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Abstract

With the recent emergence of powerful
instruction-tuned large language models (LLMs),
various helpful conversational Artificial Intelli-
gence (AI) systems have been deployed across
many applications. When prompted by users,
these AI systems successfully perform a wide
range of tasks as part of a conversation. To
provide some sort of memory and context, such
approaches typically condition their output on
the entire conversational history. Although this
sensitivity to the conversational history can often
lead to improved performance on subsequent
tasks, we find that performance can in fact also
be negatively impacted, if there is a task-switch.
To the best of our knowledge, our work makes
the first attempt to formalize the study of such
vulnerabilities and interference of tasks in con-
versational LLMs caused by task-switches in the
conversational history. Our experiments across
5 datasets with 15 task switches using popular
LLMs reveal that many of the task-switches can
lead to significant performance degradation. 0

1. Introduction
Recent advancements in Natural Language Processing
(NLP) (Brown et al., 2020; OpenAI, 2023), have led to
their widespread deployment of large language models
(LLMs) across various applications (Bubeck et al., 2023;
Anil et al., 2023; Singhal et al., 2022). One of the popular
NLP tasks includes conversational systems where LLMs
are capable of engaging in dialogues that mimic human in-
teractions (Manyika & Hsiao, 2023; Bai et al., 2022). A
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  Give sentiment of this review.
 "The food was terrible."

   The sentiment is Negative

 Give sentiment of this review.
 "The brunch menu is amazing..."

   The sentiment is Positive

 Solve the problem. "John has
five delicious apples. He eats
two. How many are left?"

   The sentiment is Positive

Algebra problem
Task Switch

Sentiment Prediction

 Solve the problem. "John has
five delicious apples. He eats
two. How many are left?"

Three apples left.

No Conversation History

Figure 1. An illustrative example where the chat history is based
on sentiment prediction. Algebra word problem introduces task-
switch which results in an incorrect prediction.

typical interaction involves a series of conversation turns
starting with the user and the LLM responds to the user.
This interaction is however focused on a specific topic or a
task (Hosseini-Asl et al., 2020; Lee et al., 2022).

The performance of LLMs is further boosted by leveraging
in-context examples or few-shot examples of a particular
task (Brown et al., 2020; Smith et al., 2022; Thoppilan et al.,
2022). In-context learning, by utilizing examples within the
conversation history, enables LLMs to generate responses
that are relevant and tailored to the contextual conversa-
tion. The auto-regressive nature of popular instruction-tuned
(LLMs) suggests that the LLM generated response is condi-
tioned on the entire conversation history. This underscores
the sequential dependency and contextual awareness embed-
ded within these models. While prompt sensitivity has been
exploited by in-context learning to improve downstream
performance, this sensitivity has also opened the door to
vulnerabilities, where malicious actors can exploit prompt
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sensitivity for adverse purposes (Greshake et al., 2023; Liu
et al., 2023; Jiang et al., 2023b; Xu et al., 2023).

In this paper, we investigate the sensitivity and the impact of
LLM performance on past conversational interaction. To do
so, we introduce the concept of task-switch. A task-switch
is characterized by a conversational objective, moving from
one distinct task to another within the same conversation
thread, for example: Figure 1 illustrates a task-switch from
sentiment prediction to math algebra which confuses the
model to output erroneously. Designing LLMs that can
seamlessly switch between tasks without degradation in per-
formance can influence the reliability of LLMs in realistic
scenarios.

In this work, we systematically study the impact of predic-
tive performance and the sensitivity of LLMs in the presence
of different task-based chat histories. Our key contributions
and takeaways can be summarised as:

• We formalize the risk of performance degradation of
LLMs due to task-switch.

• We present the impact of task-switch on diverse
datasets with more than 15 different task-switches.

• We measure the task-switch sensitivity for popular
LLMs of different sizes, where we observe that in
some cases very large (175B) and small (7B) LLMs
can both be susceptible to performance degradation
from task-switch.

2. Related Work
Large Language Models (LLMs) are becoming a crucial
building block of conversation-based virtual assistants (Ope-
nAI, 2023; Touvron et al., 2023; Jiang et al., 2023a; Anil
et al., 2023). Leveraging in-context or few-shot exam-
ples, LLMs have demonstrated remarkable capabilities for
downstream tasks (Brown et al., 2020). In contrast to the
resource-intensive fine-tuning process (Gao et al., 2020), in-
context learning eliminates the need for parameter updates,
while achieving state-of-the-art performance (Rae et al.,
2021; Smith et al., 2022; Thoppilan et al., 2022; Von Os-
wald et al., 2023; Chan et al., 2022; Akyürek et al., 2022;
Hahn & Goyal, 2023). However, despite its advantages, in-
context learning tends to suffer from sensitivity to prompts,
input distribution, and formats, which can potentially im-
pact the model’s performance (Liu et al., 2021; Zhao et al.,
2021; Lu et al., 2021; Min et al., 2022; Liu & Wang, 2023;
Chang & Jia, 2023). Chang & Jia (2023) observe that
the in-context examples implicitly bias the model. In our
work, we aim to study the bias that arises due to chat his-
tory (in-context examples) when a user switches the task.
Furthermore, recent works (Liu et al., 2023; Greshake et al.,
2023) have looked at the vulnerability of LLM to prompt
injections and adversarial attacks. Unlike prompt injection,

where a malicious prompt may be added to the conversa-
tion of LLM, our setting, is concerned with non-malicious
task-switches. While a few recent works have investigated
the reliance on shortcuts in conversation history (Tang et al.,
2023; Si et al., 2022; Weston & Sukhbaatar, 2023), our work
aims to evaluate prompt history sensitivity for a new task.
Our work is also differentiated from the study topic change
in Task-oriented Dialogue systems (Xie et al., 2021; Xu
et al., 2021; Yang et al., 2022) as we consider a stronger
shift of task-switch from open dialogue LLMs.

3. Conversational Task-Switch
This work introduces and formalizes task-switch in a con-
versation for LLMs. A conversation between a user and
the LLM consists of multiple conversation turns. Now con-
sider (uk, rk) as the k-th turn of the conversation where uk

corresponds to the k-th user prompt and the model’s corre-
sponding response rk. Each user prompt uk can be viewed
as an instance of a specific task request, e.g. sentiment
classification or mathematical reasoning. A conversation
history of L turns can be defined as h = {(uk, rk)}Lk=1.
Subsequently, the next response, rL+1 for model θ is given
as:

rL+1 = argmax
r

Pθ(r|uL+1,h) (1)

In this work, we consider conversations with a single task-
switch, where all user requests in the conversation history
h belong to the same task and the final user request uL+1

is a different task. We refer to the task associated with h as
the conversation history task (CH task) Th where h ∈ Th

and the switched task associated with the final user request
uL+1 as the target task Tt where uL+1 ∈ Tt.

When the tasks Th and Tt are sufficiently different (as per
human understanding of language and tasks), the conversa-
tion history h ideally must not impact the response, rL+1.
For a model robust to such a task-switches, Th → Tt, its
response rL+1 is conditionally independent of the conversa-
tion history,

rL+1 ⊥ h | uL+1 h ∈ Th, uL+1 ∈ Tt. (2)

However, in practice, models can be sensitive to the conver-
sation history, h, which can harm the quality of the response
rL+1 after a task-switch, Th → Tt. We define τ(·), the
task-switch sensitivity of a model θ, to measure the extent
of this vulnerability.1

τ(Th, Tt; θ) = EuL+1∈Tt,h∈Th
[log ρ] (3)

ρ =
Pθ (r

∗|uL+1)

Pθ (r∗|uL+1,h)
(4)

r∗ = argmax
r

Pθ(r|uL+1). (5)

1Theoretical and empirical implications of other definitions for
task-switch sensitivity in Appendix D
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Task-switch sensitivity can be interpreted as:

1. τ(·) > 0: The model is impacted by the task-switch in
the conversation history and is less confident in zero-
shot prediction.

2. τ(·) = 0: The task-switch has no impact on the
model’s zero-shot prediction, suggesting a level of task-
switch robustness.

3. τ(·) < 0: The task-switch gives the model more confi-
dence in its zero-shot prediction.

To simulate a setting where the model has perfect perfor-
mance on the CH-task, Th we adopt teacher-forcing, s.t.
h = {(uk, r̂k)}Lk=1, where r̂ is the reference ground-truth
response.

4. Experiments
4.1. Experimental Setup

Data. We evaluate five different datasets covering a range
of tasks: Gigaword (Graff et al., 2003); abstract algebra sub-
set of Measuring Massive Multitask Language Understand-
ing (MMLU; Hendrycks et al. (2021)), named MMLU AA;
TweetQA (Xiong et al., 2019); Rotten Tomatoes (RT; Pang
& Lee (2005)); and human-aging subset from the MMLU
dataset (MMLU HA). Table 1 summarizes the nature of the
task for each dataset. In the the main paper, we consider two
datasets for the target tasks in a conversation with a task-
switch: MMLU AA and RT. In Appendix A, B, we present
results for the remaining datasets as the target tasks: MMLU
HA, Gigaword, and TweetQA. The train-test splits of these
datasets are shown in Table 2. The train set is randomly
sampled to form prompts to produce a conversation history
h of L turns, and the test set is used to evaluate model perfor-
mance on the (L+1)-th turn. The prompt templates used for
each dataset are discussed in Appendix C. For classification
tasks performance is measured using accuracy, whilst for
generative tasks it is measured using ROUGE (Lin, 2004)
or METEOR (Banerjee & Lavie, 2005).

Table 1. Dataset Task Description.

DATA TASK

GIGAWORD SUMMARIZATION
MMLU AA MATH MULTIPLE CHOICE QUESTION
TWEETQA SOCIAL QUESTION ANSWER
RT SENTIMENT CLASSIFICATION
MMLU HA SOCIAL MULTIPLE CHOICE QUESTION

Models. We explore the task-switch sensitivity of four
popular models. We consider two open-source small mod-
els, Llama2-7b-chat (Touvron et al., 2023) and Mistral-7b-
chat (Jiang et al., 2023a); and two larger closed models,

Table 2. Dataset Statistics. QA: Question-Answering. MCQ: Mul-
tiple Choice Question

DATA #TRAIN #TEST TASK

MMLU HA 26 222 SOCIAL MCQ
MMLU AA 14 99 MATH MCQ
RT 8.53K 1.07K SENTIMENT CLASS
GIGAWORD 3.8M 1.95K SUMMARIZATION
TWEETQA 4.54K 583 SOCIAL QA

GPT-3.5 (Brown et al., 2020) and GPT-4 (OpenAI, 2023).
Zero-shot, absolute model performances are presented in
Appendix A.

4.2. Results

In addition to the task-switch sensitivity τ(·), we assess per-
formance changes between the predictions in the presence
of history and task-switch vs zero-shot. Table 3 and Table
4 showcases the impact of conversational task-switch with
MMLU AA and Rotten Tomatoes as the target tasks, Tt re-
spectively2. As would be expected with in-context examples,
the performance change in accuracy is generally positive.
The negative trend for change in accuracy from Th → Tt,
suggests that the task-switch causes performance degrada-
tion. For example, in the Gigaword summarization task as
Th and MMLU AA as Tt, most models (GPT-3.5, Llama-7B
and Mistral-7B) see a performance drop. Interestingly, for
some models, the task-switch may increase performance;
most prominently for Mistral-7B with Rotten Tomatoes as
Th and MMLU AA as Tt.

The sensitivity of different models to different task-switches
can be compared fairly using the task-switch metric, τ(·)
The larger the value of τ(·), the greater a model’s sensitivity
to a specific task-switch. In Table 3 and Table 4, Llama-
7B usually has the highest sensitivity to task-switches with
for example τ = 3.37 for a switch from MMLU AA to
Rotten Tomatoes and τ = 9.91 for task-switch from Rot-
ten Tomatoes to MMLU AA. We observe a general trend
between the change in accuracy and τ(·) for task-switch sce-
narios for Tt = Rotten Tomatoes where a negative change
in performance also suggests very high task-switch sensi-
tivity. In Figure 2, we plot the change in performance with
increasing Th examples for MMLU AA dataset. Here we
can clearly observe that in-context examples improve the
predictive performance. Notably, the accuracy variation
is more pronounced in smaller 7B models, likely due to
their lower baseline performance, which is substantially im-
proved by in-context learning. Performance fluctuations
for conversation history, h, can stem from two primary fac-
tors: a significant drop in the predicted probability for the

2The impact of task-switch for other datasets as the target tasks
is given in Appendix B.1
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Figure 2. Target Task: MMLU Abstract Algebra. % change in accuracy relative to zero-shot performance.

Table 3. Task-switch impact from CH-tasks (Th) to target (Tt):
MMLU AA and conversation length L = 6. Sensitivity not calcu-
lable for ∗.

CH-TASK MODEL % CHANGE τ(·)
MMLU AA GPT-3.5 17.17 ∗

GPT-4 -1.09 ∗
LLAMA-7B 0.00 31.51
MISTRAL-7B 37.68 1.12

GIGAWORD GPT-3.5 −12.12 ∗
GPT-4 −8.74 ∗
LLAMA-7B −18.75 5.23
MISTRAL-7B −21.74 3.13

ROTTEN GPT-3.5 2.02 ∗
TOMATOES GPT-4 −8.20 ∗

LLAMA-7B −12.50 9.91
MISTRAL-7B 11.59 0.83

TWEETQA GPT-3.5 −19.19 ∗
GPT-4 −8.20 ∗
LLAMA-7B −12.50 6.37
MISTRAL-7B −7.25 2.78

zero-shot response, r∗, or a notable increase in the proba-
bility for an alternative response, r. The latter can result
in substantial performance change while maintaining low
sensitivity, τ(·). By analyzing both performance changes
and task-switch sensitivity, we gain deeper insights into the
models’ adaptability to task-switches and the underlying
dynamics influencing these shifts.

5. Conclusions and Future Work
This work formalizes and performs an initial investigation
into the sensitivity of large language models (LLMs) to task-
switch scenarios within conversational contexts. We intro-
duce a task-sensitivity metric that can explain a model’s be-
havior to task-switches along with the performance change.
By experimenting with various task-switch settings, we ob-
serve that even advanced models like GPT-4 can exhibit

Table 4. Task-switch impact from CH-tasks (Th) to target (Tt):
Rotten Tomatoes and conversation length L = 6. Sensitivity not
calculable for ∗.

CH-TASK MODEL % CHANGE τ(·)
ROTTEN GPT-3.5 3.00 ∗
TOMATOES GPT-4 1.74 ∗

LLAMA-7B 2.54 4.02
MISTRAL-7B 3.17 2.65

GIGAWORD GPT-3.5 0.11 ∗
GPT-4 −0.98 ∗
LLAMA-7B 1.82 1.98
MISTRAL-7B −0.79 3.04

MMLU AA GPT-3.5 −0.22 ∗
GPT-4 0.76 ∗
LLAMA-7B −5.33 3.37
MISTRAL-7B 1.33 1.39

TWEETQA GPT-3.5 −0.33 ∗
GPT-4 −0.98 ∗
LLAMA-7B 2.72 2.77
MISTRAL-7B −1.23 3.01

vulnerabilities to task-switches. Our work additionally lays
the foundation for future work on ‘side-channel’ vulnerabili-
ties of LLMs to undesired information leakage/bias from the
conversation history. Further work will focus on developing
adaptive context management strategies within LLMs to
mitigate the risk of task-switch sensitivity.

6. Limitations
Although both GPT-3.5 and GPT-4 show degradation in
performance, given the closed nature of OpenAI models, we
were not able to perform task sensitivity analysis. We were
additionally limited by the maximum token length, hence
analysis over extremely long conversations was not feasible.
Future work could also look into alignment between humans
and the model as a metric which was out of the scope for
this paper.
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Impact Statement
As LLMs become increasingly powerful, they will be de-
ployed in a range of real-world settings as virtual conver-
sational assistants that can perform a multitude of tasks in
a single session. In this work, we are the first to formalise
a risk associated with a task-switch in this setting: current
state-of-the-art LLMs can suffer from performance degrada-
tion when a user switches between tasks in a conversation.
Therefore, we urge the community to design methods that
mitigate the risk of task-switch sensitivity, so that LLMs
can be deployed with fewer vulnerabilities as conversational
assistants.
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Appendix
Appendix A reports the zero-shot absolute performance
of all models on all tasks, Appendix B presents an abla-
tion study on the conversation history length (with multiple
seeds), Appendix C discusses the prompt templates, Ap-
pendix D discusses other definitions for task-switch sensi-
tivity, Appendix E discusses correlations, and Appendix F
tabulates confusion matrices for each model.

A. Absolute Performance
When evaluating the target task with a conversation history,
it is useful to compare the performance against a baseline
with no conversation history (h = Ø, L = 0). This is
equivalent to evaluating in a zero-shot setting. This section
reports the zero-shot performance for all the target task (Tt)
datasets: MMLU HA in Table 5, MMLU AA in Table 6,
RT in Table 7, Gigaword in Table 8 and TweetQA in Ta-
ble 9. Also note that for the classification tasks (MMLU
HA, MMLU AA, RT), we also report the number of re-
sponses for which we were unable to extract the answer (#
Format Errors), which is further discussed in Appendix C.
We evaluate on the test set with four LLMs (GPT-3.5, GPT-4,
Mistral-7B, Llama-7B), which were all set to Temperature
0 for reproducability.

Table 5. Zero-shot performance on MMLU HA.

MODEL ACCURACY # FORMAT ERRORS

GPT-3.5 66.22 18
GPT-4 84.68 0
LLAMA-7B 45.50 12
MISTRAL-7B 55.41 0

Table 6. Zero-shot performance on MMLU AA.

MODEL ACCURACY # FORMAT ERRORS

GPT-3.5 31.31 7
GPT-4 58.59 0
LLAMA-7B 28.28 3
MISTRAL-7B 21.21 0

Table 7. Zero-shot performance on RT.

MODEL ACCURACY # FORMAT ERRORS

GPT-3.5 89.90 0
GPT-4 91.80 4
LLAMA-7B 87.43 1
MISTRAL-7B 86.68 1

Table 8. Zero-shot performance on Gigaword.

MODEL ROUGE-1 ROUGE-2 ROUGE-L

GPT-3.5 17.37 4.79 14.78
GPT-4 15.76 4.07 13.34
LLAMA-7B 11.61 3.13 9.90
MISTRAL-7B 18.60 5.19 15.84

Table 9. Zero-shot performance on TweetQA.

MODEL ROUGE-1 ROUGE-L METEOR

GPT-3.5 30.66 30.39 44.18
GPT-4 28.03 27.68 43.41
LLAMA-7B 17.91 17.67 33.84
MISTRAL-7B 25.35 25.01 40.71

B. Conversation History Length Ablation
This section presents an ablation study on the performance
change after a task-switch for varying conversation history
lengths. For each dataset in Table 2 we select four datasets
(including itself), from which we use the training set as
conversation history. The details of the prompt structure are
presented in Appendix C.

B.1. Task-switch Performance Change

We compare the percentage change in metrics relative to
zero-shot performance (h = Ø, i.e. no conversation his-
tory) as a function of conversation history length L and for
different LLMs. Results are plot in Figures 3, 4, 5, 6, 7
for MMLU HA, MMLU AA, RT, Gigaword and TweetQA
respectively. When there is not a task switch, we would
expect a performance increase (assuming the training exam-
ples are representative of the test set). As per our discussion
in Section 4.2, we observe that different models degrade on
different task-switches and this is not limited by the model
size.

B.2. Format Failure Rate

Typically, classification tasks (MMLU HA, MMLU AA,
RT) are evaluated using logits, however we use a generative
approach for consistency: we are evaluating the model in
a conversational setting, and we do not have access to the
logits exactly. Thus, we must post-process the model output
to determine the class. In this, we try to give the LLM the
benefit of the doubt and do our best to extract the class.
For example, although the prompt requests the model to
output within answer tags like "<Answer> positive
</Answer>", we also accept "positive", but we do
not accept "positive/negative". Due to the imper-
fect nature of this setup, either we may not detect the correct
format, or the model generates erroneous text.
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Figure 3. Target Task: MMLU HA. Percentage % change in accuracy relative to zero-shot performance (no conversation history) for
increasing conversation history length L and various models.
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Figure 4. Target Task: MMLU AA. Percentage % change in accuracy relative to zero-shot performance (no conversation history) for
increasing conversation history length L and various models.

Importantly, models may become more susceptible to these
errors when performing a task-switch, causing performance
degradation. We capture this by reporting the percentage
% change in the number of examples that the model failed
on (relative to zero-shot) as the context history length in-
creases. These are plot in Figures 8, 9, 10 for MMLU HA,
MMLU AA and RT respectively. Figures 8 and 9 show that
GPT-3.5 and Mistral-7B are susceptible to format errors in
task-switches when evaluating on multiple choice questions,
whereas Figure 10 shows that GPT-4 and Llama-7B are
more susceptible in sentiment classification.

B.3. Performance Variance

Presented experimental results in the main paper are the
average across multiple seeds. However, it can be of inter-
est to understand the extent to which the results can vary
across multiple runs, as this provides an error bound on
the worst-case and best-case scenarios. In this section we
present the variance around the mean results for the mod-

els LLama-7b and Mistral-7b when evaluated on the target
tasks Rotten Tomatoes (Fig 11) and MMLU-AA (Fig 12)
with conversation history lengths L ∈ {0, 3, 6}.

C. Prompt Template
In each conversation turn, the user prompts the model uk.
The prompts are shown in Table 10. We chose these prompts
after careful research and experimentation. We began with
popular templates and refined them for our purpose.

Additionally, since we do not have access to the logits for
all models, we take a generative approach to the classifica-
tion tasks (MMLU HA, MMLU AA, RT). Since the model
may fail to output an answer in the desired format, we post
process the text to extract the answer (which we count as
a positive result it matches the reference). We report and
discuss the effect of format failures further in B.2. Further-
more, we note that the standard evaluation method used in
the Open-LLM leaderboard code (available on GitHub) is to
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Figure 5. Target Task: RT. Percentage % change in accuracy relative to zero-shot performance (no conversation history) for increasing
conversation history length L and various models.

see if the response starts with A,B,C or D(Gao et al., 2023).
We modified the prompt to ensure a more consistent out-
put format (across the different models) resulting in fewer
mistakes made.

For the classification tasks, we structure the prompt such
that we request the model to output their final answer within
answer tags. We note that giving an example of how to use
the answer tags always helped, however, this can bias the
model towards a particular answer. Instead, we found for
MMLU to just leave the answer tags empty, whereas for
RT to have the all the sentiment classes inside the tags (see
Table 10 for further details).
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Figure 6. Target Task: Gigaword. Percentage % change in accuracy relative to zero-shot performance (no conversation history) for
increasing conversation history length L and various models. Note that we focus on the effect of task-switching by clipping the y-axes at
+75%.
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Figure 8. Target Task: MMLU Human Aging. Percentage % of examples where format failed.
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Figure 9. Target Task: MMLU Abstract Algebra. Percentage % of examples where format failed.
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Table 10. Prompt templates for each dataset. Note that the MMLU {Topic} can be either Human Aging or Abstract Algebra.
Other {words} enclosed in curly braces are replaced by the corresponding field in the datasets.

MMLU {TOPIC} You have a multiple choice question on {Topic}. Only
one of the options is correct: A, B, C, or D. Give your
answer in the following format with the tags provided:
<Answer> </Answer>. Please read the following question
and options and answer the question
Question: {Question}
(A) {A}
(B) {B}
(C) {C}
(D) {D}

ROTTEN TOMATOES Can you choose only one sentiment [‘negative’,
‘positive’] for this review.
review: {Review}
Return only the sentiment label without any other text.
Make sure to follow the format otherwise your answer will
be disqualified:
<Answer> positive / negative </Answer>.
Do not output neutral.

GIGAWORD Please summarize the following article.
{Article}

TWEETQA Read the given tweet and answer the corresponding
question.
tweet: {Tweet}
question: {Question}
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Figure 13. Empirical investigation of various sensitivity metrics on the target task Rotten Tomatoes as a function of the conversation history
length L for Llama-7b and Mistral-7b. Note that we omit the line for the in-context dataset as this is not relevant to the investigation.
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D. Task-Switch Sensitivity Metrics
In Section 3, we introduced and formalized evaluation of
a model’s sensitivity to task-switch, namely the task sensi-
tivity τ . This metric aims to capture the vulnerability of a
model prompt to its chat history after a task-switch. For-
mally, it compares the zero-shot prediction r∗|u,h = Ø to
the probability of the model outputting the same zero-shot
response after a task switch P (r∗|u,h ̸= Ø). In this section,
we compare the theoretical and empirical implications of
different task switch sensitivity metrics.

Formally, given a conversation history h of length L and
the next user prompt u, the probability of a model’s re-
sponse rL+1 is given by Pθ(rL+1 | u,h). We consider the
probability of three possible responses:

1. r∗: zero-shot response

2. rL+1: model’s actual response

3. r̂L+1: reference response

We posit that after a task-switch, a robust model’s likelihood
of the zero-shot response remains high. Naturally, this gives
us the formulation for the aforementioned sensitivity metric

ρ1 =
Pθ(r

∗|u)
Pθ(r∗|u,h)

, (6)

which we call zero-shot sensitivity.

Additionally, after a task-switch, we posit that a robust
model’s likelihood of the actual response should be similar
to that of the zero-shot response, because the irrelevant
history should be largely ignored. This gives us

ρ2 =
Pθ(r

∗|u)
Pθ(rL+1|u,h)

, (7)

which we call the confidence sensitivity.

Lastly, we posit that if a model is well aligned to a task, then
both the zero-shot and model’s actual response should be
close to the reference response:

ρ3 =
Pθ(r̂L+1|u)

Pθ(r̂L+1|u,h)
, (8)

where each probability is essentially a measure of the loss,
hence we label this as the loss sensitivity.

The above are sensitivity per example, which we can use
to estimate the task-switch sensitivity τi = E[log ρi] as
per Equation 3, where the expectation is calculated over the
examples and histories (for a given length L). We evalu-
ate these metrics on the target task RT (rotten tomatoes) as
shown in Figure 13. Figure 13a shows that the zero-shot

sensitivity metric trends upwards for both models. This is
expected for a model which does not handle task-switch
well as the probability of the output with an increased con-
versation length decreases in comparison to the zero-shot
probability. For the confidence sensitivity in Figure 13b,
we observe that Mistral-7B behaves as we expect, whereas
Llama-7B becomes less confident in its output compared
to having no conversation history. For the loss sensitivity
metric in Figure 13c, we observe that Llama behaves as
we expect as the sensitivity remains relatively flat: as the
conversation history increases, there is no significant change
in the probability of outputting the reference. However, for
Mistral-7b, the probability falls immediately and plateaus
showing that the model was giving a very low probability
mass to the reference with no conversation history. Intu-
itively, it is clear that both models agree in their trends
only for the zero-shot sensitivity τ1 in Figure 13a, hence
in the main paper, we report zero-shot sensitivity as the
task-switch sensitivity.
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E. Correlations Models, Datasets and
Performance

We rank model performance against various metrics to see
if there is any correlation that may help explain model per-
formance more generally.

E.1. Task Tokens

Table 11. Target Task: MMLU AA.

CH TASK LENGTH LLAMA-7B MISTRAL-7B

GIGAWORD 75 -21.35 -15.94
TWEETQA 93 -15.10 -4.35
RT 108 -13.02 10.87
MMLU AA 143 -1.79 37.68

Table 12. Target Task: RT

CH TASK LENGTH LLAMA-7B MISTRAL-7B

GIGAWORD 76 1.98 -0.72
TWEETQA 93 2.70 -1.28
RT 108 2.38 2.83
MMLU AA 143 -5.42 1.19

We compare the model performance against the mean con-
versation history task, Th length. The length is measured as
the number of tokens in the model, and the mean is taken
over the whole dataset. The model performance is taken
for three different seeds with conversation history lengths
L ∈ {3, 6}.

E.2. Task Distance

In this section we aim to assess the hypothesis that the ‘dis-
tance’ between tasks can explain the extent of performance
degradation in different task-switches, from the conversation
history task, Th to the target task, Tt. Measuring distance
between tasks is a multi-faceted and complex metric. Given
the lack of formal task distance measures, we instead use
a consensus ranking approach, where multiple powerful
Large Language Models (LLMs) are required to rank the
different tasks on how similar they are. For the target task
RT, we queried four of the largest and most powerful models
to rank the closest tasks, based on the description of each
task. We consider the following LLMs: ChatGPT; Gemini
Ultra (Team et al., 2024), Claude 3 Sonnet from Anthropic;
and Perplexity AI. The rankings by the LLMs are given in
Table 13 relative to RT. We then select an overall ranking
with the greatest consensus - in this case three of the four
LLMs agree perfectly in the ranking. This gives a consen-
sus vote of ranks (relative to RT): RT (1); MMLU AA (3);
TweetQA (2); and Gigaword (3). The equivalent ranks are
given in Table 14 with MMLU AA as the reference task. In
this case, three of the four models perfectly agree in their

rankings.

Table 13. Rank given by LLM for different datasets on how similar
they are to the target task RT.

DATASET CHATGPT GEMINI CLAUDE PERPLEXITY

RT 1 1 1 1
MMLU AA 4 4 4 4
TWEETQA 2 3 2 2
GIGAWORD 3 2 3 3

Table 14. Rank given by LLM for different datasets on how similar
they are to the target task MMLU AA.

DATASET CHATGPT GEMINI CLAUDE PERPLEXITY

RT 4 4 4 4
MMLU AA 1 1 1 1
TWEETQA 2 3 2 2
GIGAWORD 3 2 3 3

The following tables compare the rank of the dataset dis-
tance against the mean model performance. The model
performance is the %-percentage accuracy change relative
to zero-shot, and the mean is taken over three seeds and over
conversation history lengths L ∈ {3, 6}.

Table 15. Target Task, Tt: RT. Performance degradation (with
different conversation history tasks) compared to the task rank,
measuring similarity to Tt.

CH-TASK RANK LLAMA-7B MISTRAL-7B

RT 1 2.38 2.83
TWEETQA 2 2.70 -1.28
GIGAWORD 3 1.98 -0.72
MMLU AA 4 -5.42 1.19

Table 16. Target Task: MMLU AA. Performance degradation
(with different conversation history tasks) compared to the task
rank, measuring similarity to Tt.

CH-TASK RANK LLAMA-7B MISTRAL-7B

MMLU AA 1 -1.79 37.68
TWEETQA 2 -15.10 -4.35
GIGAWORD 3 -21.35 -15.94
RT 4 -13.02 10.87

Overall, there appears to be only a weak correlation in some
settings between the task distance and the performance
degradation. This suggests that performance degradation
is not only a function of the task distance, but is also an
attribute of the specific model. Further analysis would be
required to understand the aspects of specific models for
certain task-switches that influence the level of performance
degradation.
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F. Performance Confusion Matrix
In this section, we summarize the performance change for
every pairing of task-switches from conversation history
task (Th) to target task (Tt). We present the results here for
a conversation length of L = 6 for each model separately.
Tables 17, 18, 19, 20 report the results for models GPT-3.5,
GPT-4, Llama-7B, Mistral-7B respectively. Each row is
the performance change in the Target Task Tt. Please note
that the metric for the tasks are: accuracy for MMLU AA,
RT, MMLU HA, METEOR for TweetQA, and RougeL for
Gigaword.

Table 17. Model: GPT-3.5. Percentage % change in model perfor-
mance.

CONVERSATION HISTORY TASK
TARGET TASK AA RT TQ GW HA

MMLU AA 19.35 6.45 6.45 -3.13
RT -0.22 3.00 -0.33 0.11
TWEET QA -13.78 -3.55 24.81 -5.69
GIGAWORD -12.10 -6.59 -3.48 67.85
MMLU HA 4.73 -12.84 -8.11 20.41

Table 18. Model: GPT-4. Percentage % change in model perfor-
mance.

CONVERSATION HISTORY TASK
TARGET TASK AA RT TQ GW HA

MMLU AA 8.62 -13.11 -3.39 0.00
RT 0.76 1.74 -0.98 -0.98
TWEET QA 3.69 25.58 35.80 5.06
GIGAWORD 12.52 14.18 59.07
MMLU HA 0.53 1.59 2.14 5.85

Table 19. Model: Llama-7B. Percentage % change in model per-
formance.

CONVERSATION HISTORY TASK
TARGET TASK AA RT TQ GW HA

MMLU AA 3.57 -15.63 0.00 -10.71
RT -5.69 1.82 3.76 1.82
TWEET QA 1.68 13.37 50.74 10.17
GIGAWORD 11.76 11.73 158.79
MMLU HA 13.86 -3.96 -0.99 25.74

Table 20. Model: Mistral-7B. Percentage % change in model per-
formance.

CONVERSATION HISTORY TASK
TARGET TASK AA RT TQ GW HA

MMLU AA 28.57 18.18 -4.76 -19.05
RT 0.97 3.79 -0.87 -1.30
TWEET QA -0.78 7.62 30.56 9.26
GIGAWORD -3.81 2.61 3.44 78.71
MMLU HA 1.63 0.81 -11.38 12.20
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