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ABSTRACT

Deep neural networks can struggle to learn continually in the face of non-
stationarity. This phenomenon is known as loss of plasticity. In this paper, we
identify underlying principles that lead to plastic algorithms. In particular, we
provide theoretical results showing that linear function approximation, as well as a
special case of deep linear networks, do not suffer from loss of plasticity. We then
propose deep Fourier features, which are the concatenation of a sine and cosine in
every layer, and we show that this combination provides a dynamic balance between
the trainability obtained through linearity and the effectiveness obtained through the
nonlinearity of neural networks. Deep networks composed entirely of deep Fourier
features are highly trainable and sustain their trainability over the course of learning.
Our empirical results show that continual learning performance can be drastically
improved by replacing ReLU activations with deep Fourier features. These results
hold for different continual learning scenarios (e.g., label noise, class incremental
learning, pixel permutations) on all major supervised learning datasets used for
continual learning research, such as CIFAR10, CIFAR100, and tiny-ImageNet.

1 INTRODUCTION

Continual learning is a problem setting that moves past some of the rigid assumptions found in
supervised, semi-supervised, and unsupervised learning (Ring, 1994; Thrun, 1998). In particular,
the continual learning setting involves learning from data sampled from a changing, non-stationary
distribution rather than from a fixed distribution. A performant continual learning algorithm faces
a trade-off due to its limited capacity: it should avoid forgetting what was previously learned while
also being able to adapt to new incoming data, an ability known as plasticity (Parisi et al., 2019).
Current approaches that use neural networks for continual learning are not yet capable of making
this trade-off due to catastrophic forgetting (Kirkpatrick et al., 2017) and loss of plasticity (Dohare
et al., 2021; Lyle et al., 2023; Dohare et al., 2024). The training of neural networks is in fact an active
research area in the theory literature for supervised learning (Jacot et al., 2018; Yang et al., 2023;
Kunin et al., 2024), which suggests there is much left to be understood in training neural networks
continually. Compared to the relatively well-understood problem setting of supervised learning, even
the formalization of the continual learning problem is an active research area (Kumar et al., 2023a;
Abel et al., 2024; Liu et al., 2023). With these uncertainties surrounding current practice, we take
a step back to better understand the inductive biases used to build algorithms for continual learning.

One fundamental capability expected from a continual learning algorithm is its sustained ability
to update its predictions on new data. Recent work has identified the phenomenon of loss of plasticity
in neural networks in which stochastic gradient-based training becomes less effective when faced
with data from a changing, non-stationary distribution (Dohare et al., 2024). Several methods have
been proposed to address the loss of plasticity in neural networks, with their success demonstrated
empirically across both supervised and reinforcement learning (Ash and Adams, 2020; Lyle et al.,
2022; 2023; Lee et al., 2024). Empirically, works have identified that the plasticity of neural networks
is sensitive to different components of the training process, such as the activation function (Abbas
et al., 2023). However, little is known about what is required for learning with sustained plasticity.

The goal of this paper is to identify a basic continual learning algorithm that does not lose plasticity
in both theory and practice, rather than mitigating the loss of plasticity in existing neural network
architectures. Our focus is on loss of plasticity rather than catastrophic forgetting, because plasticity
is needed to sustain continual learning from new data. In particular, we investigate the effect of the
nonlinearity of neural networks on the loss of plasticity. While loss of plasticity is a well-documented
phenomenon in neural networks, previous empirical observations suggest that linear function
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Figure 1: A neural network with deep Fourier features in every layer approximately embeds
a deep linear network. A single layer using deep Fourier features linearly combines the inputs,
x, to compute the pre-activations, z, and each pre-activation is mapped to both a cos unit and a
sin unit (Left). For each pre-activation, either the sin unit (Middle) or the cos unit (Right) is
well-approximated by a linear function.

approximation is capable of learning continually without suffering from loss of plasticity (Dohare
et al., 2021; 2024). In this paper, we prove that linear function approximation does not suffer from loss
of plasticity and can sustain their learning ability on a sequence of tasks. We then extend our analysis
to a special case of deep linear networks, which provide an interesting intermediate case between
deep nonlinear networks and linear function approximation. This is because deep linear networks are
linear in representation but nonlinear in gradient dynamics (Saxe et al., 2014). We provide theoretical
and empirical evidence that general deep linear networks also do not suffer from loss of plasticity.
The plasticity of deep linear networks is surprising compared to the loss of plasticity of deep nonlinear
networks. This finding suggests that loss of plasticity is not necessarily caused by the nonlinear
learning dynamics, but a combination of nonlinear learning dynamics and nonlinear representations.

Given this seemingly natural advantage of linearity for continual learning, as well as its inherent
limitation to learning only linear representations, we explore how nonlinear networks can better
emulate the dynamics of deep linear networks to sustain plasticity. We hypothesize that, to effectively
learn continually, the neural network must balance between introducing too much linearity and
suffering from loss of deep representations and introducing too much nonlinearity and suffering from
loss of plasticity. In fact, we show that previous work partially satisfies this hypothesis, such as the
concatenated ReLU (Shang et al., 2016), leaky-ReLU activations (Xu et al., 2015), and residual
connections (He et al., 2016), but they fail at striking this balance. Our results build on previous work
that identified issues of unit saturation (Abbas et al., 2023) and unit linearization (Lyle et al., 2024) as
issues in continually training neural networks with common activation functions. In particular, we
generalize both to the problem of low unit sign entropy, which indicates a lack of diversity in the
activations as measured by the entropy of the sign of the hidden units. We show that linear networks
have high unit sign entropy, meaning that the sign of a hidden unit on different inputs is positive on
approximately half the inputs. In contrast, deep nonlinear networks with most activation functions
tend to have low unit sign entropy, which indicates saturation or linearization.

Periodic activation functions (Parascandolo et al., 2017), like the sinusoid function (sin), are a
notable exception for having high unit sign entropy despite still suffering from loss of plasticity. Thus,
in addition to unit sign entropy, we demonstrate that the network’s activation function should be well-
approximated by a linear function. We propose deep Fourier features as a means of approximating
linearity dynamically, with every pre-activation being connected to two units, one of which will
always be well-approximated by a linear function. In particular, deep Fourier features concatenate
a sine and a cosine activation in each hidden layer. The resulting network is nonlinear while also
approximately embedding a deep linear network using all of its parameters. Deep Fourier features
differ from previous approaches that use Fourier features only in the input layer (Tancik et al., 2020;
Li and Pathak, 2021; Yang et al., 2022) or that use fixed Fourier feature basis (Rahimi and Recht,
2007; Konidaris et al., 2011). We demonstrate that networks using these shallow Fourier features still
exhibit a loss of plasticity. Only by using deep Fourier features in every layer is the network capable
of sustaining and improving trainability in a continual learning setting. Using tiny-ImageNet (Le
and Yang, 2015), CIFAR10, and CIFAR100 (Krizhevsky, 2009), we show that deep Fourier features
can be used as a drop-in replacement for improving trainability in commonly used neural network
architectures. Furthermore, the trainability of deep Fourier features enables training with a much
larger regularization strength, leading to superior generalization performance.
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2 PROBLEM SETTING

We define a deep network, fθ with a a parameter set, θ = {Wl,bl}Ll=1, as a sequence of layers, in
which each layer applies a linear transformation followed by an element-wise activation function,
ϕ in each hidden layer. The output of the network, fθ(x) := hL(x), is defined recursively by
hl = [hl,1, . . . , hl,w] = [ϕ(zl,1), . . . , ϕ(zl,w)] = ϕ(zl), and, zl = Wlhl−1 + bl where w is the
width of the network, and h0 = x. We refer to a particular element of the hidden layer’s output hl,i

as a unit. The deep network is a deep linear network when the activation function is the identity,
ϕ(z) = z. Linear function approximation is equivalent to a linear network with L = 1.

The problem setting that we consider is continual supervised learning, where the learner does not
have information about the task boundaries. Instead, at each iteration the learner has access to a
minibatch of observation-target pairs of size M , {xi, yi}Mi=1. This minibatch is used to update the
parameters θ of a neural network fθ using a variant of stochastic gradient descent. The learning
problem is continual because the distribution from which the data is sampled, p(x, y), is changing.
For simplicity, we assume this non-stationarity changes the distribution over the input-target pairs
every T iterations. The data is sampled from a single distribution for T steps, and we refer to this
particular temporary stationary problem as a task, τ . The distribution over observations and targets
that defines a task τ is denoted by pτ .

Loss of plasticity can refer to two related phenomena: loss of generalization (Ash and Adams, 2020;
Dohare et al., 2024) or loss of trainability (Dohare et al., 2021; Lyle et al., 2023). We focus our
theoretical analysis on the problem of loss of trainability, in which we evaluate the neural network
at the end of each task using samples from the most recent task distribution, pτ , as is commonly
done in previous work (Lyle et al., 2023). Loss of trainability refers to the problem where the neural
network is unable to sustain its initial performance on the first task to later tasks. Specifically, we
denote the optimisation objective by Jτ (θ) = E(x,y)∼pτ

[
ℓ(fθ(x), y)

]
, for some loss function ℓ, and

task-specific data distribution pτ . We use t to denote the iteration count of the learning algorithm,
and thus the current task number can be written as τ(t) = ⌊t/T ⌋.

3 TRAINABILITY AND LINEARITY

In this section, we show that, unlike nonlinear networks, linear networks do not suffer from loss of
trainability. That is, if the number of iterations in each task is sufficiently large, a linear network
sustain trainability on every task in the sequence. We then show theoretically that a special case of
deep linear networks also does not suffer from loss of trainability, and we empirically validate the
theoretical findings in more general settings. These results provide a theoretical basis for previous
work that uses a linear baseline in loss of plasticity experiments.

3.1 TRAINABILITY OF LINEAR FUNCTION APPROXIMATION

We first prove that loss of trainability does not occur with linear function approximation,
fθ(x) = Wlx + bl. We prove this by showing that any sequence of tasks can be learned with a
large enough number of iterations per task. In particular, the performance of the solution found on
the τ -th task can be upper bounded on a quantity that is independent of the solution found on the
first τ − 1 tasks. Linear function approximation avoids loss of trainability because the optimisation
problem on each task is convex (Agrawal et al., 2021; Boyd and Vandenberghe, 2004), with a unique
global optimum, θ⋆τ . We now state the theorem, which we prove in Appendix B

Theorem 1. Let θ(τT ) denote the linear weights learned at the end of the τ -th task, with the
corresponding unique global minimum for task τ being denoted by θ⋆τ . Assuming the objective
function is µ-strongly convex, the suboptimality gap for gradient descent on the τ -th task is

Jτ (θ
(τT ))− Jτ (θ

⋆
τ ) <

2D(1− αµ)T

αT (1− (1− αµ)T )
,

where each task lasts for T iteration, D is the assumed bound on the parameters at the global
minimum for every task, and α is the step-size.

Intuitively, this theorem states that if the problem is bounded and effectively strongly convex due
to a finite number of iterations, then the optimisation dynamics are well-behaved for every task in
the bounded set. In particular, this means that the error on each task can be upper bounded by a
quantity independent of the initialization found on previous tasks. Thus, given enough iterations,
linear function approximation can learn continually without loss of trainability.
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3.2 TRAINABILITY OF DEEP LINEAR NETWORKS

We now provide evidence that, similar to linear function approximation, deep linear networks also
do not suffer from loss of trainability. Deep linear networks differ from deep nonlinear networks
by not using nonlinear activation functions in their hidden layers (Bernacchia et al., 2018; Ziyin
et al., 2022). This means that a deep linear network can only represent linear functions. At the same
time, its gradient update dynamics are nonlinear and non-convex, similar to deep nonlinear neural
networks (Saxe et al., 2014). Our central claim here is that deep linear networks under gradient
descent dynamics avoid parameter configurations that would lead to loss of trainability.

To simplify notation, without loss of generality, we combine the weights and biases into a single
parameter for each layer in the deep linear network , θ = {θ1, . . . , θL}, and fθ(x) = θLθL−1 · · · θ1x.
We denote the product of weight matrices, or simply product matrix, as θ̄ = θLθL−1 · · · θ1, which
allows us to write the deep linear network in terms of the product matrix: fθ(x) = θ̄x. The problem
setup we use for the deep linear analysis follows previous work (Huh, 2020), and we provide
additional technical details for optimisation dynamics of deep linear networks in Appendix A.3.

We now provide evidence to suggest that, despite deep linear networks being nonlinear in their gradient
dynamics, they do not suffer from loss of trainability. We prove this for a special case of deep diagonal
linear networks, and provide empirical evidence to support this claim in general deep linear networks.
Theorem 2. Let fθ(x) = θLθL−1 · · · θ1x be a deep diagonal linear network where θl =
Diag(θl,1, . . . , θl,d). Then, a deep diagonal linear network converges on a sequence of tasks under
the same conditions for convergence in a single task (i.e., the conditions in Arora et al., 2019).

Theorem 2 states that a deep diagonal linear network, a special case of general deep linear networks,
can converge to a solution on each task within a sequence of tasks. The proof, provided in Appendix
B, shows that the minimum singular value of the product matrix stays greater than zero, σmin(θ̄) > 0.
Hence, deep diagonal linear networks do not suffer from loss of trainability. This result provides
further evidence suggesting that linearity might be an effective inductive bias for learning continually.

While the analysis considers a special case of deep linear networks, namely deep diagonal networks,
we note that this is a common setting for the analysis of deep linear networks more generally (Nacson
et al., 2022; Even et al., 2023). In particular, the analysis is motivated by the fact that, under
certain conditions, the evolution of the deep linear network parameters can be analyzed through the
independent singular mode dynamics (Braun et al., 2022), which simplifies the analysis of deep linear
networks to deep diagonal linear networks.

3.3 EMPIRICAL EVIDENCE FOR TRAINABILITY OF GENERAL DEEP LINEAR NETWORKS

Figure 2: Trainability on a linearly separable
task. The higher opacity corresponds to deeper
networks, ranging from {1, 2, 4, 8, 16}. Deep
linear networks sustain trainability on new tasks,
with some additional depth improving trainability.
Nonlinear networks, using ReLU, suffer from loss
of trainability at any depth even on this simple
sequence of linearly separable problems.

In the previous section, we proved that a special
case of deep linear networks do not suffer from
loss of trainability. We now provide additional
empirical evidence that general deep linear net-
works do not suffer from loss of trainability. To
do so, we use a linearly separable subset of the
MNIST dataset (LeCun et al., 1998), in which
the labels of each image are randomized every
100 epochs. For this experiment, the data is
linearly separable so that even a linear baseline
can fit the data if given enough iterations. While
MNIST is a simple classification problem,
memorizing random labels highlights the dif-
ficulties associated with maintaining trainability
(see Lyle et al., 2023; Kumar et al., 2023b).
We emphasize that the goal here is merely to
validate that linear networks remain trainable in
continual learning. We also provide results with
traditional nonlinear neural networks on the
same problem, showing that they suffer from
loss of trainability in this simple problem. Later
in Section 5, we extend our investigation of loss
of trainability to larger-scale benchmarks.
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In Figure 2, we see that deep linear networks ranging from a depth of 1 to 16 can sustain trainability.
Using a multi-layer perceptron with ReLU activations, deep nonlinear networks quickly reach a
much higher accuracy on the first few tasks. However, due to loss of trainability, deep nonlinear
networks of any depth eventually perform worse than the corresponding deep linear network. With
additional epochs, the linear networks could achieve perfect accuracy on this task because it is linear
separable. The number of epochs is comparatively low to showcase that, with some additional layers,
a deep linear network is able to improve its trainability as new tasks are encountered.

4 COMBINING LINEARITY AND NONLINEARITY

In the previous section, we provided empirical and theoretical evidence that linearity provides an
effective inductive bias for learning continually by avoiding loss of trainability. However, linear
methods are generally not as performant as deep nonlinear networks, meaning that their sustained
performance can be inadequate on complex tasks. Even deep linear networks have only linear
representational power, despite the fact that the gradient dynamics are nonlinear and can lead to
accelerated learning. We now seek to answer the following question:

How can the sustained trainability of linear methods be combined with
the expressive power of learned nonlinear representations?

To answer this question, we first seek to better understand the effects of replacing linear activation
functions with nonlinear ones in deep networks for continual learning. We observe that deep linear
networks have diversity in their hidden units, which can be induced in nonlinear activation functions
by adding linearity through a weighted linear component, an idea we refer to as α-linearization.
To dynamically balance linearity and nonlinearity, we propose to use deep Fourier features for every
layer in a network. We prove that such a network approximately embeds a deep linear network, a
property we refer to as adaptive linearity. We demonstrate that this adaptively-linear network is
plastic, maintaining trainability even on non-linearly-separable problems.

4.1 ADDING LINEARITY TO NONLINEAR ACTIVATION FUNCTIONS

Deep nonlinear networks can learn expressive representations because of their nonlinear activation
functions, but these nonlinearities can also lead to issues with trainability. Although several
components of common network architectures incorporate linearity, the way in which linearity
is used does not avoid loss of trainability. One example is the piecewise linearity of the ReLU
activation function (Shang et al., 2016), ReLU(x) = max(0, x), that can become saturated and
prevent gradient propagation if ReLU(x) = 0 for most inputs x. While saturation is generally not
a problem for learning on a single distribution, it has been noted as problematic in learning from
changing distributions, for example, in reinforcement learning (Abbas et al., 2023).

A potential solution to saturation is to use a non-saturating activation function. Two noteworthy
examples of non-saturating activation functions include a periodic activation like sin(x) (Paras-
candolo et al., 2017) and leaky-ReLUα(x) = αx + (1 − α)ReLU(x) (Xu et al., 2015), both of
which are zero on a set of measure zero. Surprisingly, using leaky-ReLU leads to a related issue,
“unit linearization” (Lyle et al., 2024), in which the activation is only positive (or negative) Unlike
saturated units, linearized units can provide non-zero gradients but render that unit effectively linear,
limiting the expressive power of the learned representation. While unit linearization seems to suggest
that loss of trainability can occur due to linearity, it is important to note that a “linearized unit” is
not the same as a linear unit. This is because a linearized unit provides mostly positive (or negative)
outputs, whereas a linear unit can output both positive and negative values.

We generalize the idea behind unit saturation and unit linearization to unit sign entropy, which is
a metric applicable to activation functions beyond saturating and piecewise linear functions, such as
periodic activation functions. Intuitively, it measures the diversity of the activations of a hidden layer.

Definition 1 (Unit Sign Entropy). The entropy, H, of the unit’s sign, sgn(h(x)), on a distribution of
inputs to the network, p(x), is given by H (sgn(h(x))) = Ep(x) [sgn(h(x))].

The maximum value of unit sign entropy is 1, which occurs when the unit is positive on half the
inputs. Conversely, a low sign entropy is associated with the aforementioned issues of saturation
and linearization. For example, a low sign entropy for a deep network using ReLU activations means
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that the unit is almost always positive (P (sgn(h(x)) = 1) = 1, meaning it is linearized) or negative
(P (sgn(h(x)) = 1) = 0, meaning it is saturated).

With unit sign entropy, we investigate how the leak parameter for the leaky-ReLU activation
function influences training as pure linearity (α = 1) is traded-off for pure nonlinearity (α = 0). The
idea of mixing a linearity and nonlinearity can also be generalized to an arbitrary activation function,
which we refer to as the α-linearization of an activation function.
Definition 2 (α-linearization). The α-linearization of an activation function ϕ, is denoted by ϕα(x) =
αx+ (1− α)ϕ(x).

Figure 3: Trainability on a linearly
separable task with α-linearization
Darker opacity lines correspond to
higher values of α. Unit sign entropy
increases as α increases (inset), leading
to sustained trainability for α-relu.

A natural hypothesis is that, as α increases from 0 to 1,
and the network becomes more linear, loss of trainability
is mitigated. We emphasize that the α-linearization is pri-
marily to gain insights from empirical investigation and it
is not a solution to loss of trainability. This is because any
benefits of α-linearization depend on tuning α, and even
optimal tuning can lead to overly linear representations
and slow training compared to nonlinear networks.

Empirical Evidence for α-linear Plasticity To under-
stand the trainability issues introduced by nonlinearity, we
present a case-study using sin and ReLU with different
values of the linearization parameter, α. The same exper-
iment setup is used from Section 3.3. Referring to the
results in Figure 3, we see that both ReLU and sin acti-
vation functions are able to sustain trainability for larger
values of α. This verifies the hypothesis: a larger α pro-
vides more linearity to the network, allowing it to sustain trainability. For α-ReLU, we also verify
the hypothesis that the unit sign entropy increases for larger values of α (inset plot). The fact that the
periodic sin activation function has a high unit sign entropy despite losing trainability is particularly
interesting, and we will return to this in Section 4.2. Note that, while trainability can be sustained, it
is generally lower than the nonlinear networks for a large values of α.

4.2 ADAPTIVE-LINEARITY BY CONCATENATING SINUSOID ACTIVATION FUNCTIONS

Using the insight that linearity promotes unit sign entropy, we explore an alternative approach
to sustain trainability. In particular, we found that linearity can sustain trainability but requires
tuning α, and even optimal tuning can lead to slow learning from overly linear representations. Our
approach is motivated by concatenated ReLU activations (Shang et al., 2016; Abbas et al., 2023),
CReLU(z) = [ReLU(z),ReLU(−z)], which avoids the problems from saturated units, but does not
avoid the problem of low unit sign entropy. In particular, we propose using a pair of activations
functions such that one activation function is always approximately linear, with a bounded error.

One way to dynamically balance the linearities and nonlinearities of a network is using periodic
activation functions. This is because, due to their periodicity, the properties of the activation function
can re-occur as the magnitude of the preactivations grows rather than staying constant, linear, or
saturating. But, as we saw in Figure 3, a single periodic activation function like sin is not enough.
Instead, we propose to use deep Fourier features, meaning that every layer in the network uses
Fourier features. This is a notable departure from previous work which considers only shallow
Fourier features in the first layer (Rahimi and Recht, 2007; Tancik et al., 2020). In particular, each
unit is a concatenation of a sinusoid basis of two elements, Fourier(z) = [sin(z), cos(z)]. Each
pre-activation is mapped to both sin(z) and cos(z), which requires that a layer with deep Fourier
features have half the output width to accomodate the concatenation.1 The advantage of this
approach is that a network with deep Fourier features maintains approximate linearity in all of
its parameters. Moreover, deep Fourier features are closed under differentation, meaning that the
activations and their gradients provide a basis for representing periodic functions .
Proposition 1. For any z, there exists a linear function, Lz(x) = a(z)x + b(z), such that either:
| sin(x)− Lz(x)| ≤ c, or | cos(x)− Lz(x)| ≤ c, for c =

√
2π2

/28 and all x ∈ [z − π/4, z + π/4].
1For a fixed width, a network with deep Fourier features has approximately half the number of parameters.
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An intuitive description of this is provided in Figure 1. The advantage of using two sinusoids over
just a single sinusoid is that whenever cos(z) is near a critical point, d/dz cos(z) ≈ 0, we have that
sin(z) ≈ z, meaning that d/dz sin(z) ≈ 1 (and vice-versa). The argument follows from an analysis
of the Taylor series remainder, showing that the Taylor series of half the units in a deep Fourier layer
can be approximated by a linear function, with a small error of c =

√
2π2

/28 ≈ 0.05. While we found
that two sinusoids is sufficient, the approximation error can be further improved by concatenating
additional sinusoids, at the expense of reducing the effective width of the layer.

Because each pre-activation is connected to a unit that is approximately linear, we can conclude
that a deep network comprised of deep Fourier features approximately embeds a deep linear network.
Corollary 1. A network parameterized by θ, with deep Fourier features, approximately embeds a
deep linear network parameterized by θ with a bounded error.

Figure 4: Trainability on a non
linearly-separable task. Deep Fourier
features improve and sustain their train-
ability when other networks cannot.

Notice that piecewise linear activations also embed a deep
linear network, but these embedded deep linear networks
do not use the same parameter set. For example, the deep
linear network embedded by a ReLU network does not
depend on any of the parameters used to compute a ReLU
unit that is zero. Although the leaky-ReLU function
involves every parameter, the deep linear network vanishes
because the leak parameter is small, α < 1, and hence the
embedded deep linear network is multiplied by a small
constant, α−L, where L is the depth of the network.

Empirical Evidence for Nonlinear Plasticity We
now consider a similar experimental setup from Sections
3.3 and 4.1, except we make the problem non linearly-
separable by considering random label assignments on
the entire dataset. Each task is more difficult because it
involves memorizing more labels, and the effect of the
non-stationarity is also stronger due to randomization of more datapoints. As a result, the deep linear
network can no longer fit a single task well. Referring to Figure 4, the α-linear activation functions
can sustain and even improve their trainability, albeit very slowly. See also unit sign entropy in Figure
9, Appendix D.1. In contrast, using deep Fourier features within the network enables the network to
easily memorize all the labels for 100 tasks. Deep Fourier features surpass the trainability of the other
nonlinear baselines at initialization, CReLU and shallow Fourier features followed by ReLU. This is
surprising, because deep nonlinear networks at initialization are often a gold-standard for trainability.

5 EXPERIMENTS

Our experiments demonstrate the benefits of the adaptive linearity provided by deep Fourier
features. While trainability was the primary focus behind our theoretical results and empirical
case studies, we show that these findings generalize to other problems in continual learning. In
particular, we demonstrate that networks composed of deep Fourier features are capable of learning
from diminishing levels of label noise, and in class-incremental learning, in addition to sustaining
trainability on random labels. The main results we present are on all of the major continual supervised
learning settings considered in the plasticity literature. They build on the standard ResNet-18
architecture, widely used in practice (He et al., 2016).

Datasets and Non-stationarities Our experiments use the common image classification datasets
for continual learning, namely tiny-ImageNet (Le and Yang, 2015), CIFAR10, and CIFAR100
(Krizhevsky, 2009). We augment these datasets with commonly used non-stationarities to create
continual learning problems, with the non-stationarity creating a sequence of tasks from the dataset.
Specifically, we follow recent work that introduced the diminishing label noise problem (Lee et al.,
2024), which is inspired by the warm-starting problem: We start with half the data being corrupted
by label noise and reduce the noise to clean labels over 10 tasks. Additionally, for the datasets with
a larger number of classes, tiny-ImageNet and CIFAR100, we also consider the class-incremental
setting: the first task involves only five classes, and five new classes are added to the existing pool
of classes at the beginning of each task (Van de Ven et al., 2022). Other results and more details on
datasets and non-stationarities considered can be found in Appendix C.
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Figure 5: Training a ResNet-18 continually with diminishing label noise. Deep Fourier features
are particularly performant on complex tasks like tiny-ImageNet. Despite networks with deep Fourier
features having approximately half the number of parameters, they surpass the baselines in CIFAR100
and are on-par with spectral regularization on CIFAR10.

Architecture and Baselines We compare a ResNet-18 using only deep Fourier features against
a standard ResNet-18 with ReLU activations. The network with deep Fourier features has fewer
parameters because it uses a concatenation of two different activation functions, halving the effective
width compared to the network with ReLU activations. This provides an advantage to the nonlinear
baseline. We also include all prominent baselines that have previously been proposed to mitigate loss
of plasticity in the field: L2 regularization towards zero, L2 regularization towards the initialization
(Kumar et al., 2023b), spectral regularization (Lewandowski et al., 2024), Concatenated ReLU (Shang
et al., 2016; Abbas et al., 2023), Dormant Neuron Recycling (ReDO, Sokar et al., 2023), Shrink and
Perturb (Ash and Adams, 2020), and Streaming Elastic Weight Consolidation (S-EWC, Kirkpatrick
et al., 2017; Elsayed and Mahmood, 2024).

5.1 MAIN RESULTS

Our main result demonstrates that adaptive-linearity is an effective inductive bias for continual
learning. In these set of experiments, we consider the problem of sustaining test accuracy on a
sequence of tasks. In addition to requiring trainability, methods must also sustain their generalization.

Diminishing Label Noise In Figure 5, we can clearly see the benefits of deep Fourier features in
the diminishing label noise setting. At the end of training on ten tasks with diminishing levels of
label noise, the network with deep Fourier features was always among the methods with the highest
test accuracy on the the uncorrupted test set. On the first of ten tasks, deep Fourier features could
occasionally overfit to the corrupted labels leading to initially low test accuracy. However, as the
label noise diminished on future tasks, the network with deep Fourier features was able to continue to
learn to correct its previous poorly-generalizing predictions. In contrast, the improvements achieved
by the other methods that we considered was oftentimes marginal compared to the baseline ReLU
network. Two exceptions are: (i) networks with CReLU activations, which underperformed relative
to the baseline network, and (ii) Shrink and Perturb, which was the best-performing baseline method
for diminishing label noise. Interestingly, the performance benefit of deep Fourier features is most
prominent on more complex datasets, like tiny-ImageNet. In Appendix D.2, we provide an ablation
of the archicture, where we use a Wide Residual Network (Zagoruyko and Komodakis, 2016) and
vary the width scale.

Figure 6: Class incremental learning results on tiny-Imagenet
(Left) and CIFAR-100 (Right). On both datasets, deep Fourier
features substantially improve over most baselines.

Class-Incremental Learning
Deep Fourier features are also
effective in the class-incremental
setting, where later tasks involve
training on a larger subset
of the classes, following the
experiment described in (Dohare
et al., 2024). The network is
evaluated at the end of each task
on the entire test set. As the
network is trained on later tasks,
its test set performance increases
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because it has access to a larger subset of the training data. In Figure 6, we see that Deep Fourier
features largely outperform the baselines in this setting, particularly on tiny-ImageNet in which the
first forty tasks involve training on a growing subset of the dataset and the last forty “tasks” involve
training to convergence on the full dataset. We use quotation marks to characterize the last forty
tasks because they are, in fact, a single task, as the data distribution stops changing after the first forty
tasks. We call them “tasks” because of the number of iterations in which they are trained. Not only
are deep Fourier features quicker to learn on earlier continual learning tasks, but they are also able to
improve their generalization performance by subsequently training on the full dataset. On CIFAR100,
the difference between methods is not as prominent, but we can see that deep Fourier features are
still among the top-performing methods. The large performance difference on tiny-ImageNet can
be attributed to the fact that it is a harder problem compared to CIFAR10 and CIFAR100, with higher
resolution images, more classes and more datapoints.

5.2 SENSITIVITY ANALYSIS

Figure 7: Sensitivity analysis on tiny-ImageNet. Net-
works with deep Fourier features are highly trainable,
but have a tendency to overfit without regularization,
leading to high training accuracy but low test accuracy.
Due to deep Fourier features being highly trainable,
they are able to train with much higher regularization
strengths leading to ultimately better generalization.

In the previous sections, we found that
deep Fourier features used in combination
with spectral regularization leads to strong
generalization performance. However, the
theoretical analysis and case-studies that
we presented earlier concerned trainability.
We now present a sensitivity result to un-
derstand the relationship between trainabil-
ity and generalization. Using a ResNet-18
with different activation functions, we var-
ied the regularization strength between no
regularization (left) and high regularization
(right). In Figure 14, we can see that deep
Fourier features indeed have a high degree
of trainability, sustaining higher trainabil-
ity at every level of regularization strength.
However, without any regularization, deep
Fourier features have a tendency to overfit.
Over-fitting is a known issue for shallow Fourier features (e.g., when using Fourier features only
for the input layer, Mavor-Parker et al., 2024), and this can be attributed to their spectral bias of
learning high-frequency features (Tancik et al., 2020). However, deep Fourier features are able to use
their high trainability to learn effectively even when highly regularized. Thus, while high trainability
does not always lead to high generalization, the trainability provided by deep Fourier features can be
used in combination with regularization to improve continual learning performance. Hyperparameter
sensitivity results are presented on other datasets in Appendix D.6. We also provide an in-depth
sensitivity study on smaller-scale MLPs in Appendix D.8.

6 CONCLUSION

In this paper, we proved that linear function approximation and a special case of deep linearity are
effective inductive biases for learning continually without loss of trainability. The plasticity of deep
linear networks is surprising compared to the loss of plasticity of deep nonlinear networks. We
then investigated the issues that arise from using nonlinear activation functions, namely the problem
of low unit sign entropy, which indicates a lack of diversity in the activations as measured by the
entropy of the sign of the hidden units. Motivated by the effectiveness of linearity in sustaining
trainability, we proposed deep Fourier features to approximately embed a deep linear network inside
a deep nonlinear network. We found that deep Fourier features dynamically balance the trainability
afforded by linearity and the effectiveness of nonlinearity, thus providing an effective inductive bias
for learning continually. Experimentally, we demonstrate that networks with deep Fourier features
provide benefits for continual learning across every dataset we consider. We found that networks
with deep Fourier features are effective plastic learners because their trainability enables training
with a much larger regularization strength, leading to superior generalization performance.
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A ADDITIONAL DETAILS

A.1 ASSUMPTIONS FOR TRAINABIILTY OF LINEAR FUNCTION APPROXIMATION

We assume that the parameters at the global optimum for every task are bounded: ∥θτ∥2 < D. This
is true for regression problems if the observations and targets are bounded. In classification tasks, the
global optimum can be at infinity because activation functions such as the sigmoid and the softmax
are maximized at infinity. In this case, we constrain the parameter set, {θ : ∥θ∥2 < D}, and project
the optimum onto this set.

In addition to convexity, we assume that the objective function is µ-strongly convex, ∇2
θJτ (θ) ≻ µI,

where∇2
θJτ (θ) denotes the Hessian. Note that neither squared nor cross-entropy loss are µ-strongly

in general. However, this assumption is satisfied in continual learning problems with a finite number
of iterations. For regression, denote the observations for task τ as Xτ ∈ mathbbRd×N where N is the
sample size. Then the Hessian is the outer products of the data matrix,∇2

θJ
reg
τ (θ) = XτX

⊤
τ ∈ Rd×d.

Thus, the squared loss is strongly-convex if the data is full rank. This is satisfied in high dimensional
image classification problems, which is what we consider.

For classification, the Hessian involves an additional diagonal matrix of the predictions for each
datapoint,

∇2
θJ

class
τ (θ) = XτX

⊤
τ ∈ Rd×d,

where D = Diag(p1, . . . , pN ) and pi = 2σ(fθ(xi))(1 − σ(fθ(xi))). If the prediction becomes
sufficiently confident, σ(fθ(xi) = 1, then there can be rank deficiency in the Hessian. However,
because each task is only budgeted a finite number of iterations this bounds the predictions away
from 1.

A.2 RELATED WORK REGARDING TRAINABILITY OF DEEP LINEAR NETWORKS

Some authors have suggested deep linear networks suffer from a related issue, namely that critical
learning periods also occur for deep linear networks (Kleinman et al., 2024). Unlike the focus on loss
of trainability in this work where the entire network is trained, these critical learning periods are due
to winner-take-all dynamics due to manufactured defects in one half of the linear network, for which
the other half compensates.

Finally, we note that some previous work have found that gradient dynamics have a low rank bias for
deep linear networks (Chou et al., 2024). One important assumption that these works make is that
the neural network weights are initialized identically across layers, θj = αθ1. Our analysis assumes
that the initialization uses small random values, such as those used in practice with common neural
network initialization schemes (Glorot and Bengio, 2010; He et al., 2015).

A.3 DETAILS FOR DEEP LINEAR SETUP

The gradient of the loss function with respect to the parameters of a deep linear network can be
written in terms of the gradient with respect to the product matrix θ̄ (Bah et al., 2022):

∇θjJ(θ) = θ⊤j+1θ
⊤
j+2 · · · θ⊤L∇θ̄J(θ̄)θ

⊤
1 θ

⊤
2 · · · θ⊤j−1, (1)

where the term∇θ̄J(θ̄) is the gradient of the loss with respect to the product matrix, treating it as if it
was linear function approximation. The gradient is nonlinear because of the coupling between the
gradient of the parameter at one layer and the value of the parameters of the other layers. Nevertheless,
the gradient dynamics of the individual parameters can be combined to yield the dynamics of the
product matrix (Arora et al., 2018),

∇̄θJ(θ) = Pθ̄∇θ̄J(θ̄). (2)

The dynamics involve a preconditioner, Pθ̄, that accelerates optimisation (Arora et al., 2018), which
we empirically demonstrate in Section 3.3. On the left-hand side of the equation, we use ∇̄θJ(θ) to
denote the combined dynamics of the gradients for each layer on the dynamics of the product matrix.2
This means that the effective gradient dynamics of the deep network is related to the dynamics of

2Note we use ∇̄ because ∇̄J(θ) is not a gradient for any function of θ̄; see discussion by Arora et al. (2018).
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linear function approximation with a precondition. While the dynamics are nonlinear and non-convex,
the overall dynamics are remarkably similar to that of linear function approximation, which is convex.

To simplify notation, without loss of generality, we consider a deep linear network without the bias
terms, θ = {θ1, . . . , θL}, and fθ(x) = θLθL−1 · · · θ1x. We denote the product of weight matrices,
or simply product matrix, as θ̄ = θLθL−1 · · · θ1, which allows us to write the deep linear network
in terms of the product matrix: fθ(x) = θ̄x. The problem setup we use for the deep linear analysis
follows previous work (Huh, 2020), and we provide additional details in Appendix A.3. We consider
the squared error, Jτ (θ) = E(x,y)∼pτ

[
∥y − θ̄x∥

]2
2
. and we assume that the observations are whitened

to simplify the analysis,

Σx = E
[
xx⊤] = I, focusing on the case where the targets y are changing during continual learning.

Then we can write the squared error as

J(θ) = Tr
[
∆τ∆

⊤
τ

]
,

where ∆τ = θ⋆τ − θ̄ is the distance to the optimal linear predictor, θ⋆τ = Σyx,τ = Ex,y∼pτ [yx
⊤]Σx.

The convergence of gradient descent for general deep linear networks requires an assumption on the
deficiency margin, which is used to ensure that the solution found by a deep linear network, in terms
of the product matrix, is full rank (Arora et al., 2019). That is, the deep linear network converges if
the minimum singular value of the product matrix stays positive, σmin(θ̄) > 0.

We now show that a diagonal linear network maintains a positive minimum singular value under
continual learning. This is a simplified setting for analysis, where we assume that the weight matrices
are diagonal and thus the input, hidden, and output dimension are all equal. Let fθ(x) be a diagonal
linear network, defined by a set of diagonal weight matrices, θl = Diag(θl,1, . . . , θl,d). The output of
the diagonal linear network is the product of the diagonal matrices, fθ(x) = θLθL−1 . . . θ1x. Then
the product matrix is also a diagonal matrix, whose diagonals are the products of the parameters
of each layer, θ̄ = Diag(

∏L
l=1 θl,1, . . . ,

∏L
l=1 θl,d) := Diag(θ̄1, . . . , θ̄d). The minimum singular

value of a diagonal matrix is the minimum of its absolute values, σmin(θ̄) = mini |θ̄i|. Thus, we
must show that the minimum absolute value of the product matrix is never zero.
Lemma 1. Consider a deep diagonal linear network, fθ(x) = θLθL−1 . . . θ1x and θl =

Diag(θl,1, . . . , θl,d). Then, under gradient descent dynamics, θ(t)l,i = θ
(t)
l′,i iff θ(0)l,i = θ

(0)
l′,i for l′ ̸= l.

The proof of this proposition, and the next, can be found in Appendix B. This first proposition states
that two parameters that are initialized to different values, such as by a random initialization, will
never have the same value under gradient descent. Conversely, if the parameters are initialized
identically, then they will stay the same value under gradient descent. This means that, in particular,
two parameters will never be simultaneously zero.
Lemma 2. Denote a deep diagonal linear network as fθ(x) = Diag(θ̄1, . . . , θ̄d)x where θ̄i =∏L

l=1 θl,i. Then, under gradient descent dynamics, θ̄(t)i = θ̄
(t+1)
i = 0 iff two (or more) components

are zero, θ(t)l,i = θ
(t)
l′,i = 0, for l′ ̸= l.

While the analysis considers a special case of deep linear networks, namely deep diagonal networks,
we note that this is a common setting for the analysis of deep linear networks more generally (Nacson
et al., 2022; Even et al., 2023). In particular, the analysis is motivated by the fact that, under certain
conditions, the evolution of the deep linear network parameters can be analyzed through the indepen-
dent singular mode dynamics (Saxe et al., 2014), which simplify the analysis of deep linear networks
to deep diagonal linear networks. The target function being learned, y⋆(x) = θ⋆x, is represented in
terms of the singular-value decomposition, θ⋆ = U⋆S⋆V ⋆ =

∑r
j=1 siuiv

⊤
i . We also assume that the

neural network has a fixed hidden dimension, so that θ1 ∈ Rd×din , θL ∈ Rdout×d, θ1<l<L ∈ Rd×d;
and we apply the singular value decomposition to the function approximator’s parameters, θl =
UlSlVl ∈ Rdout×dh . To simplify the product of weight matrices, we assume Vi+1 = Ui, V1 = V ⋆,
and UL = U⋆. The simplifying result is that the squared error loss can be expressed entirely in terms
of the singular values, ∥y⋆x−

∏1
i=L θix∥2 ∝ ∥S⋆ −

∏1
i=L Sl∥2, which is equivalent to our analysis

of the deep diagonal network, as the matrix of singular values is a diagonal matrix. These decoupled
learning dynamics are closely approximated by networks with small random weights and they persist
under gradient flows (Huh, 2020).
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A.4 PSEUDOCODE FOR DEEP FOURIER FEATURE LAYER

Algorithm 1 Deep Fourier Feature Layer
1: function DEEPFOURIERFEATURES(x,W, b)
2: z ←Wx+ b ▷ Calculate pre-activation
3: a1 ← sin(z) ▷ Apply sine activation
4: a2 ← cos(z) ▷ Apply cosine activation
5: output← [a1; a2] ▷ Concatenate activations
6: return output
7: end function

B PROOFS

Proof of Theorem 1. We first present the result for two tasks and we then generalize it to an arbitary
number of tasks. Let the linear weights learned on the first task be θ(T ), with the corresponding
unique global minimum denoted by θ⋆1 . The solution found on the first task is used as an initialization
on the second task, which will end at θ(2T ), with the corresponding unique global minimum denoted
by θ⋆2 . We start from the known suboptimality gap for gradient descent on the second task (Garrigos
and Gower, 2023):

J2(θ
(2T ))− J2(θ

⋆
2) <

∥θ⋆2 − θ(T )∥2

αT
. (3)

We upper bound the distance from the initialization on the second task, θ(T ), to the optimum, θ⋆2 , by

∥θ⋆2 − θ(T )∥2 < ∥θ⋆2 − θ⋆1∥2 + ∥θ⋆1 − θ(T )∥2 < ∥θ⋆2 − θ⋆1∥2 + (1− αµ)T ∥θ⋆1 − θ0∥2. (4)

Where the last inequality uses the assumption that the objective function is µ-strongly convex. We
upper bound the suboptimality gap on the second task by a quantity independent of θ(T ):

J2(θ
(2T ))− J2(θ

⋆
2) <

∥θ⋆2 − θ(T )∥2

αT
<
∥θ⋆2 − θ⋆1∥2 + (1− αµ)T ∥θ⋆1 − θ0∥2

αT
, (5)

which implies that the parameter value learned on the previous task does not influence training on the
new task beyond a dependence on the initial distance. This is true for an arbitrary number of tasks:

Jτ (θ
(τT ))− Jτ (θ

⋆
τ ) <

∑τ
k=1(1− αµ)T (k−τ)∥θ⋆k − θ⋆k−1∥2

αT
<

2D(1− αµ)T

αT (1− (1− αµ)T )
, (6)

where we denote θ⋆0 = θ0. The last inequality follows from our assumption that the distance between
the task solutions, ∥θ⋆k − θ⋆k−1∥2 < 2D, is bounded and using a geometric sum in (1− αµ)T .

Proof of Lemma 1. ⇒We first prove the lemma in the forward direction:

Assuming that θ(t)l,i = θ
(t)
l′,i for l′ ̸= l, we will show that θ(t−1)

l,i = θ
(t−1)
l′,i .

Writing the gradient update for θ(t)l,i with a fixed step-size α, we have that

θ
(t)
l,i = θ

(t−1)
l,i − α∇θl,iJ(θ) (7)

= θ
(t−1)
l,i − α∇fθℓ(fθ(x), y)∇θl,ifθ(x) (8)

= θ(t−1) − α∇fθℓ(fθ(x), y)∇θl,i

L∏
j=1

θ
(t−1)
j,i x (9)

= θ
(t−1)
l,i − α∇fθℓ(fθ(x), y)

∏
j ̸=l

θ
(t−1)
j,i x. (10)

(11)
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Similarly, the gradient update for θl′,i is

θ
(t)
l′,i = θ

(t−1)
l′,i − α∇fθℓ(fθ(x), y)

∏
j ̸=l′

θ
(t−1)
j,i x (12)

(13)

Using our assumption that θ(t)l,i = θ
(t)
l′,i, we set the two updates equal to eachother:

θ
(t−1)
l,i − α∇fθℓ(fθ(x), y)

∏
j ̸=l

θ
(t−1)
j,i x = θ

(t−1)
l′,i − α∇fθℓ(fθ(x), y)

∏
j ̸=l′

θ
(t−1)
j,i x. (14)

We can simplify both sides of the equations, where the LHS is

θ
(t−1)
l,i − α∇fθℓ(fθ(x), y)

∏
j

θ
(t−1)
j,i

x

θ
(t−1)
l′,i

(15)

= θ
(t−1)
l,i

1− α∇fθℓ(fθ(x), y)
∏
j

θ
(t−1)
j,i

x

θ
(t−1)
l′,i θ

(t−1)
l,i

 . (16)

Similarly, the RHS of the equation is

θ
(t−1)
l′,i

1− α∇fθℓ(fθ(x), y)
∏
j

θ
(t−1)
j,i

x

θ
(t−1)
l′,i θ

(t−1)
l,i

 . (17)

Notice that both expressions in the parenthesis on the LHS and RHS are equal. Thus, θ(t−1)
l′,i = θ

(t−1)
l,i

⇐ The reverse direction follows directly by following the above argument in reverse.

Proof of Lemma 2. ⇒We first prove the lemma in the forward direction:

Assuming that θ̄(t+1)
i = θ̄

(t)
i = 0, we will show that θ(t)l,i = θ

(t)
l′,i = 0.

We proceed by contradiction, and assume that only a single component is zero, that is θ(t)l′,i = 0 and

θ
(t)
l,i ̸= 0 for l ̸= l′. We will show that the gradient update will ensure that θ(t+1)

i ̸= 0

First, consider the update to θ
(t)
l′,i,

θ
(t+1)
l′,i = θ

(t)
l′,i − α∇fθℓ(fθ(x), y)

∏
j ̸=l′

θ
(t−1)
j,i x (18)

= −α∇fθℓ(fθ(x), y)
∏
j ̸=l′

θ
(t−1)
j,i x (19)

Because we assumed that θ(t)l,i ̸= 0 for l ̸= l′, we have that
∏

j ̸=l θ
(t−1)
j,i ̸= 0. Thus θ(t+1)

l′,i ̸= 0

Next consider the update to θ
(t)
l,i ,

θ
(t+1)
l,i = θ

(t)
l′,i − α∇fθℓ(fθ(x), y)

∏
j ̸=l

θ
(t−1)
j,i x (20)

= θ
(t)
l′,i (21)
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Where the last line follows from the fact that
∏

j ̸=l θ
(t−1)
j,i = 0 because θ

(t)
l′,i = 0.

Thus, we have shown that θ(t+1)
l,i ̸= 0 for all l, and hence, θ̄(t+1) ̸= 0 which is a contradiction.

⇐ The reverse direction follows from the assumption directly. If two components are both equal
to zero, θ(t)l,i = θ

(t)
l′,i = 0, then every sub-product is zero,

∏
j ̸=l θ

(t−1)
j,i and so is the entire product,∏L

j=1 θ
(t−1)
j,i .

Proof of Theorem 2. We now show that a diagonal linear network maintains a positive minimum
singular value under continual learning. This is a simplified setting for analysis, where we assume
that the weight matrices are diagonal and thus the input, hidden, and output dimension are all
equal. Let fθ(x) be a diagonal linear network, defined by a set of diagonal weight matrices, θl =
Diag(θl,1, . . . , θl,d). The output of the diagonal linear network is the product of the diagonal matrices,
fθ(x) = θLθL−1 . . . θ1x. Then the product matrix is also a diagonal matrix, whose diagonals are the
products of the parameters of each layer, θ̄ = Diag(

∏L
l=1 θl,1, . . . ,

∏L
l=1 θl,d) := Diag(θ̄1, . . . , θ̄d).

The minimum singular value of a diagonal matrix is the minimum of its absolute values, σmin(θ̄) =
mini |θ̄i|. Thus, we must show that the minimum absolute value of the product matrix is never zero.

This follows immediately from Lemma 1 and Lemma 2. Taken together, these two lemmas state that
with a random initialization and under gradient dynamics, a diagonal linear network will not have
more than one parameter equal to zero. This means that the minimum singular value of the product
matrix will never be zero. Thus, we have shown that a diagonal linear network trained with gradient
descent, if initialized appropriately, will be able to converge on any given task in a sequence.

Proof of Proposition 1. We prove this by considering the remainder of a Taylor series on the given
interval. Due to periodicity of sin(z) and cos(z), we can consider z ∈ [−π, π] without loss of
generality. We can further consider two cases, either z ∈ [−π,−3π/4] ∪ [−π/4, π/4] ∪ [3π/4, π] or
h ∈ [−3π/4,−π/4] ∪ [π/4, 3π/4]. In the first case, z is near a critical point of cos(z) and in the second
case z is near a critical point of sin(z).

We focus on a particular subcase, where z ∈ [−π/4, π/4], which is close to a critical point of cos(z),
but far from a critical point of sin(h) (the other cases follow a similar argument).

Because we know that z ∈ [−π/4, π/4], by Taylor’s theorem it follows that sin(z) = z+R1,0(z), where

R1,0(z) =
sin(2)(c)

2 z2 is the 1st degree Taylor remainder centered at a = 0 for some c ∈ [−π/4, π/4].
In the case of a sinusoid, this can be upperbounded, |R1,0(z)| = |− sin(c)

2 z2| < 1
8
√
2
(π/4)2, using the

fact that |z| < π/4 and sin(c) < 1/
√
2.

Thus, when cos(z) is close to a critical point, sin(z) is approximately linear. A similar argument
holds for the other case, when sin(z) is close to a critical point, cos(z) is approximately linear. In
this other case, the error incurred is the same.

Proof of Corollary 1. We prove this claim using induction.

Base case: We want to show that a single layer that outputs Fourier features embeds a deep linear
network. Using Proposition 1, there exists one unit for each pre-activation that is approximately linear.
Because each pre-activation is used in an approximately-linear unit, the single layer approximately
embeds a deep linear network using all of its parameters.

Induction step: Assume a deep Fourier network with depth L− 1 embeds a deep linear network, we
prove that adding an additional deep Fourier layer retains the embedded deep linear network. There
are two cases to consider, corresponding to the units of the additional deep Fourier layer which are
approximately-linear and the other units that are not approximately-linear

Case 1 (approximately-linear units): For the additional deep Fourier layer, the set of approximately-
linear units already embeds a deep linear network. Because linearity is closed under composition,
the composition of the additional deep Fourier layer and the deep Fourier network with depth L− 1
simply adds an additional linear layer to the embedded deep linear network, increasing its depth to L.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Case 2 (other units): For the units that are not well-approximated by a linear function, we can treat
them as if they were separate inputs to the deep Fourier network with depth L− 1. The network’s
parameters associated with those inputs are, by the inductive hypothesis, already embedded in the
deep linear network.

Note that case 1 embeds the parameters of the additional deep Fourier layer into the deep Fourier
network. Case 2 states that the parameters of the network associated with the nonlinear units of the
additional deep Fourier layer are already embedded in the deep Fourier network by construction.

Thus, a neural network composed of deep Fourier layers embeds a deep linear network.
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C EMPIRICAL DETAILS

All of our experiments use 10 seeds and we report the standard error of the mean in the figures.
The optimiser used for all experiments was Adam, and after a sweep on each of the datasets over
[0.005, 0.001, 0.0005], we found that α = 0.0005 was most performant.

We used the Adam optimizer (Kingma and Ba, 2015) for all experiments, settling on the default
learning rate of 0.001 after evaluating [0.005, 0.001, 0.0005]. Results are presented with standard
error of the mean, indicated by shaded regions, based on 10 random seeds.

Dataset specifications and non-stationarity conditions:

• For MNIST, Fashion MNIST and EMNIST: we use a random sample of 25600 of the
observations and a batch size of 256 (unless otherwise indicated, such as the linearly
separable experiment).

• For CIFAR10 and CIFAR1100: Full 50000 images for training, 1000 test images for
validation, rest for testing. The batch size used was 250. Labelnoise non-stationarity: 60
epochs, 10 tasks. Class incremental learning: 6000 iterations per task, 80 tasks. Note that
the datasets on different tasks in the class incremental setting can have different sizes, and
so epochs are not comparable.

• tiny-ImageNet: All 100000 images for training, 10000 for validation, 10000 for testing as per
predetermined split. The batch size used was 250. Labelnoise experiment non-stationarity:
80 epochs per task, 10 tasks total. Class incremental learning: 10000 iterations per task,
80 tasks. Note that the datasets on different tasks in the class incremental setting can have
different sizes, and so epochs are not comparable.

Neural Network Architectures For tiny-ImageNet, CIFAR10, CIFAR100, and SVHN2: We
utilized standard ResNet-18 with batch normalization and a standard tiny Vision Transformer. The
smaller datasets use an MLP with different widths and depths, as specified in the scaling section.

Experiment Metrics All figures reporting accuracy evaluate the accuracy on the distribution given
by the current task. Figures 2, 3, 4 and 7 (top) report the training accuracy on the current task. Figures
5 and 6 report the test accuracy on the current task. Figure 5 shows the accuracy at the end of each
epoch, whereas Figure 6 shows the accuracy at the end of each task (due to too many tasks). The
accuracy reported in Figure 7 is the final accuracy at the end of the last task.
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D ADDITIONAL EXPERIMENTS

D.1 ADDITIONAL DEEP LINEAR NETWORK RESULTS

Figure 8: Minimum singular value of the product matrix for a deep general linear network on
a linearly-separable task.

Figure 9: Average unit sign entropy on a non linearly-separable task. Deep Fourier features and
other perioidic activation functions have high average unit sign entropy compared to piecewise linear
activations like ReLU and leaky-ReLU.

D.2 ABLATING ARCHITECTURE WITH WIDE RESIDUAL NETWORKS

Figure 10: Investigating Wide Residual Networks with different width scales on tiny-ImageNet
with label noise.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

D.3 INVESTIGATING SINGLE TASK PERFORMANCE

Figure 11: Investigating single task performance of ResNet-18 using different activation
functions on tiny-ImageNet.

D.4 CONTINUAL IMAGENET RESULTS

Figure 12: Investigating sustained performance on many tasks using ResNet-18 on Continual
ImageNet. Note that loss of trainability does not occur on this problem, whereas loss of generalization
does occur.
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D.5 COMPARING CONTINUAL BACKPROP TO RECYCLING DORMANT NEURONS

Figure 13: Recycling dormant neurons and continual backprop are both weight reinitialization
methods that perform similarly.

D.6 ADDITIONAL SENSITIVITY RESULTS

Figure 14: Sensitivity analysis on tiny-ImageNet, CIFAR10, and CIFAR100. Networks with deep
Fourier features are highly trainable, but have a tendency to overfit without regularization, leading to
high training accuracy but low test accuracy. Due to deep Fourier features being highly trainable, they
are able to train with much higher regularization strengths leading to ultimately better generalization.
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D.7 FORGETTING RESULTS

Figure 15: Forgetting on online label-permuted tiny-ImageNet, CIFAR10, and CIFAR100.
All networks are capable of continual online learning within a task, indicating that they maintain
plasticity and succeed in avoiding catastrophic forgetting data early within a single task. However,
deep Fourier features are particularly capable of maintaining performance on previous tasks.

D.8 ADDITIONAL TRAINABILITY RESULTS USING DEEP FOURIER FEATURES

These additional experiments validate the benefits of deep Fourier features as a means of improving
trainability. The experiments use the following datasets for continual supervised learning: MNIST
(LeCun et al., 1998), Fashion MNIST (Xiao et al., 2017), and EMNIST (Cohen et al., 2017). We
focus primarily on the problem of trainability, and thus consider random label non-stationarity, in
which the labels are randomly assigned to each observation and must be memorized on each task.
This type of non-stationarity is particular difficulty in sustaining trainability in continual learning
(Lyle et al., 2023; Kumar et al., 2023b). We compare our network with deep Fourier feature against a
corresponding feed-forward neural network with ReLU activations with the same depth. Because
deep Fourier features use a concatenation of two different activation functions, it has half the width
of the ReLU network and less parameters, which provides an advantage to the ReLU baseline.
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D.8.1 DEEP FOURIER FEATURES ARE HIGHLY TRAINABLE

The main result of this appendix is presented in Figure 16. Across different datasets, deep Fourier
feature networks are highly trainable, either achieving high accuracy and maintaining it on easier
tasks, such as MNIST, or improving their trainability on new tasks, such as on Fashion MNIST. In
contrast, the ReLU network suffered from loss of trainability in each of the problems that we studied.
This is not surprising, as loss of trainability is a well-documented issue for ReLU networks without
some additional method designed to mitigate it (Dohare et al., 2021; Lyle et al., 2022; Kumar et al.,
2023b; Elsayed and Mahmood, 2024).

Figure 16: Trainability across different datasets and epochs per tasks. ReLU networks lose their
trainability, whereas networks with deep Fourier features improve and sustain their trainability

D.8.2 METHODS FOR IMPROVING TRAINABILITY

Given that a ReLU network is unable to maintain its trainability in isolation, we investigate whether
recently proposed methods for mitigating loss of trainability are able to make up for the difference in
performance between a network with deep Fourier features and a network with ReLU activations. We
investigate two categories of mitigators for loss of plasticity: (i) regularization and (ii) normalization
layers.

Figure 17: Hyperparameter Sensitivity Analysis. Deep Fourier features seem to not benefit from
regularization for trainability. While ReLU networks are more trainable with regularization, their
performance is still worse than the deep Fourier feature network. Note that the experiments in Section
5.2 indicate that deep Fourier features do benefit from regularization for generalization.
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Regularization Loss of plasticity occurs in ReLU networks when they are not regularized. Thus,
we compare the performance of the ReLU network and the deep Fourier feature network with varying
regularization strengths. In particular, we use the recently proposed L2 regularization towards
the initialization (Kumar et al., 2023b), because it addresses the issue of sensitivity towards zero
common to L2 regularization towards zero. In Figure 17, we find that regularization does improve
the trainability of ReLU networks, validating previous empirical findings. However, we found that
deep Fourier feature networks do not benefit substantially from regularization. That is, deep Fourier
feature network with a smaller regularization strength always outperformed the ReLU network.

Layer Normalization Training deep neural networks typically involve normalization layers, either
Batch Normalization (Ioffe and Szegedy, 2015) or Layer Normalization (Ba et al., 2016). Recently, it
was demonstrated that layer normalization is an effective mitigator for loss of trainability (Lyle et al.,
2024). We investigate whether trainability can be improved with the addition of normalization layers,
for both the ReLU and deep Fourier feature network. In Figure 18, we found that layer normalization
increases performance but that loss of trainability can still occur with a ReLU network. In addition
to Layer Normalization, we also tried a linear version of LayerNorm which uses a stop-gradient
on the standard deviation to maintain linearity, which improved training speed in some instances.

Figure 18: Comparison of trainability with Layer Normalization. ReLU networks are more
trainable with Layer Normalization, but deep Fourier feature networks learn faster and achieve better
accuracy, particularly with linearized Layer Norm.
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D.8.3 SCALING PROPERTIES OF DEEP FOURIER FEATURE NETWORKS

Figure 19: Scaling Neural Network Width and Depth. (Top) Due to the concatenation used by the
activation function in deep Fourier feature networks, they scale particularly well with width. (Bottom)
Deeper Fourire features also lead to improved average end of task performance.

Width Scaling Another source of linearity recently proposed is an increasing width of the neural
network, causing their parameter dynamics evolves as linear models in the limit (Lee et al., 2019).
We investigate whether an increase in width can close the gap between the trainability of the ReLU
network and the deep Fourier feature network. In Figure 19 (Top), we found that deep Fourier
feature networks scale particularly well with width, whereas width seems to have little effect on the
trainability of ReLU networks. Thus, our results suggest that increasing the width of a neural network
does not necessarily impact its trainability, at least not to the width values we considered.

Depth Scaling Neural networks in supervised learning tend to scale with depth, allowing them to
learn more complex predictions. We investigate whether the depth scaling of deep Fourier feature
networks also leads to similar improvements in continual learning. In Figure 19 (Bottom), we found
that deep Fourier feature networks do improve with additional depth, but the degree of improvement
was not as pronounced as scaling the width.
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