alternatives Object modifications
Axioms 6-At location 1-Substitution 2-Change of state to

9-Expectation 6-At location 3-Agent causality
10-Expectation confirmation 7-Similar in that 4-Object of

11-Expectation violation 8-Different in that 5-Instrument of
12-Achieved goal 6-At location

13-Unachieved goal
14-Good for
15-Bad for

16-Disappointed
Paths I AtLocation C I UsedFor G I AtLocation L

C AtLocation L I2 UsedFor G I UsedFor (M,O) or
I AtLocation L I CapableOf (M,O)
I2 AtLocation L

Table 3: Paths for the three story types. Unmet expectations: I went to the (L). There
was a (C) but it had no (I). Am I disappointed?; Alternatives: I went to (L) and
I wanted to (G). There was no (I), can I use (I2) instead?; Object modifications:
There is (I) in the (L). Can it (M) the (O)?

stories by path traversal over the Commonsense Knowledge Graph (CSKG) [Ilievski et al.,
2021b], which consolidates seven such sources, including ConceptNet [Speer et al., 2017],
ATOMIC [Sap et al., 2019a], and Visual Genome [Krishna et al., 2017]. At present, for each
story type, we manually define its paths over CSKG in accordance with relevant axioms.
We envision these to be automatically generated by a trained language model in the future.

3.3 Data collection and filtering

For each story type, we collect candidate stories by traversing CSKG. The designed paths
for each of the story types are presented in Table 3. Here, we also outline the axioms that
collectively explain each story. Following Gordon and Hobbs [2017], we provide a formal
definition of each axiom in Table 1. The candidate stories are further filtered in accordance
to the relevant axioms. We next detail the procedure for each story type.

Type I: Unmet expectations Stories about unmet expectations are based on agent ex-
pectations and goals, their realization in a given location, and their associated sentiment.
Specifically, if an agent expects that an item I, which is good for them, is found in a
container C in a location L, then not finding this item is disappointing for the agent. Con-
versely, if an item I is not expected in a container C in a location L, then not finding
this item does not disappoint the agent. The initial number of sentences generated from
CSKG is 121,148. First, we filter out candidates where L is not a real location, based on a
frequency-based heuristic: we only keep the top-100 most frequent locations. This reduces
the number of sentences to 49,966. Next, we remove sentences whose item is an animate
object. We do this by constructing a WordNet-based list of terms which are subclasses of
people and animals.1 To connect the disappointment of an agent to the “goodness” of the

1. Synsets: animal.n.01, person.n.01, people.n.01, peoples.n.01
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outcome, we filter the remaining sentences based on sentiment analysis. If both the item
and its container have a positive sentiment, then we keep this story and infer that not find-
ing such an item is disappointing (answer ‘yes’). To balance the data, we generate as many
additional sentences whose item is unexpected at a given location, which does not lead to
disappointment (answer ‘no’). This procedure results in 80,888 stories, whose answers are
split equally between ‘yes’ and ‘no’.

Type II: Alternatives Stories on alternatives rely on axioms about substitution, location
of objects, and similarity/distinctness. Namely, two items that are used for the same purpose
and coincide in their location, may serve as alternatives to each other. The initial number of
sentences with this method is 14,949, all of which have an answer ‘Yes’. We use a frequency-
based heuristic to select locations, and only keep the 100 most frequent locations. After this
step, we have 9,733 stories left. Next, we avoid alternatives which are synonymous (e.g.,
TV and television; dentist office and dental office). We filter these out in two ways: 1) by
generating a list of synonyms based on WordNet, and filtering sentences where the item
and its alternative are synonyms; and 2) by the Levenshtein and Jaccard string similarity
metrics, by ensuring that their Levenshtein similarity is higher than 0.9 and their Jaccard
similarity is below 0.6. The final set of sentences with answer ‘yes’ after this filtering step
is 3,772. In order to generate negative samples, for each existing story we generate an
alternative story with an answer ‘no’, where the alternative item is randomly sampled from
the set of alternatives to the other stories which are not correct alternatives to the current
one according to CSKG. This results in a total set of 7,544 stories.

Type III: Object modifications Stories about object modifications rely on understanding
about locations, as well as the instrument and the object of a change of state. Namely, an
instrument causes a specific change of state to an object, at a given location. From CSKG,
we obtain instrument utilities as compounds of modification M and object O (e.g., bake
a cake). We split these utilities into the constituent object O and modification M , which
requires that the utility must be a compound of a verb and a noun. The initial set of stories
generated by this method is 214,878. The top-100 most frequent locations cover 69,509
stories. After discarding animate objects, our process generates 17,486 stories, with a large
variety of answers. We generate stories with a negative answer, by randomly sampling an
action that does not apply to a given object. We end up with 29,392 stories, whose answers
are split equally between ‘yes’ and ‘no’.

4. Evaluation

Our method resulted in 118K short stories: 81K about unmet expectations, 8K about
alternatives, and 29K about object modifications. Each story is associated with a binary
question, whose answers are equally balanced between the two categories (‘yes’ and ‘no’).
Next, we report on two experiments that measure the quality of the generated stories.
We evaluate the accuracy of the stories by measuring agreement between our method and
humans. We compare the sensibility and interestingness of our stories to alternative stories
generated by a sequence-to-sequence language model.
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Prompt GPT-2 Our method
I went to the
street corner.

I went to the store but never saw some-
one who had a camera there.

There was a mailbox but it had no
letter slot. (S, I)

There was clock
in the table.

‘There is a timer ticking, we are about
to leave.’ (I)

I wanted to use it to keep a(n)
time. (S)

I went to the city. “It’s my first time,”she said.(S,I) There was a runway but it had no plane.

Table 4: Stories generated by our method and by GPT-2. The more sensible story is marked
in bold. The more interesting story is marked in italic.

4.1 Measuring agreement with humans

Human evaluation We randomly select 450 stories (150 from each story type), and ask
crowd workers to answer them. The crowd workers can choose one of the following three
answers: “yes”, “no”, and “I don’t know”. We obtain 3 judgments per story, resulting in
1,350 judgments in total. Among these, 9.55% (129/1,350) of the judgments are “I don’t
know”. We pick the majority vote for each question, by comparing the number of “yes”
and “no” judgments. This results in 207 answers “yes”, 208 “no”, and 35 ties.

We next compare the majority answer according to the crowd, to the answer according
to our story generation procedure. The humans agree with our method on 71.5% (322 out
of 450) of all the answers, or 77.6% (322/415) if we discount the ties. We also compute
agreement per story type. The agreement is lowest on stories about unmet expectations
(52.67%, or 60.3% without ties), and highest on stories about alternatives (86% and 87.75%,
respectively). The agreement on the stories about object modifications is 76% (83.21%
without ties). The set of 322 validated stories can be found online at: shorturl.at/fivyA.

Our qualitative analysis identifies three common causes for disagreement: 1) Incorrect
negative sampling: in some cases, we sample a generic, yet viable, location as a negative
sample, which results in a false negative. Such a case is “I went to the michigan. There was
a theater but it had no theater ticket. Am I disappointed?”, to which the crowd workers
rightfully answer “yes”. 2) Missing agent goals: Most of the disagreements are observed
on stories about unmet expectations. These stories currently lack information about the
agent goal. For instance, not finding a date book on a desk is only disappointing if the
agent needs it. 3) Remaining ambiguity: Some stories are imprecise and ambiguous,
which allows for different interpretations, and consequently, different answers. Such a case
is the story “There was yard in the house. Can it be used to measure a(n) distance?”, to
which the crowd says “no”, while our method answers with “yes”.

4.2 Comparison to a language model generator

In Section 1 we claimed that language models cannot generate high-quality stories, and we
expect that our commonsense-based method is able to improve on this task. Here we test
these claims, by comparing the quality of the stories generated by our method to those
generated by a state-of-the-art sequence-to-sequence model, GPT-2 [Radford et al., 2019].
We randomly pick 100 of our generated stories, and change them into affirmative sentences
(e.g., ‘can it be used’ becomes ‘I decided to use it’). Then, we leave out the story ending
sentence, and use GPT-2 to provide an alternative completion. We ask crowd workers to
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choose between our story and the one by GPT-2, based on two questions: 1) which story
makes more sense; 2) which story is more interesting. We collect three judgments per story.

The results confirm our hypothesis. In 73% of the cases, our stories are judged to be
more sensible than the ones generated by GPT-2 (as opposed to 27% of the cases where
GPT-2 generated a more reasonable story). As it can be expected, the interestingness of
the stories is much more similar: 52% votes for our method, and 48% for GPT-2. These
findings demonstrate that our method can generate more reasonable and well-rounded sto-
ries than GPT-2, whereas both methods produce similarly interesting stories. This finding
is illustrated in Table 4 with exemplar stories and their corresponding judgments.

5. Discussion

How to generate better stories? Our method described in this paper was able to
yield over a hundred thousand stories that correspond to three types, and can be easily
scaled up to more story types or larger knowledge graphs. Our human evaluation showed
that the generated stories are moderately accurate. They are more sensible than, yet
similarly interesting to, those generated by a language model. More interesting stories could
be generated by more complex graph patterns and a richer set of axioms, e.g., including
causality and agent goals. Yet, given the noise in the graph, it is to be expected that more
interesting stories will be produced at the expense of their soundness. Thus, generation of
stories which are both more sound and interesting depends on the quality of the available
knowledge in CSKG. Generating better stories requires further consolidation of CSKG, to
address reported issues of ambiguity, variance, and incompleteness [Ilievski et al., 2021a].

How to provide a more comprehensive explanation? Explaining a story requires
understanding of the relevant axioms, but also possession of commonsense knowledge. For
example, in order to understand that two girls becoming friends may cause one of the girls
to be happy, we need to understand both the key axioms (e.g., happiness is a consequence
of achieving a goal) as well as universal human knowledge (e.g., people generally have an
intrinsic goal to make friends). A crucial next step for our research is to enhance the story
explanations, by filling gaps in the axioms with relevant commonsense knowledge.

How to build a model that can explain any story? In Section 2.2, we showed that
the commonsense axioms in [Gordon and Hobbs, 2017] cover all stories which we analyzed
manually. An explanatory language model, like WT5 [Narang et al., 2020], can thus be
trained to explain any story in a corpus like ROCStories. Generating training data for
explaining stories with commonsense axioms would require the axioms to be grounded to
their corresponding stories. This could be performed in a semi-automatic manner: an
automatic method would propose possible axioms, e.g., by distant supervision based on a
small set of manually annotated stories, such as those in Section 2.2. In a subsequent step,
humans (e.g., crowd workers) would validate the axioms with a lowest estimated confidence.

6. Related work

Two major research directions relate to our paper: 1) story generation and understanding,
and 2) benchmark generation with commonsense knowledge graphs.
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6.1 Story generation and understanding

ROCStories [Mostafazadeh et al., 2017] is a corpus and task for commonsense story comple-
tion: given four sentences, models are asked to complete the story with the final sentence.
LIGHT [Urbanek et al., 2019] is a framework for assessing models’ ability to generate nat-
ural dialogue, actions, and emotes in hundreds of crowdsourced environments. Fan et al.
[2020] devises a machine learning approach that learns to create worlds based on the ad-
venture environments collected in LIGHT. Embodied QA [Das et al., 2018] takes this a
step further, by placing an embodied agent in a generated world environment. Rather than
generating a small number of expressive and high-quality worlds, our focus is on generating
a large number of stories dynamically from freely available commonsense knowledge graphs
based on well-understood axioms of human cognition.

Prior work has also attempted to generate stories at scale. One idea is to divide the
generative task into two phases: event sequence generation and transformation of these
events into English sentences [Ammanabrolu et al., 2019, Martin et al., 2018, Yao et al.,
2019]. Radford et al. [2018] show that generative language models can generate better
story endings upon minimal adaptation of their input. Language models can be adapted
to perform controllable language generation, by being combined with user-specified bag of
words [Dathathri et al., 2020], ending valence and keywords [Peng et al., 2018], or homo-
phones [He et al., 2019]. The template-based story generation model by Chaturvedi et al.
[2017] uses the sequence of events described in the story, the evolution of sentiment and
emotional trajectories, and topical consistency. See et al. [2019] control four attributes of
multi-turn conversations (repetition, specificity, response-relatedness, and question-asking)
and measure their impact on human judgments of quality. Recognizing that commonsense
knowledge is a key aspect of story comprehension, Rashkin et al. [2018] provide an anno-
tation formalism for labeling of the mental states of the characters in short commonsense
stories, whereas the story ending selection model by Chen et al. [2019] combines narrative
sequences, sentiment evolution, and commonsense knowledge. In the latter work, common-
sense knowledge is included based on ConceptNet’s numberbatch embeddings [Speer et al.,
2017]. Our work complements such notable efforts on story generation, because: (1) we
use common sense as the underlying framework, based on axiomatic understanding cou-
pled with large-scale common knowledge, and (b) our framework has the ability to provide
supervision in the form of commonsense reasoning.

6.2 Generating benchmarks from commonsense knowledge graphs

Pattern-based extraction from ConceptNet [Speer et al., 2017] has been used to create
commonsense benchmarks for multiple-choice question answering [Talmor et al., 2018] and
logical probing [Zhou et al., 2020]. Parts of ATOMIC [Sap et al., 2019a] have been leveraged
in the construction of the SocialIQA [Sap et al., 2019b] dataset. Besides for benchmarking,
commonsense knowledge has also been employed to enhance the ability of language models
to perform zero-shot reasoning across tasks. An efficient way to generate substantial data
for question answering is by leveraging large-scale, freely available commonsense knowledge
graphs [Ma et al., 2021]. In this paper, we extend this idea by combining commonsense
knowledge with cognitive axioms in order to generate stories at scale.
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7. Conclusions

This paper proposed a method that combines commonsense axioms with large knowledge
graphs in order to understand and generate stories at scale. We showed that axioms can
describe a useful set of phenomena in a popular corpus with 100K stories, ROCStories, and
they can be grounded to knowledge types in modern commonsense knowledge graphs. We
generated hundreds of thousands of stories with questions for three exemplar story types,
and we evaluated their sensibility and interestingness through crowdsourcing. Our human
evaluation showed that are stories are largely accurate, and that they are more sensible than
those of a language model, yet of similar interestingness. Based on these findings, we dis-
cussed three open challenges for generating and explaining stories with common sense as the
underlying framework: creating better stories, providing more comprehensive explanations,
and building models that can explain any story with commonsense axioms.
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