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Figure 1: We present a full-stack system for humanoid robots to learn motion and autonomous skills from human
data. Our system enables robots to shadow fast, diverse motions from a human operator, including boxing and
playing table tennis, and to learn autonomous skills like wearing a shoe, folding clothes, and jumping high.

Abstract: One of the key arguments for building robots that have similar form
factors to human beings is that we can leverage the massive human data for training.
Yet, doing so has remained challenging in practice due to the complexities in
humanoid perception and control, lingering physical gaps between humanoids and
humans in morphologies and actuation, and lack of a data pipeline for humanoids
to learn autonomous skills from egocentric vision. In this paper, we introduce a
full-stack system for humanoids to learn motion and autonomous skills from human
data. We first train a low-level policy in simulation via reinforcement learning using
existing 40-hour human motion datasets. This policy transfers to the real world and
allows humanoid robots to follow human body and hand motion in real time using
only a RGB camera, i.e. shadowing. Through shadowing, human operators can
teleoperate humanoids to collect whole-body data for learning different tasks in the
real world. Using the data collected, we then perform supervised behavior cloning
to train skill policies using egocentric vision, allowing humanoids to complete
different tasks autonomously by imitating human skills. We demonstrate the system
on our customized 33-DoF 180cm humanoid, autonomously completing tasks such
as wearing a shoe to stand up and walk, unloading objects from warehouse racks,
folding a sweatshirt, rearranging objects, typing, and greeting another robot with
60-100% success rates using up to 40 demonstrations.
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1 Introduction
Humanoid robots have long been of interest in the robotics community due to their human-like form
factors. Since our surrounding environments, tasks and tools are structured and designed based on the
human morphology, human-sized humanoids are the nature hardware platforms of general-purpose
robots for potentially solving all tasks that people can complete. The human-like morphology of
humanoids also presents a unique opportunity to leverage the vast amounts of human motion and skill
data available for training, bypassing the scarcity of robot data. By mimicking humans, humanoids
can potentially tap into the rich repertoire of skills and motion exhibited by humans, offering a
promising avenue towards achieving general robot intelligence.
However, it has remained challenging in practice for humanoids to learn from human data. The
complex dynamics and high-dimensional state and action spaces of humanoids pose difficulties in
both perception and control. Traditional approaches, such as decoupling the problem into perception,
planning and tracking, and separate modularization of control for arms and legs [1, 2, 3, 3], can be
time-consuming to be designed and limited in scope, making them difficult to scale to the diverse range
of tasks and environments that humanoids are expected to operate in. Moreover, although humanoids
closely resemble humans compared to other forms of robots, physical differences between humanoids
and humans in morphology and actuation still exist, including number of degrees of freedom, link
length, height, weight, vision parameters and mechanisms, and actuation strength and responsiveness,
presenting barriers for humanoids to effectively use and learn from human data. This problem is
further exacerbated by the lack of off-the-shelf and integrated hardware platforms. Additionally, we
lack an accessible data pipeline for whole-body teleoperation of humanoids, preventing researchers
from leveraging imitation learning as a tool to teach humanoids arbitrary skills. Humanoids developed
by multiple companies have demonstrated the potential of this data pipeline and subsequent imitation
learning from the data collected, but details aren’t publicly available, and autonomous demonstrations
of their systems are limited to a couple tasks. Prior works use motion capture systems, first-person-
view (FPV) virtual reality (VR) headsets and exoskeletons to teleoperate humanoids [4, 5, 6, 7],
which are expensive and restricted in operation locations.
In this paper, we present a full-stack system for humanoids to learn motion and autonomous skills
from human data. To tackle the control complexity of humanoids, we follow the recent success in
legged robotics using large-scale reinforcement learning in simulation and sim-to-real transfer [8, 9]
to train a low-level policy for whole-body control. Typically, learning-based low-level policies
are designed to be task-specific due to time-consuming reward engineering [10, 11], enabling the
humanoid hardware to demonstrate only one skill at a time, such as walking. This limitation restricts
the diverse range of tasks that the humanoid platform is capable of performing. At the same time, we
have a 40-hour human motion dataset, AMASS [12], that covers a wide range of skills. We leverage
this dataset by first retargeting human poses to humanoid poses and then training a task-agnostic
low-level policy called Humanoid Shadowing Transformer conditioning on the retargeted humanoid
poses. Our pose-conditioned low-level policy transfers to the real world zero-shot.
After deploying the low-level policy that controls the humanoid given target poses, we can shadow
human motion to our customized 33-DoF 180cm humanoid in real time using a single RGB camera.
Using state-of-the-art human body and hand pose estimation algorithms [13, 14], we can estimate
real-time human motion and retarget it to humanoid motion, which is passed as input to the low-level
policy. This process is traditionally done by using motion capture systems, which are expensive and
restricted in operation locations. Using line of sight, human operators standing nearby can teleoperate
humanoids to collect whole-body data for various tasks in the real world, like boxing, playing the
piano, playing table tennis and opening cabinets to store a heavy pot. While being teleoperated, the
humanoid collects egocentric vision data through binocular RGB cameras. Shadowing provides an
efficient data collection pipeline for diverse real-world tasks, bypassing the sim-to-real gap of RGB
perception.
Using the data collected through shadowing, we perform supervised behavior cloning to train
vision-based skill policies. A skill policy takes in humanoid binocular egocentric RGB vision as
inputs and predicts the desired humanoid body and hand poses. We build upon the recent success
of imitation learning from human-provided demonstrations [15, 16], and introduce a transformer-
based architecture that blends action prediction and forward dynamics prediction. Using forward
dynamics prediction on image features, our method shows improved performance by regularizing
on image feature spaces and preventing the vision-based skill policy from ignoring image features
and overfitting to proprioception. Using up to 40 demonstrations, our humanoid can autonomously
complete tasks such as wearing a shoe to stand up and walk, unloading objects from warehouse
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Figure 2: Hardware Details. Our HumanPlus robot has two egocentric RGB cameras mounted on the head, two
6-DoF dexterous hands, and 33 degrees of freedom in total.

racks, folding a sweatshirt, rearranging objects, typing, and greeting with another robot with 60-100%
success rates.
The main contribution of this paper is a full-stack humanoid system for learning complex autonomous
skills from human data, named HumanPlus. Core to this system is both (1) a real-time shadowing
system that allows human operators to whole-body control humanoids using a single RGB camera
and Humanoid Shadowing Transformer, a low-level policy that is trained on massive human motion
data in simulation, and (2) Humanoid Imitation Transformer, an imitation learning algorithm that
enables efficient learning from 40 demonstrations for binocular perception and high-DoF control.
The synergy between our shadowing system and imitation learning algorithm allows learning of
whole-body manipulation and locomotion skills directly in the real-world, such as wearing a shoe to
stand up and walk, using only up to 40 demonstrations with 60-100% success.
2 Related Work
Reinforcement Learning for Humanoids.Reinforcement learning for humanoids has been predom-
inantly focusing on locomotion. While model-based control [17, 18, 19, 20, 21, 1, 22] has made
tremendous progress on a wide variety of humanoid robots [23, 24, 25, 26, 27, 28], learning-based
methods can achieve robust locomotion performance for humanoids [29, 30, 31, 32, 33, 10, 34] and
biped robots [35, 36, 37, 38, 39, 40, 41, 42] due to their training on highly randomized environments
in simulation and their ability to adapt. Although loco-manipulation and mobile manipulation using
humanoids are mostly approached via model-predictive control [43, 44, 45, 46, 47, 48], there has
been some recent success on applying reinforcement learning and sim-to-real to humanoids for box
relocation by explicitly modeling the scene and task in simulation [11], and for generating diverse
upper-body motion [49]. In contrast, we use reinforcement leaning to train a low-level policy for
task-agnostic whole-body control requiring no explicit modeling of real-world scenes and tasks in
simulation.
Teleoperation of Humanoids.Prior works develop humanoid and dexterous teleoperation by us-
ing human motion capture suits [4, 5, 50, 51], exoskeletons [52, 53, 54, 55, 53], haptic feedback
devices [56, 57, 58], and VR devices for visual feedbacks [6, 7, 59, 60] and for end-effector con-
trol [61, 62, 63, 64]. For example, Purushottam et al. develop whole-body teleoperation of a wheeled
humanoid using an exoskeleton suit attached to a force plate for human motion recording. In terms of
control space, prior works have done teleoperation in operation spaces [65, 5], upper-body teleopera-
tion [66, 60], and whole-body teleoperation [67, 68, 69, 70, 59, 71, 72]. For example, He et al. use
an RGB camera to capture human motion to whole-body teleoperate a humanoid. Seo et al. use VR
controllers to teleoperate bimanual end-effectors and perform imitation learning on the collected data
to learn static manipulation skills. In contrast, our work provides a full-stack system that consists of a
low-cost whole-body teleoperation system using a single RGB camera for controlling every joint of
a humanoid, enabling manipulation, squatting and walking, and an efficient imitation pipeline for
learning autonomous manipulation and locomotion skills, enabling complex skills like wearing a
shoe to stand up and walk.
Robot Learning from Human Data.Human data has been used extensively for robot learning,
including for pre-training visual or intermediate representations or tasks [73, 74, 75, 76, 77, 78,
64, 79] leveraging Internet-scale data [80, 81, 82], and for imitation learning on in-domain human
data [83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]. For example, Qin et al. use in-domain
human hand data for dexterous robotic hands to imitate. Recently, human data has also been used
for training humanoids [49, 72]. Cheng et al. use offline human data for training humanoids to
generate diverse upper-body motion, and He et al. use offline human data for training a whole-body
teleoperation interface. In contrast, we use both offline human data for learning a low-level whole-
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Figure 3: Shadowing and Retargeting. Our system uses one RGB camera for body and hand pose estimation.

body policy for real-time shadowing, and online human data through shadowing for humanoids to
imitate human skills, enabling autonomous humanoid skills.
3 HumanPlus Hardware
Our humanoid features 33 degrees of freedom, including two 6-DoF hands, two 1-DoF wrists, and a
19-DoF body (two 4-DoF arms, two 5-DoF legs, and a 1-DoF waist), as shown on the left of Figure 2.
The system is built upon the Unitree H1 robot. Each arm is integrated with an Inspire-Robots
RH56DFX hand, connected via a customized wrist. Each wrist has a Dynamixel servo and two thrust
bearings. Both the hands and wrists are controlled via serial communication. Our robot has two
RGB webcams (Razer Kiyo Pro) mounted on its head, angled 50 degrees downward, with a pupillary
distance of 160mm. The fingers can exert forces up to 10N, while the arms can hold items up to
7.5kg. The motors on legs can generate instant torques of up to 360Nm during operation. Additional
technical specifications of our robot are provided on the right of Figure 2.
4 Human Body and Hand Data
Offline Human Data.We use a public optical marker-based human motion dataset, AMASS [12] to
train our low-level Humanoid Shadowing Transformer. The AMASS dataset aggregates data from
several human motion datasets, containing 40 hours of human motion data on a diverse ranges of
tasks, and consisting of over 11,000 unique motion sequences. To ensure the quality of the motion
data, we apply a filtering process based on an approach outlined in [98]. Human body and hand
motions are parameterized using the SMPL-X [99] model, which includes 22 body and 30 hand
3-DoF spherical joints, 3-dimensional global translational transformation, and 3-dimensional global
rotational transformation.
Retargeting.Our humanoid body has a subset of the degrees of freedom of SMPL-X body, consisting
of only 19 revolute joints. To retarget the body poses, we copy the corresponding Euler angles
from SMPL-X to our humanoid model, namely for hips, knees, ankles, torso, shoulders and elbows.
Each of the humanoid hip and shoulder joints consists of 3 orthogonal revolute joints, so can be
viewed as one spherical joints. Our humanoid hand has 6 degrees of freedom: 1 DoF for each of the
index, middle, ring, and little fingers, and 2 DoFs for the thumb. To retarget hand poses, we map
the corresponding Euler angle of each finger using the rotation of the middle joint. To compute the
1-DoF wrist angle, we use the relative rotation between the forearm and hand global orientations.
Real-Time Body Pose Estimation and Retargeting.To estimate human motion in the real world for
shadowing, we use World-Grounded Humans with Accurate Motion (WHAM) [13] to jointly estimate
the human poses and global transformations in real time using a single RGB camera. WHAM uses
SMPL-X for human pose parameterization. Shown in 3, we perform real-time human-to-humanoid
body retargeting using the approach described above. The body pose estimation and retargeting runs
at 25 fps on an NVIDIA RTX4090 GPU.
Real-Time Hand Pose Estimation and Retargeting.We use HaMeR [14], a transformer-based hand
pose estimator using a single RGB camera, for real-time hand pose estimation. HaMeR predicts hand
poses, camera parameters, and shape parameters using the MANO [100] hand model. We perform
real-time human-to-humanoid hand retargeting using the approach described above. Our hand pose
estimation and retargeting runs at 10 fps on an NVIDIA RTX4090 GPU.
5 Shadowing of Human Motion
We formulate our low-level policy, Humanoid Shadowing Transformer, as a decoder-only transformer,
shown on the left side of Figure 4. At each time step, the input to the policy is humanoid proprioception
and a humanoid target pose. The humanoid proprioception contains root state (row, pitch, and base
angular velocities), joint positions, joint velocities and last action. The humanoid target pose consists
of target forward and lateral velocities, target roll and pitch, target yaw velocity and target joint
angles, and is retargeted from a human pose sampled from the processed AMASS dataset mentioned
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Figure 4: Model Architectures. Our system consists of a decoder-only transformer for low-level control,
Humanoid Shadowing Transformer, and a decoder-only transformer for imitation learning, Humanoid Imitation
Transformer.

in Section 4. The output of the policy is 19-dimensional joint position setpoints for humanoid body
joints, which are subsequently converted to torques using a 1000Hz PD controller. The target hand
joint angles are directly passed to the PD controller. Our low-level policy operates at 50Hz and has a
context length of 8, so it can adapt to different environments given the observation history [31].
We use PPO [101] to train our Humanoid Shadowing Transformer in simulation by maximizing
discounted expected return E

[∑T−1
t=0 γtrt

]
, where rt is the reward at time step t, T is the maximum

episode length, and γ is the discount factor. The reward r is the sum of terms encouraging matching
target poses while saving energy and avoiding foot slipping. We list all the reward terms in the
Table 4. We randomize the physical parameters of the simulated environment and humanoids with
details in Table 5.
After training Humanoid Shadowing Transformer in simulation, we deploy it zero-shot to our
humanoid in the real world for real-time shadowing. The proprioceptive observations are measured
using only onboard sensors including an IMU and joint encoders. Following Section 4 and shown in
Figure 3, we estimate the human body and hand poses in real time using a single RGB camera, and
retarget the human poses to humanoid target poses. Illustrated in Figure 1, human operators stand
near the humanoid to shadow their real-time whole-body motion to our humanoid, and use line of
sight to observe the environment and behaviors of humanoid, ensuring a responsive teleoperation
system. When the humanoid sits, we directly send the target poses to the PD controller, since we don’t
need the policy to compensate gravity, and simulating sitting with rich contacts is challenging. While
being teleoperated, the humanoid collects egocentric vision data through binocular RGB cameras.
Through shadowing, we provide an efficient data collection pipeline for various real-world tasks,
circumventing the challenges of having realist RGB rendering, accurate soft object simulation, and
diverse task specifications in simulation.
6 Imitation of Human Skills
Imitation learning has shown great success on learning autonomous robot skills given demonstrations
on a wide range of tasks [102, 103, 15, 16, 104]. Given the real-world data collected through shad-
owing, we apply the same recipe to humanoids to train skill policies. We make several modifications
to enable faster inference using limited onboard compute, and efficient imitation learning given
binocular perception and high-DoF control.
In this work, we modify the Action Chunking Transformer [15] by removing its encoder-decoder
architecture to develop a decoder-only Humanoid Imitation Transformer (HIT) for skill policies, as
depicted on the right side of Figure 4. HIT processes the current image features from two egocentric
RGB cameras, proprioception, and fixed positional embeddings as inputs. These image features
are encoded using a pretrained ResNet encoder. Due to its decoder-only design, HIT operates by
predicting a chunk of 50 target poses based on the fixed positional embeddings at the input, and
it can predict tokens corresponding to the image features at their respective input positions. We
incorporate an L2 feature loss on these predicted image features, compelling the transformer to
predict corresponding image feature tokens for future states after execution of ground truth target
pose sequences. This approach allows HIT to blend target pose prediction with forward dynamics
prediction effectively. By using forward dynamics prediction on image features, our method enhances
performance by regularizing image feature spaces, preventing the vision-based skill policies from
ignoring image features and overfitting to proprioception. During deployment, HIT operates at
25Hz onboard, sending predicted target positions to the low-level Humanoid Shadowing Transformer
asynchronously, while discarding the predicted future image feature tokens.
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Cost # of Operators Whole-Body
Rearrange Objects Rearrange

Lower
Objects (s)

Approach
Object (s)

Pick
Object (s)

Place
Object (s)

Whole
Task (s) Stand (%)

Kinesthetic $50 3 7 2.10 1.38 3.12 6.60 90.5 -
ALOHA $7050 2-3 7 2.70 1.30 3.15 7.15 100 -
Meta Quest $250 2 7 3.57 1.63 3.67 8.87 95.3 -
Ours $50 1 3 1.76 0.95 2.59 5.20 100 15.34

Table 1: Teleop Comparisons & User Studies. We report averaged completion time for 6 participants on 2 tasks.

7 Tasks
We select six imitation tasks and five shadowing tasks that need bimanual dexterity and whole-body
control. Shown in Figure 7, these tasks span a diverse array of capabilities and objects relevant to
practical applications.
In the Wear a Shoe and Walk task, the robot (1) flips a shoe, (2) picks it up, (3) puts it on, (4) presses
it down to secure the fit on the left foot, (5) tangles the shoelaces with both hands, (6) grasps the right
one, (7) grasps left one, (8) ties them, (9) stands up and (10) walks forward. This task demonstrates
the robot’s ability in complex bimanual manipulation with dexterous hands and capability in agile
locomotion like standing up and walk while wearing shoes. The shoe is placed on the table uniformly
randomly on a 2cm line along of robot’s forward facing. Each demonstration has 1250 steps or 50
seconds.
In the Warehouse task, the robot (1) approaches the paint spray on warehouse shelves with its right
hand, (2) grasps the sprayer, (3) retracts the right hand, (4) squats, (5) approaches the cart on the
back of the quadruped, (6) release the spray, and (7) stands up. This tasks tests the whole-body
manipulation and coordination of the robot. The standing location of the robot is randomized along a
10cm line. Each demonstration has 500 steps or 20 seconds.
In the Fold Clothes task, while maintaining balance, the robot (1) folds left sleeve, (2) folds right
sleeve, (3) folds the bottom of the sweatshirt, requiring both dexterity to manipulate fabric with
complex dynamics and maintaining an upright pose. The robot starts in a standing position, with
a uniformaly randomly sampled root yaw deviation from +10 to -10 degrees. The sweatsheet is
uniformly randomly placed with a deviation of 10cm x 10cm on the table and -30 degrees to 30
degrees in rotation. Each demonstration has 500 steps or 20 seconds.
In the Rearrange Objects task, while maintaining balance, the robot (1) approaches the object, (2)
picks up the object, and (3) places the object into a basket. The complexity arises from the diverse
shapes, colors, and orientations of the objects, requiring the robot to choose the appropriate hand
based on the object’s location and to plan its actions accordingly. In total, we uniformly sample from
4 soft objects, including stuffed toys and a ice bag, where the object is placed uniformly randomly
along a 10cm line on either left or right of the basket. Each demonstration has 250 steps or 10s.
In the Type “AI” task, the robot (1) types the letter ‘A’, (2) releases the key, (3) types the letter ‘I’,
and (4) releases the key. Despite being seated, the robot needs high precision in manipulation. Each
demonstration has 200 steps or 8 seconds.
In the Two-Robot Greeting task, the robot (1) approaches the other robot with the correct hand after
observing the other bimanual robot starts to extend one hand/arm, (2) touches the hand with the other
robot, and (3) releases the hand. The other robot uniformly samples which hand to extend and stops
in an end-effector region of 5cm x 5cm x 5cm. The robot needs to quickly and accurately recognize
which hand to use and approaches the other robot with the correct hand while maintaining balance.
Each demonstration has 125 steps or 5 seconds.
For Shadowing Tasks, we demonstrate five tasks: boxing, opening a two-door cabinet to store a pot,
tossing, playing the piano, playing table tennis, and typing “Hello World”, showcasing the mobility
and stability in shadowing fast, diverse motions and manipulating heavy objects. Videos of qualitative
shadowing results can be found on the project website: https://humanoid-ai.github.io.
8 Experiments on Shadowing
8.1 Comparisons with Other Teleoperation Methods

Kinesthetic Teaching ALOHA Meta Quest

Figure 5: Baseline Teleoperation Systems.

We compare our teleoperation system with three
baselines: Kinesthetic Teaching, ALOHA [15],
and Meta Quest, shown in Figure 5. For Kines-
thetic Teaching, both arms are in passive mode
and manually positioned. For ALOHA, we build
a pair of bimanual arms for pupputeering from
two WidowX 250 robots with similar kinematic
structure as our humanoid arms. For Meta
Quest, we use positions of the controllers for operational space control through inverse kinematics
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Maximum Force Thresholds Whole-Body Skills
forward (↑) backward (↑) leftward (↑) rightward (↑) Recovery Time (↓) Squat(↓) Jump(↑) Stand Up

Ours 32N 44N 70N 100N 1.2s 0.44m 0.35m 3
H1 Default 24N 36N 40N 40N 15s 0.85m 0m 7

Table 2: Robustness Evaluation. Our low-level policy (Ours) can withstand large disturbance forces, has a
shorter recovery time, and enables more whole-body skills than the manufacturer controller (H1 Default).

with gravity compensation. Shown in Table 1, all baselines do not support whole-body control and
require at least two human operators for hand pose estimation. In contrast, our shadowing system
simultaneously control humanoid body and hands, requiring only one human operator. Also, both
ALOHA and Meta Quest are more expensive. In contrast, our system and Kinesthetic Teaching only
require a single RGB camera.
Shown in Table 1, we conduct user studies on 6 participants to compare our shadowing system with
three baselines in terms of teleoperation efficiency. Two participants have no prior teleoperation
experience, while the remaining four have varying levels of expertise. None of the participants has
prior experience with our shadowing system. The participants are tasked to perform the Rearrange
Objects task and its variant, Rearrange Lower Objects, where an object is placed on a lower table of
height 0.55m, requiring the robot to squat and thus necessitating whole-body control.

Ours

32N

44N

70N 100N

24N

36N

40N 40N

x

y

H1 Default

Figure 6: Maximum Force
Thresholds. Our low-level policy
can withstand larger forces com-
pared to H1 Default controller.

We record the average task completion time over six participants,
with three trials each and three unrecorded practice rounds. We also
record the average success rates of stable standing during teleop-
eration using our low-level policy. While ALOHA enables precise
control of robot joint angles, its fixed hardware setup makes it harder
to adapt to people with different heights and body shapes, and it does
not support whole-body control of humanoids by default. Meta Quest
often results in singularities and mismatches between target and ac-
tual poses in Cartesian space due to the limited 5 degrees of freedom
of each humanoid arm plus a wrist, resulting to the longest com-
pletion time and destabilized standing at arm singularities. While
Kinesthetic Teaching is intuitive and has a low time-to-completion, it
requires multiple operators, and sometimes external forces on arms
during teaching causes the humanoid to stumble. In contrast, our system has the lowest time-to-
completion, has the highest success rate of stable standing, and is the only method that can be used
for whole-body teleoperation, solving the Rearrange Lower Objects task.
8.2 Robustness Evaluation
Shown in Table 2, We evaluate our low-level policy by comparing it to the manufacturer default
controller (H1 Default). The robot must maintain balance while manipulating with objects, so we
assess robustness by applying forces to the pelvis and record the minimum forces causing instability.
Shown in Figure 6, our policy withstands significantly larger forces and has a shorter recovery time.
When robot is unbalanced, the manufacturer default controller takes several steps and up to 20
seconds to stabilize the robot, while ours typically recovers within one or two steps and below 3
seconds. More recovery steps result in jittery behavior and compromise manipulation performance.
We also show that our policy enables more whole-body skills that are not possible by the default
controller like squatting, high jumping, standing up from sitting on a chair.
9 Experiments on Imitation
Shown in Table 3, we compare our imitation learning method Humanoid Imitation Transformer with
three baseline methods: HIT policies with monocular inputs (Monocular), ACT [15], and Open-loop
trajectory replay, across all tasks: Fold Clothes, Rearrange Objects, Type “AI”, Two-Robot Greeting,
Warehouse, and Wear a Shoes and Walk, detailed in Section 7 and Figure 7. Although each skill
policy solves its task continuously autonomously without stopping, we document the success rates of
consecutive sub-tasks within each task for better analysis. We conduct 10 trials per task. We calculate
the success rate for a sub-task by dividing the number of successful attempts by the number of total
attempts. For example in the case of Put on Shoe sub-task, the number of total attempts equals the
number of success from the previous sub-task Pick up Shoe, as the robot could fail and stop at any
sub-task.
Our HIT achieves higher success rates than other baselines across all tasks. Specifically, our method
is only method solves the Wear a Shoe and Walk task, achieving success rates of 60% given 40
demonstrations, where all other methods fail. This is because our method uses binocular perception,
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Fold Clothes (40 demos) Rearrange Objects (30 demos)

Fold Left
Sleeve

Fold Right
Sleeve

Fold
Bottom Stand Whole

Task
Approach

Object
Pick up
Object

Place
Object Stand Whole

Task

HIT (Ours) 100 100 100 100 100 100 90 100 100 90
Monocular 80 50 100 100 40 80 88 100 100 70
ACT 100 100 100 100 100 70 86 83 100 50
Open-loop 20 50 0 - 0 0 - - - 0

Type ”AI” (30 demos) Two-Robot Greeting (30 demos)

Type
“A”

Leave
“A”

Type
“I”

Leave
“I”

Whole
Task

Approach
Hand

Touch
Hand

Release
Hand Stand Whole

Task

HIT (Ours) 90 100 89 100 80 100 90 100 100 90
Monocular 90 100 44 100 40 100 80 100 100 80
ACT 30 20 0 - 0 100 90 100 100 90
Open-loop 82 100 79 100 60 50 0 - - 0

Warehouse (25 demos)

Approach Grasp Retract Squat Approach Release Stand
Up

Whole
Task

HIT (Ours) 100 90 100 100 100 100 100 90
Monocular 100 80 100 100 100 100 100 80
ACT 100 90 100 100 100 100 100 90
Open-loop 60 0 - - - - - 0

Wear a Shoe and Walk (40 demos)

Flip
Shoe

Pick Up
Shoe

Put on
Shoe

Press
Shoe

Tangle
Shoelaces

Grasp Right
Shoelaces

Grasp Left
Shoelace

Tie
Shoelace

Stand
Up

Walk
Forward

Whole
Task

HIT (Ours) 100 100 80 100 100 100 75 100 100 100 60
Monocular 0 - - - - - - - - - 0
ACT 50 60 0 - - - - - - - 0
Open-loop 20 0 - - - - - - - - 0

Table 3: Comparisons on Imitation. We show success rates of Humanoid Imitation Transformer (Ours), HIT
with monocular input, ACT and open-loop trajectory replay across all tasks. Overall HIT (Ours) outperforms
others.

and avoids overfitting to proprioception. ACT fails in Wear a Shoe and Walk and Typing ”AI” tasks
where it overfits to proprioception, where the robot repeatedly attempts and stucks at Pick up Shoe and
Leave “A” respectively after successful completing them, avoiding uses visual feedback. Monocular
shows lower success rates due to its lack of depth information from a single RGB camera, yielding
rough interaction with the table in Fold Clothes. It fails the Wear a Shoe and Walk task completely,
where depth perception is crucial. However, due to its narrower field of view, it completes some
sub-tasks more successfully than other methods in the Typing ”AI” task. Open-loop only works in
Typing ”AI” with no randomization, and fails in all other tasks that require reactive control.
10 Conclusion, Limitations and Future Directions
In this work, we present HumanPlus, a full-stack system for humanoids to learn motions and
autonomous skills from human data. Throughout the development of our system, we encountered
several limitations. Firstly, our hardware platform offers fewer degrees of freedom compared to
human anatomy. For instance, it uses feet with 1-DoF ankles, which restricts the humanoid’s ability
to perform agile movements such as lifting and shaking one leg while the other remains stationary.
Each arm has only 5 DoFs, including a wrist, which limits the application of 6-DoF operational space
control and may result in unreachable regions during shadowing. Furthermore, the egocentric cameras
are fixed on the humanoid’s head and are not active, leading to a constant risk of the hands and
interactions falling out of view. In addition, we currently use a fixed retargeting mapping from human
poses to humanoid poses, omitting many human joints that do not exist on our humanoid hardware.
This may limit the humanoids to learn from a small subset of diverse human motions. Currently, pose
estimation methods do no work well given large areas of occlusion, limiting the operating regions
of the human operators. Lastly, we focus on manipulation tasks with some locomotion tasks like
squatting, standing up and walking in this work, as dealing with long-horizon navigation requires a
much larger size of human demonstrations and accurate velocity tracking in the real world. We hope
to address these limitations in future, and to enable more autonomous and robust humanoid skills that
can be applied in various real-world tasks.
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[62] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto. Holo-dex: Teaching dexterity with
immersive mixed reality. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 5962–5969. IEEE, 2023.

[63] T. Portela, G. B. Margolis, Y. Ji, and P. Agrawal. Learning force control for legged manipulation.
arXiv preprint arXiv:2405.01402, 2024.

[64] A. Sivakumar, K. Shaw, and D. Pathak. Robotic telekinesis: Learning a robotic hand imitator
by watching humans on youtube. arXiv preprint arXiv:2202.10448, 2022.

[65] M. Seo, S. Han, K. Sim, S. H. Bang, C. Gonzalez, L. Sentis, and Y. Zhu. Deep imitation
learning for humanoid loco-manipulation through human teleoperation. In 2023 IEEE-RAS
22nd International Conference on Humanoid Robots (Humanoids), 2023.

[66] M. Elobaid, Y. Hu, G. Romualdi, S. Dafarra, J. Babic, and D. Pucci. Telexistence and teleoper-
ation for walking humanoid robots. In Intelligent Systems and Applications: Proceedings of
the 2019 Intelligent Systems Conference (IntelliSys) Volume 2, pages 1106–1121. Springer,
2020.

[67] F.-J. Montecillo-Puente, M. Sreenivasa, and J.-P. Laumond. On real-time whole-body human
to humanoid motion transfer. 2010.

[68] Y. Ishiguro, K. Kojima, F. Sugai, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba. High
speed whole body dynamic motion experiment with real time master-slave humanoid robot
system. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
5835–5841. IEEE, 2018.

[69] K. Otani and K. Bouyarmane. Adaptive whole-body manipulation in human-to-humanoid
multi-contact motion retargeting. In 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), pages 446–453. IEEE, 2017.

12



[70] K. Hu, C. Ott, and D. Lee. Online human walking imitation in task and joint space based on
quadratic programming. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 3458–3464. IEEE, 2014.

[71] L. Penco, B. Clément, V. Modugno, E. M. Hoffman, G. Nava, D. Pucci, N. G. Tsagarakis, J.-B.
Mouret, and S. Ivaldi. Robust real-time whole-body motion retargeting from human to hu-
manoid. In 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids),
pages 425–432. IEEE, 2018.

[72] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi. Learning human-to-humanoid
real-time whole-body teleoperation. arXiv preprint arXiv:2403.04436, 2024.

[73] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representa-
tion for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[74] T. Xiao, I. Radosavovic, T. Darrell, and J. Malik. Masked visual pre-training for motor control.
arXiv preprint arXiv:2203.06173, 2022.

[75] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot
learning with masked visual pre-training. In Conference on Robot Learning, 2023.

[76] A. Majumdar, K. Yadav, S. Arnaud, J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges, T. Wu,
J. Vakil, et al. Where are we in the search for an artificial visual cortex for embodied
intelligence? Advances in Neural Information Processing Systems, 2024.

[77] N. Hansen, Z. Yuan, Y. Ze, T. Mu, A. Rajeswaran, H. Su, H. Xu, and X. Wang. On pre-
training for visuo-motor control: Revisiting a learning-from-scratch baseline. arXiv preprint
arXiv:2212.05749, 2022.

[78] A. S. Chen, S. Nair, and C. Finn. Learning generalizable robotic reward functions from”
in-the-wild” human videos. arXiv preprint arXiv:2103.16817, 2021.

[79] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. Concept2robot: Learning manipu-
lation concepts from instructions and human demonstrations. The International Journal of
Robotics Research, 40(12-14):1419–1434, 2021.

[80] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang,
M. Liu, X. Liu, et al. Ego4d: Around the world in 3,000 hours of egocentric video. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[81] R. Goyal, S. Ebrahimi Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim, V. Haenel,
I. Fruend, P. Yianilos, M. Mueller-Freitag, et al. The” something something” video database
for learning and evaluating visual common sense. In Proceedings of the IEEE international
conference on computer vision, pages 5842–5850, 2017.

[82] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Moltisanti,
J. Munro, T. Perrett, W. Price, et al. Scaling egocentric vision: The epic-kitchens dataset. In
Proceedings of the European conference on computer vision (ECCV), 2018.

[83] C. Wang, H. Shi, W. Wang, R. Zhang, L. Fei-Fei, and C. K. Liu. Dexcap: Scalable and portable
mocap data collection system for dexterous manipulation. arXiv preprint arXiv:2403.07788,
2024.

[84] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. arXiv preprint arXiv:2302.12422,
2023.

[85] H. Xiong, Q. Li, Y.-C. Chen, H. Bharadhwaj, S. Sinha, and A. Garg. Learning by watching:
Physical imitation of manipulation skills from human videos. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021.

[86] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate
behaviors from raw video via context translation. In 2018 IEEE international conference on
robotics and automation (ICRA), 2018.

13



[87] L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine. Avid: Learning multi-stage tasks
via pixel-level translation of human videos. arXiv preprint arXiv:1912.04443, 2019.

[88] S. Kumar, J. Zamora, N. Hansen, R. Jangir, and X. Wang. Graph inverse reinforcement
learning from diverse videos. In Conference on Robot Learning, 2023.

[89] P. Sharma, D. Pathak, and A. Gupta. Third-person visual imitation learning via decoupled
hierarchical controller. Advances in Neural Information Processing Systems, 2019.

[90] M. Sieb, Z. Xian, A. Huang, O. Kroemer, and K. Fragkiadaki. Graph-structured visual
imitation. In Conference on Robot Learning, 2020.

[91] S. Bahl, A. Gupta, and D. Pathak. Human-to-robot imitation in the wild. arXiv preprint
arXiv:2207.09450, 2022.

[92] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. In Proceedings
of Robotics: Science and Systems (RSS), 2024.

[93] N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On
bringing robots home. arXiv preprint arXiv:2311.16098, 2023.

[94] J. Wang, S. Dasari, M. K. Srirama, S. Tulsiani, and A. Gupta. Manipulate by seeing: Creating
manipulation controllers from pre-trained representations. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3859–3868, 2023.

[95] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto. Visual imitation made
easy. In Conference on Robot Learning. PMLR, 2021.

[96] S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-loop
grasping from low-cost demonstrations. IEEE Robotics and Automation Letters, 2020.

[97] Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang. Dexmv: Imitation learning
for dexterous manipulation from human videos. In European Conference on Computer Vision,
2022.

[98] Z. Luo, J. Cao, A. W. Winkler, K. Kitani, and W. Xu. Perpetual humanoid control for real-time
simulated avatars. In International Conference on Computer Vision (ICCV), 2023.

[99] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman, D. Tzionas, and M. J.
Black. Expressive body capture: 3D hands, face, and body from a single image. In Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 10975–10985, 2019.

[100] J. Romero, D. Tzionas, and M. J. Black. Embodied hands: Modeling and capturing hands and
bodies together. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 2017.

[101] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[102] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi,
R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manju-
nath, I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,
M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,
V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-1:
Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2212.06817,
2022.

[103] O. X.-E. Collaboration, A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan,
A. Khazatsky, A. Rai, A. Singh, A. Brohan, A. Raffin, A. Wahid, B. Burgess-Limerick, B. Kim,
B. Schölkopf, B. Ichter, C. Lu, C. Xu, C. Finn, C. Xu, C. Chi, C. Huang, C. Chan, C. Pan, C. Fu,
C. Devin, D. Driess, D. Pathak, D. Shah, D. Büchler, D. Kalashnikov, D. Sadigh, E. Johns,
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Figure 7: Task Definitions. We illustrate 6 autonomous tasks through imitation learning, and 5 shadowing tasks.
Details are in Section 7.
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Reward Teams Expressions

target xy velocities exp(−|[vx, vy]− [vtg
x , v

tg
y ]|)

target yaw velocities exp(−|vyaw − vtg
yaw|)

target joint positions −|q − qtg|22
target roll & pitch −|[r, p]− [rtg, ptg]|22

energy −|τ q̇|22
feet contact c == ctg

feet slipping −|vfeet · 1[Ffeet > 1]|2
alive 1

Table 4: Rewards in Simulation. We denote vx as linear x velocity, vy as linear y velocity, vyaw as angular yaw
velocity, q as joint positions, q̇ as joint velocities, r as roll, p as pitch, vfeet as feet velocities, c as feet contact
indicator, Ffeet as forces on feet, and ·tg as targets.

Environment Params Ranges

base payload [-3.0, 3.0]kg
end-effector payload [0, 0.5]kg
center of base mass [-0.1, 0.1]3m

motor strength [0.8, 1.1]
friction [0.3, 0.9]

control delay [0.02, 0.04]s

Table 5: Randomization in Simulation. We uniformly sample from these randomization ranges during training
in simulation.
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