
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEDTMOS: EFFICIENT ONE-SHOT FEDERATED
LEARNING WITH TSETLIN MACHINE

Anonymous authors
Paper under double-blind review

ABSTRACT

One-Shot Federated Learning (OFL) is a promising approach that reduce commu-
nication to a single round, minimizing latency and resource consumption. How-
ever, existing OFL methods often rely on Knowledge Distillation, which adds a
training phase and increases server-side latency. Their performance can also be
compromised by the quality of generated data or public datasets, resulting in sub-
optimal server models. To address these challenges, we proposed One-Shot Fed-
erated Learning with Tsetlin Machine (FedTMOS), a novel data-free OFL frame-
work built upon the low-complexity and class-adaptive properties of the Tsetlin
Machine. FedTMOS first clusters then reassigns class-specific weights to form
models using an inter-class maximization approach, generating balanced and ef-
ficient server models without requiring additional training. Our extensive exper-
iments demonstrate that FedTMOS significantly outperforms its ensemble coun-
terpart by an average of 6.16%, and the leading state-of-the-art OFL baselines
by 7.22% across various OFL settings. Moreover, FedTMOS achieves at least a
2.3× reduction in upload communication costs and a 75× reduction in server la-
tency compared to methods requiring server-side training. These results establish
FedTMOS as a highly efficient and practical solution for OFL scenarios.

1 INTRODUCTION

Federated Learning (FL) enables collaborative training across decentralized data sources while
maintaining privacy. Unlike traditional machine learning approaches, where data is transferred to
a central server, FL keeps the training process on local devices, with only model parameters be-
ing uploaded to a central server for aggregation, ensuring that sensitive information is not shared
(McMahan et al., 2016). However, the standard FL training process can lead to significant commu-
nication costs due to the multiple communication rounds between the server and devices to achieve
convergence. This iterative process is time consuming and resource-intensive, especially for edge
devices with limited computational power and bandwidth (Imteaj et al., 2022). The risk to secu-
rity and the potential of failures in communication links also leads to further challenges (Mothukuri
et al., 2021; Li et al., 2020).

To address these limitations, One-Shot Federated Learning (OFL) has emerged as a promising al-
ternative. OFL restricts communication to a single round, thus minimizing communication errors
and reducing the risk of interference caused by iterative updates (Guha et al., 2019). This approach
is particularly well-suited for scenarios where continuous communication is impractical, such as in
model marketplaces, where models are sold after reaching convergence (Li et al., 2020). OFL is
also ideal for edge devices with limited resources, as it eliminates the need for multiple rounds of
transmitting large volumes of model parameters between clients and the server (Khan et al., 2021).

Current OFL methods mainly rely on Knowledge Distillation (KD) and ensemble learning, which
aggregate local models into an ensemble before distilling it into a global model. A key challenge
with these methods is their dependence on public datasets, which may be inaccessible or unsuitable
for certain tasks (Li et al., 2021; Guha et al., 2019). Data-free methods using generative models
have been explored (Zhu, Zhuangdi and Hong, Junyuan and Zhou, Jiayu, 2021; Zhang et al., 2022a;
Dai et al., 2024; Zhou et al., 2020), but they often suffer from performance limitations and introduce
significant computational overhead. Additionally, neuron matching and model fusion techniques,
which eliminate the need for server-side training, have been proposed, but they too struggle with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

performance when models are trained on heterogeneous data distributions, as aligning the models
can be challenging (Wang et al., 2020; Singh & Jaggi, 2020; Jhunjhunwala et al.). On the client side,
most existing methods heavily rely on Deep Neural Networks (DNNs), which are resource-intensive
and often impractical for clients with limited computational capabilities, such as edge devices.

Firstly, to address the computational limitations of training DNNs on the edge, we employ the Tsetlin
Machine (TM), which features a low-complexity architecture based on finite-state automata and
game-theoretic principles (Granmo, 2021). This makes TMs a highly efficient alternative to tradi-
tional DNNs, as they have demonstrated the capability to significantly reduce communication costs
per round by at least 1.37× and improve storage efficiency by at least 6.6× compared to Binary
Neural Networks (BNNs), all without sacrificing performance (How et al., 2023).

Furthermore, to enhance the efficiency of the OFL process, we eliminate the need for server-side
training for KD and the reliance on an auxiliary dataset. We proposed a novel data-free solution that
leverages the class-adaptive nature of TMs by generating server models that maximize inter-class
model separation, all without requiring server-side training. Our experiments on various datasets
demonstrate that our proposed method outperforms state-of-the-art baselines by an average of 7.22%
across all settings. Additionally, it significantly reduces upload communication costs by at least
2.3×. By incorporating TMs into OFL, we aim to provide a computationally efficient, scalable, and
practical solution for FL scenarios where computational resources are limited.

Our contributions are as follows:

• We introduce FedTMOS, a novel OFL approach that capitalizes on the low-complexity de-
sign of the TM. By leveraging TMs, FedTMOS operates as a data-free method that achieves
a reduction in upload costs by at least 2.3×, while delivering an average accuracy improve-
ment of 7.22% relative to the top-performing baselines and 12.79% improvement over
state-of-the-art data-free OFL methods.

• FedTMOS employs a unique inter-class weight separation technique that effectively create
server models that enhance class distinction. This approach consistently outperforms its
ensemble counterpart by an average of 6.16% across the evaluated datasets, while simulta-
neously reducing both model size and performance instability by 1.63%.

• Our approach significantly reduces server-side computation, achieving at least a 75× re-
duction in server latency during model aggregation compared to existing methods that rely
on server-side training. This efficiency makes FedTMOS highly practical for OFL or situ-
ations demanding quick model deployment.

2 RELATED WORK

2.1 ONE SHOT FL

OFL improves efficiency in FL by limiting communication to a single round. This is typically
achieved by building ensemble models and applying KD using public datasets (Guha et al., 2019;
Zhou et al., 2020). However, its effectiveness depends on the quality of both the dataset and model
ensemble. To enhance performance, Li et al. (2021) applied hierarchical KD, and Diao et al. (2023)
introduced open-set voting to generate ’unknown’ samples without predefined classes. These meth-
ods rely on public data, limiting their use in data-scarce settings. In response, data-free OFL tech-
niques have emerged, including DENSE, which utilizes a generator trained with an ensemble of
client models (Zhang et al., 2022a). Dai et al. (2024) further improves the performance of the global
model by optimizing through KD derived from both the synthetic data and the ensemble model.
Other approaches include local clustering techniques, such as those by Dennis et al. (2021), which
involve uploading cluster means instead of full models. While this reduces communication over-
head, it struggles with increased data complexity. Heinbaugh et al. (2023) introduced Conditional
Variational Autoencoders (CVAEs) to learn conditional data distributions from clients, with the ag-
gregated decoders forming an ensemble model. Several techniques aim to improve server efficiency
by avoiding server-side training altogether. Neuron matching aligns model weights (Singh & Jaggi,
2020), while model fusion combines multiple models into a single robust one (Wang et al., 2020).
Advanced methods like optimal transport (Singh & Jaggi, 2020) and Fisher Information-based ap-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

proaches (Jhunjhunwala et al.; Jin et al., 2023) enable model aggregation without computationally
expensive KD (Jin et al., 2023), further enhancing scalability in OFL.

2.2 TMS IN FL

FedTM is the first FL framework to utilize TM. Unlike traditional FL frameworks that rely on DNNs,
where weight aggregation typically involves a simple weighted average of integer weights, FedTM
uses a distinct two-step aggregation process (How et al., 2023). This process is enabled by the
unique architecture of the TM, as depicted in Figure 2. While FedTM offers significant reductions
in both memory utilization and communication costs, its aggregation process still requires multiple
communication rounds to achieve convergence. To our best knowledge, TMs have not been explored
in the context of OFL.

3 PRELIMINARIES

3.1 THE TSETLIN MACHINE

The Tsetlin Machine (TM) is a machine learning method grounded in propositional logic and bit-
based representation, leveraging Tsetlin Automata (TA) and game theory principles to derive logical
propositions for classification (Granmo, 2021).

3.1.1 THE TSETLIN AUTOMATON

The Tsetlin Automaton (TA) is an efficient and simple learning mechanism. With 2A states, and
two actions, Include and Exclude, the automaton adjusts its state based on feedback by either incre-
menting or decrementing the states based on received feedback (Penalty or Reward). From Figure 1,
when a reward is given, the TA advances further along the path of the current action. If it receives a
penalty, it moves closer to the center, which may lead to a change in action.

Figure 1: A two-action TA with 2A states

3.1.2 THE TSETLIN MACHINE STRUCTURE AND INFERENCE

The first step in training a TM is to convert the input features into a Boolean format. The input
feature vector x ={x1, . . . , xo} ∈ {0, 1}o is transformed into a set of literals, L = {l1, . . . , l2o}
={x1, . . . , xo,¬x1, . . . ,¬xo}, which includes both the original features and their negations. Each
clause Cj in the TM selects a subset of these literals, denoted as Lj ⊆ L. Here, j indexes the
clauses, and Lj refers to the set of literals chosen by clause Cj to form its conjunctive expression.

The TM organizes its clauses into two groups: positive and negative clauses. For the given input
x = {x1, . . . , xo}, and with binary class labels, y ∈ {0, 1}, the TM computes a unit step function,
u, to determine the final classification output. If the signed sum s(x) is negative, the TM classifies
the output as ŷ = 0, if not it classifies it as ŷ = 1:

ŷ = u(s(x)) = u(

N/2∑
j=1

C+
j (x)−

N∑
j=N/2+1

C−
j (x))

In the Multi-Class case, each class has its own set of clauses and the final classification is the class
with the highest sums: ŷ = argmaxm=1...M sm(x). As shown in Figure 2, the TM utilizes bitwise
operations to compute its output, resulting in a design that is both intuitive and low in complexity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the Weighted Multi-Class Tsetlin Machine Inference Process: Raw input
features are first booleanized to generate boolean literals. Clause outputs are produced through
logical operations with these literals and trained TAs. The inference routine sums up the N clause
outputs, weighted by their respective weights, to generate class sums for M classes, with the output
determined to be the class with the highest sum (Maheshwari et al., 2023).

3.1.3 THE TSETLIN MACHINE LEARNING MECHANISM

The TM operates in an online fashion, learning one training example (x, y) at a time. For each
training example, the TM adjusts the states of its TAs by applying rewards and penalties, which
involve incrementing or decrementing their states. Feedback to the TAs comes in two types:

• Type I which helps identify frequent patterns is applied randomly to clauses based on their
polarity and the true label. Positive clauses receive Type I feedback when y = 1, and the
negative clauses receive it when y = 0.

• Type II is also given stochastically to clauses to enhance pattern discrimination. Positive
clauses receive Type II Feedback when y = 0, and negative clauses receive it when y = 1.

The feedback is applied randomly to introduce an ensemble effect, guided by a hyperparameter T ,
which represents the target sum. The TM aims to adjust the signed sum such that it reaches −T
for inputs with class y = 0 and T for class y = 1. To facilitate this, s(x) is constrained within
[−T, T] with: c(x) = clamp(s(x),−T, T) and the probability that each clause receives feedback is
proportional to the difference between the clamped sum and T:

py(x) =

{
T+c(x)

2T , if y = 0
T−c(x)

2T , if y = 1
(1)

Randomly selecting clauses helps distribute feedback across a variety of significant sub-patterns
instead of concentrating on a few. Feedback decreases as the clamped sum, c(x) approaches the
target ±T , ensuring that only some clauses are used to identify each sub-pattern.

3.1.4 WEIGHTED TSETLIN MACHINE

During learning, similar clauses tend to appear multiple times in the final model. Introducing
weights allows each clause to be represented once with an associated weight, rather than repeat-
ing it. Hence, the impact of individual clauses can be quantified, resulting in a real-valued quantity.

Initially, all weights are set to 1 and they are updated based on the feedback type. In summary,
Type I feedback increases weights for correct patterns, while Type II feedback decreases weights to
reduce false positives. This enhances the efficiency of the TM by optimizing weight assignment to
clauses, leading to more compact models without compromising accuracy (Phoulady et al., 2020).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The resulting overall sum now, denoted as s(x), becomes:

s(x) =

N/2∑
j=1

w+
j C

+
j (x)−

N∑
j=N/2+1

w−
j C

−
j (x) (2)

3.1.5 CONVOLUTIONAL TM

Convolutional TM (CTM) uses filters with spatial dimensions W × W and Z binary layers. An
image with dimensions X × Y and Z binary layers is represented in TMs using an input vector
x = {xk | k ∈ {0, 1}X×Y×Z}. The input vector represents a specific patch of the image, with the
entire image being divided into B such patches. Each clause receives B literal inputs and unlike
regular TMs, where a single output is produced per clause, a clause in a CTM outputs B outputs
- one for each patch. To aggregate these multiple outputs from clause j, c1j , . . . , c

B
j into a a single

output, Cj , a logical OR operation is applied: Cj =
∨B

b=1 c
b
j

Training in the CTM extends the TM’s learning process by using both Type I and Type II feedback
mechanisms. To update a clause during training, the CTM randomly picks a patch from the set of
patches where the clause evaluates to 1, where {Xb|cbj = 1, 1 ≤ b ≤ B}. The clause is then updated
according to the selected patch, allowing the learning process to focus on the most relevant regions
that contribute to the clause’s outcome (Granmo et al., 2019).

3.1.6 TM COMPOSITES

To enable collaboration among multiple independently trained TM models, Granmo (2023) pro-
posed TM composites. Given r TMs, this involve computing the normalized class sums for each
TM, t ,by dividing it with the difference between the maximum and minimum class sums in the
input set: αt = maxm(smt (x))−minm(smt (x))

The final classification result is obtained by selecting the class with the highest value from the sum
of all r TMs as computed below:

ŷ = argmax
m

(
r∑

t=1

1

αt
smt (x)

)
(3)

TM composites enhance classification accuracy and convergence by reducing over-fitting and in-
creasing robustness among individual models, thereby improving overall performance through ef-
fective model combination (Granmo, 2023).

4 METHODOLOGY

Given J clients, each having local datasets D1, D2, ..., DJ . The objective is to aggregate the local
TM models, T = {T1, T2, ..., TJ}, into c server models (c < J) that generalizes well over D ≡
∪i∈JDi in one communication round.

4.1 MOTIVATION

Similar to ensemble methods for OFL, we first introduce a straightforward approach for aggregating
local TM models, FedTMOS (ensemble), by applying the principles behind TM Composites. In this
approach, the final classification is then determined by Equation 3.

However, this method encounters significant limitations. Firstly, as the number of clients, J in-
creases, the number of local models grows proportionately, leading to issues related to redundancy
and overlapping knowledge. This results in diminishing classification performance due to conflict-
ing information among models. Additionally, the increased number of models adds computational
overhead, making the OFL process less efficient.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 FEDTMOS: ONE-SHOT FEDTM

To address these limitations, we proposed a novel approach based on the class-adaptive nature of
TM as illustrated in Figure 2. Clauses, as simple logical expressions, collectively represent complex
patterns, with their associated weights quantifying these patterns. Our method aims to reduce the
total number of models to a user defined value c, where the final classification is determined by:

ŷ = argmax
m

(
c∑

i=0

1

αi
smi (x)

)

where c < J . Our proposed approach consists of two stages: first the weights, represented by
θ = {θ1,θ2, . . . ,θJ}, where each θj = {θ1j , θ2j , . . . , θMj } is a M−size vector of class-specific
weights for client j, and M denotes the total number of classes, are scaled based on the average
normalized Gini index of all clients (x), followed by k-means clustering (Lloyd, 1982). Then, we
perform a greedy reassignment of model weights to c number of models to minimize overlap.

Our approach is intuitive: by maximizing inter-class separation within models, we enhance the
model’s ability to distinguish between classes. The Gini index is employed to quantify the distri-
bution of data and ensure balanced client participation. It dynamically adjusts client weights based
on data inequality, promoting fairness and engagement across clients Li et al. (2023). This, in turn,
enhances both model performance and convergence.

Figure 3: Overview of FedTMOS: 1⃝ Clients upload their scaled clause weights, state parameters,
and normalized Gini Index to the server. 2⃝ The server then rescales the weights using the mean
normalized Gini Index and performs k-means clustering on the weights. This clustering is essential
for grouping similar weights, helping to prevent large disparities in class weights across models
during the reassignment process while also reducing complexity. 3⃝ Finally, the number of models,
denoted by a user-defined parameter c, is initialized, and class weights from each cluster are greedily
reassigned to maximize inter-class separation within each model.

4.2.1 PRE-PROCESSING MODEL WEIGHTS

In the initial step, clients upload their scaled clause weights, which are adjusted based on the pro-
portion of samples per class relative to the client’s total sample size. This scaling is expressed as:

θij =
|Di

j |
|Dj |

θij

where θij represents the clause weight for class i in client j, |Di
j | is the number of samples for class i

in client j, and |Dj | is the total number of samples in client j. This ensures that the contributions of
different classes are appropriately balanced, preventing over-representation of any particular class.

Alongside these weights, clients also upload their individual normalized Gini index, which quantifies
the inequality in their local data distributions (Tangirala, 2020). The Gini Index for client j is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Distribution of clause weights for each class stays within the range of T with similar means
for (a) data with low normalized Gini scores compared to (b) data with high normalized Gini scores
for a simple TM model with T = 1000 on the MNIST dataset.

computed as gj =
∑M

i=1 p
2
i , where pi is the proportion of data belonging to class i. To account for

imbalances in the server model, we scale the clause weights of all clients, θ using the normalized
Gini Index, x = 1

J

∑J
j=1 gj . This scaling adjustment is applied only when x exceeds a predefined

threshold, signaling significant inequality. The adjusted weights are updated as:

θij = x · θij
This adjustment prevents under-representation of minority classes, which could otherwise be over-
shadowed by dominant classes due to imbalanced clause weights as seen in Figure 4. Without
correction, these class imbalances, amplified by the signed sum clamping in TM within [−T, T],
can skew the model by decreasing the contribution of the other classes in the server model.

Next, we apply k-means clustering to group these scaled weights. This is crucial as clustering similar
weights ensures a smoother and more balanced reassignment process, preventing large disparities in
class weights across models. The objective of k-means is to iteratively minimize the within-cluster
sum of squares (WCSS), defined as:

argmin
S

k∑
i=1

∑
θ∈Si

|θ − µi|2 (4)

where k is the number of clusters, θ represents a data point (i.e., a vector of scaled weights from
any client j), Si is the set of points assigned to cluster i, and µi is the centroid (mean) of cluster i.
Performing k-means on the scaled weights reduces the complexity of the subsequent reassignment
process, while ensuring that the class weights within models are not largely skewed.

4.2.2 REASSIGNING WEIGHTS

In the initial step, we use k-means clustering to group scaled weights into k clusters, minimizing the
WCSS. This approach clusters similar weights, enabling balanced reassignment and reducing the
risk of over-fitting or under-representing certain classes.

Building on this clustering foundation, we reassign the weights to c models. During this step, we
maximize the average squared distances between class weights within each model. While k-means
aims for tighter clusters through minimization, our strategy emphasizes maximizing class separa-
tion among the clusters. This focus on inter-class weight distances enhances the model’s ability to
distinguish between categories, ultimately leading to improved classification performance.

Building on this clustering foundation, we reassign the weights to c models by formulating an objec-
tive function that maximizes the inter-class distance. Specifically, we aim to maximize the average
squared distance between class weights within each model, defined as:

maximize
1

c

c∑
m=1

∑
i ̸=j

∥θim − θjm∥2

where θim and θjm are the weights for classes i and j within model m.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

This emphasis on inter-class separation ensures that each model maintains distinct class boundaries,
thereby enhancing the model’s classification performance.

Starting with the clusters containing the fewest classes, we assign class weights to models based on
the assignment that yields the greatest increase in average squared distance. If no model satisfies
this criterion, we allocate the weight to the model with the fewest distinct class weights. In the event
of ties, we select the model with the least overlapping clusters.

To form the final models, we compute the mean of the clause weights for each class. Since clause
weights do not affect the TA state updates (Granmo et al., 2019), the aggregation of TA states can
occur independently. To prevent the states, represented by bits, from including all literals due to
excessive aggregation, we apply the TopK procedure from FedTM (How et al., 2023). This involves
selecting the two states with the highest weights, indicating greater confidence from more samples,
and combining them using the bitwise OR operator. This approach prevents the problem of overly
inclusive and redundant state representations.

Our method maximizes inter-class separation and ensures adequate class coverage, resulting in
well-separated models with distinct class representations. This enhances the models’ effectiveness
in handling data distribution variations and improves class differentiation, yielding scalable, high-
performing models for classification tasks. The overall algorithm is summarized in Algorithm 1

Algorithm 1 FedTMOS
Input: Clients’ scaled local model clause weights {θ1,θ2, . . . ,θJ} and states {ϕ1, ϕ2, . . . , ϕJ},
∈ {T1, T2, ..., TJ} their normalized Gini scores, G = {g1, g2, ..., gJ}, number of clusters k for
k-means clustering and number of final models c, scaling threshold, σ
Initialize: all weights, all states = [], []
Compute mean normalized Gini scores: G = 1

J

∑J
i=1 G

Set x =

{
G if G > σ

1 if G ≤ σ
for each client j = 1, 2, . . . , J do

for each class m = 1, 2, . . . ,M do
Add θmj · x to all weights and ϕm

j to all states
cluster info, cluster means = kmeans(all weights, k)
reordered models, reordered means = reassign weights(cluster info, cluster means, c)
final models = average models(reordered models)
return final models

4.3 EXPERIMENTS

4.3.1 EXPERIMENTAL DETAILS

Datasets. We evaluated our approach on four image datasets widely utilized in FL literature: MNIST
(Deng, 2012), F-MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011) and CIFAR-10 (Krizhevsky,
2009). To simulate heterogeneity, we applied two different methods: sampling class priors from a
Dirichlet distribution, Dir(α), as described in Hsu et al. (2019), where α controls the degree of
heterogeneity in data splits. We also distributed data such that each client possesses samples from
only β classes, C(β). In our experiments, we simulated non-IID settings by using α = 0.05, 0.1, 0.3
and β = 2, 3, 4.

Baseline Methods. We compared our method with several FL algorithms representing different
approaches for model aggregation: FedAvg (McMahan et al., 2016), the standard iterative FL al-
gorithm evaluated after one communication round; Fed-Oneshot, which ensembles client classifier
predictions (Guha et al., 2019); and Distilled-FedOV, which enhances performance using open-set
voting and a public dataset for KD (Diao et al., 2023). DENSE and Co-Boosting, both data-free
methods, generate data for KD: DENSE by leveraging similarity, stability, and transferability (Zhang
et al., 2022a), and Co-Boosting by creating hard samples and re-weighting client models (Dai et al.,
2024). Additionally, we compared with three data-free methods that do not involve server-side train-
ing: OT-Fusion, which employs a layer-wise model merging method using optimal transport to align
neurons and weights (Singh & Jaggi, 2020); RegMean, which minimizes the l2 distance to individ-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance of the different algorithms across various data partitions

Dataset Partition FedAvg Fed-
OneShot DENSE Co-Boosting Distilled-

FedOV OT-Fusion RegMean FedFisher FedTMOS
(Ensemble) FedTMOS

MNIST

Dir(0.05) 32.67±13.90 59.80±27.34 68.79±14.19 83.42±7.77 89.34±0.67 52.38±4.74 76.64±4.57 77.14±8.65 87.81±11.31 93.80±3.81
Dir(0.1) 47.24±18.09 74.32±17.18 82.05±7.33 91.73±5.80 93.60±0.62 66.20±3.70 85.25±1.80 79.32±3.05 92.44±4.22 96.60±1.85
Dir(0.3) 78.08±9.05 94.81±2.39 95.61±1.47 96.41±0.83 97.67±0.15 97.37±0.10 94.37±1.42 92.03±2.52 98.36±0.16 98.41±0.10
C(2) 24.48±4.72 43.45±9.10 48.84±12.44 62.57±4.09 56.26±4.88 28.68±7.16 65.92±11.88 36.92±17.01 56.98±0.92 92.94±0.51
C(3) 35.06±6.82 57.30±7.66 57.63±8.12 79.85±5.55 86.22±3.20 42.69±3.39 69.92±7.57 62.66±14.46 83.08±0.53 95.23±0.47
C(4) 51.53±9.00 77.02±12.15 81.65±7.31 93.91±2.48 70.92±1.07 62.40±11.10 87.58±6.06 85.12±3.04 90.12±0.81 96.84±0.50

F-MNIST

Dir(0.05) 42.14±9.43 53.11±2.72 51.67±5.31 59.93±10.00 75.39±0.85 42.06±9.06 58.02±2.66 55.02±6.97 68.43±6.08 75.45±3.58
Dir(0.1) 45.20±14.65 60.94±11.25 56.97±9.78 60.55±6.47 77.84±1.21 50.66±3.66 63.27±5.35 60.60±4.91 78.14±4.97 78.21±3.58
Dir(0.3) 71.93±1.54 80.24±2.79 73.95±2.65 78.94±1.69 83.24±0.58 76.49±4.12 75.14±1.26 75.57±1.69 84.60±0.42 84.97±1.39
C(2) 11.76±3.05 26.89±6.30 30.73±8.94 40.94±1.95 56.97±0.71 21.53±3.65 35.29±9.21 32.25±8.06 49.88±0.57 59.17±1.56
C(3) 27.79±4.45 49.70±5.57 46.35±7.68 59.94±2.11 74.85±1.06 32.48±5.29 60.34±5.18 46.07±0.91 72.01±0.43 74.94±1.78
C(4) 36.93±8.22 54.48±4.83 54.00±4.34 57.24±5.38 61.20±0.42 36.81±2.35 68.87±2.78 65.21±1.88 71.59±0.06 78.78±0.77

SVHN

Dir(0.05) 25.05±15.01 39.00±20.47 38.09±19.61 35.62±12.99 63.17±0.95 35.97±0.13 55.52±3.07 56.32±2.29 58.71±11.36 63.54±2.61
Dir(0.1) 35.63±10.05 55.06±13.23 52.45±11.26 53.42±14.28 64.94±6.22 47.68±1.28 55.28±3.36 54.35±2.84 66.79±1.88 69.79±2.33
Dir(0.3) 52.99±5.77 72.37±6.48 65.65±8.95 76.09±6.10 77.53±2.30 77.27±0.21 72.43±3.25 76.90±1.04 75.36±3.31 78.86±1.27
C(2) 18.51±6.07 27.79±5.24 26.60±5.78 43.29±5.54 54.26±8.80 17.63±3.61 33.25±6.73 34.57±6.66 43.58±0.72 61.63±1.13
C(3) 31.31±1.10 47.48±5.26 43.96±5.47 58.89±4.17 74.98±0.75 29.67±7.82 54.66±6.73 57.25±3.96 72.83±0.23 78.09±0.25
C(4) 43.24±3.03 56.35±2.51 51.44±4.34 63.88±5.39 73.47±0.56 35.69±4.41 63.89±2.54 64.77±6.53 72.92±0.35 75.24±0.68

CIFAR-10

Dir(0.05) 17.02±0.83 28.30±5.68 25.97±2.52 26.17±3.85 40.04±5.61 30.70±0.80 33.58±4.59 35.61±1.41 37.38±13.21 47.69±2.59
Dir(0.1) 27.55±5.30 37.52±4.53 32.46±3.62 36.71±7.87 46.79±2.66 31.46±1.52 33.49±0.83 39.55±5.36 45.85±10.00 52.25±1.71
Dir(0.3) 36.44±2.45 50.83±2.99 43.11±0.95 43.35±2.08 48.24±5.22 49.43±2.94 44.34±1.42 51.18±1.45 56.96±0.88 57.03±0.74
C(2) 15.93±5.23 13.95±5.86 15.73±3.77 21.91±6.51 33.90±0.12 18.57±0.59 24.24±2.57 22.23±1.53 38.47±0.44 39.95±1.33
C(3) 25.45±0.75 35.83±4.98 29.13±3.26 33.21±4.00 45.64±2.14 24.70±2.77 31.06±1.36 32.36±4.15 51.53±0.42 52.18±0.73
C(4) 24.96±0.63 39.04±3.41 31.26±1.61 36.39±1.22 41.17±1.63 33.67±0.62 38.97±1.33 41.46±2.31 59.41±1.36 59.59±0.30

ual model predictions using inner product matrices of layer inputs (Jin et al., 2023); and FedFisher,
which approximates Bayesian inference using Fisher information by using local posterior estimates
and Fisher matrices from clients (Jhunjhunwala et al.). These baselines were selected to evaluate the
performance with and without reliance on external datasets or excessive computational overhead.

Configurations. Our experiments default to 10 clients with Dir(0.1), as in Zhang et al. (2022a);
Dai et al. (2024), unless stated otherwise. We reported the average test accuracy and standard devi-
ation across 3 different dataset splits for each setting. Following Diao et al. (2023), half of the test
dataset served as a public dataset for Distilled FedOV, and we evaluated all algorithms on the same
subset, ensuring consistency across evaluations. For CNN-based algorithms, we used a 5-layer CNN
architecture with a batch size of 128, as per Dai et al. (2024) and Jhunjhunwala et al.. For FedT-
MOS, we fixed k = 30 for the Dir partitions to account for class distribution variability among
clients and k = 10 for the C partition. We implemented different CTM models for each dataset,
ensuring the size of c server models was equal to or smaller than the distilled CNN server model for
fair comparison. All algorithms were trained for 30 local epochs, as outlined in Jhunjhunwala et al..
See Appendix A.1 for more details.

From Table 1, FedTMOS outperforms all baseline methods without the need for synthetic or gener-
ated data and server-side training in all settings. On average, FedTMOS performs better than the top
performing baseline, Distilled-FedOV, by 13.3%, 3.67%, 3.13%, 8.82% on the MNIST, F-MNIST,
SVHN and CIFAR-10 dataset respectively. We note that Distilled FedOV leverages KD at the server
using a subset of the test data, closely matching the actual samples. On average, FedTMOS outper-
forms the best data-free OFL method by 12.79%, reinforcing its effectiveness in OFL.

We note that DENSE and Co-Boosting exhibit high variance, particularly with increasingly non-
IID data. This is likely because classifiers trained on non-IID data generate sub-optimal knowledge
samples, which are crucial for the distillation process. This hinders the student model’s learning,
reducing performance and increasing variability (Gou et al., 2021).

We also evaluated FedTMOS against the FedTMOS ensemble. On average, FedTMOS demonstrates
6.16% better performance across all settings, while reducing variation by an average of 1.63% across
all settings. Furthermore, FedTMOS exhibits lower memory costs as it reduces the ensemble model
size to c number of server models, making it an efficient solution. Overall, these results highlight
FedTMOS as a reliable approach for data-free OFL.

4.3.2 EFFICIENCY ANALYSIS

In terms of communication costs, our results demonstrate that the bit-based architecture of the TM
significantly reduces communication overhead while producing a model that generalizes well across
all settings, evident in the results in Table 2 By ensuring that the server model size of the TM is
equal to or smaller than the CNN models, we show that FedTMOS effectively reduces upload costs
by at least 2.3× without sacrificing performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: CC: Upload costs for each client/storage and potential download costs of the server model
(MB), TL: Training latency for each client (s) and SL: Server aggregation latency on CIFAR-10 (s)

DENSE Co-Boosting Distilled-
FedOV OT-Fusion RegMean FedFisher FedTMOS

CC 1.28/1.28 3.76/3.76 0.57/1.24
TL 235.10±6.86 22.54±2.35 219.58±6.85
SL 931±3.51 1247±7.45 246±5.95 2.04±1.14 6.93±0.69 9.98±0.93 3.24±0.17

We evaluated the average latency for model aggregation at the server using a standard compute node
equipped with a single GPU core, as well as the training latency on 32 CPU cores. As shown in
Table 2, FedTMOS is at least 75× more efficient than methods that require server-side training.
Furthermore, we observed that the training latency of OT-Fusion, RegMean, and FedFisher is lower
than that of DENSE, Co-Boosting, and Distilled-FedOV. This difference arises because the former
methods utilize CNNs with three layers (Dai et al., 2024), whereas the latter methods employ CNNs
with only two layers (Jhunjhunwala et al.).

Even though the training latency of FedTMOS is higher compared to OT-Fusion, RegMean, and
FedFisher, the results in Table 1 demonstrate that FedTMOS outperforms them by at least an average
of 14.43% across all settings. This substantial improvement in performance highlights the value of
FedTMOS in achieving higher accuracy with comparable server efficiency. Moreover, despite the
slight trade-off in training efficiency, FedTMOS remains highly suitable for practical deployment
due to its low upload costs, which are crucial for edge devices with limited bandwidth (Zhang et al.,
2022b), and the computational simplicity of TMs, which avoid backpropagation and make them
ideal for low-power training on edge devices (Rahman et al., 2022; Tang et al., 2024; Lei et al.).
This balance between performance and efficiency highlights FedTMOS as a promising solution for
OFL and facilitates its extension to iterative FL while maintaining efficiency (Zhang et al., 2022b).

4.3.3 SCALABILITY

We evaluated the performance of all methods by varying the number of clients. For FedTMOS, to
constrain the server model size, we reduced the number of clauses in the local CTM model, scaling
down the local model size by 2.9× for 20 and 50 clients, and 4× for 80 clients. From Table 3,
we see that FedTMOS outperforms all other methods, although its performance declines with an
increasing number of clients. This suggests that while reducing model size is necessary, it can
limit performance. Future work will explore dynamic scaling techniques for the number of server
models, c, and adapting the number of clusters, k, to better balance complexity and class coverage.
Additionally, advanced sampling methods can be used to manage the increasing number of weight
vectors for reassignment, potentially enhancing performance with increasing clients.

Table 3: Performance of the different algorithms with an increasing number of clients on CIFAR-10

Clients FedAvg Fed-
OneShot DENSE Co-Boosting Distilled-

FedOV OT-Fusion RegMean FedFisher FedTMOS

20 26.42±7.99 26.64±15.74 31.18±6.90 34.55±3.89 37.20±1.55 24.95±3.24 18.55±8.92 32.46±2.34 50.08±3.62
50 23.34±4.04 34.96±3.60 27.47±3.77 34.33±2.08 30.43±1.56 27.17±1.36 31.74±1.94 37.52±0.37 50.90±0.94
80 23.04±5.11 25.04±13.06 23.85±11.70 32.47±2.36 25.65±1.04 22.20±1.85 20.86±2.25 33.66±0.95 49.15±1.08

5 CONCLUSIONS

We introduced FedTMOS, a novel framework for OFL that eliminates the need for server-side train-
ing for KD and the use of synthetic or generated datasets. By scaling weights with normalized
Gini scores, clustering parameters, and maximizing inter-class model separation, FedTMOS re-
duces computational complexity, constrains server model size, and minimizes variance. Notably,
it surpasses all SOTA baselines by at least an average of 7.23% and the best data-free method by
12.79% across all dataset settings. Furthermore, it achieves a reduction in upload communication
costs by at least 2.3×, making FedTMOS well-suited for FL with edge devices and providing a
strong foundation for further exploration into enhancing the efficiency and performance of OFL.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han Wei Shen, and Wei-Lun Chao. On the Impor-
tance and Applicability of Pre-Training for Federated Learning. In International Conference on
Learning Representations, 2023.

Rong Dai, Yonggang Zhang, Ang Li, Tongliang Liu, Xun Yang, and Bo Han. Enhancing One-Shot
Federated Learning Through Data and Ensemble Co-Boosting. In International Conference on
Learning Representations, 2024.

Li Deng. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best
of the Web]. IEEE SPM, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.

Don Kurian Dennis, Tian Li, and Virginia Smith. Heterogeneity for the Win: One-Shot Federated
Clustering, 2021. URL https://arxiv.org/abs/2103.00697.

Yiqun Diao, Qinbin Li, and Bingsheng He. Towards Addressing Label Skews in One-Shot Federated
Learning. In International Conference on Learning Representations, 2023.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge Distillation:
A Survey. International Journal of Computer Vision, 129(6):1789–1819, March 2021. ISSN
1573-1405. doi: 10.1007/s11263-021-01453-z. URL http://dx.doi.org/10.1007/
s11263-021-01453-z.

Ole-Christoffer Granmo. The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to
Optimal Pattern Recognition with Propositional Logic, 2021.

Ole-Christoffer Granmo. TMComposites: Plug-and-Play Collaboration Between Specialized Tsetlin
Machines, 2023.

Ole-Christoffer Granmo, Sondre Glimsdal, Lei Jiao, Morten Goodwin, Christian W. Omlin, and
Geir Thore Berge. The Convolutional Tsetlin Machine, 2019.

Neel Guha, Ameet Talwalkar, and Virginia Smith. One-Shot Federated Learning, 2019. URL
https://arxiv.org/abs/1902.11175.

Clare Elizabeth Heinbaugh, Emilio Luz-Ricca, and Huajie Shao. Data-Free One-Shot Federated
Learning Under Very High Statistical Heterogeneity. In The Eleventh International Conference
on Learning Representations , 2023.

Shannon Shi Qi How, Jagmohan Chauhan, Geoff V Merrett, and Jonathan Hare. FedTM: Mem-
ory and Communication Efficient Federated Learning with Tsetlin Machine. In 2023 Interna-
tional Symposium on the Tsetlin Machine (ISTM), pp. 1–8, 2023. doi: 10.1109/ISTM58889.
2023.10454982.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the Effects of Non-Identical Data
Distribution for Federated Visual Classification, 2019.

Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M. Hadi Amini. A Survey on Feder-
ated Learning for Resource-Constrained IoT Devices. IEEE IoT-J, 9(1):1–24, 2022.

Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. FedFisher: Leveraging Fisher Informa-
tion for One-Shot Federated Learning.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless Knowledge Fusion by
Merging Weights of Language Models. In International Conference on Learning Representations,
2023.

Latif U. Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. Federated Learning
for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Communica-
tions Surveys & Tutorials, 23(3):1759–1799, 2021. doi: 10.1109/COMST.2021.3090430.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

11

https://arxiv.org/abs/2103.00697
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1007/s11263-021-01453-z
https://arxiv.org/abs/1902.11175
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jie Lei, Tousif Rahman, Rishad Shafik, Adrian Wheeldon, Alex Yakovlev, Ole-Christoffer Granmo,
Fahim Kawsar, and Akhil Mathur. Low-Power Audio Keyword Spotting Using Tsetlin Ma-
chines. Journal of Low Power Electronics and Applications, (2). ISSN 2079-9268. doi:
10.3390/jlpea11020018.

Qinbin Li, Bingsheng He, and Dawn Xiaodong Song. Practical One-Shot Federated Learning for
Cross-Silo Setting. In International Joint Conference on Artificial Intelligence, 2021.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated Learning: Challenges,
Methods, and Future Directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020. doi:
10.1109/MSP.2020.2975749.

Xiaoli Li, Siran Zhao, Chuan Chen, and Zibin Zheng. Heterogeneity-aware fair federated learning.
Information Sciences, 619:968–986, 2023.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2):
129–137, 1982. doi: 10.1109/TIT.1982.1056489.

Sidharth Maheshwari, Tousif Rahman, Rishad Shafik, Alex Yakovlev, Ashur Rafiev, Lei Jiao, and
Ole-Christoffer Granmo. REDRESS: Generating Compressed Models for Edge Inference Us-
ing Tsetlin Machines. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):
11152–11168, 2023. doi: 10.1109/TPAMI.2023.3268415.

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In AISTATS,
2016.

Viraaji Mothukuri, Reza M. Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and
Gautam Srivastava. A survey on security and privacy of federated learning. Future Genera-
tion Computer Systems, 115:619–640, 2021. ISSN 0167-739X. doi: https://doi.org/10.1016/
j.future.2020.10.007. URL https://www.sciencedirect.com/science/article/
pii/S0167739X20329848.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In NeuRIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011.

John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi, and Michael G. Rabbat. Where to
Begin? On the Impact of Pre-Training and Initialization in Federated Learning. In International
Conference on Learning Representations, 2023.

Adrian Phoulady, Ole-Christoffer Granmo, Saeed Rahimi Gorji, and Hady Ahmady Phoulady. The
Weighted Tsetlin Machine: Compressed Representations with Weighted Clauses, 2020. URL
https://arxiv.org/abs/1911.12607.

Tousif Rahman, Adrian Wheeldon, Rishad Shafik, Alex Yakovlev, Jie Lei, Ole-Christoffer Granmo,
and Shidhartha Das. Data Booleanization for Energy Efficient On-Chip Learning using Logic
Driven AI. In 2022 International Symposium on the Tsetlin Machine (ISTM), pp. 29–36, 2022.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Infor-
mation Processing Systems, 33, 2020.

Chong Tang, Neelam Singh, and Jagmohan Chauhan. AdaTM: logic inspired adaptive Tsetlin ma-
chines for efficient and effective continual learning on the edge. In 21st International Conference
on Embedded Wireless Systems and Networks, 2024.

Suryakanthi Tangirala. Evaluating the Impact of GINI Index and Information Gain on Classification
using Decision Tree Classifier Algorithm*. International Journal of Advanced Computer Science
and Applications, 11, 2020.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated Learning with Matched Averaging. In International Conference on Learning Repre-
sentations, 2020.

12

https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://www.sciencedirect.com/science/article/pii/S0167739X20329848
https://arxiv.org/abs/1911.12607

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A Novel Image Dataset for Bench-
marking Machine Learning Algorithms, 2017.

Jie Zhang, Chen Chen, Bo Li, Lingjuan Lyu, Shuang Wu, Shouhong Ding, Chunhua Shen, and
Chao Wu. DENSE: Data-Free One-Shot Federated Learning. In Advances in Neural Information
Processing Systems, volume 35, pp. 21414–21428, 2022a.

Zhenxiao Zhang, Zhidong Gao, Yuanxiong Guo, and Yanmin Gong. Scalable and Low-Latency Fed-
erated Learning with Cooperative Mobile Edge Networking, 2022b. URL https://arxiv.
org/abs/2205.13054.

Yanlin Zhou, George Pu, Xiyao Ma, Xiaolin Li, and Dapeng Oliver Wu. Distilled One-Shot Feder-
ated Learning. ArXiv, abs/2009.07999, 2020.

Zhu, Zhuangdi and Hong, Junyuan and Zhou, Jiayu. Data-free knowledge distillation for hetero-
geneous federated learning. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine Learn-
ing Research, pp. 12878–12889. PMLR, 2021.

13

https://arxiv.org/abs/2205.13054
https://arxiv.org/abs/2205.13054

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

A.1.1 BASELINES MODEL CONFIGURATION

For the baseline models, we adhered to the same hyperparameters specified in the original papers
(Jhunjhunwala et al.; Zhang et al., 2022a; Dai et al., 2024; Diao et al., 2023). However, to ensure a
fair comparison, we fixed the number of server epochs to 100 epochs for the baseline algorithms -
Distilled FedOV, DENSE and Co-Boosting.

A.1.2 FEDTMOS MODEL CONFIGURATION

To align with the booleanized format for training TMs, we applied variouos pre-processing steps for
each dataset. For the MNIST dataset, we encoded the data by setting pixel values larger than 75
to 1, and values below or equal to 75 to 0. For the F-MNIST and SVHN dataset, we followed the
original implementation by Granmo et al. (2019), to binarize the data using an adaptive Gaussian
thresholding procedure with a window size of 11 and a threshold value of 2. For CIFAR-10, as
described in Granmo (2023), we processed one copy of the data using the same adaptive Gaussian
thresholding procedure and another copy with 8-level color thermometer encoding. Additionally, we
employed three TM composite models for CIFAR-10: adaptive thresholding, 3x3 color thermometer,
and 4x4 color thermometer.

For FedTMOS, we used the following model configurations of CTM for each dataset:

Table 4: FedTMOS Model Configuration

MNIST F-MNIST SVHN CIFAR-10
Adaptive Threshold 3x3 CT 4x4 CT

Number of Clauses 100 200 1100 200 200 200
Feedback Threshold 1000 1000 2000 400 300 300
Learning Sensitivity 5 5 5 5 5 5
Patch Dimensions (5,5) (10,10) (5,5) (10,10) (3,3) (4,4)

A.1.3 ADDITIONAL SETTINGS

For FedTMOS, as we wanted to constrain our models such that the final server model aligns with
smaller or equal sizes to the CNN counterparts, we set various c values to constrain our final model.
For the MNIST, F-MNIST, SVHN and CIFAR-10 dataset we used : c = {4, 3, 3, (3, 3, 1)} respec-
tively. Additionally, we employed threshold values based on the average normalized Gini Index (G)
to scale the clause weights. When G exceeds a threshold, σ, it indicates significant class imbalance.
In response, clause weights are scaled by x to prevent dominant classes from overpowering minority
ones, ensuring balanced class representation in the final model and mitigating the effects of non-IID
data.

x =

{
G if G > σ

1 if G ≤ σ

We used threshold = {0.5, 0.5, 0.3, 0.6} respectively for the MNIST, F-MNIST, SVHN and CIFAR-
10 dataset. Note that we used 0.3 for SVHN due to the unbalanced nature of the data. In the future,
we will explore a data-driven approach to determine the threshold and k values.

A.2 ADDITIONAL RESULTS

A.2.1 PERFORMANCE WITH 200 LOCAL EPOCHS

We evaluated the baseline algorithms with 200 local epochs, as recommended in (Dai et al., 2024),
to ensure that local models reached convergence before server-side training. However, we excluded

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Performance of the different algorithms across various data partitions

Dataset Partition FedAvg Fed-
OneShot DENSE Co-Boosting Distilled-

FedOV
FedTMOS
(Ensemble) FedTMOS

MNIST

Dir(0.05) 38.65±17.31 41.78±11.34 78.36±8.69 88.95±3.89 89.25±3.92 83.78±11.24 93.50±3.72
Dir(0.1) 48.63±12.77 56.12±13.34 85.15±5.94 94.88±0.49 93.83±3.02 93.86±2.09 97.28±1.31
Dir(0.3) 80.01±10.18 88.25±5.38 96.19±1.07 96.09±0.62 97.56±0.32 98.30±0.39 98.50±0.12
C(2) 21.55±7.39 24.23±3.21 53.72±15.88 72.22±9.56 69.16±7.05 48.88±9.01 83.07±3.51
C(3) 35.24±8.86 40.45±8.99 70.73±10.65 81.01±8.04 80.23±4.75 74.18±4.20 88.75±3.46
C(4) 40.28±9.74 48.66±9.70 72.27±5.06 87.16±5.35 84.08±8.18 88.68±0.61 97.16±0.48

F-MNIST

Dir(0.05) 39.89±6.48 41.97±5.78 62.52±5.28 64.58±2.48 72.00±3.16 70.33±6.39 72.73±3.23
Dir(0.1) 50.90±8.27 50.56±6.66 70.07±2.92 66.94±3.85 78.15±3.15 75.38±3.76 78.39±3.75
Dir(0.3) 71.26±1.03 73.14±2.55 80.75±0.59 80.14±1.49 83.31±0.61 83.87±0.33 84.30±0.69
C(2) 24.74±7.32 22.78±3.69 40.72±6.54 48.16±3.24 54.72±4.06 39.80±7.92 60.08±7.67
C(3) 44.28±6.35 34.62±4.30 57.05±4.95 52.44±3.81 67.81±5.57 63.60±1.90 72.82±1.61
C(4) 34.66±2.01 34.73±6.02 63.14±7.08 67.85±2.53 68.68±7.02 76.62±6.34 80.76±6.19

SVHN

Dir(0.05) 28.04±18.44 24.61±2.88 46.14±15.66 50.81±13.83 70.45±3.00 41.45±18.69 66.77±1.41
Dir(0.1) 40.34±12.91 44.04±13.20 58.54±8.01 62.33±10.32 74.31±3.26 67.28±1.27 72.90±3.51
Dir(0.3) 58.00±0.82 76.29±4.15 67.80±3.94 76.52±4.79 81.35±1.01 76.41±1.10 80.73±0.57
C(2) 18.95±1.78 24.16±6.06 38.42±10.93 48.42±4.93 62.25±2.88 42.84±7.81 62.32±2.78
C(3) 37.21±5.04 38.03±7.75 45.17±11.12 62.95±1.88 72.31±4.57 66.43±6.48 75.62±3.02
C(4) 36.32±10.06 41.47±5.64 47.66±6.32 57.57±7.69 76.76±3.04 74.34±3.84 80.64±0.82

CIFAR-10

Dir(0.05) 20.96±1.57 26.25±6.18 37.80±5.20 39.46±5.07 44.19±1.96 38.02±6.86 47.12±4.95
Dir(0.1) 27.14±8.51 36.05±4.60 48.57±3.74 49.15±10.56 48.89±4.23 46.88±4.44 52.06±2.77
Dir(0.3) 43.99±6.10 42.01±3.94 60.12±3.36 60.72±3.83 56.54±1.88 58.43±0.08 56.69±2.07
C(2) 14.71±6.36 18.47±2.02 29.26±5.25 32.94±5.56 31.57±6.20 32.16±5.06 36.01±3.18
C(3) 23.01±6.68 24.68±4.66 40.52±3.50 42.15±5.84 43.06±1.94 50.66±2.82 53.21±2.09
C(4) 34.66±3.51 34.93±5.01 41.54±5.12 46.91±7.58 47.83±2.24 57.78±1.57 57.85±1.13

OT-Fusion, RegMean, and FedFisher from this setup, as their hyperparameters are specifically opti-
mized for 30 epochs according to Jhunjhunwala et al., and re-tuning for 200 epochs could inadver-
tently introduce inconsistencies.

From Table 5, FedTMOS outperforms the other baseline methods without the need for synthetic or
generated data in most settings. On average, FedTMOS performs better than the top performing
baseline, Distilled FedOV by 7.36%, 4.07%, 0.26%, 5.14% on the MNIST, F-MNIST, SVHN and
CIFAR-10 dataset respectively. We note that Distilled FedOV leverages KD at the server using a
subset of the test data, closely matching the actual samples. Furthermore, when compared to the
best-performing data-free method for each setting, FedTMOS surpasses them in all except for the
least non-IID setting (Dir(0.3)) for CIFAR-10. On average, FedTMOS outperforms the best data-
free method for each setting by 8.46%, reinforcing its effectiveness in data-free OFL.

In addition, Table 1 highlights that even with just 30 epochs, FedTMOS maintains its ability to
outperform all baselines. This result emphasizes the effectiveness of FedTMOS, showcasing its
strong performance even without requiring full convergence.

We note that DENSE and Co-Boosting exhibit high variance, particularly with increasingly non-
IID data. This is likely because classifiers trained on non-IID data generate sub-optimal knowledge
samples, which are crucial for the distillation process. This hinders the student model’s learning,
reducing performance and increasing variability (Gou et al., 2021).

A.2.2 EFFICIENCY ANALYSIS FOR ALL DATASETS

Table 6: Upload costs for each client/storage and potential download costs of the server model (MB)

Dataset Fed-
OneShot DENSE Co-Boosting Distilled-

FedOV OT-Fusion RegMean FedFisher FedTMOS
(ensemble) FedTMOS

MNIST 0.25/0.75 0.25/0.25 0.17/0.17 0.04/0.4 0.04/0.16
F-MNIST 0.25/0.75 0.25/0.25 0.17/0.17 0.05/0.5 0.05/0.14
SVHN 1.28/3.84 1.28/1.28 3.76/3.76 0.31/3.1 0.31/1.23
CIFAR-10 1.28/3.84 1.28/1.28 3.76/3.76 0.57/5.7 0.57/1.24

In terms of communication costs, our results demonstrate that the bit-based architecture of the TM
significantly reduces communication overhead while producing a model that generalizes well across
all settings, evident in the results in Table 6. By ensuring that the server model size of the TM is
equal to or smaller than the CNN models, we show that FedTMOS effectively reduces upload costs

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

by at least 2.3× without sacrificing performance. Furthermore, FedTMOS reduces storage costs
by an average of 3.5× compared to FedTMOS (ensemble), while providing an average of 6.16%
improved performance and 1.63% decrease in variability across all settings.

A.2.3 PERFORMANCE EVALUATION IN A CENTRALIZED SETTING

Table 7: Performance of CTM and CNN in the centralized setting, where CNN1 is the CNN in
FedAvg, Fed-OneshotDENSE, Co-Boosting, Distilled-FedOV and CNN2 is the CNN in OT-Fusion,
RegMean, FedFisher

CTM CNN1 CNN2
MNIST 98.23±0.12 99.15±0.01 99.51±0.09

F-MNIST 87.30±0.56 90.04±0.33 89.66±0.29
SVHN 80.07±0.20 89.51±0.37 90.19±0.59

CIFAR10 54.93±0.45 82.17±0.43 79.42±0.55

In a centralized setting, CTM does not outperform CNNs in terms of accuracy as shown in Table. 7.
This is expected, as CNNs are highly optimized for tasks like image classification and generally
achieve higher performance in such settings (Granmo, 2023).

Note that the performance of CTM in our experiments is lower than that reported in Granmo (2023).
This discrepancy arises because, to ensure model size and efficiency constraints, we used only 200
clauses per client compared to 2000 clauses in the original paper. Additionally, we used 3 models
per client, whereas the paper utilized 4 models.

However, this highlights that the robustness of our proposed approach, FedTMOS, enables CTM
to perform competitively compared to the CNN-based OFL baselines, even though CTM may not
match the accuracy of CNNs in centralized settings. The performance improvements observed in FL
settings stem from the strength of our proposed OFL methodology, FedTMOS, which is both robust
and scalable in FL.

A.2.4 EXTENSION TO COMPLEX DATASETS

We compared FedTMOS with ResNet-18 on CIFAR-100 and with a pre-trained ResNet-18 model on
Tiny-ImageNet. While TMs have yet to be directly explored for the use of pre-trained weights, the
potential for applying them to tasks that share classes with the pre-training dataset is promising, as
demonstrated by the comparable performance on the Tiny-ImageNet dataset between a pre-trained
ResNet-18 and TM. This will be a key focus of our future work, where we aim to investigate how in-
corporating pre-trained weights can further enhance TM adaptability and performance. Regardless,
the performance of our current model, even without large-scale pre-training, highlights the potential
of TMs, suggesting that there is still room for significant improvement in their capabilities.

Table 8: Performance of the evaluated baselines on complex datasets

FedAvg DENSE Co-Boosting FedTMOS

CIFAR-100
Dir(0.05) 6.93±1.07 20.12±2.40 20.16±2.75 27.16±0.57
Dir(0.1) 10.52±0.44 25.22±2.02 25.38±1.53 28.19±0.86
Dir(0.3) 13.32±0.76 30.97±0.89 30.26±0.51 30.51±0.98

Tiny-ImageNet
Dir(0.05) 7.44±0.12 8.52±0.32 8.38±0.14 11.64±0.65
Dir(0.1) 9.41±1.12 10.61±0.57 10.49±0.19 11.81±0.41
Dir(0.3) 12.29±0.39 13.85±0.75 14.35±0.35 13.03±0.66

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: Upload costs for each client/storage and potential download costs of the server model (MB)

Dataset FedAvg DENSE Co-Boosting FedTMOS
CIFAR-100 45.12/45.12 14.2/43.4

Tiny-ImageNet 45.12/45.12 11.36/40.8

A.3 FURTHER DISCUSSION ON THE LIMITATIONS AND FUTURE WORK

Firstly, we acknowledge that TMs in general, are not as robust as DNNs for complex datasets,
particularly those involving multi-channel images. This limitation stems from the booleanization
process and bit-based representation of input data, which restrict TMs’ performance. Efforts to
address this, such as creating composite TMs trained on extracted features like 3x3 thermometer
encoding and Histograms of Gradients, have shown promise in improving their capability (Granmo,
2023).

However, DNNs face significant challenges in FL scenarios with high data heterogeneity. When
aggregated at the server, the parameter spaces of clients with heterogeneous data often fail to provide
an accurate estimation of the global parameter space. Unlike DNNs, TMs leverage class-specific
weights, enabling more effective contributions from individual clients in heterogeneous settings.
While class-wise weights could theoretically be implemented in DNNs, TMs are inherently more
suited for this purpose due to their simpler structure and efficient aggregation process.

For example, in the MNIST dataset, TMs require just 100 weights per class, compared to a simple
CNN, which might involve 61,706 weights (Dai et al., 2024), translating to at least 6,179 weights per
class. This simplicity reduces computational overhead. Furthermore, while small DNNs trained for
individual classes often risk over-fitting due to limited generalization capacity, TMs are simultane-
ously trained across all classes with separable class weights. This design helps TMs generalize better
across classes, reducing over-fitting and making them more adept at handling heterogeneous data in
FL settings. While DNNs might struggle in similar scenarios due to their complexity, exploring
class-specific weights in DNNs for FL settings remains an interesting avenue for future research.

Next, TMs remain an emerging field, and the use of pre-trained models has yet to be fully explored.
Unlike DNNs, which often benefit from pre-training on large datasets like ImageNet (Chen et al.,
2023; Nguyen et al., 2023), TMs have not been adapted to incorporate pre-trained weights. For
instance, a TM pre-trained on a large dataset could potentially reuse class-specific weights for tasks
involving those same classes. This unexplored area presents an exciting direction for future work.
Pre-training a TM on a dataset like ImageNet and fine-tuning it on smaller datasets, such as Tiny
ImageNet or CIFAR-100, could significantly enhance their applicability and effectiveness in these
specific tasks.

In summary, while TMs are still an emerging field of research, they offer distinct advantages, par-
ticularly in FL scenarios. Their class-specific weight structure and computational simplicity make
them well-suited for low-power, on-device training (Tang et al., 2024; Lei et al.; Rahman et al.,
2022). However, we recognize their current limitations, including challenges in handling complex
datasets and the lack of pre-trained models, which can affect training efficiency.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 FULL ALGORITHM

Algorithm 2 reassign weights(cluster info, cluster means, c)
Initialize: reordered models = rm for rm in range(c), reordered means = {}, used clusters = [] ,
track clusters = {[] for rm in range(c)}
Sort cluster info based on number of classes in each cluster
while len(used clusters) < num clusters do

for cidx in cluster info do
if cidx in used clusters then

continue
for class m in cidx do

best model = find best(cidx,m,reordered models, reordered means)
if best model == False then

best model = find least cc(reordered models,cidx)
Add θmj to best model
Add ϕm

j to best model
Update the mean for class m in reordered means[best model][m]

Add cidx to used clusters
Add cidx to track clusters[best model]

return reordered models

calculate avg link(reordered means):
ss 2 dist = 0
num pairs = 0
for mi in range(len(reordered means)) do

for mj in range(mi+1,len(reordered means)) do
ss 2 dist + = ∥reordered means[mi]-reordered means[mj]∥2
num pairs += 1

return ss 2 dist/num pairs

find best(cidx,m,reordered models,reordered means):
best model = False, max dist = 1
for model in reordered models do

if model has class m then
continue

temp model means = copy(reordered means[model])
temp model means[model][m].update(reordered means[cidx])
distance = calculate avg link(temp model means)
if distance> max dist then

max dist=distance
best model = model

return best model

find least cc(reordered models, cidx)
best model = False, min class = -1
for rm in reordered models do

distinct classes = len(set(classes in rm))
if distinct classes < min class then

min class = distinct classes
best model = rm

else if distinct classes == min class then
cluster class count = sum(1 for c in track clusters[rm])
if cluster class count < min class then

best model = rm
return best model

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 3 average models(final models)
for each model fm in final models do

for each class m in fm do
sorted indices← argsort(θmj for all j ∈ fm, in descending order)
ϕm
fm ←

∨
j∈sorted indices[0:2] ϕ

m
j

θmfm ← mean(θmj),∀j ∈ fm
return final models

19

	Introduction
	Related Work
	One Shot FL
	TMs in FL

	Preliminaries
	The Tsetlin Machine
	The Tsetlin Automaton
	The Tsetlin Machine Structure and Inference
	The Tsetlin Machine Learning Mechanism
	Weighted Tsetlin Machine
	Convolutional TM
	TM Composites

	Methodology
	Motivation
	FedTMOS: One-Shot FedTM
	Pre-processing Model Weights
	Reassigning Weights

	Experiments
	Experimental Details
	Efficiency Analysis
	Scalability

	Conclusions
	Appendix
	Additional Experimental Details
	Baselines Model Configuration
	FedTMOS Model Configuration
	Additional Settings

	Additional Results
	Performance with 200 local epochs
	Efficiency Analysis for all datasets
	Performance Evaluation in a Centralized Setting
	Extension to Complex Datasets

	Further Discussion on the Limitations and Future Work
	Full Algorithm

