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ABSTRACT

One-Shot Federated Learning (OFL) is a promising approach that reduce commu-
nication to a single round, minimizing latency and resource consumption. How-
ever, existing OFL methods often rely on Knowledge Distillation, which adds a
training phase and increases server-side latency. Their performance can also be
compromised by the quality of generated data or public datasets, resulting in sub-
optimal server models. To address these challenges, we proposed One-Shot Fed-
erated Learning with Tsetlin Machine (FedTMOS), a novel data-free OFL frame-
work built upon the low-complexity and class-adaptive properties of the Tsetlin
Machine. FedTMOS first clusters then reassigns class-specific weights to form
models using an inter-class maximization approach, generating balanced and ef-
ficient server models without requiring additional training. Our extensive exper-
iments demonstrate that FedTMOS significantly outperforms its ensemble coun-
terpart by an average of 6.16%, and the leading state-of-the-art OFL baselines
by 7.22% across various OFL settings. Moreover, FedTMOS achieves at least a
2.3× reduction in upload communication costs and a 75× reduction in server la-
tency compared to methods requiring server-side training. These results establish
FedTMOS as a highly efficient and practical solution for OFL scenarios.

1 INTRODUCTION

Federated Learning (FL) enables collaborative training across decentralized data sources while
maintaining privacy. Unlike traditional machine learning approaches, where data is transferred to
a central server, FL keeps the training process on local devices, with only model parameters be-
ing uploaded to a central server for aggregation, ensuring that sensitive information is not shared
(McMahan et al., 2016). However, the standard FL training process can lead to significant commu-
nication costs due to the multiple communication rounds between the server and devices to achieve
convergence. This iterative process is time consuming and resource-intensive, especially for edge
devices with limited computational power and bandwidth (Imteaj et al., 2022). The risk to secu-
rity and the potential of failures in communication links also leads to further challenges (Mothukuri
et al., 2021; Li et al., 2020).

To address these limitations, One-Shot Federated Learning (OFL) has emerged as a promising al-
ternative. OFL restricts communication to a single round, thus minimizing communication errors
and reducing the risk of interference caused by iterative updates (Guha et al., 2019). This approach
is particularly well-suited for scenarios where continuous communication is impractical, such as in
model marketplaces, where models are sold after reaching convergence (Li et al., 2020). OFL is
also ideal for edge devices with limited resources, as it eliminates the need for multiple rounds of
transmitting large volumes of model parameters between clients and the server (Khan et al., 2021).

Current OFL methods mainly rely on Knowledge Distillation (KD) and ensemble learning, which
aggregate local models into an ensemble before distilling it into a global model. A key challenge
with these methods is their dependence on public datasets, which may be inaccessible or unsuitable
for certain tasks (Li et al., 2021; Guha et al., 2019). Data-free methods using generative models
have been explored (Zhu, Zhuangdi and Hong, Junyuan and Zhou, Jiayu, 2021; Zhang et al., 2022a;
Dai et al., 2024; Zhou et al., 2020), but they often suffer from performance limitations and introduce
significant computational overhead. Additionally, neuron matching and model fusion techniques,
which eliminate the need for server-side training, have been proposed, but they too struggle with
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performance when models are trained on heterogeneous data distributions, as aligning the models
can be challenging (Wang et al., 2020; Singh & Jaggi, 2020; Jhunjhunwala et al.). On the client side,
most existing methods heavily rely on Deep Neural Networks (DNNs), which are resource-intensive
and often impractical for clients with limited computational capabilities, such as edge devices.

Firstly, to address the computational limitations of training DNNs on the edge, we employ the Tsetlin
Machine (TM), which features a low-complexity architecture based on finite-state automata and
game-theoretic principles (Granmo, 2021). This makes TMs a highly efficient alternative to tradi-
tional DNNs, as they have demonstrated the capability to significantly reduce communication costs
per round by at least 1.37× and improve storage efficiency by at least 6.6× compared to Binary
Neural Networks (BNNs), all without sacrificing performance (How et al., 2023).

Furthermore, to enhance the efficiency of the OFL process, we eliminate the need for server-side
training for KD and the reliance on an auxiliary dataset. We proposed a novel data-free solution that
leverages the class-adaptive nature of TMs by generating server models that maximize inter-class
model separation, all without requiring server-side training. Our experiments on various datasets
demonstrate that our proposed method outperforms state-of-the-art baselines by an average of 7.22%
across all settings. Additionally, it significantly reduces upload communication costs by at least
2.3×. By incorporating TMs into OFL, we aim to provide a computationally efficient, scalable, and
practical solution for FL scenarios where computational resources are limited.

Our contributions are as follows:

• We introduce FedTMOS, a novel OFL approach that capitalizes on the low-complexity de-
sign of the TM. By leveraging TMs, FedTMOS operates as a data-free method that achieves
a reduction in upload costs by at least 2.3×, while delivering an average accuracy improve-
ment of 7.22% relative to the top-performing baselines and 12.79% improvement over
state-of-the-art data-free OFL methods.

• FedTMOS employs a unique inter-class weight separation technique that effectively create
server models that enhance class distinction. This approach consistently outperforms its
ensemble counterpart by an average of 6.16% across the evaluated datasets, while simulta-
neously reducing both model size and performance instability by 1.63%.

• Our approach significantly reduces server-side computation, achieving at least a 75× re-
duction in server latency during model aggregation compared to existing methods that rely
on server-side training. This efficiency makes FedTMOS highly practical for OFL or situ-
ations demanding quick model deployment.

2 RELATED WORK

2.1 ONE SHOT FL

OFL improves efficiency in FL by limiting communication to a single round. This is typically
achieved by building ensemble models and applying KD using public datasets (Guha et al., 2019;
Zhou et al., 2020). However, its effectiveness depends on the quality of both the dataset and model
ensemble. To enhance performance, Li et al. (2021) applied hierarchical KD, and Diao et al. (2023)
introduced open-set voting to generate ’unknown’ samples without predefined classes. These meth-
ods rely on public data, limiting their use in data-scarce settings. In response, data-free OFL tech-
niques have emerged, including DENSE, which utilizes a generator trained with an ensemble of
client models (Zhang et al., 2022a). Dai et al. (2024) further improves the performance of the global
model by optimizing through KD derived from both the synthetic data and the ensemble model.
Other approaches include local clustering techniques, such as those by Dennis et al. (2021), which
involve uploading cluster means instead of full models. While this reduces communication over-
head, it struggles with increased data complexity. Heinbaugh et al. (2023) introduced Conditional
Variational Autoencoders (CVAEs) to learn conditional data distributions from clients, with the ag-
gregated decoders forming an ensemble model. Several techniques aim to improve server efficiency
by avoiding server-side training altogether. Neuron matching aligns model weights (Singh & Jaggi,
2020), while model fusion combines multiple models into a single robust one (Wang et al., 2020).
Advanced methods like optimal transport (Singh & Jaggi, 2020) and Fisher Information-based ap-
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proaches (Jhunjhunwala et al.; Jin et al., 2023) enable model aggregation without computationally
expensive KD (Jin et al., 2023), further enhancing scalability in OFL.

2.2 TMS IN FL

FedTM is the first FL framework to utilize TM. Unlike traditional FL frameworks that rely on DNNs,
where weight aggregation typically involves a simple weighted average of integer weights, FedTM
uses a distinct two-step aggregation process (How et al., 2023). This process is enabled by the
unique architecture of the TM, as depicted in Figure 2. While FedTM offers significant reductions
in both memory utilization and communication costs, its aggregation process still requires multiple
communication rounds to achieve convergence. To our best knowledge, TMs have not been explored
in the context of OFL.

3 PRELIMINARIES

3.1 THE TSETLIN MACHINE

The Tsetlin Machine (TM) is a machine learning method grounded in propositional logic and bit-
based representation, leveraging Tsetlin Automata (TA) and game theory principles to derive logical
propositions for classification (Granmo, 2021).

3.1.1 THE TSETLIN AUTOMATON

The Tsetlin Automaton (TA) is an efficient and simple learning mechanism. With 2A states, and
two actions, Include and Exclude, the automaton adjusts its state based on feedback by either incre-
menting or decrementing the states based on received feedback (Penalty or Reward). From Figure 1,
when a reward is given, the TA advances further along the path of the current action. If it receives a
penalty, it moves closer to the center, which may lead to a change in action.

Figure 1: A two-action TA with 2A states

3.1.2 THE TSETLIN MACHINE STRUCTURE AND INFERENCE

The first step in training a TM is to convert the input features into a Boolean format. The input
feature vector x ={x1, . . . , xo} ∈ {0, 1}o is transformed into a set of literals, L = {l1, . . . , l2o}
={x1, . . . , xo,¬x1, . . . ,¬xo}, which includes both the original features and their negations. Each
clause Cj in the TM selects a subset of these literals, denoted as Lj ⊆ L. Here, j indexes the
clauses, and Lj refers to the set of literals chosen by clause Cj to form its conjunctive expression.

The TM organizes its clauses into two groups: positive and negative clauses. For the given input
x = {x1, . . . , xo}, and with binary class labels, y ∈ {0, 1}, the TM computes a unit step function,
u, to determine the final classification output. If the signed sum s(x) is negative, the TM classifies
the output as ŷ = 0, if not it classifies it as ŷ = 1:

ŷ = u(s(x)) = u(

N/2∑
j=1

C+
j (x)−

N∑
j=N/2+1

C−
j (x))

In the Multi-Class case, each class has its own set of clauses and the final classification is the class
with the highest sums: ŷ = argmaxm=1...M sm(x). As shown in Figure 2, the TM utilizes bitwise
operations to compute its output, resulting in a design that is both intuitive and low in complexity.
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Figure 2: Overview of the Weighted Multi-Class Tsetlin Machine Inference Process: Raw input
features are first booleanized to generate boolean literals. Clause outputs are produced through
logical operations with these literals and trained TAs. The inference routine sums up the N clause
outputs, weighted by their respective weights, to generate class sums for M classes, with the output
determined to be the class with the highest sum (Maheshwari et al., 2023).

3.1.3 THE TSETLIN MACHINE LEARNING MECHANISM

The TM operates in an online fashion, learning one training example (x, y) at a time. For each
training example, the TM adjusts the states of its TAs by applying rewards and penalties, which
involve incrementing or decrementing their states. Feedback to the TAs comes in two types:

• Type I which helps identify frequent patterns is applied randomly to clauses based on their
polarity and the true label. Positive clauses receive Type I feedback when y = 1, and the
negative clauses receive it when y = 0.

• Type II is also given stochastically to clauses to enhance pattern discrimination. Positive
clauses receive Type II Feedback when y = 0, and negative clauses receive it when y = 1.

The feedback is applied randomly to introduce an ensemble effect, guided by a hyperparameter T ,
which represents the target sum. The TM aims to adjust the signed sum such that it reaches −T
for inputs with class y = 0 and T for class y = 1. To facilitate this, s(x) is constrained within
[−T, T ] with: c(x) = clamp(s(x),−T, T ) and the probability that each clause receives feedback is
proportional to the difference between the clamped sum and T:

py(x) =

{
T+c(x)

2T , if y = 0
T−c(x)

2T , if y = 1
(1)

Randomly selecting clauses helps distribute feedback across a variety of significant sub-patterns
instead of concentrating on a few. Feedback decreases as the clamped sum, c(x) approaches the
target ±T , ensuring that only some clauses are used to identify each sub-pattern.

3.1.4 WEIGHTED TSETLIN MACHINE

During learning, similar clauses tend to appear multiple times in the final model. Introducing
weights allows each clause to be represented once with an associated weight, rather than repeat-
ing it. Hence, the impact of individual clauses can be quantified, resulting in a real-valued quantity.

Initially, all weights are set to 1 and they are updated based on the feedback type. In summary,
Type I feedback increases weights for correct patterns, while Type II feedback decreases weights to
reduce false positives. This enhances the efficiency of the TM by optimizing weight assignment to
clauses, leading to more compact models without compromising accuracy (Phoulady et al., 2020).
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The resulting overall sum now, denoted as s(x), becomes:

s(x) =

N/2∑
j=1

w+
j C

+
j (x)−

N∑
j=N/2+1

w−
j C

−
j (x) (2)

3.1.5 CONVOLUTIONAL TM

Convolutional TM (CTM) uses filters with spatial dimensions W × W and Z binary layers. An
image with dimensions X × Y and Z binary layers is represented in TMs using an input vector
x = {xk | k ∈ {0, 1}X×Y×Z}. The input vector represents a specific patch of the image, with the
entire image being divided into B such patches. Each clause receives B literal inputs and unlike
regular TMs, where a single output is produced per clause, a clause in a CTM outputs B outputs
- one for each patch. To aggregate these multiple outputs from clause j, c1j , . . . , c

B
j into a a single

output, Cj , a logical OR operation is applied: Cj =
∨B

b=1 c
b
j

Training in the CTM extends the TM’s learning process by using both Type I and Type II feedback
mechanisms. To update a clause during training, the CTM randomly picks a patch from the set of
patches where the clause evaluates to 1, where {Xb|cbj = 1, 1 ≤ b ≤ B}. The clause is then updated
according to the selected patch, allowing the learning process to focus on the most relevant regions
that contribute to the clause’s outcome (Granmo et al., 2019).

3.1.6 TM COMPOSITES

To enable collaboration among multiple independently trained TM models, Granmo (2023) pro-
posed TM composites. Given r TMs, this involve computing the normalized class sums for each
TM, t ,by dividing it with the difference between the maximum and minimum class sums in the
input set: αt = maxm(smt (x))−minm(smt (x))

The final classification result is obtained by selecting the class with the highest value from the sum
of all r TMs as computed below:

ŷ = argmax
m

(
r∑

t=1

1

αt
smt (x)

)
(3)

TM composites enhance classification accuracy and convergence by reducing over-fitting and in-
creasing robustness among individual models, thereby improving overall performance through ef-
fective model combination (Granmo, 2023).

4 METHODOLOGY

Given J clients, each having local datasets D1, D2, ..., DJ . The objective is to aggregate the local
TM models, T = {T1, T2, ..., TJ}, into c server models (c < J) that generalizes well over D ≡
∪i∈JDi in one communication round.

4.1 MOTIVATION

Similar to ensemble methods for OFL, we first introduce a straightforward approach for aggregating
local TM models, FedTMOS (ensemble), by applying the principles behind TM Composites. In this
approach, the final classification is then determined by Equation 3.

However, this method encounters significant limitations. Firstly, as the number of clients, J in-
creases, the number of local models grows proportionately, leading to issues related to redundancy
and overlapping knowledge. This results in diminishing classification performance due to conflict-
ing information among models. Additionally, the increased number of models adds computational
overhead, making the OFL process less efficient.
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4.2 FEDTMOS: ONE-SHOT FEDTM

To address these limitations, we proposed a novel approach based on the class-adaptive nature of
TM as illustrated in Figure 2. Clauses, as simple logical expressions, collectively represent complex
patterns, with their associated weights quantifying these patterns. Our method aims to reduce the
total number of models to a user defined value c, where the final classification is determined by:

ŷ = argmax
m

(
c∑

i=0

1

αi
smi (x)

)

where c < J . Our proposed approach consists of two stages: first the weights, represented by
θ = {θ1,θ2, . . . ,θJ}, where each θj = {θ1j , θ2j , . . . , θMj } is a M−size vector of class-specific
weights for client j, and M denotes the total number of classes, are scaled based on the average
normalized Gini index of all clients (x), followed by k-means clustering (Lloyd, 1982). Then, we
perform a greedy reassignment of model weights to c number of models to minimize overlap.

Our approach is intuitive: by maximizing inter-class separation within models, we enhance the
model’s ability to distinguish between classes. The Gini index is employed to quantify the distri-
bution of data and ensure balanced client participation. It dynamically adjusts client weights based
on data inequality, promoting fairness and engagement across clients Li et al. (2023). This, in turn,
enhances both model performance and convergence.

Figure 3: Overview of FedTMOS: 1⃝ Clients upload their scaled clause weights, state parameters,
and normalized Gini Index to the server. 2⃝ The server then rescales the weights using the mean
normalized Gini Index and performs k-means clustering on the weights. This clustering is essential
for grouping similar weights, helping to prevent large disparities in class weights across models
during the reassignment process while also reducing complexity. 3⃝ Finally, the number of models,
denoted by a user-defined parameter c, is initialized, and class weights from each cluster are greedily
reassigned to maximize inter-class separation within each model.

4.2.1 PRE-PROCESSING MODEL WEIGHTS

In the initial step, clients upload their scaled clause weights, which are adjusted based on the pro-
portion of samples per class relative to the client’s total sample size. This scaling is expressed as:

θij =
|Di

j |
|Dj |

θij

where θij represents the clause weight for class i in client j, |Di
j | is the number of samples for class i

in client j, and |Dj | is the total number of samples in client j. This ensures that the contributions of
different classes are appropriately balanced, preventing over-representation of any particular class.

Alongside these weights, clients also upload their individual normalized Gini index, which quantifies
the inequality in their local data distributions (Tangirala, 2020). The Gini Index for client j is

6
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Figure 4: Distribution of clause weights for each class stays within the range of T with similar means
for (a) data with low normalized Gini scores compared to (b) data with high normalized Gini scores
for a simple TM model with T = 1000 on the MNIST dataset.

computed as gj =
∑M

i=1 p
2
i , where pi is the proportion of data belonging to class i. To account for

imbalances in the server model, we scale the clause weights of all clients, θ using the normalized
Gini Index, x = 1

J

∑J
j=1 gj . This scaling adjustment is applied only when x exceeds a predefined

threshold, signaling significant inequality. The adjusted weights are updated as:

θij = x · θij
This adjustment prevents under-representation of minority classes, which could otherwise be over-
shadowed by dominant classes due to imbalanced clause weights as seen in Figure 4. Without
correction, these class imbalances, amplified by the signed sum clamping in TM within [−T, T ],
can skew the model by decreasing the contribution of the other classes in the server model.

Next, we apply k-means clustering to group these scaled weights. This is crucial as clustering similar
weights ensures a smoother and more balanced reassignment process, preventing large disparities in
class weights across models. The objective of k-means is to iteratively minimize the within-cluster
sum of squares (WCSS), defined as:

argmin
S

k∑
i=1

∑
θ∈Si

|θ − µi|2 (4)

where k is the number of clusters, θ represents a data point (i.e., a vector of scaled weights from
any client j), Si is the set of points assigned to cluster i, and µi is the centroid (mean) of cluster i.
Performing k-means on the scaled weights reduces the complexity of the subsequent reassignment
process, while ensuring that the class weights within models are not largely skewed.

4.2.2 REASSIGNING WEIGHTS

In the initial step, we use k-means clustering to group scaled weights into k clusters, minimizing the
WCSS. This approach clusters similar weights, enabling balanced reassignment and reducing the
risk of over-fitting or under-representing certain classes.

Building on this clustering foundation, we reassign the weights to c models. During this step, we
maximize the average squared distances between class weights within each model. While k-means
aims for tighter clusters through minimization, our strategy emphasizes maximizing class separa-
tion among the clusters. This focus on inter-class weight distances enhances the model’s ability to
distinguish between categories, ultimately leading to improved classification performance.

Building on this clustering foundation, we reassign the weights to c models by formulating an objec-
tive function that maximizes the inter-class distance. Specifically, we aim to maximize the average
squared distance between class weights within each model, defined as:

maximize
1

c

c∑
m=1

∑
i ̸=j

∥θim − θjm∥2

where θim and θjm are the weights for classes i and j within model m.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

This emphasis on inter-class separation ensures that each model maintains distinct class boundaries,
thereby enhancing the model’s classification performance.

Starting with the clusters containing the fewest classes, we assign class weights to models based on
the assignment that yields the greatest increase in average squared distance. If no model satisfies
this criterion, we allocate the weight to the model with the fewest distinct class weights. In the event
of ties, we select the model with the least overlapping clusters.

To form the final models, we compute the mean of the clause weights for each class. Since clause
weights do not affect the TA state updates (Granmo et al., 2019), the aggregation of TA states can
occur independently. To prevent the states, represented by bits, from including all literals due to
excessive aggregation, we apply the TopK procedure from FedTM (How et al., 2023). This involves
selecting the two states with the highest weights, indicating greater confidence from more samples,
and combining them using the bitwise OR operator. This approach prevents the problem of overly
inclusive and redundant state representations.

Our method maximizes inter-class separation and ensures adequate class coverage, resulting in
well-separated models with distinct class representations. This enhances the models’ effectiveness
in handling data distribution variations and improves class differentiation, yielding scalable, high-
performing models for classification tasks. The overall algorithm is summarized in Algorithm 1

Algorithm 1 FedTMOS
Input: Clients’ scaled local model clause weights {θ1,θ2, . . . ,θJ} and states {ϕ1, ϕ2, . . . , ϕJ},
∈ {T1, T2, ..., TJ} their normalized Gini scores, G = {g1, g2, ..., gJ}, number of clusters k for
k-means clustering and number of final models c, scaling threshold, σ
Initialize: all weights, all states = [], []
Compute mean normalized Gini scores: G = 1

J

∑J
i=1 G

Set x =

{
G if G > σ

1 if G ≤ σ
for each client j = 1, 2, . . . , J do

for each class m = 1, 2, . . . ,M do
Add θmj · x to all weights and ϕm

j to all states
cluster info, cluster means = kmeans(all weights, k)
reordered models, reordered means = reassign weights(cluster info, cluster means, c)
final models = average models(reordered models)
return final models

4.3 EXPERIMENTS

4.3.1 EXPERIMENTAL DETAILS

Datasets. We evaluated our approach on four image datasets widely utilized in FL literature: MNIST
(Deng, 2012), F-MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011) and CIFAR-10 (Krizhevsky,
2009). To simulate heterogeneity, we applied two different methods: sampling class priors from a
Dirichlet distribution, Dir(α), as described in Hsu et al. (2019), where α controls the degree of
heterogeneity in data splits. We also distributed data such that each client possesses samples from
only β classes, C(β). In our experiments, we simulated non-IID settings by using α = 0.05, 0.1, 0.3
and β = 2, 3, 4.

Baseline Methods. We compared our method with several FL algorithms representing different
approaches for model aggregation: FedAvg (McMahan et al., 2016), the standard iterative FL al-
gorithm evaluated after one communication round; Fed-Oneshot, which ensembles client classifier
predictions (Guha et al., 2019); and Distilled-FedOV, which enhances performance using open-set
voting and a public dataset for KD (Diao et al., 2023). DENSE and Co-Boosting, both data-free
methods, generate data for KD: DENSE by leveraging similarity, stability, and transferability (Zhang
et al., 2022a), and Co-Boosting by creating hard samples and re-weighting client models (Dai et al.,
2024). Additionally, we compared with three data-free methods that do not involve server-side train-
ing: OT-Fusion, which employs a layer-wise model merging method using optimal transport to align
neurons and weights (Singh & Jaggi, 2020); RegMean, which minimizes the l2 distance to individ-
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Table 1: Performance of the different algorithms across various data partitions

Dataset Partition FedAvg Fed-
OneShot DENSE Co-Boosting Distilled-

FedOV OT-Fusion RegMean FedFisher FedTMOS
(Ensemble) FedTMOS

MNIST

Dir(0.05) 32.67±13.90 59.80±27.34 68.79±14.19 83.42±7.77 89.34±0.67 52.38±4.74 76.64±4.57 77.14±8.65 87.81±11.31 93.80±3.81
Dir(0.1) 47.24±18.09 74.32±17.18 82.05±7.33 91.73±5.80 93.60±0.62 66.20±3.70 85.25±1.80 79.32±3.05 92.44±4.22 96.60±1.85
Dir(0.3) 78.08±9.05 94.81±2.39 95.61±1.47 96.41±0.83 97.67±0.15 97.37±0.10 94.37±1.42 92.03±2.52 98.36±0.16 98.41±0.10
C(2) 24.48±4.72 43.45±9.10 48.84±12.44 62.57±4.09 56.26±4.88 28.68±7.16 65.92±11.88 36.92±17.01 56.98±0.92 92.94±0.51
C(3) 35.06±6.82 57.30±7.66 57.63±8.12 79.85±5.55 86.22±3.20 42.69±3.39 69.92±7.57 62.66±14.46 83.08±0.53 95.23±0.47
C(4) 51.53±9.00 77.02±12.15 81.65±7.31 93.91±2.48 70.92±1.07 62.40±11.10 87.58±6.06 85.12±3.04 90.12±0.81 96.84±0.50

F-MNIST

Dir(0.05) 42.14±9.43 53.11±2.72 51.67±5.31 59.93±10.00 75.39±0.85 42.06±9.06 58.02±2.66 55.02±6.97 68.43±6.08 75.45±3.58
Dir(0.1) 45.20±14.65 60.94±11.25 56.97±9.78 60.55±6.47 77.84±1.21 50.66±3.66 63.27±5.35 60.60±4.91 78.14±4.97 78.21±3.58
Dir(0.3) 71.93±1.54 80.24±2.79 73.95±2.65 78.94±1.69 83.24±0.58 76.49±4.12 75.14±1.26 75.57±1.69 84.60±0.42 84.97±1.39
C(2) 11.76±3.05 26.89±6.30 30.73±8.94 40.94±1.95 56.97±0.71 21.53±3.65 35.29±9.21 32.25±8.06 49.88±0.57 59.17±1.56
C(3) 27.79±4.45 49.70±5.57 46.35±7.68 59.94±2.11 74.85±1.06 32.48±5.29 60.34±5.18 46.07±0.91 72.01±0.43 74.94±1.78
C(4) 36.93±8.22 54.48±4.83 54.00±4.34 57.24±5.38 61.20±0.42 36.81±2.35 68.87±2.78 65.21±1.88 71.59±0.06 78.78±0.77

SVHN

Dir(0.05) 25.05±15.01 39.00±20.47 38.09±19.61 35.62±12.99 63.17±0.95 35.97±0.13 55.52±3.07 56.32±2.29 58.71±11.36 63.54±2.61
Dir(0.1) 35.63±10.05 55.06±13.23 52.45±11.26 53.42±14.28 64.94±6.22 47.68±1.28 55.28±3.36 54.35±2.84 66.79±1.88 69.79±2.33
Dir(0.3) 52.99±5.77 72.37±6.48 65.65±8.95 76.09±6.10 77.53±2.30 77.27±0.21 72.43±3.25 76.90±1.04 75.36±3.31 78.86±1.27
C(2) 18.51±6.07 27.79±5.24 26.60±5.78 43.29±5.54 54.26±8.80 17.63±3.61 33.25±6.73 34.57±6.66 43.58±0.72 61.63±1.13
C(3) 31.31±1.10 47.48±5.26 43.96±5.47 58.89±4.17 74.98±0.75 29.67±7.82 54.66±6.73 57.25±3.96 72.83±0.23 78.09±0.25
C(4) 43.24±3.03 56.35±2.51 51.44±4.34 63.88±5.39 73.47±0.56 35.69±4.41 63.89±2.54 64.77±6.53 72.92±0.35 75.24±0.68

CIFAR-10

Dir(0.05) 17.02±0.83 28.30±5.68 25.97±2.52 26.17±3.85 40.04±5.61 30.70±0.80 33.58±4.59 35.61±1.41 37.38±13.21 47.69±2.59
Dir(0.1) 27.55±5.30 37.52±4.53 32.46±3.62 36.71±7.87 46.79±2.66 31.46±1.52 33.49±0.83 39.55±5.36 45.85±10.00 52.25±1.71
Dir(0.3) 36.44±2.45 50.83±2.99 43.11±0.95 43.35±2.08 48.24±5.22 49.43±2.94 44.34±1.42 51.18±1.45 56.96±0.88 57.03±0.74
C(2) 15.93±5.23 13.95±5.86 15.73±3.77 21.91±6.51 33.90±0.12 18.57±0.59 24.24±2.57 22.23±1.53 38.47±0.44 39.95±1.33
C(3) 25.45±0.75 35.83±4.98 29.13±3.26 33.21±4.00 45.64±2.14 24.70±2.77 31.06±1.36 32.36±4.15 51.53±0.42 52.18±0.73
C(4) 24.96±0.63 39.04±3.41 31.26±1.61 36.39±1.22 41.17±1.63 33.67±0.62 38.97±1.33 41.46±2.31 59.41±1.36 59.59±0.30

ual model predictions using inner product matrices of layer inputs (Jin et al., 2023); and FedFisher,
which approximates Bayesian inference using Fisher information by using local posterior estimates
and Fisher matrices from clients (Jhunjhunwala et al.). These baselines were selected to evaluate the
performance with and without reliance on external datasets or excessive computational overhead.

Configurations. Our experiments default to 10 clients with Dir(0.1), as in Zhang et al. (2022a);
Dai et al. (2024), unless stated otherwise. We reported the average test accuracy and standard devi-
ation across 3 different dataset splits for each setting. Following Diao et al. (2023), half of the test
dataset served as a public dataset for Distilled FedOV, and we evaluated all algorithms on the same
subset, ensuring consistency across evaluations. For CNN-based algorithms, we used a 5-layer CNN
architecture with a batch size of 128, as per Dai et al. (2024) and Jhunjhunwala et al.. For FedT-
MOS, we fixed k = 30 for the Dir partitions to account for class distribution variability among
clients and k = 10 for the C partition. We implemented different CTM models for each dataset,
ensuring the size of c server models was equal to or smaller than the distilled CNN server model for
fair comparison. All algorithms were trained for 30 local epochs, as outlined in Jhunjhunwala et al..
See Appendix A.1 for more details.

From Table 1, FedTMOS outperforms all baseline methods without the need for synthetic or gener-
ated data and server-side training in all settings. On average, FedTMOS performs better than the top
performing baseline, Distilled-FedOV, by 13.3%, 3.67%, 3.13%, 8.82% on the MNIST, F-MNIST,
SVHN and CIFAR-10 dataset respectively. We note that Distilled FedOV leverages KD at the server
using a subset of the test data, closely matching the actual samples. On average, FedTMOS outper-
forms the best data-free OFL method by 12.79%, reinforcing its effectiveness in OFL.

We note that DENSE and Co-Boosting exhibit high variance, particularly with increasingly non-
IID data. This is likely because classifiers trained on non-IID data generate sub-optimal knowledge
samples, which are crucial for the distillation process. This hinders the student model’s learning,
reducing performance and increasing variability (Gou et al., 2021).

We also evaluated FedTMOS against the FedTMOS ensemble. On average, FedTMOS demonstrates
6.16% better performance across all settings, while reducing variation by an average of 1.63% across
all settings. Furthermore, FedTMOS exhibits lower memory costs as it reduces the ensemble model
size to c number of server models, making it an efficient solution. Overall, these results highlight
FedTMOS as a reliable approach for data-free OFL.

4.3.2 EFFICIENCY ANALYSIS

In terms of communication costs, our results demonstrate that the bit-based architecture of the TM
significantly reduces communication overhead while producing a model that generalizes well across
all settings, evident in the results in Table 2 By ensuring that the server model size of the TM is
equal to or smaller than the CNN models, we show that FedTMOS effectively reduces upload costs
by at least 2.3× without sacrificing performance.
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Table 2: CC: Upload costs for each client/storage and potential download costs of the server model
(MB), TL: Training latency for each client (s) and SL: Server aggregation latency on CIFAR-10 (s)

DENSE Co-Boosting Distilled-
FedOV OT-Fusion RegMean FedFisher FedTMOS

CC 1.28/1.28 3.76/3.76 0.57/1.24
TL 235.10±6.86 22.54±2.35 219.58±6.85
SL 931±3.51 1247±7.45 246±5.95 2.04±1.14 6.93±0.69 9.98±0.93 3.24±0.17

We evaluated the average latency for model aggregation at the server using a standard compute node
equipped with a single GPU core, as well as the training latency on 32 CPU cores. As shown in
Table 2, FedTMOS is at least 75× more efficient than methods that require server-side training.
Furthermore, we observed that the training latency of OT-Fusion, RegMean, and FedFisher is lower
than that of DENSE, Co-Boosting, and Distilled-FedOV. This difference arises because the former
methods utilize CNNs with three layers (Dai et al., 2024), whereas the latter methods employ CNNs
with only two layers (Jhunjhunwala et al.).

Even though the training latency of FedTMOS is higher compared to OT-Fusion, RegMean, and
FedFisher, the results in Table 1 demonstrate that FedTMOS outperforms them by at least an average
of 14.43% across all settings. This substantial improvement in performance highlights the value of
FedTMOS in achieving higher accuracy with comparable server efficiency. Moreover, despite the
slight trade-off in training efficiency, FedTMOS remains highly suitable for practical deployment
due to its low upload costs, which are crucial for edge devices with limited bandwidth (Zhang et al.,
2022b), and the computational simplicity of TMs, which avoid backpropagation and make them
ideal for low-power training on edge devices (Rahman et al., 2022; Tang et al., 2024; Lei et al.).
This balance between performance and efficiency highlights FedTMOS as a promising solution for
OFL and facilitates its extension to iterative FL while maintaining efficiency (Zhang et al., 2022b).

4.3.3 SCALABILITY

We evaluated the performance of all methods by varying the number of clients. For FedTMOS, to
constrain the server model size, we reduced the number of clauses in the local CTM model, scaling
down the local model size by 2.9× for 20 and 50 clients, and 4× for 80 clients. From Table 3,
we see that FedTMOS outperforms all other methods, although its performance declines with an
increasing number of clients. This suggests that while reducing model size is necessary, it can
limit performance. Future work will explore dynamic scaling techniques for the number of server
models, c, and adapting the number of clusters, k, to better balance complexity and class coverage.
Additionally, advanced sampling methods can be used to manage the increasing number of weight
vectors for reassignment, potentially enhancing performance with increasing clients.

Table 3: Performance of the different algorithms with an increasing number of clients on CIFAR-10

Clients FedAvg Fed-
OneShot DENSE Co-Boosting Distilled-

FedOV OT-Fusion RegMean FedFisher FedTMOS

20 26.42±7.99 26.64±15.74 31.18±6.90 34.55±3.89 37.20±1.55 24.95±3.24 18.55±8.92 32.46±2.34 50.08±3.62
50 23.34±4.04 34.96±3.60 27.47±3.77 34.33±2.08 30.43±1.56 27.17±1.36 31.74±1.94 37.52±0.37 50.90±0.94
80 23.04±5.11 25.04±13.06 23.85±11.70 32.47±2.36 25.65±1.04 22.20±1.85 20.86±2.25 33.66±0.95 49.15±1.08

5 CONCLUSIONS

We introduced FedTMOS, a novel framework for OFL that eliminates the need for server-side train-
ing for KD and the use of synthetic or generated datasets. By scaling weights with normalized
Gini scores, clustering parameters, and maximizing inter-class model separation, FedTMOS re-
duces computational complexity, constrains server model size, and minimizes variance. Notably,
it surpasses all SOTA baselines by at least an average of 7.23% and the best data-free method by
12.79% across all dataset settings. Furthermore, it achieves a reduction in upload communication
costs by at least 2.3×, making FedTMOS well-suited for FL with edge devices and providing a
strong foundation for further exploration into enhancing the efficiency and performance of OFL.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

A.1.1 BASELINES MODEL CONFIGURATION

For the baseline models, we adhered to the same hyperparameters specified in the original papers
(Jhunjhunwala et al.; Zhang et al., 2022a; Dai et al., 2024; Diao et al., 2023). However, to ensure a
fair comparison, we fixed the number of server epochs to 100 epochs for the baseline algorithms -
Distilled FedOV, DENSE and Co-Boosting.

A.1.2 FEDTMOS MODEL CONFIGURATION

To align with the booleanized format for training TMs, we applied variouos pre-processing steps for
each dataset. For the MNIST dataset, we encoded the data by setting pixel values larger than 75
to 1, and values below or equal to 75 to 0. For the F-MNIST and SVHN dataset, we followed the
original implementation by Granmo et al. (2019), to binarize the data using an adaptive Gaussian
thresholding procedure with a window size of 11 and a threshold value of 2. For CIFAR-10, as
described in Granmo (2023), we processed one copy of the data using the same adaptive Gaussian
thresholding procedure and another copy with 8-level color thermometer encoding. Additionally, we
employed three TM composite models for CIFAR-10: adaptive thresholding, 3x3 color thermometer,
and 4x4 color thermometer.

For FedTMOS, we used the following model configurations of CTM for each dataset:

Table 4: FedTMOS Model Configuration

MNIST F-MNIST SVHN CIFAR-10
Adaptive Threshold 3x3 CT 4x4 CT

Number of Clauses 100 200 1100 200 200 200
Feedback Threshold 1000 1000 2000 400 300 300
Learning Sensitivity 5 5 5 5 5 5
Patch Dimensions (5,5) (10,10) (5,5) (10,10) (3,3) (4,4)

A.1.3 ADDITIONAL SETTINGS

For FedTMOS, as we wanted to constrain our models such that the final server model aligns with
smaller or equal sizes to the CNN counterparts, we set various c values to constrain our final model.
For the MNIST, F-MNIST, SVHN and CIFAR-10 dataset we used : c = {4, 3, 3, (3, 3, 1)} respec-
tively. Additionally, we employed threshold values based on the average normalized Gini Index (G)
to scale the clause weights. When G exceeds a threshold, σ, it indicates significant class imbalance.
In response, clause weights are scaled by x to prevent dominant classes from overpowering minority
ones, ensuring balanced class representation in the final model and mitigating the effects of non-IID
data.

x =

{
G if G > σ

1 if G ≤ σ

We used threshold = {0.5, 0.5, 0.3, 0.6} respectively for the MNIST, F-MNIST, SVHN and CIFAR-
10 dataset. Note that we used 0.3 for SVHN due to the unbalanced nature of the data. In the future,
we will explore a data-driven approach to determine the threshold and k values.

A.2 ADDITIONAL RESULTS

A.2.1 PERFORMANCE WITH 200 LOCAL EPOCHS

We evaluated the baseline algorithms with 200 local epochs, as recommended in (Dai et al., 2024),
to ensure that local models reached convergence before server-side training. However, we excluded
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Table 5: Performance of the different algorithms across various data partitions

Dataset Partition FedAvg Fed-
OneShot DENSE Co-Boosting Distilled-

FedOV
FedTMOS
(Ensemble) FedTMOS

MNIST

Dir(0.05) 38.65±17.31 41.78±11.34 78.36±8.69 88.95±3.89 89.25±3.92 83.78±11.24 93.50±3.72
Dir(0.1) 48.63±12.77 56.12±13.34 85.15±5.94 94.88±0.49 93.83±3.02 93.86±2.09 97.28±1.31
Dir(0.3) 80.01±10.18 88.25±5.38 96.19±1.07 96.09±0.62 97.56±0.32 98.30±0.39 98.50±0.12
C(2) 21.55±7.39 24.23±3.21 53.72±15.88 72.22±9.56 69.16±7.05 48.88±9.01 83.07±3.51
C(3) 35.24±8.86 40.45±8.99 70.73±10.65 81.01±8.04 80.23±4.75 74.18±4.20 88.75±3.46
C(4) 40.28±9.74 48.66±9.70 72.27±5.06 87.16±5.35 84.08±8.18 88.68±0.61 97.16±0.48

F-MNIST

Dir(0.05) 39.89±6.48 41.97±5.78 62.52±5.28 64.58±2.48 72.00±3.16 70.33±6.39 72.73±3.23
Dir(0.1) 50.90±8.27 50.56±6.66 70.07±2.92 66.94±3.85 78.15±3.15 75.38±3.76 78.39±3.75
Dir(0.3) 71.26±1.03 73.14±2.55 80.75±0.59 80.14±1.49 83.31±0.61 83.87±0.33 84.30±0.69
C(2) 24.74±7.32 22.78±3.69 40.72±6.54 48.16±3.24 54.72±4.06 39.80±7.92 60.08±7.67
C(3) 44.28±6.35 34.62±4.30 57.05±4.95 52.44±3.81 67.81±5.57 63.60±1.90 72.82±1.61
C(4) 34.66±2.01 34.73±6.02 63.14±7.08 67.85±2.53 68.68±7.02 76.62±6.34 80.76±6.19

SVHN

Dir(0.05) 28.04±18.44 24.61±2.88 46.14±15.66 50.81±13.83 70.45±3.00 41.45±18.69 66.77±1.41
Dir(0.1) 40.34±12.91 44.04±13.20 58.54±8.01 62.33±10.32 74.31±3.26 67.28±1.27 72.90±3.51
Dir(0.3) 58.00±0.82 76.29±4.15 67.80±3.94 76.52±4.79 81.35±1.01 76.41±1.10 80.73±0.57
C(2) 18.95±1.78 24.16±6.06 38.42±10.93 48.42±4.93 62.25±2.88 42.84±7.81 62.32±2.78
C(3) 37.21±5.04 38.03±7.75 45.17±11.12 62.95±1.88 72.31±4.57 66.43±6.48 75.62±3.02
C(4) 36.32±10.06 41.47±5.64 47.66±6.32 57.57±7.69 76.76±3.04 74.34±3.84 80.64±0.82

CIFAR-10

Dir(0.05) 20.96±1.57 26.25±6.18 37.80±5.20 39.46±5.07 44.19±1.96 38.02±6.86 47.12±4.95
Dir(0.1) 27.14±8.51 36.05±4.60 48.57±3.74 49.15±10.56 48.89±4.23 46.88±4.44 52.06±2.77
Dir(0.3) 43.99±6.10 42.01±3.94 60.12±3.36 60.72±3.83 56.54±1.88 58.43±0.08 56.69±2.07
C(2) 14.71±6.36 18.47±2.02 29.26±5.25 32.94±5.56 31.57±6.20 32.16±5.06 36.01±3.18
C(3) 23.01±6.68 24.68±4.66 40.52±3.50 42.15±5.84 43.06±1.94 50.66±2.82 53.21±2.09
C(4) 34.66±3.51 34.93±5.01 41.54±5.12 46.91±7.58 47.83±2.24 57.78±1.57 57.85±1.13

OT-Fusion, RegMean, and FedFisher from this setup, as their hyperparameters are specifically opti-
mized for 30 epochs according to Jhunjhunwala et al., and re-tuning for 200 epochs could inadver-
tently introduce inconsistencies.

From Table 5, FedTMOS outperforms the other baseline methods without the need for synthetic or
generated data in most settings. On average, FedTMOS performs better than the top performing
baseline, Distilled FedOV by 7.36%, 4.07%, 0.26%, 5.14% on the MNIST, F-MNIST, SVHN and
CIFAR-10 dataset respectively. We note that Distilled FedOV leverages KD at the server using a
subset of the test data, closely matching the actual samples. Furthermore, when compared to the
best-performing data-free method for each setting, FedTMOS surpasses them in all except for the
least non-IID setting (Dir(0.3)) for CIFAR-10. On average, FedTMOS outperforms the best data-
free method for each setting by 8.46%, reinforcing its effectiveness in data-free OFL.

In addition, Table 1 highlights that even with just 30 epochs, FedTMOS maintains its ability to
outperform all baselines. This result emphasizes the effectiveness of FedTMOS, showcasing its
strong performance even without requiring full convergence.

We note that DENSE and Co-Boosting exhibit high variance, particularly with increasingly non-
IID data. This is likely because classifiers trained on non-IID data generate sub-optimal knowledge
samples, which are crucial for the distillation process. This hinders the student model’s learning,
reducing performance and increasing variability (Gou et al., 2021).

A.2.2 EFFICIENCY ANALYSIS FOR ALL DATASETS

Table 6: Upload costs for each client/storage and potential download costs of the server model (MB)

Dataset Fed-
OneShot DENSE Co-Boosting Distilled-

FedOV OT-Fusion RegMean FedFisher FedTMOS
(ensemble) FedTMOS

MNIST 0.25/0.75 0.25/0.25 0.17/0.17 0.04/0.4 0.04/0.16
F-MNIST 0.25/0.75 0.25/0.25 0.17/0.17 0.05/0.5 0.05/0.14
SVHN 1.28/3.84 1.28/1.28 3.76/3.76 0.31/3.1 0.31/1.23
CIFAR-10 1.28/3.84 1.28/1.28 3.76/3.76 0.57/5.7 0.57/1.24

In terms of communication costs, our results demonstrate that the bit-based architecture of the TM
significantly reduces communication overhead while producing a model that generalizes well across
all settings, evident in the results in Table 6. By ensuring that the server model size of the TM is
equal to or smaller than the CNN models, we show that FedTMOS effectively reduces upload costs
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by at least 2.3× without sacrificing performance. Furthermore, FedTMOS reduces storage costs
by an average of 3.5× compared to FedTMOS (ensemble), while providing an average of 6.16%
improved performance and 1.63% decrease in variability across all settings.

A.2.3 PERFORMANCE EVALUATION IN A CENTRALIZED SETTING

Table 7: Performance of CTM and CNN in the centralized setting, where CNN1 is the CNN in
FedAvg, Fed-OneshotDENSE, Co-Boosting, Distilled-FedOV and CNN2 is the CNN in OT-Fusion,
RegMean, FedFisher

CTM CNN1 CNN2
MNIST 98.23±0.12 99.15±0.01 99.51±0.09

F-MNIST 87.30±0.56 90.04±0.33 89.66±0.29
SVHN 80.07±0.20 89.51±0.37 90.19±0.59

CIFAR10 54.93±0.45 82.17±0.43 79.42±0.55

In a centralized setting, CTM does not outperform CNNs in terms of accuracy as shown in Table. 7.
This is expected, as CNNs are highly optimized for tasks like image classification and generally
achieve higher performance in such settings (Granmo, 2023).

Note that the performance of CTM in our experiments is lower than that reported in Granmo (2023).
This discrepancy arises because, to ensure model size and efficiency constraints, we used only 200
clauses per client compared to 2000 clauses in the original paper. Additionally, we used 3 models
per client, whereas the paper utilized 4 models.

However, this highlights that the robustness of our proposed approach, FedTMOS, enables CTM
to perform competitively compared to the CNN-based OFL baselines, even though CTM may not
match the accuracy of CNNs in centralized settings. The performance improvements observed in FL
settings stem from the strength of our proposed OFL methodology, FedTMOS, which is both robust
and scalable in FL.

A.2.4 EXTENSION TO COMPLEX DATASETS

We compared FedTMOS with ResNet-18 on CIFAR-100 and with a pre-trained ResNet-18 model on
Tiny-ImageNet. While TMs have yet to be directly explored for the use of pre-trained weights, the
potential for applying them to tasks that share classes with the pre-training dataset is promising, as
demonstrated by the comparable performance on the Tiny-ImageNet dataset between a pre-trained
ResNet-18 and TM. This will be a key focus of our future work, where we aim to investigate how in-
corporating pre-trained weights can further enhance TM adaptability and performance. Regardless,
the performance of our current model, even without large-scale pre-training, highlights the potential
of TMs, suggesting that there is still room for significant improvement in their capabilities.

Table 8: Performance of the evaluated baselines on complex datasets

FedAvg DENSE Co-Boosting FedTMOS

CIFAR-100
Dir(0.05) 6.93±1.07 20.12±2.40 20.16±2.75 27.16±0.57
Dir(0.1) 10.52±0.44 25.22±2.02 25.38±1.53 28.19±0.86
Dir(0.3) 13.32±0.76 30.97±0.89 30.26±0.51 30.51±0.98

Tiny-ImageNet
Dir(0.05) 7.44±0.12 8.52±0.32 8.38±0.14 11.64±0.65
Dir(0.1) 9.41±1.12 10.61±0.57 10.49±0.19 11.81±0.41
Dir(0.3) 12.29±0.39 13.85±0.75 14.35±0.35 13.03±0.66
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Table 9: Upload costs for each client/storage and potential download costs of the server model (MB)

Dataset FedAvg DENSE Co-Boosting FedTMOS
CIFAR-100 45.12/45.12 14.2/43.4

Tiny-ImageNet 45.12/45.12 11.36/40.8

A.3 FURTHER DISCUSSION ON THE LIMITATIONS AND FUTURE WORK

Firstly, we acknowledge that TMs in general, are not as robust as DNNs for complex datasets,
particularly those involving multi-channel images. This limitation stems from the booleanization
process and bit-based representation of input data, which restrict TMs’ performance. Efforts to
address this, such as creating composite TMs trained on extracted features like 3x3 thermometer
encoding and Histograms of Gradients, have shown promise in improving their capability (Granmo,
2023).

However, DNNs face significant challenges in FL scenarios with high data heterogeneity. When
aggregated at the server, the parameter spaces of clients with heterogeneous data often fail to provide
an accurate estimation of the global parameter space. Unlike DNNs, TMs leverage class-specific
weights, enabling more effective contributions from individual clients in heterogeneous settings.
While class-wise weights could theoretically be implemented in DNNs, TMs are inherently more
suited for this purpose due to their simpler structure and efficient aggregation process.

For example, in the MNIST dataset, TMs require just 100 weights per class, compared to a simple
CNN, which might involve 61,706 weights (Dai et al., 2024), translating to at least 6,179 weights per
class. This simplicity reduces computational overhead. Furthermore, while small DNNs trained for
individual classes often risk over-fitting due to limited generalization capacity, TMs are simultane-
ously trained across all classes with separable class weights. This design helps TMs generalize better
across classes, reducing over-fitting and making them more adept at handling heterogeneous data in
FL settings. While DNNs might struggle in similar scenarios due to their complexity, exploring
class-specific weights in DNNs for FL settings remains an interesting avenue for future research.

Next, TMs remain an emerging field, and the use of pre-trained models has yet to be fully explored.
Unlike DNNs, which often benefit from pre-training on large datasets like ImageNet (Chen et al.,
2023; Nguyen et al., 2023), TMs have not been adapted to incorporate pre-trained weights. For
instance, a TM pre-trained on a large dataset could potentially reuse class-specific weights for tasks
involving those same classes. This unexplored area presents an exciting direction for future work.
Pre-training a TM on a dataset like ImageNet and fine-tuning it on smaller datasets, such as Tiny
ImageNet or CIFAR-100, could significantly enhance their applicability and effectiveness in these
specific tasks.

In summary, while TMs are still an emerging field of research, they offer distinct advantages, par-
ticularly in FL scenarios. Their class-specific weight structure and computational simplicity make
them well-suited for low-power, on-device training (Tang et al., 2024; Lei et al.; Rahman et al.,
2022). However, we recognize their current limitations, including challenges in handling complex
datasets and the lack of pre-trained models, which can affect training efficiency.
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A.4 FULL ALGORITHM

Algorithm 2 reassign weights(cluster info, cluster means, c)
Initialize: reordered models = rm for rm in range(c), reordered means = {}, used clusters = [] ,
track clusters = {[] for rm in range(c)}
Sort cluster info based on number of classes in each cluster
while len(used clusters) < num clusters do

for cidx in cluster info do
if cidx in used clusters then

continue
for class m in cidx do

best model = find best(cidx,m,reordered models, reordered means)
if best model == False then

best model = find least cc(reordered models,cidx)
Add θmj to best model
Add ϕm

j to best model
Update the mean for class m in reordered means[best model][m]

Add cidx to used clusters
Add cidx to track clusters[best model]

return reordered models

calculate avg link(reordered means):
ss 2 dist = 0
num pairs = 0
for mi in range(len(reordered means)) do

for mj in range(mi+1,len(reordered means)) do
ss 2 dist + = ∥reordered means[mi]-reordered means[mj]∥2
num pairs += 1

return ss 2 dist/num pairs

find best(cidx,m,reordered models,reordered means):
best model = False, max dist = 1
for model in reordered models do

if model has class m then
continue

temp model means = copy(reordered means[model])
temp model means[model][m].update(reordered means[cidx])
distance = calculate avg link(temp model means)
if distance> max dist then

max dist=distance
best model = model

return best model

find least cc(reordered models, cidx)
best model = False, min class = -1
for rm in reordered models do

distinct classes = len(set(classes in rm))
if distinct classes < min class then

min class = distinct classes
best model = rm

else if distinct classes == min class then
cluster class count = sum(1 for c in track clusters[rm])
if cluster class count < min class then

best model = rm
return best model
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Algorithm 3 average models(final models)
for each model fm in final models do

for each class m in fm do
sorted indices← argsort(θmj for all j ∈ fm, in descending order)
ϕm
fm ←

∨
j∈sorted indices[0:2] ϕ

m
j

θmfm ← mean(θmj ),∀j ∈ fm
return final models
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