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Abstract

Prompting has become a dominant paradigm for
adapting large language models (LLMs). While
discrete (textual) prompts are widely used for their
interpretability, soft (parameter) prompts have re-
cently gained traction in APIs. This is because
they can encode information from more training
samples while minimizing the user’s token us-
age, leaving more space in the context window
for task-specific input. However, soft prompts
are tightly coupled to the LLM they are tuned
on, limiting their generalization to other LLMs.
This constraint is particularly problematic for ef-
ficiency and privacy: (1) tuning prompts on each
LLM incurs high computational costs, especially
as LLMs continue to grow in size. Addition-
ally, (2) when the LLM is hosted externally, soft
prompt tuning often requires sharing private data
with the LLM provider. For instance, this is the
case with the NVIDIA NeMo API. To address
these issues, we propose POST (Privacy Of Soft-
prompt Transfer), a framework that enables pri-
vate tuning of soft prompts on a small model
and subsequently transfers these prompts to a
larger LLM. POST uses knowledge distillation
to derive a small model directly from the large
LLM to improve prompt transferability, tunes the
soft prompt locally—optionally with differential
privacy guarantees—and transfers it back to the
larger LLM using a small public dataset. Our ex-
periments show that POST reduces computational
costs, preserves privacy, and effectively transfers
high-utility soft prompts. Our code is available at
https://github.com/sprintml/POST.
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1. Introduction
Large Language Models (LLMs) are strong general-purpose
language generators that can be adapted to solve various
private downstream tasks (OpenAI, 2023; Gemini-Team
et al., 2023). One prominent paradigm for adapting LLMs
to private tasks is prompting (Devlin et al., 2018; Radford
et al., 2018). Prompting is a more flexible alternative to fine-
tuning, as it allows multiple tasks to be solved simultane-
ously in a single inference pass, leading to higher efficiency
and reducing the need for storing multiple fine-tuned model
copies. While discrete prompts (Schick & Schütze, 2020;
2021a; Shin et al., 2020; Han et al., 2022), which prepend
textual tokens to the LLM’s input, have been shown rela-
tively successful for LLM adaptations, they require large
engineering efforts and lots of trials and errors. As an alter-
native, soft prompts (Shin et al., 2020; Lester et al., 2021;
Li & Liang, 2021; Zhong et al., 2021; Oymak et al., 2023)
prepend trainable embedding vectors to the input, which can
be tuned automatically on the private downstream data using
standard gradient-based approaches. Such gradient-based
approaches are generally known to yield higher performance
at lower computational costs (Liu et al., 2022). Additionally,
soft prompts can encode information from many more pri-
vate downstream examples while using fewer input tokens
than discrete prompts. This reduces costs—since many APIs
charge per token—and leaves more of the context window
for the downstream task (Varshney & Surla, 2023).

Yet, soft prompt tuning has two major limitations. 1) As
LLMs grow in size (Geng & Liu, 2023; Chiang et al., 2023;
Brown et al., 2020), it requires significantly more compu-
tation to backpropagate through the entire LLM. 2) Back-
propagation requires the model and data to be on the same
device. For centrally hosted LLMs, this leaves two options:
either the user needs to share their private data with the
LLM provider, or the LLM provider needs to share their
LLM with the user. The latter is impractical as users usually
do not have the compute to deploy an LLM. Additionally,
the model is the provider’s intellectual property (Dziedzic
et al., 2022a;b;c; Dubiński et al., 2023) and should be pro-
tected. Thus, sharing it would, at the very least, disrupt
the provider’s business model, as users would no longer be
required to pay per query. Therefore, the former, i.e., users
sharing their data with the LLM provider, is implemented
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Figure 1: POSTB Framework. 1 An LLM provider compresses their LLM Φt into a smaller model Φs through knowledge
distillation. 2 The private data owner learns a specific soft prompt ps on Φs using their private dataset (optionally with
differential privacy guarantees). 3 The LLM provider obtains the soft prompt pt for solving the user’s task by transferring
ps to the target LLM Φt—solely relying on a small public dataset and no access to the private data for transfer.

in popular APIs, such as NVIDIA’s Nemo API (Varshney &
Surla, 2023). However, this approach causes severe privacy
concerns for the users when the data is private or sensitive
in nature (Duan et al., 2023a;b; Hanke et al., 2024).

A potential solution to both problems is to tune the soft
prompt locally on a smaller model and then transfer and
use it on the large LLM. This approach, commonly known
as “prompt transfer” (Su et al., 2022; Wu et al., 2023; Xiao
et al., 2023), has proven effective for discrete prompts (Rako-
tonirina et al., 2023; Hong et al., 2023; Wen et al., 2023).
However, soft prompts are highly coupled to the LLM they
were tuned on, making them difficult to transfer. Therefore,
existing attempts to transfer soft prompts between LLMs
face severe limitations: either they require private data ac-
cess for the LLM provider during transfer (Su et al., 2022),
which—as we discussed—raises privacy concerns, or they
are ineffective, as the transferred prompts’ utility on the
large central LLM often underperforms even compared to
the prompted small model (Wu et al., 2023), disincentivizing
the transfer altogether.

Our proposed POST (Privacy Of Soft-prompt Transfer)
framework overcomes these limitations. POST consists of
three key steps as shown in Figure 1. (1) The LLM provider
performs knowledge distillation (Hinton et al., 2015) to com-
press their LLM into a smaller language model. Note that
this is a one-time operation, and the same small model can
be used by any user for their various tasks. After distillation,
the LLM provider sends the small model to the user. Then,
(2) the user performs local prompt tuning using their private
data on this smaller model, potentially incorporating formal
privacy guarantees through differential privacy (Dwork et al.,

2006). Once the user has tuned the private prompt on their
data, they provide this prompt to the LLM provider, who (3)
transfers the prompt to achieve strong performance on the
large LLM. To perform this transfer without any additional
leakage from the user’s private data to the LLM provider, we
equip POST with a novel prompt transfer method that relies
purely on access to a small public dataset during transfer
rather than the user’s private data.

Our thorough experimental evaluation on both masked lan-
guage models and auto-regressive language models demon-
strates that our method can efficiently, effectively, and pri-
vately transfer soft prompts with high utility. Thus, POST
has the potential to enable more LLM providers to integrate
soft prompts into their APIs, unlocking benefits such as
multi-task inference, improved adaptability, extended con-
text windows for users—all while maintaining user privacy.

In summary, we make the following contributions:

• We propose POST, a framework for privacy of soft prompt
transfer. POST preserves the confidentiality of users’ pri-
vate data and can also provide strong privacy guarantees
through differential privacy.

• We design a novel method to transfer private prompts
between LLMs by purely relying on public data which we
integrate into POST.

• We provide detailed experimental analysis using five clas-
sification datasets and two open-ended generation tasks
to simulate our setup and three different types of LLMs
to show the effectiveness and efficiency of our method.
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2. Background
Prompt Tuning (PT) aims at adapting a publicly pre-
trained LLM to various natural language downstream tasks.
There are two major types of prompts, 1) hard or discrete
prompts (Schick & Schütze, 2021a;b; Gao et al., 2021),
which are discrete textual tokens prepended to the input text
of the LLM, and 2) soft prompts (Hambardzumyan et al.,
2021; Qin & Eisner, 2021; Zhong et al., 2021), which are
tunable embedding vectors prepended to the LLM’s input.
While discrete prompts require thorough engineering to
yield good performance on downstream tasks, soft prompts
can be tuned through standard gradient-based training ap-
proaches (Lester et al., 2021). Formally, given an input
sequence with n tokens X = {x1, x2, . . . , xn}, labeled
by y, we first prepend l randomly initialized soft prompts
P = {p1,p2, . . . ,pl} before X , where pi ∈ Rd is an em-
bedding vector, and d is the input dimension of the LLM.
The training objective is to maximize the likelihood of de-
coding the correct output y as L = p(y|P,X). The key is
that the model itself remains frozen and only P is tunable.

Knowledge Distillation (KD) (Hinton et al., 2015; Buciluǎ
et al., 2006) is a compression method for machine learning
models. It works by transferring knowledge from a complex
model, denoted as the teacher model, to a simpler, smaller
model known as the student model. KD has been shown
effective in compressing LLMs during the pre-training phase
while maintaining their performance (Sanh et al., 2019; Gu
et al., 2024; Sreenivas et al., 2024). Already pre-trained
LLMs can also be compressed successfully through KD (Gu
et al., 2024; Wang et al., 2025). In prompt transfer, Zhong
et al. (2024) leverage knowledge distillation to alleviate
forgetting between tasks that use transferred prompts. In
contrast, our setup considers transferring prompts between
models. While, in general, most of the KD approaches aim
at generating a student with a similar predictive performance
as the teacher, for our purpose, the student’s performance is
not particularly relevant. The student just needs to match the
teacher’s predictive behavior to a certain degree in order to
facilitate the transfer of the prompt from student to teacher.

Soft Prompt Transfer can be computationally expensive,
especially as LLMs grow in size, because soft prompts are
trained with backpropagation through the entire LLMs. This
motivates the emergence of attempts to transfer, i.e., to reuse,
existing soft prompts. There are two broad scenarios for
prompt transfer. The first one aims at reusing a soft prompt
trained for one downstream task on another (similar) down-
stream task on the same LLM (cross-task transfer). This
can be implemented, for example, by initializing the param-
eters of the second soft prompt with the trained existing soft
prompt parameters and has been shown to reduce training
time for the second prompt (Vu et al., 2022; Su et al., 2022;
Zhong et al., 2024; Philippy et al., 2024). The second and

more challenging scenario for prompt transfer is a cross-
model transfer scenario. In this scenario, one tries to tune
a prompt for a given task on one LLM, and then use it for
another LLM. The difficulty arises from the fact that soft
prompts (over)fit the LLM they were tuned for and usually
do not exhibit a strong performance on other LLMs. Su et al.
(2022) address transferring the soft prompt between the
LLMs by using the guidance of the private data. However,
this approach still exposes the data directly to the second
LLM which may not be possible when this LLM is hosted
centrally by a service provider (e.g., OpenAI) and the data
is sensitive in nature, as the private data now needs to be
shared with the external provider. Wu et al. (2023) present
a zero-shot prompt transfer method, where source prompts
tuned on a given LLM are encoded into a relative space
and used as a form of support vector when finding target
prompts on the second, i.e., target model. Unfortunately, in
their approach, the target model with the transferred prompt
performs worse than the source model, leaving no incentive
to use the target model rather than the source model with the
prompt. In contrast, our method significantly improves per-
formance on the target models with the transferred prompts.
Additionally, their transfer requires the private data, which
thereby leaks entirely to the model owner. In contrast, our
method performs prompt transfer solely with public data,
preserving confidentiality of the private data towards the
model provider. Transferring tasks between LLMs has also
been explored by Xiao et al. (2023) for transfer learning.
While they focus on fine-tuning and their approach is not
applicable for soft-prompt tuning, we operate in the same
setup and under the same assumptions as they do.

Differential Privacy (DP) (Dwork, 2006) is a mathemat-
ical framework that provides privacy guarantees for ML
by implementing the intuition that a model M : I → S,
trained on two neighboring datasets D, D′ that differ in
only one data point, will yield roughly the same output,
i.e., Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ. The
privacy parameter ε specifies by how much the output is
allowed to differ, and δ is the probability of failure to meet
that guarantee. To adapt soft prompts under differential
privacy (DP) guarantees, Duan et al. (2023a) introduced
the PromptDPSGD algorithm. Initially developed for text
classification, PromptDPSGD was subsequently adapted to
support text generation tasks as well (Hanke et al., 2024).
The algorithm builds on the widely used Differentially Pri-
vate Stochastic Gradient Descent (DPSGD) method (Abadi
et al., 2016), in which each gradient is clipped to bound its
sensitivity (to limit how much each data point influences the
trained parameters), and calibrated Gaussian noise is added
to the aggregated gradients to ensure a finite DP guarantee.

Private Prompting and Text-to-Text Privatization There
exist multiple DP frameworks for private prompting (Duan
et al., 2023b; Tang et al., 2024; Wu et al., 2024). However,
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they mainly operate in a different setup and only provide DP
guarantees for the model output, yet leak the private data
to the model provider (Hanke et al., 2024). In contrast, our
work aims at protecting the private data against the model
provider. In a similar vein to our work, DP-OPT (Hong
et al., 2023) tries to avoid leakage to the model owner and
tunes discrete prompts with DP guarantees on a local sur-
rogate LLM and then transfers these prompts to the large
LLM. Their focus on discrete prompts (in contrast to our
work that relies on soft prompts) leads to certain words
and phrases from the training dataset leaking directly to the
LLM provider, as shown in their Figure 3—which does not
occur with our method. Additionally, their results show that
the local surrogate model needs to be of strong performance
(i.e., large) to obtain good transfer results, leading to very
high compute requirements on the user side. In contrast, our
method relies on small surrogate models that can be used
for prompt tuning with low computing on the user’s end.
We empirically compare against their method in Table 5.

3. Setup and Problem Formulation

LLM Provider

Private 
Data

LLM

User

The Setup. We consider two
parties: an LLM provider and a
user. The LLM provider deploys
a general-purpose LLM and of-
fers paid query access to it. The
user holds private data and wants
to adapt the LLM on this data
to solve their downstream tasks
while ensuring the confidentiality
and privacy of the data towards the LLM provider.

The Problem. Unfortunately, for soft prompt tuning—
which involves gradient calculation—both the data and the
LLM are required to be on the same device. The problem
is that the user may not be able to share their data with
the LLM provider due to privacy concerns while the LLM
provider cannot share their LLM because of 1) intellectual
property concerns and since 2) this would disrupt their busi-
ness model, as users would no longer be required to pay for
accessing model queries. Additionally, most users would
lack the necessary computational resources to tune the soft
prompt on the large LLM locally, as this requires calculating
gradients over the entire model. Due to these limitations,
the powerful LLM cannot be used for private tasks.

Our Goal and Solution. Our goal is to protect the private
downstream data (i.e., the “training data”) used to tune the
soft prompt from leaking to the LLM provider.1 We propose
a solution based on tuning the soft prompt on a small local
model and then transferring this prompt to the LLM by using

1Protecting the queries (i.e., the “test data”) from leaking to the
LLM provider, often referred to as private inference, is orthogonal
and out of scope for this work.

public data. To obtain a suitable small model that facilitates
prompt transfer, we propose that the LLM provider performs
KD from their LLM. The small model needs to meet three
critical requirements: it must (i) be small enough to enable
the user to perform local soft prompt tuning on their own
hardware, (ii) closely match the semantics of the original
LLM to facilitate an effective prompt transfer, and, from
the perspective of the LLM provider, (iii) be limited in
performance to ensure that users still have an incentive
to use the original LLM rather than the small prompted
version. Note that the KD is a one-time operation for the
LLM provider as the same small model can be used by any
user for their various tasks. After distillation, the small
model is sent to the user who tunes a soft prompt on it using
their private data, potentially with DP to formally bound
privacy leakage. Finally, the tuned prompt is sent to the
LLM provider who performs a prompt transfer step relying
on public data. Eventually, the client can use the LLM using
the transferred prompt. We provide an overview of this
solution in Figure 1 and detail its building blocks in the
following section.

4. Our Private Transfer of Soft Prompts
Framework

Our Privacy Of Soft-prompt Transfer (POST) framework
consists of three main building blocks: (1) a KD from the
LLM to a small model, (2) private prompt tuning, and (3) a
privacy-preserving prompt transfer using public data. We
detail those building blocks below.

4.1. Knowledge Distillation

To derive a small model Φs from the large LLM Φt, we
rely on KD. We discuss the advantage of KD for our POST
framework over other alternatives for model compression,
such as quantization and pruning, in Appendix D.2.

We follow the approach of Sanh et al. (2019) to derive Φs

from Φt. Their distillation objective function is given by

Ldistil = αceLce + αlmLlm + αcosLcos. (1)

This objective combines three losses: distillation loss Lce,
language modeling loss Llm, and embedding cosine loss
Lcos. The distillation loss Lce measures the Kullback-
Leibler divergence between the logits of Φs and Φt. The
language modeling loss Llm corresponds to the standard
pretraining objective, using cross-entropy to predict masked
or next tokens. The embedding cosine loss Lcos computes
the cosine distance between the embeddings of Φs and Φt.
These three losses are weighted by αce, αlm, and αcos.

In contrast to prior work (Sanh et al., 2019; Xiao et al.,
2023) that relies on KD to moderately compress LLMs while
maintaining high performance on Φs, our goal is to achieve
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a significant compression without focus on maintaining Φs’s
performance. Thereby, we ensure that Φs is small enough
to fit into the user’s hardware for local prompt tuning and
is not performant enough to disincentivise the (paid) use of
Φt, as desired by the LLM provider. We perform extensive
ablations on the setup for the KD, the importance of the
individual loss term in Equation (1), and the resulting trade-
offs between the compressed model’s performance and our
POST’s success in Section 5.6.

4.2. Private Prompt Tuning

The goal is to tune a local prompt ps on the small source
model Φs using the private data Dpri such that ps minimizes
the loss L on the private downstream task as

argmin
ps

∑
x∈Dpri

L(Φs, ps + x), (2)

where x denotes a query input sequence from the task that
we want to predict. This approach can be performed with
standard PT. It provides confidentiality for the private data
since the data is not directly sent to the LLM provider. Re-
cent work (Duan et al., 2023b), however, highlights that
private information can leak from tuned discrete prompts.
In Section 5.4, we show that this also holds for soft prompts,
motivating the necessity of integrating privacy guarantees.

To formally bound privacy leakage, we propose to tune
ps with DP, for example, using the PromptDPSGD algo-
rithm (Duan et al., 2023a). During optimization, Prompt-
DPSGD clips the per-sample gradients of the loss to a clip
norm c and adds Gaussian noise drawn from N (0, σ2c2I)
to provide (ε, δ)-DP guarantees (see Appendix C.3 in Duan
et al. (2023a) for the privacy proof). Hence, applying their
algorithm bounds the leakage of the private prompt tun-
ing data Dpri from ps to (ε, δ). Because of the DP post-
processing guarantees, ps can then be shared with the LLM
provider without incurring further privacy loss.

4.3. Privacy-Preserving Prompt Transfer through
Public Data

The prompt ps, tuned on the small source model Φs, could,
in principle, be directly applied to the large target LLM Φt.
However, as described above, soft prompts fit very strongly
the model that they were tuned on. Hence, they do not
initially perform very well on other LLMs. A naive solution
is to fine-tune the target prompt pt on the private data Dpri.
However, this would disclose the private data to the LLM
provider and is, hence, not acceptable. As an alternative,
we propose the first privacy-preserving prompt transfer that
leverages a small public dataset Dpub in an efficient transfer
step to derive a high-utility prompt pt from ps.

We start by initializing the target prompt pt with the same
initialization of ps, then iteratively update pt. For the itera-

tive update, we design a loss function

L = (1− α)L1 + αL2, (3)

that consists of two different loss terms. The first loss term
aims at mimicking the prompted small model’s predictions
on the public data closely. It is defined as

L1 =
∑

x̂∈Dpub

KLDiv(Φt(pt + x̂)),Φs(ps + x̂)), (4)

where KLDiv denotes the Kullback–Leibler divergence. The
second loss term aims at replicating the changes to the
initial model behavior introduced by the prompt. Formally,
the second loss aligns the direction change induced by the
private prompt between Φt and Φs, on the public data as

L2 =
∑

x̂∈Dpub

KLDiv((Φt(pt+x̂))−Φt(x̂)), (Φs(ps+x̂)−Φs(x̂)).

(5)
We need both loss terms, since, particularly when the small
model does not have good performance, just mimicking its
behavior, rather than matching the impact of the prompt, is
not effective.

Based on the design of our loss function, the best choice
for α in Equation (3)—controlling the balance between the
two loss terms—depends on the zero-shot accuracy of the
large LLM on the private task and the performance of the
compressed LLM. If the large LLM has a good zero-shot
performance, or the compressed LLM has a weak perfor-
mance, a larger α, i.e., putting the emphasis L2 to mimic
the prompt behavior, rather than improving the task perfor-
mance, is more beneficial. We present extensive ablations
and guidelines on the choice of α in Section 5.6.

5. Empirical Evaluation
5.1. Experimental Setup

Models and Distillation. We perform experiments with
three LLMs of diverse scale, namely Roberta-base (Liu
et al., 2019), GPT2-XL (Radford et al., 2019), and Llama2-
7b (Touvron et al., 2023). We experiment with various
degrees of compression in the KD (see Appendix D.4). For
the results presented in the main body of the paper, we com-
press the 12-layer Roberta-base and the 32-layer Llama2-7b
to 2 layers, and the 48-layer GPT2-XL to 4 layers. We use
the Bookcorpus (Zhu et al., 2015) dataset for the KD.

Datasets. Following prior work (Hong et al., 2023; Wu
et al., 2023), we evaluate the performance of our proposed
method on five classification-task datasets: sst2 from the
GLUE benchmark (Wang et al., 2019), imdb (Maas et al.,
2011), tweet (Rosenthal et al., 2017), arisetv (Okite, 2022)
and mpqa (Wiebe et al., 2005). To show the general ap-
plicability of our method on open-ended generation tasks,
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we go beyond what was shown in prior work, and addi-
tionally perform evaluations on the MIT dataset (Liu et al.,
2012), which aims to extract the genre or director of a movie
given the movie description. This task requires the genera-
tion of multiple tokens with varying lengths, highlighting
our POST’s flexibility. As public data, we also include ag-
news (Zhang et al., 2015) and boolq (Clark et al., 2019) for
the classification task, while for the generation task, we use
AIE (Kudari, 2022). We also include disaster (CrowdFlower,
2019) and trec (Li & Roth, 2002) for baseline comparison
and ablation on the choice of public data. Further details on
the datasets and their tasks are provided in Appendix B.2.

KD, Prompt Tuning, and Prompt Transfer. We experi-
ment with various setups for the KD. If not indicated oth-
erwise, we use the KD hyperparameters from Sanh et al.
(2019). See Appendix B.1 for more details. Following Su
et al. (2022), we initialize our soft prompts with 100 to-
kens. We include an ablation study on prompt length in
Section 5.6. The hyperparameters for prompt tuning per
dataset, including the δ for the DP setup, are presented in
Table 10. During the prompt transfer, the model provider
has no access to the private dataset to find the right moment
to stop the transfer, so we report the transferred accuracy
after a fixed number of steps. We experiment with various
numbers of steps and public data points used for transfer in
Section 5.6. By default, we use 5000 steps for Roberta-base,
8000 steps for GPT2-XL, and 6000 steps for Llama2-7b.

Metrics and Baselines. To evaluate the success of our
method, we report the accuracy on the test data split of our
private datasets for the teacher LLM with the transferred
prompt (Private Transfer). As baselines for comparison,
we include the zero-shot performance of the teacher LLM on
the private tasks’ test sets (Full ZS), representing the lower
bound our method should improve upon. Additionally, we
provide the performance of tuning the prompt for the teacher
LLM on the private training data, which, due to privacy con-
cerns, is not feasible in practice (Full PT). This serves as the
theoretical upper bound for potential performance. We also
report the accuracy of the prompted compressed model after
tuning the prompt on it (Compressed PT), as our private
transfer must improve over this metric to justify using the
teacher LLM instead of the small student model. Finally,
we report the direct transfer accuracy (Direct Transfer),
which is the accuracy achieved when the prompt tuned on
the small model is directly applied to the large one. The im-
provement of POST over this value shows the effectiveness
of our prompt transfer step.

5.2. Effective Prompt Transfer with POST

As the main result, in Table 1, we show POST’s effective-
ness in transferring soft prompts in both setups, with and
without DP. For each private dataset, we experiment with

two different public datasets for prompt transfer and report
the respective transferred accuracy on the private dataset.
We first observe that the transferred performance is signif-
icantly higher than the zero-shot performance of the large
LLM (Full ZS). This highlights the improvements that a
user can gain from adapting the large LLM to their private
task using our method. Additionally, after prompt transfer
with POST, we outperform the small compressed prompted
model (Compressed PT), giving users a strong incentive to
transfer their prompt back to the (paid) large LLM, rather
than using the small model locally. Further, we show that
our prompt transfer described in Section 4.3 is highly ef-
fective as it improves over the direct transfer (Direct Trans-
fer) performance by a large margin. In contrast to the soft
prompt transfer method by Wu et al. (2023) which showed
a decrease in accuracy after transfer, our results highlight
for the first time the practical applicability and the benefits
of transferring soft prompts.

When using DP during the prompt tuning, we observe that
the improvement of the transfer performance to the large
LLM over the performance on the prompted compressed
model (Compressed PT) is even more significant than in
the non-DP setup. For example, on the sst2 dataset, using
imdb as public data, we observe an improvement of 18.92%
for the DP case, while we only have an improvement of
11.24% in the non-DP case (see first lines of Table 1b and
Table 1a, respectively). We hypothesize that the noise added
for DP during tuning acts as a regularizer that can help to
prevent overfitting on the small sensitive datasets and the
distilled model, hence, generalizing better to the large LLM.
Overall, our results are very close to the non-private upper
bound baseline (Full PT) of tuning the prompt directly on the
large LLM, which would not only leak private information
from the model outputs to third parties querying the adapted
model, but also leak the private dataset to the LLM provider.

5.3. Transferring Prompts for Generation Tasks

Since, following Li et al. (2022), we model classification
tasks as text-infilling tasks rather than adding a classifica-
tion head, as detailled in Appendix B.2, our POST method
naturally extends to generation tasks. To demonstrate this
ability in practice we assess POST’s performance on the
MIT movie dataset where the task is to extract a movie’s
director or genre from a given movie description. Instead
of generating a single token, as for classification, this open-
ended task requires generating multiple tokens of varying
lengths. We choose AIE, which aims to extract location
from a note, as a public dataset and present our results in
Table 2. POST outperforms Full ZS and Compressed PT,
highlighting our method’s applicability to open-ended tasks.
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Table 1: POST on Llama2-7b with and without DP. We report POST’s transfer performance. The baselines are the large
models’ zero-shot performance on the private data (Full ZS), the accuracy of tuning the prompt with the private data on the
large models (Full PT) and the small model (Compressed PT), and the performance of the prompt tuned on the small model
when direly applied to the large one (Direct Transfer). POST significantly improves performance over the small prompted
model and our prompt transfer yields a strong improvement over the direct transfer. The same improvement can be observed
for Roberta-base and GPT2-XL, as shown in Table 13 and Table 14 in the Appendix.

POST (ours)
Private Full ZS Full PT Compressed PT Direct Transfer Public Test acc Public Test acc

sst2 78.67 94.84 78.78 55.28 tweet 89.33 imdb 90.02
tweet 44.50 72.03 54.12 41.70 imdb 57.55 sst2 61.15
arisetv 76.57 93.47 77.92 54.23 agnews 86.71 tweet 79.59
mpqa 53.11 92.36 83.82 32.96 sst2 87.37 boolq 76.18

(a) Confidential POST transfer (no DP).

POST (ours)
Private Full ZS Full PT Compressed PT Direct Transfer Public Test acc Public Test acc

sst2 78.67 90.60 70.99 53.55 tweet 87.50 imdb 89.91
tweet 44.50 62.40 48.16 41.65 imdb 56.60 sst2 59.55
arisetv 76.57 83.73 64.43 64.73 agnews 82.60 tweet 75.24
mpqa 53.11 85.95 68.87 33.28 sst2 68.88 boolq 80.17

(b) Private POST transfer (with DP: ε = 8, and δ according to the dataset size as specified in Table 10).

Table 2: POST on Generation Tasks (Llama2-7b, no DP).
We present POST’s performance on the open-ended MIT-D
and MIT-G tasks and choose the AIE dataset as the public
set. We show its effectiveness over the baselines.

Private Full ZS Full PT Compressed PT Direct Transfer Public Test Acc (POST)
MIT-D 70.84 92.28 21.69 43.61 AIE 75.66
MIT-G 51.28 89.35 51.92 50.51 AIE 61.41

5.4. Practical Privacy Implications of POST

We further assess the practical privacy implications of POST.
A standard method for analyzing privacy risks in machine
learning is membership inference attacks (MIAs) (Shokri
et al., 2017). In our setup, the goal of the attack is to de-
termine whether a given data point was used to train the
private soft prompt ps. Such an attack could be executed
by either the LLM owner or a third party to gain knowl-
edge on Dpri. We instantiate the Likelihood Ratio Attack
(LiRA) (Carlini et al., 2022) against soft prompts tuned on
the four datasets for Roberta-base. As we show in Table 3,
with as few as eight shadow models, LiRA achieves a non-
trivial level of data leakage, with an AUC of 0.5610 for the
sst2 dataset. Applying DP with ε = 8 and δ = 1.5× 10−5

significantly decreases the AUC to 0.5258. We also report
TPR@1%FPR for the experiments. Results show that DP-
tuned soft prompts reduce privacy leakage for all datasets.
Beyond the privacy risk associated with the private soft
prompt ps, we also analyze the potential pretraining data
leakage during the KD phase, as shown in Appendix D.7.

5.5. Runtime of POST

A notable advantage of POST is its ability to tune soft
prompts on smaller models instead of significantly larger
ones. Since tuning a soft prompt involves backpropagation

Table 3: LiRA Membership Inference Attack. We report
the results of the LiRA attack against a soft prompt trained
on four datasets with Roberta-base. Without DP (ε = ∞),
we observe non-trivial leakage. Our method with DP re-
duces privacy leakage significantly in comparison to the
non-private (confidential, ε = ∞) prompts.

sst2 imdb tweet arisetv
ϵ = ∞ ϵ = 8 ϵ = ∞ ϵ = 8 ϵ = ∞ ϵ = 8 ϵ = ∞ ϵ = 8

AUC 0.5610 0.5258 0.5796 0.5524 0.5269 0.5006 0.5516 0.5491
TPR@1% FPR 0.0232 0.0137 0.0236 0.0157 0.0153 0.0128 0.0192 0.0181

through the entire model, this approach has the potential to
substantially reduce computational complexity. In Table 4,
we present a detailed runtime analysis of POST’s individual
components and compare them to full PT. Note that in prac-
tice, full PT on the large LLM leaks all the private prompt
data to the LLM owner and is, hence, not practical. It serves
only as a conceptual baseline.

Our findings reveal a significant speedup, particularly for
large downstream datasets, where the cost of backpropa-
gating many samples through a large language model is
exceptionally high. For instance, on the sst2 dataset, our
method achieves a sixfold speedup, reducing runtime from
2,660 minutes to just 409 minutes on an A100 GPU. These
results highlight that POST not only enhances privacy but
also delivers substantial computational efficiency improve-
ments, especially for large datasets. Further details can be
found in Appendix C.2.

5.6. Ablations

We perform various ablations on the inner workings of our
method to provide guidance on how to best use it in practice.
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Table 4: Runtime of POST (GPT2-XL). We present the
runtime for our method, split by its individual components,
and compare against full prompt tuning on the large LLM
(PT on Φt). We use arisetv and sst2 as private data and
execute 5000 steps of transfer. We tune and transfer the
prompts for 20 epochs (sst2) and 40 epochs (arisetv). All
experiments are executed on a single A100 GPU.

Method Runtime for arisetv (min) Runtime for sst2 (min)

PT on Φt 368 2660
(1) PT on Φs 46 310
(2) Transfer 99 99

Ours total (1)+(2) 145 409
(3) KD 1203 1203

Ours total (1)+(2)+(3) 1348 1612
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0.60

0.65

0.70
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0.80

0.85

Ac
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non-DP transfer
DP transfer

(a) Roberta-base.
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non-DP transfer
DP transfer

(b) GPT2-XL.

Figure 2: Effect of Number of Public Samples (arisetv).

Effect of Number of Public Samples used for Transfer.
We first investigate the influence of the size of the public
dataset required to complete the prompt transfer. Our results
in Figure 2 for arisetv as the private dataset with different
numbers of public samples from agnews show that we can
already yield high transfer performance with less than 100
public data points. The small size of the public datasets
needed makes our method highly practical.

Effect of Number of Transfer Steps. We additionally in-
vestigate how many transfer steps are required to obtain
good performance. Based on the insights from the previous
section, we randomly subsample 128 samples from the ag-
news dataset as public data and report the achieved accuracy
on arisetv as private data over different numbers of transfer
steps. Our results in Figure 3 highlight that only a small
number of transfer steps is enough for convergence and
high accuracy on the private task. We observe convergence
within around 2000 steps for GPT2-XL and around 1000
steps for Roberta-base.

Choice of Public Dataset. We observe that the choice in
the public dataset impacts the final test performance. To
evaluate this impact of the public dataset choice on transfer
performance, we conduct an ablation study using different
public sets for various private datasets, see Table 16. Our
findings indicate that the best transfer performance can be
achieved with public datasets from the same task family,
even if the datasets are not very similar and have, for exam-

0 1000 2000 3000 4000 5000
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DP transfer

(a) Roberta-base.

0 2000 4000 6000 8000
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(b) GPT2-XL.

Figure 3: Effect of Number of Transfer Steps (arisetv).

Table 5: Baseline Comparison. We compare POST against
state-of-the-art baselines, DP-OPT (Hong et al., 2023)(OPT,
DP-OPT) and Zero-Shot Transfer (Wu et al., 2023) (ZST).
We report test accuracies over different private datasets. We
use our distilled 2-layer compressed Llama2-7b (2-Lay) or
GPT2 as the source model, and Llama2-7b as the target
model. For the DP versions, we use ε = 8 and δ according
to Table 10. For our POST, we report the accuracies under
the best public data (Table 13 and 14).

Method Φs sst2 imdb tweet arisetv mpqa disaster trec

OPT 2-Lay 81.31 68.44 38.35 82.00 58.50 46.00 58.00
OPT GPT2 81.65 79.55 43.40 78.26 77.60 55.60 46.80

DP-OPT GPT2 72.59 69.53 24.90 30.44 61.80 48.90 32.60
ZST 2-Lay 62.38 70.57 42.80 58.33 33.31 43.55 18.22

ZST with DP 2-Lay 53.55 69.47 41.65 59,54 32.70 43.49 11.60
POST (ours) 2-Lay 90.14 86.27 61.70 86.71 87.37 62.84 53.40

DP-POST (ours) 2-Lay 89.91 83.26 59.55 82.60 80.17 58.62 37.80

ple, different numbers of classes. We added a more detailed
discussion in Appendix D.1.

Design of the KD. Building on our intuition that more simi-
lar models exhibit better prompt transfer, we assess different
ways of preserving this similarity during KD (see Equa-
tion (1)). We observe that fixing the language modeling
head, i.e., causing higher output similarity, leads to slightly
better transfer performance. In contrast, we do not observe
a consistent improvement with fixing the embeddings. De-
tailed results are shown in Appendix D.3.

Impact of Model Compression. We also investigate the
trade-offs of different compression ratios. We distill the
large LLM to various smaller sizes and report the perfor-
mance of our POST and the distillation time. As we show
in Appendix D.4, as the distilled model becomes larger, the
transfer performance generally becomes better. However, it
also requires more distillation time and more computational
resources from the user to tune the soft prompt locally.

Transfer Loss Design. Our transfer loss in Equation (3) has
a parameter α controlling the balance between the two loss
terms. We observe that a good choice of α depends largely
on the target model’s ZS performance and the compressed
model’s performance. We provide a detailed evaluation and
a heuristic for selecting the best α in Appendix D.5.
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Table 6: Impact of Feature Space Alignment on Transfer Performance. We compare the transfer performance of a
distilled 2-layer Llama model and a non-distilled model that is fine-tuned directly on the same BookCorpus dataset. Both
models have the same architecture and initialization, but only the distilled model maintains feature alignment with the large
model. While the two models perform similarly before prompt transfer, the distilled model consistently achieves higher
prompt transfer performance.

Dataset PT on Distilled Model PT on non-Distilled Model Transfer with the Distilled Model Transfer with the non-Distilled Model

sst2 78.78 78.24 90.02 85.38
imdb 79.95 79.40 87.29 82.45
tweet 54.12 54.79 61.15 45.65
arisetv 77.92 72.07 86.71 70.65
mpqa 83.82 84.16 87.37 81.52

Effect of Soft Prompt Token Length. We investigate the
impact of token length on the transferability of the soft
prompt by conducting experiments across various lengths (
Appendix D.6). Our findings suggest that an optimal range
lies between 50 and 100 tokens. In contrast, both excessively
short and long prompts lead to suboptimal results, with
longer prompts also incurring higher computational costs.

Impact of Feature Space Alignment. In addition to the
empirical results on prompt transfer, we further investigate
why soft prompts trained on the distilled model remain
transferable to the target model. Specifically, we conduct an
ablation study to examine the role of feature space alignment
induced by KD in our POST’s transfer performance. We use
a model with the same architecture and initial parameters as
our distilled 2-layer Llama. Instead of applying knowledge
distillation on the BookCorpus dataset, we directly fine-tune
this model on BookCorpus to match the performance of
the distilled model. This model has no feature space align-
ment with the large model. We then evaluate its transfer
performance and compare it to that of the distilled model,
following the same transferring process in Section 4.3. The
results in Table 6 show that, although both models achieve
similar prompt tuning performance, the prompt transfer
performance for the distilled model is always better. This in-
dicates that using knowledge distillation to preserve feature
space alignment between the small model and large model
is essential in our designed prompt transfer procedure.

5.7. Comparing against State-of-the-Art Prompt
Transfer Approaches

We compare against two state-of-the-art baselines, namely
the Zero-Shot transfer by Wu et al. (2023) and DP-OPT
by Hong et al. (2023). Zero-Shot transfer operates in the
same setup as we do and also relies on soft prompts. DP-
OPT, in contrast to ours, is designed for discrete prompts.
Details on their methods are presented in Appendix C.3. DP-
OPT first tunes a discrete prompt locally and then directly
uses it on the large model. Since their method relies on the
small model having good performance, we execute their
method in 2 setups for a fair comparison: 1) we tune their

source prompt using our compressed model as the small
model, and 2) we use GPT2 as the small model. The latter is
expected to have significantly higher performance and yield
much better prompts. We report DP-OPT’s performance
on both non-DP (OPT) and DP settings. Our results in
Table 5 highlight that our POST significantly outperforms all
baselines even in the DP regime. Additional results where
we distill from GPT2-XL can be found in Appendix C.3.

6. Conclusions
We present POST, a framework for the private transfer of
soft prompts that enables adapting LLMs with private user
data while protecting both the user’s privacy and the LLM
provider’s intellectual property. POST relies on distillation
to enable an LLM provider to share a small model with
limited utility to a client for local prompt tuning on their
private data, optionally with DP guarantees. Using our new
prompt transfer method that leverages a small set of public
data, the LLM provider can then transfer the prompt to their
model. Our experiments highlight that the POST frame-
work achieves significant improvements on the private tasks
through the prompt transfer, improves the computational effi-
ciency of prompt tuning and outperforms all private prompt
transfer baselines. Thereby, our work paves the way for
more trustworthy application of LLMs.

Impact Statement
We propose a private transfer of soft prompts from a small
language model to a large language model. The primary
positive societal impact of our work is that our method can
protect local data privacy and also the intellectual property
of the large language model provider, which encourages
wider and more trustworthy applications of LLMs. Addi-
tionally, since our transfer enables more compute-efficient
prompt tuning and enables the reuse of existing prompts, it
can have a positive environmental impact. We expect that
our POST framework will also enable more LLM providers
to offer the possibility of adapting their LLMs through soft
prompt tuning.
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Proceedings of the 1st Workshop on Modular and Open
Multilingual NLP (MOOMIN 2024), pp. 7–15, St Ju-
lians, Malta, March 2024. Association for Computational
Linguistics. URL https://aclanthology.org/
2024.moomin-1.2/.

Qin, G. and Eisner, J. Learning how to ask: Querying
lms with mixtures of soft prompts. In Proceedings of
the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 2021.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Rakotonirina, N. C., Dessı̀, R., Petroni, F., Riedel, S., and
Baroni, M. Can discrete information extraction prompts
generalize across language models? In ICLR 2023.
Proceedings of the 11th International Conference on
Learning Representations (ICLR); 2023 Mai 1-5; Kigali,
Rwanda. International Conference on Learning Represen-
tations (ICLR), 2023.

Rosenthal, S., Farra, N., and Nakov, P. Semeval-2017 task 4:
Sentiment analysis in twitter. In Proceedings of the 11th
international workshop on semantic evaluation (SemEval-
2017), pp. 502–518, 2017.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. ArXiv, abs/1910.01108, 2019.

Schick, T. and Schütze, H. Few-shot text genera-
tion with pattern-exploiting training. arXiv preprint
arXiv:2012.11926, 2020.

Schick, T. and Schütze, H. Exploiting cloze-questions for
few-shot text classification and natural language infer-
ence. In Proceedings of the 16th Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics: Main Volume, pp. 255–269, 2021a.

Schick, T. and Schütze, H. It’s not just size that matters:
Small language models are also few-shot learners. In Pro-
ceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 2339–2352, 2021b.

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins, T.,
Chen, D., and Zettlemoyer, L. Detecting pretraining data
from large language models, 2023.

Shin, T., Razeghi, Y., Logan IV, R. L., Wallace, E., and
Singh, S. Autoprompt: Eliciting knowledge from lan-
guage models with automatically generated prompts. In
Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP). Associa-
tion for Computational Linguistics, 2020.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp. 3–18. IEEE, 2017.

Sreenivas, S. T., Muralidharan, S., Joshi, R., Chochowski,
M., Patwary, M., Shoeybi, M., Catanzaro, B., Kautz,
J., and Molchanov, P. Llm pruning and distillation in
practice: The minitron approach, 2024. URL https:
//arxiv.org/abs/2408.11796.

Su, Y., Wang, X., Qin, Y., Chan, C.-M., Lin, Y., Wang, H.,
Wen, K., Liu, Z., Li, P., Li, J., et al. On transferability of
prompt tuning for natural language processing. In Pro-
ceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 3949–3969, 2022.

Tang, X., Shin, R., Inan, H. A., Manoel, A., Mireshghallah,
F., Lin, Z., Gopi, S., Kulkarni, J., and Sim, R. Privacy-
preserving in-context learning with differentially private
few-shot generation. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=oZtt0pRnOl.

Touvron, H., Martin, L., Stone, K. R., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D. M., Blecher, L., Ferrer, C. C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal,

12

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://aclanthology.org/2024.moomin-1.2/
https://aclanthology.org/2024.moomin-1.2/
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://openreview.net/forum?id=oZtt0pRnOl
https://openreview.net/forum?id=oZtt0pRnOl


Efficient and Privacy-Preserving Soft Prompt Transfer for LLMs

N., Hartshorn, A. S., Hosseini, S., Hou, R., Inan, H.,
Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I. M.,
Korenev, A. V., Koura, P. S., Lachaux, M.-A., Lavril,
T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X.,
Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton,
A., Reizenstein, J., Rungta, R., Saladi, K., Schelten,
A., Silva, R., Smith, E. M., Subramanian, R., Tan, X.,
Tang, B., Taylor, R., Williams, A., Kuan, J. X., Xu,
P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov,
S., and Scialom, T. Llama 2: Open foundation and
fine-tuned chat models. ArXiv, abs/2307.09288, 2023.
URL https://api.semanticscholar.org/
CorpusID:259950998.

Varshney, T. and Surla, A. An introduction to large lan-
guage models: Prompt engineering and p-tuning, 2023.
URL https://developer.nvidia.com/blog/
an-introduction-to-large-language-
models-prompt-engineering-and-p-
tuning.

Vu, T., Lester, B., Constant, N., Al-Rfou, R., and Cer, D.
Spot: Better frozen model adaptation through soft prompt
transfer. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 5039–5059, 2022.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Wang, L., Xu, S., Xu, R., Wang, X., and Zhu, Q.
Non-transferable learning: A new approach for model
ownership verification and applicability authorization.
In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/
forum?id=tYRrOdSnVUy.

Wang, X., Rachwan, J., Günnemann, S., and Charpen-
tier, B. Structurally prune anything: Any architec-
ture, any framework, any time, 2024. URL https:
//arxiv.org/abs/2403.18955.

Wang, Y., Wang, J., and Zhang, X. Parameter-efficient on-
line knowledge distillation for pretrained language mod-
els. Expert Systems with Applications, 265:126040, 2025.

Wen, Y., Jain, N., Kirchenbauer, J., Goldblum, M.,
Geiping, J., and Goldstein, T. Hard prompts made
easy: Gradient-based discrete optimization for prompt
tuning and discovery. ArXiv, abs/2302.03668, 2023.
URL https://api.semanticscholar.org/
CorpusID:256627601.

Wiebe, J., Wilson, T., and Cardie, C. Annotating expres-
sions of opinions and emotions in language. Language
Resources and Evaluation, 39(2–3):165–210, 2005.

Wu, T., Panda, A., Wang, J. T., and Mittal, P. Privacy-
preserving in-context learning for large language mod-
els. In The Twelfth International Conference on
Learning Representations, 2024. URL https://
openreview.net/forum?id=x4OPJ7lHVU.

Wu, Z., Wu, Y., and Mou, L. Zero-shot continuous prompt
transfer: Generalizing task semantics across language
models. In The Twelfth International Conference on
Learning Representations, 2023.

Xiao, G., Lin, J., and Han, S. Offsite-tuning: Transfer learn-
ing without full model. arXiv preprint arXiv:2302.04870,
2023.

Zhang, X., Zhao, J. J., and LeCun, Y. Character-level convo-
lutional networks for text classification. In NIPS, 2015.

Zhong, Q., Ding, L., Liu, J., Du, B., and Tao, D. Panda:
Prompt transfer meets knowledge distillation for efficient
model adaptation. IEEE Transactions on Knowledge and
Data Engineering, 2024.

Zhong, Z., Friedman, D., and Chen, D. Factual probing is
[mask]: Learning vs. learning to recall. In Proceedings of
the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 5017–5033, 2021.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books and
movies: Towards story-like visual explanations by watch-
ing movies and reading books. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

13

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://developer.nvidia.com/blog/an-introduction-to-large-language-models-prompt-engineering-and-p-tuning
https://developer.nvidia.com/blog/an-introduction-to-large-language-models-prompt-engineering-and-p-tuning
https://developer.nvidia.com/blog/an-introduction-to-large-language-models-prompt-engineering-and-p-tuning
https://developer.nvidia.com/blog/an-introduction-to-large-language-models-prompt-engineering-and-p-tuning
https://openreview.net/forum?id=tYRrOdSnVUy
https://openreview.net/forum?id=tYRrOdSnVUy
https://arxiv.org/abs/2403.18955
https://arxiv.org/abs/2403.18955
https://api.semanticscholar.org/CorpusID:256627601
https://api.semanticscholar.org/CorpusID:256627601
https://openreview.net/forum?id=x4OPJ7lHVU
https://openreview.net/forum?id=x4OPJ7lHVU


Efficient and Privacy-Preserving Soft Prompt Transfer for LLMs

A. Limitations
Our work proposes a method to protect the privacy and confidentiality of private data during the prompt tuning phase.
However, we didn’t address the privacy leakage risk during the inference phase. Also, this work does not aim to address the
challenge of preventing pretraining data leakage. Although our experiments suggest that the distillation process results in
minimal leakage, a more thorough investigation is warranted. Also, compression of the LLMs through knowledge distillation
techniques may be computationally expensive for LLM providers. Additionally, in our method, the selection of a public
dataset will affect the transfer performance of soft prompts. While we observe, in general, that public datasets that have a
similar structure to the private data work best for transfer, there is no ideal strategy for selecting the optimal public dataset.

B. Experimental Setup
B.1. Knowledge Distillation

We follow the procedure of (Sanh et al., 2019) to initialize and distill our compressed model. We use the first and last layers
of Roberta-base, the first two and last two layers of GPT2-XL, and the first and last layers of Llama2-7b to initialize our
compressed Roberta-base, GPT2-XL and Llama2-7b before knowledge distillation. We also initialize the small student
model’s word embedding and language modeling head the same as their teacher model. We conduct experiments on whether
to freeze the language modeling head and/or word embedding during knowledge distillation in Appendix D.3. Each model’s
structure and size are listed in Table 7.

Table 7: Model Size before and after Distillation.

Model Layer Number Hidden Dimension Head Number Parameter Num (M)

Roberta-base 12 768 12 125
Our distilled Roberta-base 2 768 12 53
GPT2-XL 48 1600 25 1560
Our distilled GPT2-XL 4 1600 25 205
Llama2-7b 32 4096 32 6738
Our distilled Llama2-b 2 4096 32 667

During knowledge distillation, we use the BookCorpus (Zhu et al., 2015) dataset, and we take the checkpoint model that is
distilled for 50,0000 steps. The hyperparameters used in knowledge distillation are shown in Table 8.

Table 8: Hyperparameters in Knowledge Distillation.

αce αlm αcos Learning Rate Batch Size

5.0 2.0 1.0 0.00025 5

B.2. Datasets and Tasks

We use the following datasets as private sets or transfer sets in our experiments:

• sst2: The Stanford Sentiment Treebank (sst2) is a binary sentiment classification dataset containing sentences from movie
reviews, labeled as positive or negative.

• imdb: A large-scale sentiment classification dataset consisting of movie reviews from IMDb, labeled as positive or
negative.

• tweeteval: A benchmark dataset for sentiment analysis on tweets, providing real-world social media text challenges. In
our experiments, we use only the sentiment classification subset which contains 3 classes: negative, positive, and neutral.

• arisetv: A topic classification dataset derived from TV news transcripts, categorizing documents into 6 topic labels:
business, sports, politics, health, entertainment, and tech.

• agnews: A widely used topic classification dataset containing news articles labeled into four categories: World, Sports,
Business, and Science/Technology.
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• mpqa: The Multi-Perspective Question Answering (MPQA) dataset, designed for sentiment and subjectivity analysis
with fine-grained opinion annotations.

• MIT: A dataset for extracting attributes such as movie directors and genres from movie descriptions.

• AIE: A dataset for extracting locations from notes.

• trec: The TREC Question Classification Dataset is a benchmark dataset designed for question classification tasks in
natural language processing (NLP). It is derived from the TREC (Text REtrieval Conference) Question Answering (QA)
track, where the goal is to classify questions into predefined categories based on their topic.

• disaster: A dataset containing tweets related to natural disasters, used for binary classification of whether a tweet is
disaster-related or not.

• boolq: The BoolQ (Boolean Questions) dataset is a benchmark dataset for yes/no question answering (QA). BoolQ is
widely used for training and evaluating machine reading comprehension (MRC) models and is part of the SuperGLUE
benchmark.

We follow Li et al. (2022) to formulate our classification tasks as a text-infilling task (instead of adding a classification head
to output class probabilities). This means that for masked language models such as Roberta, we append ”it was ¡mask¿” to
the input and let the model predict the ground truth text. The setting for GPTs and Llama2 is similar in that we append
”it was” to predict the next word. To increase the robustness of this method, we use multiple ground truth text labels and
compare the average probability of outputting those text labels. See Table 9 for task templates and the ground truth labels
used in our experiment.

Table 9: Task Template and Ground Truth Labels used in Text-infilling. <s>means the sentence used in the dataset.

Dataset Task Template Roberta Task Template GPT2/Llama2 Ground Truth Text Label

sst2 <s>, it was <mask> <s>, it was 0: [” terrible”,” negative”,” bad”,” poor”,” awful”]
1: [” positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]

imdb <s>, it was <mask> <s>, it was 0: [” terrible”,” negative”,” bad”,” poor”,” awful”]
1: [” positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]

tweet <s>, it was <mask> <s>, it was 0: [” terrible”,” negative”,” bad”,” poor”,” awful”]
1: [” moderate”,” neutral”,” balanced”]]
2: [” positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]

arisetv <s>, it was about <mask> <s>, it was about 0: [” business”], 1: [” sports”], 2: [” politics”]
3: [” health”],4: [” entertainment”],5: [” technology”,” science”]

mpqa <s>, it was <mask> <s>, it was 0: [” terrible”,” negative”,” bad”,” poor”,” awful”]
1: [” positive”,” good”,” great”,” awesome”,” brilliant”,” amazing”]

disaster <s>, is this sentence related to disaster? <mask> <s>, is this sentence related to disaster? 0:[” no”, ” No”],1:[” yes”, ”Yes”]
trec <s>, this question is about <mask> <s>, the topic of the question is 0:[” abbreviation”],1:[” entity”],2: [”description”], 3:[” human”],

4:[” location”],5:[” numerical value”]

B.3. Prompt Tuning

Following Su et al. (2022)’s setting, we use the soft prompt with a length of 100 tokens in all our experiments. We
follow Duan et al. (2023a)’s setting to obtain DP private prompts with PromptDPSGD. Table 10 shows the hyperparameters
used in this experiment.

Table 10: Hyperparameters used for Prompt Tuning, including the δ for PromptDPSGD.

Dataset δ Epochs Learning Rate

sst2 1.5 × 10−5 20 0.001
imdb 4 × 10−5 20 0.001
tweet 2 × 10−5 20 0.001
arisetv 2 × 10−4 40 0.001
mpqa 1.16 × 10−4 20 0.001
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B.4. Public Datasets for Prompt Transfer

We rely on small public datasets to perform our prompt transfer. A question is the right choice of the public dataset. We
normally choose the public dataset that performs a similar task as the private dataset, such as choosing imdb or tweet as
the public dataset of sst2 as they are all sentiment classification tasks. Transferring with a public dataset that performs a
different task from the private dataset may lead to suboptimal performance. We tested this setting to transfer soft prompts
trained on arisetv, a topic prediction dataset. The transfer performance of using tweet as public dataset is acceptable but
generally worse than using agnews, another topic prediction dataset, as a public dataset. In general, we found that the public
and private datasets do not need to have the same structure, such as the class number. For example, using tweet (3 classes)
as a public dataset leads to better transfer performance than imdb (2 classes) on sst2 (also 2 classes). This highlights the
robustness of our method and the broad selection of public datasets for the transfer.

We report the hyperparameters used in the transfer experiments as Tables 11 and 12.

Table 11: Hyperparameters used during Prompt Transfer.

Model Batch Size Optimizer Learning Rate

Roberta-base 32 Adam 0.001
GPT2-XL 8 Adam 0.001
Llama2-7b 4 Adam 0.0005

Table 12: Setting of α for Different Datasets and Models during Prompt Trasnfer.

Dataset
Model sst2 imdb tweet arisetv

Roberta-base 0.8 0.8 0.2 0.4
GPT2-XL 0.7 0.4 0.0 0.6
Llama2-7b 0.9 1.0 0.6 0.6

C. Additional Experiments
C.1. Models of Different Scales

We present a full overview of our POST method’s results on LLMs with different scales, i.e., Roberta-base and GPT2-XL,
in Table 13 and Table 14 for confidential and DP transfer, respectively. We observe that over all models with different scales,
our method significantly outperforms the baselines, both without and with DP.

C.2. Runtime

In Table 4, we analyze the runtime of our POST’s individual components and compare them to the runtime of full prompt
tuning on GPT2-XL. Note that in practice, full prompt tuning on the large LLM leaks all the private prompt data to the LLM
owner and is, hence, not practical.

Prompt tuning time, for both large and small models, depends on the size of the private dataset when backpropagating over
all private training examples. To illustrate this, we report results for both a small dataset ( with 4.7k training samples) and a
large dataset (sst2 with 67.3k training samples). KD is a one-time operation performed by the LLM owner, after which the
distilled model can be used by multiple users. As a result, the compute cost of KD amortizes over time. To account for this,
we present two sets of results for our method: (1) only the prompt tuning on the small model and the transfer step, and (2)
including the non-amortized KD time as a worst-case scenario. The runtime results in Table 4 show that, when considering
only steps (1) and (2), our method significantly reduces runtime compared to full prompt tuning for both small and large
datasets. Notably, for the larger sst2 dataset, our method achieves a 6x speedup, reducing runtime from 2660 minutes to just
409 minutes on an A100 GPU. In the worst-case scenario, where the non-amortized KD time is included and only one task
is tuned (a highly unrealistic assumption for an LLM owner serving multiple users), prompt tuning on the small model is
faster. Yet, for the large dataset, our method still outperforms full prompt tuning with a runtime of 1612 minutes compared
to 2660 minutes. These results demonstrate that beyond enhancing privacy, our POST method also provides substantial
improvements in computational efficiency, especially for large datasets.
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Table 13: Confidential Prompt Transfer Performance. We compress Roberta-base and GPT2-XL, tune prompts for
different private datasets on the compressed models, and transfer them back using different public datasets (POST). As
baselines, we present the large models’ zero-shot performance on the private data (Full ZS), the accuracy of tuning the
prompt with the private data on the large models (Full PT) and the small model (Compressed PT), and the performance
of the prompt tuned on the small model when direcly applied to the large one (Direct Transfer). Our POST significantly
improves performance over the small prompted model, and our prompt transfer yields a strong improvement over the direct
transfer.

POST (ours)
Private Full ZS Full PT Compressed PT Direct Transfer Public Test acc Public Test acc

sst2 72.25 91.74 79.10 76.49 tweet 87.16 imdb 85.21
imdb 72.19 89.88 78.85 76.92 tweet 83.65 sst2 80.27
tweet 36.53 68.68 56.65 43.10 imdb 54.55 sst2 59.65
arisetv 38.80 89.81 70.98 47.82 agnews 82.97 tweet 68.48

(a) Roberta-base.

POST (ours)
Private Full ZS Full PT Compressed PT Direct Transfer Public Test acc Public Test acc

sst2 60.78 94.84 80.94 59.06 tweet 85.89 imdb 83.49
imdb 60.27 93.28 81.32 60.34 tweet 83.65 sst2 82.15
tweet 34.71 68.60 63.13 41.50 imdb 60.55 sst2 57.70
arisetv 52.98 92.45 77.10 55.43 agnews 87.56 tweet 82.12

(b) GPT2-XL.
C.3. Baseline Comparison

Zero-Shot transfer performs prompt transfer by using the embeddings of some tokens from the vocabulary as a form of
support vector to transform the source prompts into a relative space, and then search for the corresponding target prompt
embeddings for the target model. To provide the optimal source model for their approach, we use a compressed model that
we obtained by keeping the embedding layer frozen during KD (see row 3 in Table 18). DP-OPT, in contrast to ours, is
designed for discrete prompts. They first tune a discrete prompt locally and then directly use it on the large model.

We also run the baseline comparison on the GPT2-XL model, as presented in Table 15. Our method consistently outperforms
other methods on GPT2-XL.

D. Additional Ablations
D.1. Choice of Public Dataset

We investigate the effect of the choice of public data in Table 16. The datasets fall into three categories: sentiment
classification (sst2, imdb, tweet, mpqa), disaster detection (disaster), and topic classification (arisetv, agnews). The results
show that using the same dataset for both private and public sets consistently achieves the best performance. Moreover,
datasets with similar tasks transfer well, even if their number of classes differs. For example, imdb (2 classes) achieves 83.65
using tweet (3 classes) as the public set, and arisetv (6 classes) performs well with agnews (4 classes), i.e., 87.56 accuracy,
indicating that task similarity is more crucial than class alignment. In contrast, using a public dataset from a different domain
degrades performance. Sentiment classification datasets perform poorly when paired with disaster which aims to detect
disaster, as seen in tweet (48.15). Likewise, sst2 and imdb show weak results when using arisetv or agnews. These findings
highlight that selecting a public dataset with a similar task to the private task is helpful for effective prompt transfer.

D.2. Other Model Compression Techniques

In this work, we focus on KD to compress the LLM. In the following, we discuss why alternative compression techniques
are less suited to implement our POST framework.

Quantization (Han et al., 2016; Jacob et al., 2018) reduces the precision of model parameters to lower bit-widths, effectively
decreasing model size. However, since our framework involves transmitting the proxy model to the user, quantization
primarily reduces storage requirements without adequately protecting the intellectual property inherent in the original large
model. Additionally, quantized models often require specialized hardware or software support to maintain performance,
which may not be available to all users.

Pruning (Han et al., 2015; Li et al., 2017; Wang et al., 2024) involves removing less significant weights or neurons from the
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Table 14: Differentially Private and Confidential Prompt Transfer Performance. We compress Roberta-base and
GPT2-XL, tune prompts for different private datasets on the compressed models with Differential Privacy guarantees
(ε = 8), and transfer them back using different public datasets (POST). As baselines, we present the large models’ zero-shot
performance on the private data (Full ZS), the accuracy of PromptDPSGD tuned prompt with the private data on the large
models (Full PT) and the small model (Compressed PT), and the performance of the prompt tuned on the small model when
direcly applied to the large one (Direct Transfer). Our POST significantly improves performance over the small prompted
model and our prompt transfer yields a strong improvement over the direct transfer.

POST (ours)
Private Full ZS Full PT Compressed PT Direct Transfer Public Test acc Public Test acc

sst2 72.25 90.14 67.54 77.06 tweet 84.40 imdb 81.42
imdb 72.19 88.55 72.22 74.35 tweet 79.64 sst2 80.64
tweet 36.53 62.05 40.87 43.15 imdb 55.65 sst2 59.25
arisetv 38.80 80.33 64.25 47.34 agnews 79.11 tweet 71.98

(a) Roberta-base.

POST (ours)
Private Full ZS Full PT Compressed PT Direct Transfer Public Test acc Public Test acc

sst2 60.78 91.28 74.31 57.80 tweet 79.93 imdb 84.06
imdb 60.27 89.59 74.81 63.66 tweet 78.03 sst2 75.16
tweet 34.71 61.47 48.60 41.50 imdb 58.05 sst2 54.75
arisetv 52.98 83.24 67.16 57.25 agnews 82.12 tweet 80.55

(b) GPT2-XL.

Table 15: Baseline Comparison. We present the performance of our method against state-of-the-art baselines on GPT2-XL.
We use our compressed to represent the 4-layers small model distilled from GPT2-XL. Our method outperforms both
baselines.

Method Φt Φs sst2 imdb tweet arisetv

OPT (Hong et al., 2023) GPT2-XL our compressed 60.67 61.70 30.70 42.87
OPT (Hong et al., 2023) GPT2-XL GPT2 62.16 63.18 35.20 46.38

Zero-Shot Transfer (Wu et al., 2023) GPT2-XL our compressed 63.65 61.27 41.60 56.64
Zero-Shot Transfer (Wu et al., 2023) with DP GPT2-XL our compressed 63.42 61.71 41.35 57.25

POST (ours) GPT2-XL our compressed 85.89 83.93 61.75 87.56
DP-POST (ours) GPT2-XL our compressed 84.06 78.03 58.05 82.12

model. Unstructured pruning, which eliminates individual weights, typically does not lead to practical speedups or reduced
resource consumption, making it less applicable to our approach. Structured pruning, on the other hand, removes entire
neurons, filters, or layers, resulting in a smaller and more efficient model. However, many structured pruning methods are
task-specific and require fine-tuning on specific tasks to regain performance.

In addition to the disadvantages of the other methods that make them less suited for our POST framework, KD also yields a
desirable property for our purpose, namely, it aligns the outputs between the large LLM and the small model. This alignment
in output also positively impacts the alignment of internal model behavior, supporting a better transferability of prompts
tuned on the small model to the large LLM, as presented in Table 6.

D.3. Knowledge Distillation Design

Knowledge Distillation Loss. The knowledge distillation loss, as shown in Equation (1), consists of three terms. We
conducted an ablation study to analyze the impact of including or excluding each loss term and compared their end-to-end
transfer performance using the Roberta-base model, as presented in Table 17. The results demonstrate that combining all
three loss terms consistently yields the best transfer performance, validating our choice of loss function for KD.

Knowledge Distillation Setup. We also investigated the best way of performing KD to improve prompt transferability. In
particular, we analyzed the impact of keeping the word embedding or(and) language modeling heads frozen during KD on
the prompt transfer performance. Our results in Table 18 highlight that keeping the language modeling head fixed performs
slightly better than the alternative which mainly performs on-par. These results indicate that the successful transfer of our
method is robust to the KD and independent of any specific KD setting.

When to Stop Distilling. Since the LLM provider does not have any knowledge of the users’ private downstream tasks, they
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Table 16: Ablation on the Choice of Public Set. We observe that best transfer performance can be observed when using
same-domain data. In particular, it helps to have data from the same task familiy.

Public Set

Private Set sst2 imdb tweet mpqa disaster arisetv agnews

sst2 87.27 85.21 87.16 82.68 85.89 76.15 76.72
imdb 80.27 86.67 83.65 76.50 78.99 76.65 76.42
tweet 59.65 54.55 63.55 51.15 48.15 54.00 59.50
arisetv 82.12 77.41 78.62 50.84 57.13 86.47 87.56

Table 17: Ablation on Knowledge Distillation Loss. We compared the end-to-end prompt transfer performance of having
each loss term and their combination in the knowledge distillation. We first distill the model to the same checkpoint with
different loss combinations, and then compare their transfer performance. We find that our choice of 3-way loss achieves
best performance.

Lce Llm Lcos Lce + Llm Lce + Lcos Llm + Lcos Lce + Llm + Lcos

sst2 85.32 78.21 76.38 85.67 84.75 85.67 87.73
imdb 83.17 79.05 75.02 81.26 82.26 80.12 83.96
tweet 53.65 47.05 45.80 54.95 55.05 50.40 58.25
arisetv 78.99 67.87 75.60 74.52 82.49 70.65 82.73

Table 18: Analyzing the KD Setup. We perform an ablation on different designs of the KD and present their impact on the
prompt transfer for the private arisetv dataset, using agnews as public data. We analze different combinations of freezing the
embedding (Fix emb) and freezing the language modeling head (Fix head).

Model Fix emb Fix head Acc. Model Fix emb Fix head Acc.

roberta-base

✕ ✓ 81.68 ±0.764

GPT2-XL

✕ ✓ 87.52 ±0.505
✓ ✓ 80.79 ±0.885 ✓ ✓ 86.51 ±0.726
✓ ✕ 80.84 ±0.360 ✓ ✕ 86.81 ±0.732
✕ ✕ 80.11 ±0.738 ✕ ✕ 87.48 ±0.170

cannot rely on any external signal as a termination criterion for their KD. Given that they can observe the distillation loss,
we find that terminating the KD when the loss starts plateauing is easy to implement and effective. Hence, as the small
model, we select the checkpoints of 500,000 steps, which are the checkpoints directly after the loss plateaus. In Figure 4, we
analyze the relationship between distillation loss and steps. We also conduct transfer experiments with different checkpoints
and show the relation between distillation loss and transfer performance in Figure 5b. We observe that the performance
gain becomes smaller as the distilled model starts to converge. Therefore, by finishing the KD as early as possible, we save
computing time while still being effective.

D.4. Influence of Compressed Model Size

In Table 19, we also compare the transfer performance from distilled models with different compression ratios (in our case,
the number of layers). These results highlight that as the distilled model becomes larger, the transfer performance generally
becomes better. However, it also requires more distillation time and more computational resources from the user to tune the
soft prompt locally. We observe that the gain that can be achieved through soft prompt transfer becomes smaller or even
negative for datasets like imdb and tweet, with a 3-layer distilled model. This would incentivize the users to not transfer their
prompts back to the large model, thereby disrupting the LLM provider’s business model. Hence, we found that our choice of
a 2-layer (4-layer) compressed model for Roberta-base (GPT2-XL) offers a good balance for the LLM provider and user.

To study the relationship between transfer performance (evaluated by downstream task accuracy) and performance of the
compressed model (evaluated by checkpoint loss) further, we also conducted ablations where we compress the models to
different numbers of layers and with different distillation steps. We present the results in Figure 5a and Figure 5b. They
highlight that overall better compressed models lead to better transfer accuracy.
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Figure 4: Checkpoint Loss on Training Steps for Distilled RoBERTa Models with Varying Numbers of Layers. The
plot illustrates the convergence behavior of 1-layer, 2-layer, 3-layer, and 4-layer distilled models. The dashed vertical line
represents the point at which a specific checkpoint is selected for evaluation in our experiments.

Table 19: Influence of Compressed Model Size (Number of Layers). We compare the confidential prompt transfer
performance of compressed models based on RoBERTa-base, varying the number of layers in the compressed model. We
also report the compressed model performance in parentheses. As the number of layers increases, transfer performance
generally improves, but the distillation time also increases. Our selected number of layers in the compressed models offers a
good balance between transfer performance and distillation cost.

# layers in distilled version 1 layer 2 layers (paper) 3 layers

sst2 84.52 (71.67) 87.73 (78.78) 88.53 (85.55)
imdb 78.01 (71.03) 83.96 (79.95) 83.64 (83.88)
tweet 50.65 (41.84) 54.55 (54.12) 61.50 (66.66)
arisetv 53.62 (24.55) 82.73 (77.92) 86.45 (84.77)
Distill time 6h 04min 6h 45min 7h 35min
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Figure 5: Analysis of Transferred Accuracy versus Compressed PT Accuracy and Checkpoint Loss at 50,000, 100,000,
200,000 and 500,000 Distillation Steps. (a) compares transferred accuracy to compressed PT accuracy for different distilled
Roberta models. (b) compares transferred accuracy to checkpoint loss for different distilled Roberta models.
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D.5. Influence of Transfer Loss Design

We further conduct an ablation study to examine the impact of the choice of α during the prompt transfer. As described
in Section 4.3, we should use a larger α when the teacher LLM Φt already has a non-trivial zero-shot performance on the
private task compared to the compressed model. And we use smaller α when the compressed model has better performance.
The intuition is that if the target model performs well, it needs to less mimic the behavior of the smaller model, but
only incorporate that model’s direction change induced by the prompt. On the other side, when Φt has poor zero-shot
performance, we put more emphasis on the output of the compressed model to provide the update.

Based on this insight, we design a heuristic to find an optimal α as shown in Equation (6).

α̃ = min(
ZS −RG

C −RG
, 1.0), (6)

where ZS represents the zero-shot performance, C represents the performance of the compressed model, and RG represents
the random guess performance of the dataset (e.g., for sst2 with 2 classes, RG is 0.5). This heuristic can serve as a guideline
for choosing the best alpha for transfer. In Table 20, we perform a wide range of experiments using different alphas and
compare the best-performing alpha with the one output by our heuristic. We observe that the heuristic successfully identifies
a good range for α and is usually not far off the empirical optimal values. Finally, this wide hyperparameter search shows
that multiple α values achieve good transfer performance, highlighting our method’s robustness to the choice of α.

Table 20: Performance of Roberta-base, GPT2-XL and Llama2-7B on 4 Different Datasets with Various α Values.
Transferred accuracy are presented as mean (standard deviation). We observe that multiple α values achieve good transfer
performance, highlighting the robustness of our POST to the choice of α.

α
Roberta-base GPT2-XL Llama2-7b

sst2 imdb tweet arisetv sst2 imdb tweet arisetv sst2 imdb tweet arisetv
heuristic 0.76 0.77 0.14 0.41 0.35 0.33 0.05 0.60 1.00 1.00 0.54 0.97

0.0 80.54 (1.23) 78.22 (0.55) 57.75 (1.88) 83.41 (0.91) 75.92 (0.53) 70.67 (5.18) 58.70 (1.61) 84.50 (2.29) 69.57 (2.64) 75.37 (0.44) 60.08 (0.65) 81.00 (0.37)
0.1 81.94 (1.87) 79.20 (2.92) 57.68 (1.95) 83.09 (1.45) 76.68 (0.46) 70.22 (3.45) 58.48 (1.31) 85.67 (0.25) 68.43 (5.40) 76.27 (2.07) 59.58 (2.42) 81.00 (0.37)
0.2 83.33 (0.78) 80.89 (1.85) 58.13 (2.16) 83.62 (0.77) 76.80 (0.65) 78.39 (2.37) 57.53 (0.88) 85.23 (0.61) 70.76 (4.70) 76.12 (1.68) 61.33 (0.99) 79.83 (2.06)
0.3 84.67 (0.73) 80.57 (1.16) 58.08 (1.15) 83.62 (1.26) 76.53 (0.58) 78.29 (1.75) 56.98 (2.41) 86.11 (1.15) 73.78 (2.81) 75.62 (0.70) 61.62 (0.38) 81.32 (3.56)
0.4 86.81 (0.46) 79.86 (1.20) 54.77 (1.04) 83.94 (0.79) 76.53 (0.26) 81.57 (1.88) 51.42 (1.63) 86.35 (0.36) 70.18 (4.83) 75.29 (0.04) 59.77 (1.28) 82.81 (0.87)
0.5 88.61 (0.46) 82.16 (1.55) 54.10 (0.74) 80.11 (1.73) 76.83 (0.65) 81.74 (0.71) 57.50 (2.09) 87.24 (1.50) 85.13 (4.34) 80.24 (2.19) 60.23 (1.34) 83.45 (0.53)
0.6 88.61 (0.78) 81.82 (1.06) 52.88 (0.44) 76.57 (0.84) 83.03 (1.69) 79.82 (1.86) 53.93 (0.64) 87.72 (0.39) 89.68 (0.20) 81.90 (3.10) 55.13 (0.18) 85.47 (1.61)
0.7 87.88 (0.29) 80.89 (1.59) 52.33 (0.20) 71.26 (0.64) 85.86 (1.56) 78.18 (0.93) 54.27 (1.05) 87.52 (0.28) 89.18 (0.70) 82.14 (1.72) 52.12 (0.60) 84.30 (4.75)
0.8 87.35 (0.24) 82.65 (0.95) 51.32 (0.24) 68.68 (0.57) 86.66 (0.93) 77.23 (2.07) 50.53 (2.49) 86.11 (1.62) 89.22 (0.53) 83.86 (0.55) 52.25 (0.52) 83.98 (1.76)
0.9 86.47 (0.64) 81.52 (1.39) 49.38 (0.55) 63.04 (0.85) 84.33 (1.26) 76.13 (0.91) 48.52 (1.53) 83.66 (1.42) 88.69 (0.69) 85.00 (2.35) 49.50 (0.31) 83.33 (2.06)
1.0 85.82 (0.85) 80.57 (1.32) 48.42 (1.13) 58.57 (0.24) 83.37 (0.92) 73.62 (1.33) 48.42 (0.78) 80.60 (1.35) 86.47 (1.62) 85.85 (1.77) 47.57 (1.13) 84.02 (0.91)

D.6. Influence of Token Number of Soft Prompt

We follow (Wang et al., 2022) to use 100 tokens in our experiment. We conduct further experiments to investigate how
token length influences the transferability of the soft prompt. We compare the transfer performance of soft prompts with
lengths of 5, 10, 20, 50, 75, 100, and 200 as shown in Table 21. We find that a prompt length of 50-100 tokens is a good
range, and our method is not very sensitive to the token length. Both too few or too many tokens in the soft prompt lead to
sub-optimal performance. Additionally, too many tokens need more computing resources.

Table 21: Ablation on the Token Number of Soft Prompt. We compare the prompt transfer performance of different soft
prompt token lengths on four classification tasks with Roberta-base.

Token Num 5 10 20 50 75 100 200
sst2 84.17 85.66 86.35 87.38 86.70 87.16 85.32
imdb 75.95 76.53 80.42 82.77 83.27 83.65 79.92
tweet 55.25 57.60 57.80 57.00 60.00 59.65 60.40
arisetv 79.02 79.63 80.47 82.04 82.77 82.97 83.13

D.7. Pretraining Data Leakage during Distillation

We also consider and investigate the pertaining data leakage during the KD phase. We follow the setup of Shi et al. (2023) to
assess pretraining data leakage during the knowledge distillation in our paper, using the WikiMIA dataset. Specifically,
we use the Pythia 2.8B model (Biderman et al., 2023) as our base model, as its pretraining data is publicly available. We
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apply knowledge distillation to obtain two smaller student models: one with 3 layers and another with 4 layers. To evaluate
data leakage, we conduct membership inference attacks (MIA) using the Mink% method and report the AUC-ROC and
TPR@1%FPR for all three models. The results, summarized in Table 22, indicate that our knowledge distillation reduces
the pretraining data leakage compared to the original model.

Table 22: Ablation on Pretraining Data Leakage. We compare AUC-ROC and TPR@1%FPR using the original Pythia
2.8B model and two distilled models on the WikiMIA dataset. The distilled models exhibit less pretraining data leakage
compared to the original pretrained model.

Pythia 2.8B 3-layer Distilled Model 4-layer Distilled Model

AUC-ROC 0.7103 0.5737 0.5750
TPR@1%FPR 0.0980 0.0196 0.0196
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