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ABSTRACT

Group convolutional neural networks (G-CNNs) have been shown to increase
parameter efficiency and model accuracy by incorporating geometric inductive
biases. In this work, we investigate the properties of representations learned by reg-
ular G-CNNs, and show considerable parameter redundancy in group convolution
kernels. This finding motivates further weight-tying by sharing convolution kernels
over subgroups. To this end, we introduce convolution kernels that are separable
over the subgroup and channel dimensions. In order to obtain equivariance to
arbitrary affine Lie groups we provide a continuous parameterisation of separable
convolution kernels. We evaluate our approach across several vision datasets, and
show that our weight sharing leads to improved performance and computational
efficiency. In many settings, separable G-CNNs outperform their non-separable
counterpart, while only using a fraction of their training time. In addition, thanks to
the increase in computational efficiency, we are able to implement G-CNNs equiv-
ariant to the Sim(2) group; the group of dilations, rotations and translations of the
plane. Sim(2)-equivariance further improves performance on all tasks considered,
and achieves state-of-the-art performance on rotated MNIST.

1 INTRODUCTION

Minsky & Papert (1988) suggest that the power of the perceptron comes from its ability to learn
to discard irrelevant information. In other words; information that does not bear significance
to the current task does not influence representations built by the network. According to Min-
sky & Papert (1988), this leads to a definition of perceptrons in terms of the symmetry groups
their learned representations are invariant to. Progress in geometric deep learning has shown the
power of pro-actively equipping models with such geometric structure as inductive bias, reduc-
ing model complexity and improving generalisation and performance (Bronstein et al., 2017). An
early example of such geometric inductive bias at work can be seen in the convolutional layer
in a CNN (LeCun et al., 1998). CNNs have been instrumental in conquering computer vision
tasks, and much of their success has been attributed to their use of the convolution operator,
which commutes with the action of the translation group. This property, known as equivari-
ance to translation, comes about as a result of the application of the same convolution kernel
throughout an input signal, enabling the CNN to learn to detect the same features at any location
in the input signal, directly exploiting translational symmetries that naturally occur in many tasks.

Although invariance to object-identity preserving transformations has long been recognised as a
desirable model characteristic in machine learning literature (Kondor, 2008; Cohen, 2013; Sifre
& Mallat, 2014), only recently Cohen & Welling (2016a) introduced the Group Equivariant CNN
(G-CNN) as a natural extension of the CNN (LeCun et al., 1998), generalising its equivariance
properties to group actions beyond translation. The layers of a G-CNN are explicitly designed to be
equivariant to such transformations, hence the model is no longer burdened with learning invariance
to transformations that leave object identity intact. It has since been shown that equivariant deep
learning approaches may serve as a solution in fields that as of yet remain inaccessible to machine
learning due to scarce availability of labelled data, or when compact model design due to limited
computational power is required (Winkels & Cohen, 2018; Linmans et al., 2018; Bekkers, 2019).

Complexity and redundancy issues impeding regular group convolutions A growing body of
work shows applications of G-CNNs consistently and decisively outperforming classical CNNs
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Figure 1: In group convolutions on affine Lie groups, a feature map f defined over the group, depicted
in Fig. a) is convolved with a filter k shown in Fig. b) of size |G| × s× s, where s is the kernel size,
and |G| the size of the group. We propose factorising this convolution into a convolution over the
group with a kernel kH shown in Fig. c) with size |G| × 1× 1, followed by a convolution over the
spatial dimensions with a kernel kR2 shown in Fig. d) with size 1× s× s.

(Worrall et al., 2017; Weiler et al., 2018a; Bekkers et al., 2018; Esteves et al., 2018; Bekkers,
2019; Worrall & Welling, 2019; Sosnovik et al., 2021b). However, a practical challenge impeding
application to larger groups is the computational complexity of regular group convolutions, which
scales exponentially with the dimensionality of the group. Furthermore, Lengyel & van Gemert
(2021) show that group convolution filters in the original formulation of the G-CNN by Cohen &
Welling (2016a) exhibit considerable redundancies along the group axis for the p4m and Z2 groups.
Similar observations motivated depthwise separable convolutions (Chollet, 2017), which not only
increased parameter efficiency but also model performance; observed correlations between weights
are explicitly enforced with further parameter sharing through the use of kernels separable along
spatial and channel dimensions. We address the observations of redundancy along with the scalability
issues of regular G-CNNs in their current form. Our paper contains the following contributions:

• We introduce separable group convolutions for affine Lie groups Rn oH , sharing the kernels for
translation elements x ∈ Rn along subgroup elements h ∈ H . See Fig. 1 for an overview.

• We propose the use of a SIREN (Sitzmann et al., 2020) as kernel parameterisation in the Lie
algebra - imposing a fixed number of parameters per convolution kernel, regardless of the
resolution at which this kernel is sampled, and ensuring smoothness over the Lie group.

• Separable group convolutions allow us to build Sim(2)-CNNs, which we thoroughly experiment
with. We show equivariance to Sim(2) increases accuracy over a range of vision benchmarks.

• To achieve equivariance to continuous affine Lie groups, we propose a random sampling method
over subgroups H for approximating the group convolution operation.

First, we position this work within the area of equivariant deep learning by giving an overview of
related works, and explaining which current issues we are addressing with this work. We derive
separable group convolutions, and show how they may be applied to continuous groups. Lastly, we
apply these ideas by experimenting with implementations for roto-translations in 2D (SE(2)), dilation
and translation in 2D (R2 oR+) and dilation, rotation and translation in 2D (Sim(2)).

2 RELATED WORK

Group equivariant convolutional neural networks Broadly speaking, research on G-CNNs can be
divided into two approaches. First, Regular G-CNNs use the left-regular representation of the group
of interest to learn representations of scalar functions over the group manifold, or a quotient space
of the group. The left-regular representation acts on the convolution kernels, yielding an orbit of
the kernel under the group action. Convolving the input using these transformed filters, a feature
map defined over the group is obtained at each layer. This approach most naturally extends the
conventional CNN, where convolution kernels are transformed under elements of the translation
group. Regular G-CNNs have been implemented for discrete groups (Cohen & Welling, 2016a;
Winkels & Cohen, 2018; Worrall & Brostow, 2018), compact continuous groups (Marcos et al., 2017;
Bekkers et al., 2018) and arbitrary non-compact continuous Lie groups (Bekkers, 2019; Finzi et al.,
2020; Romero et al., 2020). However, practical implementations for continuous groups often require

2



Under review as a conference paper at ICLR 2022

some form of discretisation of the group, possibly introducing discretisation artefacts, and requiring a
choice of resolution over the group. For the second class, steerable G-CNNs, representation theory
is used to compute a basis of equivariant functions for a given group, which are subsequently used
to parameterise convolution kernels (Cohen & Welling, 2016b; Weiler et al., 2018a;b; Sosnovik
et al., 2019; 2021a). Although steerable G-CNNs decouple the cardinality of the group from
the dimensionality of the feature maps, this approach is only compatible with compact groups.

The current paper may, in approach, be compared to Bekkers (2019) and Finzi et al. (2020), who
define convolution kernels on the Lie algebra of continuous groups to enable convolutions on their
manifold. Similarly, we make use of the Lie algebra and exponential map to obtain convolution
kernels on the group, but separate the kernels by subgroups.

Bekkers (2019) defines a set of basis vectors in the Lie algebra, which, when combined with the
exponential map, allow for the identification of group elements by a vector in Rn. Subsequently, a
set of B-splines is defined on the algebra, which form a basis to expand convolution kernels in. A
linear combination of these bases creates a locally continuous function on the Lie algebra defining
a convolution kernel and its behaviour under transformations of the group. Although this method
allows for direct control over kernel smoothness, the learned convolution filters are limited in their
expressivity by their basis functions. Finzi et al. (2020) instead use an MLP to learn convolution
kernels on the Lie algebra, which in addition allows them to handle point cloud data. The MLP is
constructed to learn kernel values at (arbitrary) relative offsets in the Lie algebra. In contrast, we
propose to use SIRENs (Sitzmann et al., 2020) to parameterise convolution kernels, as they have
been shown to outperform other forms of MLPs in parameterising convolution kernels (Romero et al.,
2021), and offer more explicit control over kernel smoothness: a desirable property for addressing
discretisation artefacts that occur when modelling features on continuous groups (see App. A.6).

Separable filters in machine learning In image processing, spatially separable filters have long
been known to increase parameter- and computational efficiency, and learning such constrained
filters may even increase model performance (Rigamonti et al., 2013). In Sifre & Mallat (2014),
authors investigate SE(2)-invariant feature learning through scattering convolutions, and propose
separating the group convolution operation for affine groups into a cascade of two filterings, the first
along the spatial dimensions Rn, and the second along subgroup dimension H . From this, authors
derive a separable approach to the convolution operation with learnable filters as used in CNNs. This
formulation has since been named the depthwise-separable convolution (Chollet, 2017), a special
case of the Network-In-Network principle (Lin et al., 2013) which forms the basis for the success of
the Inception architectures (Szegedy et al., 2015). In depthwise separable convolutions, each input
channel first gets convolved using a (set of) kernel(s) with limited spatial support. Afterwards, a
1x1 convolution is used to project the feature set detected in the input channels to the output space.
Chollet (2017) speculates that the Inception architectures are successful due to the explicit separation
of spatial and channel mapping functions, whereas in conventional CNNs, kernels are tasked with
simultaneously mapping inter-channel and spatial correlations.

Haase & Amthor (2020) argue that the original formulation of the depthwise-separable convolution
reinforces inter-kernel correlations, but does not in fact leverage intra-kernel correlations. Subse-
quently, they propose an inverse ordering of the operations given in depthwise-separable convolutions,
sharing the same spatial kernel along the input channels, and show convincing results. Extending
this investigation of learned convolution filters to the original G-CNN (Cohen & Welling, 2016a),
Lengyel & van Gemert (2021) remark on the high degree of correlation found among filters along the
rotation axis, and propose to share the same spatial kernel for every rotation feature map. We attempt
to generalise this approach, proposing separable convolutions on arbitrary affine Lie groups.

3 BACKGROUND

In the following section we give the theoretical background for implementing group convolutions for
arbitrary affine Lie groups. We assume familiarity with the basics of group theory and provide the
relevant concepts in Appx. A.1 and Appx. A.4. For simplicity of notation, we initially assume that
our input signal/feature map f has a single channel.

Lifting convolutions To preserve information on the pose of features in the input, an equivariant
convolution operation is achieved by lifting a function from the input space to (a homogeneous space
of) the group. As we are interested in real signals, specifically image data living on R2, we assume
the Lie group of interest H is taken in semidirect product with the domain of our data; G=R2 oH .
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In group convolutions, a given kernel is left-acted by all transformations in G, thereby generating a
signal on the higher dimensional space G instead of R2. Hence, the output feature maps disentangle
poses through a domain expansion, e.g. positions plus rotations or scales. For a given group element
h ∈ H , kernel k, and location ~x in the input domain R2, the lifting convolution is given by:

(f ∗lifting k)(g) =

∫
R2

f(x̃)kh(x̃− x) dx̃. (1)

where g=(x, h) and kh= 1
| deth|Lh[k] is the kernel k : R2 → R transformed via the action of group

element h via Lh[k](x) := k(h−1x), and with deth the determinant of the matrix representation of
h that acts on Rd. The output of lifting convolutions yields a G-feature map with the original two
spatial input dimensions (R2), and an additional group dimension (H). See Fig. 10.

Group convolutions Now that the data is lifted to the domain of the group, we continue with group
convolutions in subsequent layers. Given a kernel k (now a function on G), Haar measures dg̃ and
dh̃ on the group G and sub-group H respectively, group convolutions are given by:

(f ∗group k)(g) =

∫
G

f(g̃)k(g−1 · g̃) dg̃ =

∫
G

f(g̃)Lgk(g̃) dg̃

=

∫
R2

∫
H

f(x̃, h̃)LxLhk(x̃, h̃)
1

|h|
dx̃ dh̃

=

∫
R2

∫
H

f(x̃, h̃)k(h−1(x̃− x), h−1 · h̃)
1

|h|
dx̃ dh̃. (2)

Evaluating this convolution for every group element g ∈ G, we again obtain a function defined on G.
As we know G=R2 oH , we can factor this operation into a transformation of a kernel k by a group
element h ∈ H , kh=Lh(k), followed by a convolution at every spatial location in f . See Fig. 11.

Achieving invariance Using lifting and group convolution operations, we can construct convolutional
layers that co-vary with the action of the group and explicitly preserve pose information throughout
the representations of the network. In most cases, we ultimately want a representation that is
invariant to transformations of the input in order to achieve invariance to these identity-preserving
transformations. This is achieved by aggregating the information at all group elements in a feature
map with an operation invariant to the group action, e.g., max-, mean- or sum-projection. In practice,
this is done after the last group convolution, and is followed by one or more fully connected layers.

4 SEPARABLE GROUP CONVOLUTIONS ON LIE GROUPS

Redundancies in group convolution filters Similar to Haase & Amthor (2020); Lengyel & van
Gemert (2021) we investigate parameter efficiency of learned convolution kernels to motivate separa-
ble filters. We train an SE(2)-equivariant CNN on the Galaxy10 dataset (see Sec. 5 for experimental
details) and analyse the resulting group convolution kernels. We apply PCA by treating the val-
ues of the group convolution kernel for each subgroup element h ∈ H as distinct spatial kernels
with k × k features. The ratio of variance explained by the first principle component gives an
indication of the variability of the group convolution kernel along the subgroup axis. If the ratio
of explained variance is high, the distinct spatial convolution kernels along the subgroup axis are
well-characterised by a single shared kernel. In Fig. 2, results are shown for the group convolution
layers in our SE(2)-CNN before and after training. We find that during the training process, redun-
dancy along the subgroup axis increases considerably. This motivates sharing a single spatial kernel
along the subgroup elements, which can be achieved by separating the group convolution operation
into a convolution over the subgroup H , followed by a convolution over the spatial domain R2.

Separable group convolutions Let us assume that the convolution kernel k : G → R in Eq. 2 is
separable. That is, k(g)=kR2(x)kH(h). In this case, we can derive the factorised separable group
convolution as (see Appx. A.2 for the full derivation):

(f ∗group k)(g) =

∫
R2

∫
H

f(x̃, h̃)k(h−1(x̃− x), h−1 · h̃)
1

|h|
dx̃ dh̃

=

∫
R2

[∫
H

f(x̃, h̃)kH(h−1 · h̃) dh̃

]
kR2(h−1(x̃− x))

1

|h|
dx̃. (3)

Here kH is a convolution kernel over the group H , and kR2 is a convolution kernel over the spatial
domain R2. We set kϕ=kϕHk

ϕ
R2 , with kϕH constant along R2 and kϕR2 constant along H . This can
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Figure 2: A set of histograms showing redundancy in learned group convolution kernels. On the
x-axis is the ratio of variance explained by the first principal component when applying PCA on the
set of spatial kernels along the group axis of a group convolution kernel. Y-axis shows the proportion
of kernels with this explained variance ratio, where all bins sum to 1. The number of spatial kernels
is listed in the title of each subfigure. Throughout the training process, redundancy in the group
convolution kernels increases. Left to right: subsequent layers in the network.

be thought of as parameterising a convolution kernel k over the group G by sharing same spatial
kernel kϕR2 weighed by a value kϕH(h) at every input group element h ∈ H , see Fig. 12. Importantly,
this factorisation greatly increases the efficiency of the group convolution operation. Since we can
precompute the inner integral in Eq. 3, convolving over a single channel of a feature map f of size
|H|×x×y goes from O(|H|2×x×y×k2) to O(|H|×x×y×(|H| + k2)). See Fig. 13 for a visual
intuition of the separable group convolution.

Defining convolution kernels on Lie algebras In order to perform lifting- and group convolutions
(Eqs. 1, 2), we need to evaluate our convolution kernels k at relative offsets g′ on the group. As in
Bekkers et al. (2017); Weiler et al. (2018b); Bekkers (2019); Finzi et al. (2020), we express our group
convolution kernel k in analytical form, as a function of relative group elements yielding kernel values.
Motivated by findings in Romero et al. (2021), we use a Sinusoidal Representation Network (SIREN)
(Sitzmann et al., 2020) as kernel parameterisation. SIRENs lead to great performance improvements
over MLPs with ReLU,LeakyReLU and Swish when parameterising convolution kernels (we
replicate this comparison for G-CNNs in Appx. C.4). Furthermore, the SIREN offers explicit control
of kernel smoothness through a frequency multiplier parameter ω0: an important property discussed
in Appx. A.6. Since the affine Lie group can be non-euclidean, and neural networks are functions
generally defined over euclidean spaces, we resort to defining the kernel function on the Lie algebra of
our group of interest (Finzi et al., 2020). The kernel function kθ maps points in the Lie algebra (which
may be associated with the relative offsets on the group we are convolving over by the exponential
map) to kernel values, kϕ : g→ R. For a given element g, we have: kϕ(g)=SIREN(log g), see Fig.
14. The separable kernels follow the same principle, separated by subgroups, see Appx. B.1.

Approximating equivariance for compact continuous and non-compact continuous groups In
the case of small discrete subgroups H , such as the group C4 of rotations by 90 degrees, we are able
to perform lifting- and group convolution operations exactly equivariant to the action of the group, as
the integral given in Eq. 2 is tractable. We consider image data in particular, which is defined over a
discrete grid Z2, a subgroup of R2, making both integrals over the group discrete sums:

(f ∗group k)(g) =
∑
x̃∈Z2

∑
h̃∈H

f(x̃, h̃)k(Th−1(x̃− x), h−1 · h̃)
1

|h|
∆x̃∆h̃, (4)

with ∆x̃ and ∆h̃ denoting the volume elements corresponding to the grid points. In the case of
continuous groups, it is possible to either make a discretisation of the subgroup H , or to approximate
the group convolution by means of random sampling. To obtain a volumetrically uniform sampling
grid over the group, we sample a set of n equidistant points in the Lie algebra as in Bekkers (2019),
and map those to the group using the exponential map to obtain a grid H := [he, ..., hn], see Fig.
15. For noncompact H such as the dilation group R+, we localize the support in the Lie algebra. In
the case of compact continuous groups such as SO(2) we approximate the integral by convolving
over a uniformly spaced gridH which is perturbed by left-multiplication with a uniformly randomly
sampled group element hε ∼ dh̃, i.e., hε 7→ Hε := hεH. By uniform sampling of H we obtain
left-invariant ∆h̃ which only scales the overall convolution result, allowing us to omit it from 4. We
further let ∆x̃ = 1 and obtain the discrete separable group convolution for continuous groups:
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(f ∗group k)(g) ≈
∑
x̃∈Z2

∑
h̃∈Hε

f(x̃, h̃)k(h−1(x̃− x), h−1 · h̃)
1

|h|

=
∑
x̃∈Z2

[∑
h̃∈Hε

f(x̃, h̃)kH(h−1 · h̃)
] 1

|h|
kR2(h−1(x̃− x)). (5)

During training and inference, randomly sampling over the rotation group yields an unbiased esti-
mation (Wu et al., 2019), making the network approximately equivariant to the continuous group
SO(2). Discretisation makes the network exactly equivariant only to a discretised subgroup of SO(2),
biasing the network to be equivariant to a fixed subset of transformations. In our experiments we
show that randomly sampling outperforms discretisation when modelling equivariance to SO(2).

Channel support of separable group convolution kernels In CNNs (and G-CNNs), a feature map
f l at layer l generally has multiple channels Cl; f : R2 → RCl . Factorising the group convolution
operation into distinct subgroup and spatial dimensions presents us with a choice: we can either
(1) define both kϕH and kϕR2 over the input channels, or choose to (2) reduce the support of our
spatial kernel to a single channel, and share a reweighing of it along the input channels in an inverse
depth-wise separable manner, similar to Haase & Amthor (2020). An ablation study detailed in
Appx. C.2 shows that on a fixed parameter budget, additional depthwise separation (2) consistently
outperforms (1) defining both kernels over the input channels. As such, we will keep to the additional
depthwise separation and refer to this implementation as the separable group convolution.

Expressivity of separable group convolutions Separable convolution kernels are strictly less ex-
pressive than their non-separable counterpart, but to what extent would this limit the expressivity of
their learned representations? In separable group convolutions, we are sharing a weighted version of
a single spatial kernel along the input group axis. In contrast, we could view non-separable group
convolutions as having the ability to learn distinct spatial configurations of features along the group
axis. For a visual example, see Appx. A.5. Although this reduction in expressivity could theoretically
prove limiting in the application of G-CNNs on vision problems, in the next section we experimentally
show that separable group convolutions in fact often outperform their non-separable counterpart.

5 EXPERIMENTS

We empirically motivate the use of seperable group convolutions by studying the performance of
three G-CNNs that incorporate equivariance to three distinct groups. As our goal is to isolate the
effect of separating the group convolution, we use the same shallow ResNet architecture throughout
all experiments, only varying the sampling resolution over the group, see Appx. B.1 for details.
After the last convolution block, we apply max-projection over the remaining group dimensions to
achieve an invariant representation. We experiment with three different groups acting on R2: the
roto-translation group (SE(2)), the translation-dilation group (R2 oR+) and the group of rotations,
dilations and translations (Sim(2)). For SE(2), we first evaluate the influence of random sampling
versus discretisation of SO(2). Next, we assess the difference in performance of separable and
non-separable group convolutions on transformed MNIST variants; MNIST-rot, MNIST-scale for
SE(2) and R2 oR+ respectively. Due to the reduction in computational complexity separable group
convolutions bring, we are able to model equivariance to higher-dimensional groups: we implement
two Sim(2)-CNNs and evaluate them on MNIST-rot-scale. Lastly, to investigate the advantages
equivariance brings in more complex problem settings, we experiment with all setups on three vision
benchmark datasets; CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and Galaxy10 (Leung & Bovy,
2019). See Appx. B.2 for more details on the datasets and training regimes used, and Appx. C.1 for
an additional experiment empirically validating the equivariance properties of our models.

Discretisation versus random sampling over compact subgroups We investigate random sampling
to approximate the group convolution. We trained SE(2)-CNNs on rotated MNIST for different
resolutions over SO(2), using random sampling and discretisation. Results are shown in Fig. 3.
We can clearly see the advantage of approximating the group convolution integral through random
sampling, likely attributable to the fact that through random sampling we obtain an unbiased estimator
for the convolution, whereas discretisation equates to a biased sampling of the rotation group.

Separable and non-separable G-CNN performance on MNIST variants Following Cohen &
Welling (2016a); Weiler et al. (2018b); Sosnovik et al. (2019); Finzi et al. (2020) we conduct
experiments on MNIST variants with separable and non-separable implementations of equivariant
models for each of the three groups. We discuss results per dataset in-depth.
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Figure 3: Test error vs.
SO(2) resolution for separa-
ble SE(2)-CNNs on MNIST-
rot, discretisation vs. ran-
dom sampling.

Figure 4: Test error ver-
sus sampling resolution of
SO(2) on MNIST-rot for
separable and non-separable
SE(2)-CNNs.

Figure 5: Test error ver-
sus sampled extent of the
dilation group for separable
and non-separable R2 o R+-
CNNs.

Rotated MNIST The SE(2)-CNNs are evaluated on rotated MNIST, the standard benchmark for
rotation equivariant models. To assess the influence of sampling resolution over the group, we vary
the number of sampled group elements from 1 to 20. The group convolution is approximated through
random sampling. Results are shown in Fig. 4. We see the influence of increasing the resolution
over the rotation group from 1 to 4 elements, after which the non-separable model saturates, and
performance starts to drop when further increasing the number of sampled rotations. This is in line
with findings by Bekkers et al. (2018), who note that as the group resolution increases, so does the
possibility for overfitting on specific spatial configurations. The separable implementation saturates
around 7 elements, but performance does not drop significantly beyond this point. This may imply
that the reduction in kernel expressivity also has a regularising effect that benefits generalisation. In
this experiment, separable group convolutions decisively outperform the non-separable variant.

Scaled MNIST The R2oR+-CNNs are evaluated on MNIST scale. The group convolution integral
is approximated through discretisation. In this experiment, we retain the same resolution over the
dilation group in all experiments, but instead vary the value at which the group is truncated, ranging
from 1.0 at a grid of 1 element in the Lie algebra to 3.0 at a grid of 20 group elements. As in
Sosnovik et al. (2019), we found that the inter-scale interactions in the group convolution operation
reduced performance, likely because of increase in equivariance error due to truncation of the group.
Therefore, we limited support of the group convolution kernel on R+ to two neighbouring elements
for all experiments in this paper. Results are shown in Fig. 5. Here, non-separable group convolutions
outperform the separable variant, suggesting that the ability of non-separable group convolutions to
model spatial feature patterns over different scales is beneficial for the scaled MNIST dataset.

Scaled rotated MNIST Lastly, the Sim(2)-CNN is benchmarked on MNIST-rot-scale. We limit
the sampling resolution at each layer of the G-CNN to 2,4,6 and 8 elements for each subgroup.
We test two implementations: (1) separable, where the group convolution is factorised into two
convolutions, one over R+oSO(2) and one over R2, and (2) H-separable, which factorises the
convolution into three steps: a convolution over R+, one over SO(2), and one over R2. As shown
in Fig. 6 the separable implementation turned out to be unstable for low SO(2) resolutions. We
suspect that an approximation of SO(2) of only 2 rotation elements, paired with possible aliasing
effects and equivariance error occurring over the dilation group, impedes the model from learning
robust representations. For higher resolutions over SO(2), this effect seems to decrease. The results
for the H-separable implementation (Fig. 7), highlight a much clearer increase in performance as
the resolution over both groups increases, which suggests decoupling these information mappings
stabilises the learning process.

Application to computer vision benchmarks To evaluate the value of equivariance to different
transformations groups in natural image classifcation, we apply the SE(2)-, R2oR+- and Sim(2)-
CNNs to three vision datasets. For SE(2) and R2oR+ we use resolutions of 4 and 8 group elements,
and truncate the scale group at a value of

√
3, as we found this to work well for our experiments. For

Sim(2), we use a resolution of 4 elements over the SO(2) group and 4 elements over the R2oR+

subgroups and again truncate R+ at
√

3. On CIFAR10, as GPU memory allows, we also experiment
with using resolutions of 8 group elements for both subgroups. As baseline, we implement the same
architecture of our non-separable G-CNN, but restrict it to equivariance to translations. Results are
summarised in Table 1 and exhibit the following general pattern: For most groups, separable group
convolutions outperform non-separable ones, and in all experiments best performance is achieved by
a Sim(2)-CNN. Next, we discuss results per dataset in-depth.
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Figure 6: Test error ver-
sus resolution over rotation
and scale group for separable
Sim(2)−CNN.

Figure 7: Test error versus
resolution over rotation and
scale group for H-separable
Sim(2)−CNN.

Figure 8: Process time per
epoch (one pass over training
and test sets) in seconds for
different resolutions on H .

Table 1: Test accuracy (%) on different vision benchmark datasets. Best performance per group
convolution implementation is underlined in blue. Best overall performance is boldfaced. † Separable
along rotation and scale dimensions.

GROUP NO. ELEM SEPARABLE CIFAR10 CIFAR100 GALAXY10

SE(2)
4 7 74.50(±0.14) 48.39 (±1.28) 85.58(±0.45)

3 78.30(±0.75) 48.11 (±0.25) 86.96(±0.07)

8 7 76.81(±0.57) 51.67 (±0.65) 84.97(±0.07)
3 80.89(±0.85) 50.19 (±0.40) 86.61(±0.38)

R o R+
4 7 81.44(±0.62) 44.80 (±0.56) 85.13(±0.07)

3 83.08(±0.43) 52.50 (±0.60) 84.82(±0.25)

8 7 80.56(±0.82) 44.18(±0.92) 84.83(±0.22)
3 83.60(±0.23) 53.26 (±0.10) 85.30(±0.06)

Sim(2)
4× 4

3 86.63(±0.60) 49.93 (±0.86) 84.90(±0.19)
3† 85.65(±0.66) 54.62 (±1.41) 87.45(±0.31)

8× 8
3 89.38(±0.25) - -
3† 87.64(±0.16) - -

Baseline - - 77.79(±0.27) 47.91(±1.50) 85.10(±0.42)

CIFAR10 First, we evaluate our models on the CIFAR10 dataset (Krizhevsky et al., 2009). Results
in Table 1 show that on CIFAR10, the non-separable variant of our SE(2)-CNN is outperformed by
the translation equivariant baseline. With separable group convolutions and a group resolution of 8
elements, SE(2)-CNN show improved performance. Interestingly, R2oR+-CNNs outperform both
baseline and SE(2)-CNNs, so it seems scale invariance is a better inductive bias than rotation invari-
ance in CIFAR10. Combining scale and rotation invariance ultimately leads to the best performance,
with separable Sim(2)-CNNs and a resolution of 8 scale and 8 rotation group elements achieving
89.38% test accuracy. The H-separable Sim(2)-CNN, which models no interactions between scale
and rotation, performs slightly worse.

CIFAR100 To assess the impact of separating spatial and group information in more complex problem
settings, we experiment with CIFAR100. Notably, the non-separable R2oR+-CNNs perform well
under baseline. We discuss this particular finding in Sec. 6. For SE(2)-CNNs, non-separable
convolutions outperform separable ones, suggesting the model benefits from modelling distinct
spatial configurations at different poses. Again, best performance is achieved by the Sim(2)-CNN.

Galaxy10 Lastly, we apply our models in the domain of astro-photography, on the Galaxy10 dataset
Leung & Bovy (2019). Rotation and scaling symmetries exist naturally in this dataset, making it
an interesting application for our invariant models. Here, results show little difference between
performance of non-separable and separable approaches. Rotation invariance seems to be the stronger
inductive bias in this dataset, but again, combining rotation and scale invariance leads to the best
performance, with the H-separable Sim(2)-CNN achieving 87.45% test accuracy. The higher
separable Sim(2) test error seems to indicate that interactions between scale and rotation features for
this dataset impede model performance, again, possibly due to overfitting.
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Table 2: Test error (%) on rotated MNIST for separable G-CNNs in comparison to other equivariant
baselines: G-CNN (Cohen & Welling, 2016a), H-Net (Worrall et al., 2017), RED-NN (Salas et al.,
2019), LieConv (Finzi et al., 2020), SFCNN (Weiler et al., 2018b), E(2)-NN (Weiler & Cesa, 2019).
† Separable along dilation and rotations dimensions. + Train-time augmentation by continuous rotations.

Baseline Methods Separable G-CNNs (Ours)

G-CNN H-Net RED-NN LieConv SFCNN SFCNN+ E(2)-NN+ SE(2) SE(2)+ Sim(2)† Sim(2)†+

2.28 1.69 1.39 1.24 0.88 0.714 0.68 0.89±.008 0.66±.023 0.66±.009 0.59±.008

Table 3: Test error (%) on CIFAR10 with All-CNN-C architecture, for our separable group convolu-
tions in comparison to other baselines: All-CNN-C (Springenberg et al., 2014), p4- and p4m-G-CNN
(Cohen & Welling, 2016a). † Separable along dilation and rotations dimensions. + Train-time augmentation
by random horizontal flips and random cropping. n-Sim(2)-CNNs where n is the SIREN hidden size in units.
6-Sim(2)-CNNs have approximately equal numbers of parameters to the original All-CNN-C.

Baseline Methods Separable G-CNNs (Ours)

1.4m param. 1.37m param. 1.27m param. 1.14m param. 1.33m param. 3.22m param.

All-CNN-C p4-G-CNN p4-G-CNN+ p4m-G-CNN p4m-G-CNN+ 5-Sim(2)† 5-Sim(2)†+ 6-Sim(2)† 6-Sim(2)†+ 16-Sim(2)† 16-Sim(2)†+

9.08 8.84 7.67 7.59 7.04 8.50 7.41 8.22 6.47 7.27 5.50

Comparison in training time between separable and non-separable group convolutions As one
of the main motivators for the separable group convolution is its theoretical increase in computational
efficiency, a comparison is made in training time between separable and non-separable G-CNNs. We
tracked processing times per epoch, which consists of a train- and inference procedure, for the rotated
MNIST experiments, and show them in Fig. 8. Separable group convolutions present a remarkable
decrease in inference time, which may be leveraged to allow for model equivariance to larger groups.

SOTA on rotated MNIST To compare separable G-CNNs with related work, we finetune our models
to competitive performance. With minimal adjustments to model and training regime, listed in App.
B.2, we are able to achieve state of the art performance on MNIST-rot, see Tab. 2.

Competitive performance on CIFAR10 We compare performance of our approach in a larger
model. To this end, like (Cohen & Welling, 2016a), we re-implement the All-CNN-C architecture
by Springenberg et al. (2014), using our Sim(2) convolution layers as drop-in replacement. To also
compare performance in absolute numbers of trainable parameters, we train three configurations,
see App. B.2. We show that Sim(2)-CNNs, with SIREN hidden sizes of 6 and 5 units, containing
similar or smaller numbers of trainable parameters to the original All-CNN-C, improve model
accuracy compared to CNNs or G-CNNs equivariant to Sim(2)-subgroups R2 and p4, and with data
augmentation 6-Sim(2)-CNNs also outperform p4m-G-CNNs, see Tab. 3. Increasing SIREN hidden
size to 16 leads to even more significant improvements in performance.

6 DISCUSSION & FUTURE WORK

On implicit kernel representations Some of the non-separable configurations generated results
below baseline, which is unexpected given that G-CNNs usually improve upon regular CNNs. We
conjecture that these results are caused by the SIREN parameterisation, which take as input a
coordinate vector of different units (mixing both spatial and sub-group h coordinates). This could
limit kernel expressivity, as sharing of a frequency multiplier ω0 sets kernel smoothness to be identical
along spatial and subgroup dimensions. The fact that for the separable variant we use two distinct
SIRENs would lift this restriction. Despite useful advantages of MLP parametrisations for the kernels,
such as their flexibility and ease of implementation for arbitrary Lie groups, it remains an open
problem to have full control over their smoothness; ideally one band-limits the kernel MLPs to the
discretised resolution on each axis, which would be an important direction for future work.

Conclusion Motivated by observed redundancies in learned group convolution filters, we introduced
separable group convolutions, a computationally efficient implementation of regular group convo-
lutions. We showed that separable group convolutions not only drastically increase computational
efficiency, but in many settings also outperform their non-separable counterpart. Furthermore, we
demonstrated the value of separable group convolutions as a solution for modelling equivariance to
larger groups; Sim(2)-CNNs decivisely outperform models only equivariant to subgroups of Sim(2),
clearly reinforcing equivariance as means of model generalisation.
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A THEORY AND BACKGROUND

A.1 GROUP THEORETIC PRELIMINARIES

In this section, group theoretical prerequisites used throughout the paper are briefly refreshed. This
is by no means intended as an exhaustive exposition of the fundamentals of group theory, we only
introduce those concepts relevant to the current work.

Group. A group is defined by a setG of group elements, along with a binary operator · : G×G→ G,
called the group product. The group product defines a way to combine each pair of elements
g1, g2 ∈ G. For the binary operator · to be considered a group product, it needs to satisfy four
constraints:

1. Closure. G is closed under ·; for all g1, g2 ∈ G we have g1 · g2 ∈ G.
2. Identity. There exists an identity element e s.t. for each g ∈ G, we have e · g = g · e = g.
3. Inverse. For every element g ∈ G we have an element g−1 ∈ G, s.t. g · g−1 = e.
4. Associativity. For every set of elements g1, g2, g3 ∈ G, we have (g1 · g2) · g3 = g1 · (g2 · g3).

Lie groups. A Lie group is a group of which the elements form a smooth manifold. Since the group
itself is not necessarily a vector space, combination of elements through addition or subtraction is
not defined. However, to each Lie group G, an algebra g may be associated, given by the tangent
space of the Lie group at the identity Te(G). The Lie algebra may be interpreted as a vector space of
infinitesimal generators of the group, a set of elements from which we can obtain the group G, by
repeated application.

Exponential and logarithmic map. The exponential map exp : g → G is a function mapping
elements from the Lie algebra to the group. For many transformation Lie groups of interest this map
is surjective, and it is possible to define an inverse mapping; the logarithmic map which maps from
the group to the algebra.

Semi-direct product groups. In practice, we are often only interested in data defined over Rd, and
hence in this paper only consider affine Lie groups of the form G = Rd o H , where Rd is the
translation group in d dimensions and H is a transformation Lie group of interest.

Group action. A group G may have an action on a given space X . Given a group element g ∈ G
and a set X , the group action Tg defines what happens to any element of x ∈ X when we apply the
transformation given by element g to it. This action is given by:

T : G×X → X and Tg : X → X , (6)

such that for any two elements g, h ∈ G, we can combine their actions into a single action; Tg,h =
Tg ◦ Th. To avoid clutter, we write the action Tg(x) as g · x. Note that the action of a group G on
domain X also extends to functions defined on this domain, treated next.

Left-regular representations We extend the group action on X to square integrable functions
defined on X ; L2(X). Intuitively, any group action on X induces an action on functions on X ;
as elements of the set X are transformed, a function on X is dragged along. Commonly, this is
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expressed through the left-regular representations. Imagine we have a function; f : X → R. Let’s
say we want to reason about the function f after transformation by group element r; let us denote
this transformed function f ′. We may inspect the value of this function for a given element of X
by reasoning backwards from our transformed function. For example, to obtain the value of f ′ for
the transformed element a′, we find what the value of f was for a before applying r. This is done
by applying the inverse of action r to the transformed element a′. For any element of the set of
square-integrable functions on X ; f ∈ L2(X ) the left-regular representation of g is given by:

Lg : f → f ′ and for a′ ∈ Tg(X ): f ′(a′) = f(Tg−1(a′)). (7)

Equivariance. An operator is equivariant with respect to a group, if it commutes with the action of
the group. For an operator Φ : L2(X)→ L2(Y ):

∀g ∈ G : Lg ◦ Φ = Φ ◦ Lg. (8)

A.2 DERIVING SEPARABLE GROUP CONVOLUTIONS

If we set the kernel k to be separable, meaning we parameterise it by multiplying a kernel kH which
is constant along the spatial domain and a kernel kR2 which is constant along the group domain:

k(g) = k(x, h)

= kR2(x)kH(h). (9)

We can derive separable group convolutions as:

(f ∗group k)(g) =

∫
G

f(g̃)k(g−1 · g̃) dµ(g̃)

=

∫
R2

∫
H

f(x̃, h̃)Lx−1Lh−1k(x̃, h̃)
1

|h|
dx̃ dh̃

=

∫
R2

∫
H

f(x̃, h̃)k(h−1(x̃− x), h−1 · h̃)
1

|h|
dx̃ dh̃

→
∫
R2

∫
H

f(x̃, h̃)kR2(h−1(x̃− x))kH(h−1 · h̃)
1

|h|
dx̃ dh̃

=

∫
R2

∫
H

f(x̃, h̃)kH(h−1 · h̃)kR2(h−1(x̃− x))
1

|h|
dx̃ dh̃

=

∫
R2

[∫
H

f(x̃, h̃)kH(h−1 · h̃) dh̃

]
kR2(h−1(x̃− x))

1

|h|
dx̃. (10)

A.3 EXAMPLES OF DIFFERENT LIE GROUPS

We implemented models equivariant to three different groups: SE(2), R2 oR+ and Sim(2). In this
section, we describe these groups in more detail, and give definitions for the logarithmic map required
in obtaining G-CNNs equivariant to these groups (Bekkers, 2019).

The translation group R2 The translation group in two dimensions R2, has group product and
inverse for two elements g = x, g′ = x′ ∈ R2:

g · g′ = (x + x′) (11)

g−1 = −x. (12)

With logarithmic map:

log g = x. (13)

The rotation group SO(2) The rotation group in two dimensions describes the set of continuous
rotation transformations of the plane, and consists of all orthogonal matrices R with determinant 1.
Its group product and inverse for two elements g = Rθ, g

′ = R′θ ∈ SO(2) is given by:

g · g′ = RθRθ′

= Rθ+θ′ (14)

g−1 + R−1θ . (15)
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With logarithmic map:

log g =

[
0 −θ mod 2π

θ mod 2π 0

]
. (16)

The dilation group R+ The group of dilation transformations R+ has a group product and inverse
that, for two elements g = s, g = s′ ∈ R+ are given by:

g · g′ = ss′ (17)

h−1 = s−1. (18)

The logarithmic map is given by:

log g = ln s. (19)

The Special Euclidean group SE(2) The Special Euclidean group in 2 dimensions describes the
set of geometric transformations that are formed by combinations of rotations and translations in
two dimensions. Each group element can be parameterised by two variables θ and x, describing the
rotation angle and translation vector, g = (θ,x) ∈ G. For two elements g, g′ ∈ SE(2), the group
product and inverse are given by:

g · g′ = (x, θ) · (x′, θ′)
= (Tθ(x′) + x, θ + θ′) (20)

g−1 = (−T−θ(x),−θ). (21)

As we can see, to combine the two elements g, g′ we apply the action of the rotation part of g to the
translation of g′ before we combine it with the translation of g, we combine elements semi-directly.
SE(2) is a semidirect product of the translation group R2 and rotation group SO(2). We write this as
SE(2) = R2 o SO(2). To simplify implementation, we separate the logarithmic map into logarithmic
maps for SO(2) and R2 in our implementation.

The dilation-translation group R2 o R+ Another group of interest to our research topic is the
translation-dilation group R2 oR+, the group of translation and dilation transformations. Dilations
occur frequently in natural images, in the form of scaling transformations of objects and scenes, as the
distance between camera and object differs between images. Group elements are parameterised by a
scaling factor s and translation element x, g = (x, s) ∈ G. For two elements g, g′, group product
and inverse are given by:

g · g′ = (x, s) · (x′, s′)
= (Ts(x′) + x, ss′) (22)

g−1 = (−Ts−1(x), s−1). (23)

To simplify implementation, we separate the logarithmic map into logarithmic maps for R+ and R2

in our implementation.

The Similarity group Sim(2) The similarity transformation group is the semi-direct product of the
roto-translation group SE(2) and the isotropic scaling group R+, and defines dilation-roto-translation
transformations in two dimensions. Each group element can be parameterised by three variables θ, s
and x. For two elements g, g′ ∈ Sim(2) the group product and inverse are given by:

g · g′ = ((x, θ), s) · ((x′, θ′), s′)
= ((Ts(Tθ(x′)) + x, Ts(θ′) + θ), ss′)

= ((Ts(TTs(θ)(x
′)) + x, Ts(θ′) + θ), ss′)

= ((Ts(Tθ(x′)) + x, θ′ + θ), ss′) (24)

g−1 = (−(Ts−1(T−θ(x)),−θ), s−1). (25)

In Eq. 24 we use the fact that the isotropic dilation group has no action on the rotation group. This
is a consequence of the fact that R+ and SO(2) are both abelian groups, and may be taken in direct
product to create the group of dilation-rotation transformations. We again separate logarithmic maps
by subgroup.
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Figure 9: The convolution operation in a CNN. In upper section of the figure above, a spatial
kernel k is transformed by group element x(2,2) ∈ R2 to yield Lx(2,2)

(k). In the lower section, k is
transformed under the action of each element of (a discretisation of) the group R2, to yield a set K of
translated copies of k. Convolving over fin with each of these copies yields a new feature map fout
defined over G = R2.

A.4 VISUALISATIONS OF OPERATIONS IN (SEPARABLE) G-CNNS

To ease the reading experience of this work, in this section we provide some additional group theoretic
perspective on regular CNNs, and additional visualisations and for a number of operations used in
(separable) group convolutions.

CNNs from a group theoretic perspective We give a brief treatment of ordinary CNNs The ordinary
convolution operation used in neural networks requires a definition of a convolution kernel k on
R2, as we are modulating a signal f which itself lives on R2. The kernel k is applied to f on every
location in the input space R2 to again yield a function over R2. Intuitively, this is the same as saying
(1) we transform the convolution kernel k under the action of every group element x ∈ R2, to obtain
a set of kernels K = {Lx(k)|x ∈ R2}, and (2) apply the convolution operation on f using this set of
transformed kernels K. By tying the kernel weights used throughout the translation group, learned
features are automatically generalised over spatial positions. This intuition is visualised in Fig. 9.

Lifting convolution In Fig. 10 we show a visualisation of the lifting convolution for the SE(2)
group.

Group convolution In Fig. 11 we show a visualisation of the group convolution for the SE(2) group.

Separable group convolution kernel In Fig. 12 we show a visualisation of a separable group
convolution kernel.

Separable group convolution In Fig. 13 we show a visualisation of the separable group convolution
operation.

Defining convolution kernels on Lie groups In Fig. 15 we show how we obtain a grid on the Lie
group SO(3)/SO(2) by mapping from its algebra. In Fig. 14 we show how we subsequently obtain a
kernel on this group by defining a SIREN on its algebra.
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Figure 10: An example of the lifting convolution for G = SE(2) = R2 o SO(2). In the upper
section of the above figure, a spatial kernel k is transformed by group element (x, θ) ∈ SE(2) with
x = (2, 2), θ = 90◦ to yield Lx(2,2)

Lθ90(k). In the lower section, k is transformed under the action
of each element of (a discretisation of) the group SE(2), to yield a set K of translated and rotated
copies of k. Convolving fin with each of these copies yields a new feature map fout defined over
G = SE(2).
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Figure 11: An example of the group convolution for (a discretisation of) G = SE(2) = R2 o SO(2).
In the upper section of the above figure, a group convolution kernel k (defined over G) is transformed
by group element (x, θ) ∈ SE(2) with x = (2, 2), θ = 90◦ to yield Lx(2,2)

Lθ90(k). In the lower
section, k is transformed under the action of each element of (a discretisation of) the group SE(2), to
yield a set K of translated and rotated copies of k. Convolving fin with each of these copies yields a
new feature map fout defined over G = SE(2).

Figure 12: The separable group convolution kernel parameterises the kernel k : G→ R as kHkR2 .
kH is defined over the subgroup H , with no spatial extent, whereas kR2 is defined only on R2

with no extent over the group. The full group convolution kernel k is obtained by repeating kR2

along H , weighting each instance of kR2 by its corresponding value for h ∈ kH . In practice, it is
computationally advantageous to apply the convolution operations in sequence.
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Figure 13: An example of the separable group convolution for (a discretisation of) G = SE(2) =
R2 o SO(2). In the upper section of the above figure, a kernel kH (defined over H) and a kernel
kR2 (defined over R2) are transformed by group element (x, θ) ∈ SE(2) with x = (2, 2), θ = 90◦ to
yield Lx(2,2)

Lθ90(kH) and Lx(2,2)
Lθ90(kR2). In the lower section, kH and kR2 are transformed under

the action of each element of (a discretisation of) the group SE(2), to yield sets KH of transformed
copies of kH and a set kR2 of translated and rotated copies of k. Convolving fin with KH and KR2

sequentially yields a feature map fout defined over G = SE(2).
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Figure 14: An example of a localised kernel
k on the quotient group SO(3)/SO(2). Al-
though the SIREN parameterising the kernel
is defined on g, we can associate the kernel
values sampled on g with the relevant ele-
ments g′ ∈ G through use of the grid H de-
fined on G, which we map to g via the loga-
rithmic map.

Figure 15: An example of a local kernel grid
H on the quotient group SO(3)/SO(2). We
obtain a volumetrically constant grid on G by
sampling a set of equidistant points in g and
mapping them to G via the exponential map.
The grid onG, show in this figure, then serves
as input for the SIREN defined on g via the
logarithmic map.

Figure 16: An example of a configuration of features fout a single separable group convolution kernel
is unable to represent.

A.5 EXPRESSIVITY LIMITATIONS OF SEPARABLE GROUP CONVOLUTIONS

As discussed, separable group convolution kernels are strictly less expressive than their non-separable
counterpart. For example, in the case of the roto-translation group SE(2), this would enable non-
separable group convolution kernels to learn to represent features that are built up of different spatial
configurations at different orientations.

We draw up a simplified example illustrated in Fig. 16. Assume we have an elementary feature type
e, and a spatial kernel k with which we can recognise this feature type in its canonical pose θ0. In
our input fin, we have three instances of the feature e, one under the canonical pose θ0, and two
under a 90◦ rotation. Applying the lifting convolution using kernel k for the group G = R2 o C4 of
translations and 90◦ rotations yields a feature map fout defined over G, with spatial feature maps for
θ0, ..., θ270. The spatial feature map fθ0out contains a response at a single spatial position. In contrast,
the feature map fθ90out contains a response at two spatial positions. The spatial configurations for the
feature maps along H are different. A single conventional group convolution kernel could learn to
recognise these distinct spatial configurations along the subgroup axis, whereas a separable group
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convolution kernel could not, since it simply repeats (a weighted version of) the same spatial kernel
kR2 along the group axis.

Although this reduction in expressivity could theoretically prove limiting in the application of G-
CNNs on vision tasks, our experiments show that in practice this rarely seems a problem, and may
even help prevent overfitting.

A.6 KERNEL SMOOTHNESS FOR GROUP CONVOLUTIONS ON CONTINUOUS GROUPS

As mentioned, using SIRENs we are able to explicitly control kernel smoothness. We briefly elaborate
on the importance of kernel smoothness in G-CNNs. In conventional CNNs, weights at distinct
spatial locations are generally initialised independently. Because the kernels are only transformed
using discrete translation operations x ∈ Z2, translation equivariance is ensured by virtue of using
the exact same weights values throughout all spatial locations.

In G-CNNs for continuous groups, the kernel is transformed under actions of a continuous transfor-
mation group of interest H to obtain equivariance. However, in our convolution operation we are
still using a discretised kernel; we are required to sample kernel values at different grid points for
different elements h ∈ H . We are no longer able to simply reuse the same weight values throughout
the group as with regular CNNs. To this end, we define our kernels in an analytical form, which we
can trivially evaluate at arbitrary grid points. Because our grid has a fixed resolution, the kernels
sampled from this analytical form are susceptible to aliasing effects; the analytical kernel function
may exhibit higher frequencies than can be captured in the discretisation of the kernel. We visualise
the effects of aliasing in Fig. 17.

In short, for continuous groups, the group action transforms a signal smoothly as the group is traversed.
To prevent discretisation artefacts, we want our kernel to exhibit the same smoothly transforming
behaviour, hence we use SIRENs, as they offer explicit control over the smoothness of kernels in
their analytical form.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 ARCHITECTURAL DETAILS AND PARAMETERISATION

Model architecture As architecture for our experiments we use a simple ResNet model (He et al.,
2016). We use a single lifting convolution with 32 output channels, followed by two residual blocks
of 2 group convolutions. The first block has 32 output channels, the second has 64 output channels.
After the first residual block we apply max-pooling with kernel size 2 over the spatial dimensions
of the feature map. After the last residual block, we apply max pooling over remaining spatial and
subgroup dimensions, followed by two linear layers with batchnorm and ReLU in between. An
overview is given in Fig. 18.

Group convolution blocks and random sampling on the group In our residual blocks (He et al.,
2016), we subsequently convolve the input to the block xin by two group convolutions, gconv 1
and gconv 2, yielding xout and apply elementwise addition with the input xin, followed by ReLU
activation.

When approximating the group convolution through random sampling, we must take care to define
the input and output of the two group convolution layers on the same grid over the group as the
skip-connection to ensure a well-defined equivariant group convolution block. This may be done
by adding a group shortcut layer which maps from the set of input elements on the group to the
set of output elements. We implement this as a group convolution with a 1× 1 spatial extent. The
group shortcut layer thus simultaneously serves as a channelwise projection from the input space
of gconv 1 to the output space of gconv 2 and maps from the input grid on H of the first group
convolution to the output grid on H of the second group convolution.

SIREN architecture and separable kernel parameterisation All our kernels are parameterised by
a SIREN (Sitzmann et al., 2020). In a SIREN, output yl for a layer l and input xl−1 is defined by:

yl = sin(ω0W
lxl−1 + bl) (26)
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Figure 17: Example of aliasing effects in analytical kernel parameterisations. Assume we are
performing a lifting convolution to the SE(2) group. We evaluate two variants of our kernel function;
kϕl exhibiting low frequencies over the kernel domain, and kϕh exhibiting high frequencies over kernel
domain. We evaluate these functions for a spatial grid Hge to obtain a kernel under the identity
rotation, and for a slightly rotated version of this grid Hgε . We see the kernel sampled from kϕl
changes smoothly, whereas the high frequency components in kϕh lead to considerably different
results for the two grids.

Figure 18: Architecture used over all experiments.
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Table 4: Number of trainable parameters for different implementations. For all groups and datasets,
these numbers are kept constant.

NON-SEPARABLE SEPARABLE H-SEPARABLE

742k 803k 864k

In this equation, ω0 acts as a multiplier for low dimensional frequencies found in the input domain
(the grid of relative offsets on the group), which explicitly introduces higher frequencies, allowing
the neural net to learn high-frequency functions (such as kernels). We found a value for ω0 of 10 to
work well in all our experiments. For the SIREN, we used an architecture of two hidden layers of
64 units. In non-separable G-CNNs we have a single SIREN with a final layer mapping to a vector
Rcin×cout . In separable G-CNNs, we use two SIRENs, the first mapping to a function the Lie algebra
of the subgroup H; Rcin×cout , and the second mapping to Rcout . Formulating the kernel k for a
group element g = (x, h) in terms of kH , kR2 , input channel i and output channel j, and logarithmic
map on H logH , we obtain:

ki,j(g) = ki,jH (logH h)kjR2(x) (27)

Lastly, for H-separable Sim(2)-CNNs we use three SIRENs, the first mapping to a function the Lie
algebra of the subgroup R+; Rcin×cout , the second mapping SO(2) to Rcout , and the third mapping
R2 to Rcout . one mapping to SO(2). Formulating the kernel k for a group element g = ((x, θ), s)
in terms of kSO(2), kR+ , kR2 , input channel i and output channel j, logarithmic maps logR+ and
logSO(2) on R+ and SO(2) respectively we obtain:

ki,j(g) = ki,jR+(logR+ s)k
j
SO(2)(logSO(2) θ)k

j
R2(x) (28)

Model sizes In Tab. 4, we report the number of trainable parameters for each model configuration.
Throughout our experiments, we kept the number of channels in all our configurations constant, to
fairly compare the expressivity of the learned representations in non-separable and separable group
convolutions. This has as effect that the number of parameters in the separable implementations is
larger than for non-separable implementations, due to our use of separate SIRENs to parameterise
kernels over the different subgroups. To ensure that the difference in number of trainable parameters
does not influence the comparison between separable and non-separable group convolution layers,
we explicitly chose to over-parameterise our SIREN architecture, as shown in an additional ablation
in App. C.3. We only change SIREN hidden size when comparing our models to baselines proposed
in related works as detailed in App. B.2.

B.2 EXPERIMENTAL DETAILS

Here, we list training regimes for all experiments. We keep these as consistent as possible, as we
are only interested in the effect of separating the group convolution operation, and in isolating the
effect of incorporating equivariance into our models. We list information on all datasets, and any
dataset-specific model configuration details we use in our experiments here.

Optimizer All architectures are trained with Adam optimisation (Kingma & Ba, 2014), and 1e−4

weight decay. All models are trained on a single Titan V.

Rotated MNIST The 62.000 MNIST images (LeCun et al., 1998) are split into a training, validation
and test set of 10.000, 2.000 and 50.000 images respectively, and randomly rotated to orientations
between [0, 2π). Note that in (Weiler et al., 2018b; Weiler & Cesa, 2019), the rotated MNIST dataset
is augmented during training by transforming images with random continuous rotations. We only use
train-time augmentation for the state-of-the-art results obtained in Tab. 2, as detailed in App. B.2. All
models trained on rotated MNIST, except for the state-of-the-art runs detailed in B.2, are trained for
200 epochs with a batch size of 128 and a learning rate of 1 · 10−4.

Scaled MNIST The 62.000 MNIST images are again split into a training, validation and test set
of 10.000, 2.000 and 50.000 images respectively, but now randomly scaled by a factor [0.3, 1] and
padded with zeros to retain the original resolution. No data-augmentations of any kind are used in the
experiments on scaled MNIST. All models trained on scaled MNIST are trained for 200 epochs with
a batch size of 128 and a learning rate of 1 · 10−4.
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Scaled rotated MNIST The 62.000 MNIST images are again split into a training, validation and test
set of 10.000, 2.000 and 50.000 images respectively, but now randomly scaled by a factor [0.3, 1],
padded with zeros to retain the original resolution and randomly rotated by orientations between
[0, 2π). For the experiments on scaled rotated MNIST we do not use data-augmentation of any kind.
All models trained on rotated scaled MNIST are trained for 200 epochs with a batch size of 128 and a
learning rate of 1 · 10−4.

CIFAR10 We evaluate our models on the CIFAR10 dataset, containing 62.000 32× 32 color images
in 10 balanced classes (Krizhevsky et al., 2009). All models trained on CIFAR10 are trained for 200
epochs with a batch size of 128 and a learning rate of 1 · 10−4.

CIFAR100 We evaluate our models on the CIFAR100 dataset, containing 62.000 32 × 32 color
images in 100 balanced classes (Krizhevsky et al., 2009). All models trained on CIFAR10 are trained
for 200 epochs with a batch size of 128 and a learning rate of 1 · 10−4.

Galaxy10 This dataset contains 21785 69x69 color images of galaxies divided into 10 unbalanced
classes. For Galaxy10, we limit batch size to 32 images, and scale learning rate accordingly to
2.5 · 10−5, as suggested by Goyal et al. (2017).

Achieving SOTA on rotated MNIST To compare performance of our separable regular G-CNNs
with previous work, we apply our implementation of SE(2) and Sim(2)-CNNs to achieve state of the
art results on the rotated MNIST dataset, discussed in Sec. 5.

We make some slight adjustment to our architecture and training regime: we reduce the SIREN to a
single hidden layer of 64 units. The convolution over SO(2) is approximated using random sampling,
while the convolution over R+ is approximated using a discretisation with a truncation of the scale
group at s =

√
3. We use a batch size of 64, and a learning rate of 1 · 10−4 and train for 300 epochs.

To fairly assess the impact of equivariance, we train a number of models without continuous rotation
augmentations.

To compare with previous SOTA, achieved by Weiler & Cesa (2019), we also train models with
continuous rotation augmentations. Weiler & Cesa (2019) does not specify performance results for
models without train-time augmentations, therefore we also compare with the prior SOTA by Weiler
et al. (2018b), which trains models both with and without augmentations.

We show results in Tab. 2. With SE(2)-CNNs we achieve best performance with a resolution of
20 elements over SO(2). For the Sim(2)-CNNs, we achieve best performance with a resolution
of 12 elements over SO(2) and 5 elements over R+. These results show that without train-time
augmentation Sim(2)-CNNs outperform the previous SOTA by Weiler & Cesa (2019), which was
trained with continuous rotation augmentations. This improvement further increases when we add
train-time augmentation by continuous rotations, to a test error of 0.59%.

Achieving competitive performance on CIFAR10 To further compare the viability and perfor-
mance of our separable approach to group convolutions, following Cohen & Welling (2016a) we
re-implement the All-CNN-C proposed by (Springenberg et al., 2014), using our separable group con-
volution layers as drop-in replacement for the regular convolution layers. All experiments described
in this section use this exact architecture.

In this experiment we looked to isolate the power of our separable group convolution layers in
larger-scale models, which is why we deliberately chose a large but relatively simple architecture.
We keep the number of channels constant with the original implementation by (Springenberg et al.,
2014). Because of the way our kernels are parameterised, it is hard to make a direct comparison in
model performance in terms of representation expressivity, while keeping the number of trainable
parameters equal to the original model. Therefore, we train three configurations, with different
SIREN hidden sizes.

To obtain a model with approximately the same number of trainable parameters, for the first configu-
ration we limit the hidden size of our SIRENs to 6 to arrive at 1.33m parameters, where the original
model has 1.4m. Note that this limitation likely has considerable implications for the expressivity of
the sampled group convolution kernels.

To push our separable group convolution layers further, we also train a model configuration with a
SIREN hidden size of 5 units, to arrive at a model with 1.14m parameters (19% smaller than the
original model by Springenberg et al. (2014)).
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Figure 19: Test error vs rotation angle of
MNIST test set, when trained on upright
MNIST, for separable SE(2)-CNN.

Figure 20: Test error vs rotation angle of
MNIST test set, when trained on upright
MNIST, for non-separable SE(2)-CNN.

Lastly, to see how our layers would fare when unimpeded by limitations in SIREN size, we train a
configuration with a SIREN hidden size of 16 units. Note that this model contains 3.22m parameters
(representing an 128% increase in parameter count to the original model).

All models are trained with a resolution of 8 elements randomly sampled over SO(2) and a discreti-
sation of the scale group of 3 elements truncated at

√
3. We train all of these configurations both

with and without data augmentation by padding the original image by at most 6 pixels and randomly
cropping to the original resolution, and random horizontal flips. All models are trained for 300 epochs
with a learning rate of 1 · 10−4.

Results are shown in Tab. 3. We can see that for approximately equal parameter counts, our
separable group convolution layers equivariant to Sim(2) outperform the original CNN baseline
and the p4-G-CNN. Without data augmentation, our model with 6 hidden units is outperformed by
the p4m-G-CNN which is also equivariant to reflections. With augmentation (containing reflection
augmentations) our model outperforms all baseline models we compare to by a significant margin.
The smaller configuration with 5 units seems to limit kernel expressivity somewhat, although without
data augmentation it still outperforms the translation equivariant original implementation of the
All-CNN-C. It seems data augmentation throws the model off in this particular configuration. The
larger configuration with 16 hidden units, both with and without data augmentation, significantly
outperforms all baselines and other configurations.

C ADDITIONAL EXPERIMENTS

C.1 VALIDATING MODEL INVARIANCE TO TRANSFORMATION GROUPS

Following Weiler et al. (2018b), we empirically assess the level of model-invariance to rotation
transformations, by training on upright MNIST, and subsequently assessing performance on a test set
of MNIST images that have been transformed by a subgroup element h ∈ H .

Each model is trained on the MNIST training set containing 60,000 images, and tested on 10,000
transformed images. Performance is tested for rotations over a range between [0, 2π), in 100 steps.
The group convolution is approximated through random sampling. Results are shown in figures
19 and 20 for 1, 2 and 8 group elements for the separable and non-separable variants. We can see
that equivariance error is very similar for separable and non-separable variants, and greatly reduces
with increased resolution over the group. We do note that for 8 elements, the non-separable group
convolution achieves slightly better performance.

C.2 SUPPORT OF THE SEPARABLE CONVOLUTION KERNELS OVER THE CHANNEL DIMENSIONS

As explained in Sec. 4, we can choose to either define both kH and kR2 over the input channel
dimension, or incorporate depthwise separability as well; additionally sharing the same spatial kernel
kR2 over the input channels as well as the group input elements. In an additional ablation study we
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Figure 21: Results for depthwise group sep-
arable and group separable SE(2)−CNN on
rotated MNIST for different resolutions on
the group.

Figure 22: Results for depthwise group sep-
arable and group separable R2 oR+−CNN
on CIFAR10 for different resolutions on the
group.

find that at any resolution above |H| = 1, additional depthwise separability outperforms defining
both kernels over the input channel dimensions on a fixed parameter budget.

For this experiment on rotated MNIST, we use the same depthwise group separable SE(2)−CNN
as in Sec. 5, with the architecture described in App. B.1. For the non-depthwise group separable
SE(2)−CNN, we use a single residual group convolution block of 48 channels instead of two of
32 and 64 channels respectively to arrive at approximately the same number of parameters (815k
for the implementation without depthwise separability, 803k for the implementation with depthwise
separability). We train the models for 150 epochs, using adam optimisation, with a learning rate of
1 · 10−4.

We repeat the same experiment for R2 o R+-CNNs on CIFAR10, for a resolution of 1, 2, and
4 elements. Architectures and training regimes used for the non-depthwise group separable and
depthwise group separable experiments are identical to above.

Results, shown in Fig. 21 and Fig. 22 for rotated MNIST and CIFAR10 respectively, highlight that
additional depthwise separability outperforms non-depthwise group separable convolutions on a fixed
parameter budget, which is why we stick with additional depthwise separation of the spatial kernel,
and name this approach the separable group convolution.

C.3 HOW DOES SIREN ARCHITECTURE INFLUENCE PERFORMANCE?

As explained, we keep the architecture of our SIRENs constant over all experiments. Because we use
multiple SIRENs in separable architectures, and we want to isolate the effect of separability of the
group convolution operation, we deliberately choose to over-parameterise the SIREN architectures,
so as not to advantage the separable implementations by their increased parameter numbers. To this
end, we look for the largest size of hidden layer that does not negatively impact performance in the
non-separable implementation.

We assess the impact of the size of the hidden layers in our SIREN on performance on rotated
MNIST for separable and non-separable SE(2)-CNN implementations. We sample at a resolution
over SO(2) of 8 elements. Interestingly, results in figure 23 show that even with very small SIRENs -
a hidden size of 4 or 8 - performance of the non-separable implementations is remarkable. Separable
implementations clearly underperform for small SIREN sizes, leading us to hypothesize that the
restriction in kernel expressivity due separability paired with under-parameterisation is detrimental to
performance in these configurations.

For non-separable implementations, performance barely increases from 16 hidden units on, and starts
to decrease after a size of 64 hidden units. For this reason, we choose a size of 64 hidden units in all
SIRENs in our experiments.
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Figure 23: Test accuracy of SE(2)-CNNs on rotated MNIST for different sizes hidden
layers in the SIREN parameterisation.

Figure 24: Test accuracy of R2 oR+-CNNs on CIFAR10 for different sizes hidden layers
in the SIREN parameterisation.

We repeat the same experiment for R2 oR+-CNNs on CIFAR10, and visualise the results in Fig. 24.
Here, performance for very small SIREN configurations is less impressive, but we still see a similar
saturation around a SIREN size of 64 hidden units.

C.4 COMPARING ACTIVATION FUNCTIONS FOR CONTINUOUS CONVOLUTION KERNELS

To assess the impact of our use of SIRENs on the performance of our separable G-CNNs, we perform
an additional ablation on rotated MNIST in which we compare with other activation functions.
We train separable SE(2)-CNNs with a resolution 8 group elements over SO(2), and only vary
activation functions in the MLP parameterising the convolution kernels. The convolution on SO(2) is
approximated through random sampling.

We look at other activation functions used in parameterising convolution kernels; ReLU (Wu et al.,
2019), LeakyReLU, and SiLU (Finzi et al., 2020), see Tab. 5. These results conclusively show the
power of sine as activation function, one of the reasons we chose to use SIRENs in our work.

Table 5: Test accuracy (%) of SE(2)-CNNs on rotated MNIST for different activation functions used
in parameterisation of the convolution kernel.

ACTIVATION SEPARABLE TEST ACCURACY

Sine
7 0.9855 (±.0012)
3 0.9906 (±.0002)

ReLU
7 0.9721 (±.0003)
3 0.9743 (±.0034)

LeakyReLU
7 0.9722 (±.0052)
3 0.9788 (±.0013)

Swish
7 0.9651 (±.0012)
3 0.9595 (±.0045)
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Figure 25: Test error (%) of R2 oR+-CNNs on scaled MNIST for random sampling versus discreti-
sation of the scale group.

Figure 26: A set of histograms showing variance along the subgroup axis in separable group
convolutions. In contrast to Fig. 2, here we show the variability of the convolution kernel along the
subgroup axis. This may be seen as an inverse measure of redundancy. Here we can see that contrary
to in non-separable group convolution kernels, variability along the group axis increases over the
training process, indicating that redundancy decreases. Separable group convolutions thus solve the
redundancy issues in group convolution kernels.

C.5 RANDOM SAMPLING OVER NON-COMPACT GROUPS

As explained in section 4, for non-compact groups we approximate the group convolution through
a discretisation of the transformation group of interest. Motivation for this decision is the fact that
in non-compact groups, we have to deal with boundary effects of truncating the group, introducing
equivariance error into the convolution operation. For dilation, further motivation for approximation
through discretisation is the loss of information that occurs in for example natural images, as a result
of downscaling a signal on a fixed resolution grid. Random sampling over the dilation group would
have as effect that the representation built by a group convolution layer contains different spatial
resolutions of information at every sampling step. This results in subsequent layers receiving noisy
information at each iteration, which would impede model performance, with training being highly
unstable for low resolutions over R+.

To empirically reinforce this hypothesis, we performed the same experiment with our R2 oR+-CNN
on MNIST-scale described in section 5 with random sampling over the dilation group. Results, shown
in figure 25, highlight that indeed, random sampling over the dilation group leads to significantly
worse performance. We also noticed great instability during the training process, seen in the variance
of the results achieved with random sampling.
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C.6 DO SEPARABLE GROUP CONVOLUTIONS REDUCE REDUNDANCY IN G-CNNS?

As explained, convolving with separable group convolution kernels is analogous to a group convolu-
tion with a kernel which shares a reweighting of a single spatial kernel along the group axis. This
approach was motivated by redundancy observations in regular group convolution kernels along the
group axis, seen in Fig. 2.

To assess whether the separable group convolution solves these redundancy issues in G-CNNs, we
may want to perform a similar test of the variability of our introduced separable implementation
along the group axis. Note that, if we were to reconstruct the full group convolution kernel k from
kH and k2R and apply the same PCA variance test as used to obtain Fig. 2, we would find that each
group convolution could be fully explained by the first principal component (corresponding to the
reshared spatial kernel). Instead, we measure the variability of our separable kernels by assessing
the variance of kH , which lies along this axis. Results are shown in figure 26 for the separable
SE(2)-CNN trained on Galaxy10 dataset with a resolution of 8 elements on SO(2). Here, we observe
the variance increasing in all layers over the training process. This indicates that indeed, separable
group convolutions reduce parameter redundancy in G-CNNs.
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