Published as a conference paper at COLM 2025

ROBO-INSTRUCT: Simulator-Augmented Instruction Align-
ment For Finetuning Code LLMs

Zichao Hu Junyi Jessy Li

Department of Computer Science Department of Linguistics

UT Austin UT Austin

Austin, TX 78712 Austin, TX 78712

zichao@utexas.edu jessy@utexas.edu

Arjun Guha Joydeep Biswas

Khoury College of Computer Sciences Department of Computer Science

Northeastern University UT Austin

Boston, MA 02115 Austin, TX 78712

a.guha@northeastern.edu joydeepb@utexas.edu
Abstract

Code LLMs have shown promising results with converting tasks in natural
language to programs that can be executed by service robots. We are inter-
ested in finetuning small, specialized LLMs for this purpose, but collecting
datasets of task-program pairs specific to each robot is time-consuming
and expensive. While approaches such as SELF-INSTRUCT and EVOL-
INSTRUCT are capable of generating novel tasks given a few examples, they
are unable to provide the corresponding programs that correctly abide by
physical-world and robot-constraints using the provided programming
interface. Using a simulator is a natural potential solution to checking for
such constraints, but building simulation environments that can handle
arbitrary tasks and their necessary objects and locations, is challenging. To
address these challenges, we introduce ROBO-INSTRUCT, which synthesizes
task-specific simulation environments on the fly during program execution,
by opportunistically inferring entity properties and enforcing correspond-
ing constraints based on how the entities are used in the task program.
Additionally, ROBO-INSTRUCT integrates an LLM-aided post-processing
procedure to refine instructions for better alignment with robot programs.
We demonstrate the effectiveness of ROBO-INSTRUCT across multiple LLMs,
showing that our fine-tuned models outperform all baseline methods and
even match or surpass the performance of several larger and proprietary
models.

Project page: https:/ /amrl.cs.utexas.edu/robo-instruct/

1 Introduction

Robot programs leverage robot skills, expressed as parameterized function calls, combined
with common programming abstractions (loops, conditionals, etc) to perform complex open-
world tasks. For example, by formulating robot manipulation and perception skills such
as pick(object) and is_in_room(object), an LLM can generate a program for a service
mobile robot to complete the task: “Pick up an apple if you see one here.”. The state-of-the-art
approaches in robotics use large, proprietary LLMs (e.g., GPT) to generate such task-specific
programs via in-context learning (Hu et al., 2024; Huang et al., 2023b; Biggie et al., 2023;
Liu et al., 2023a; Wu et al., 2023; Liang et al., 2022; Singh et al., 2023; Huang et al., 2023a).
While quite effective, such large models cannot be run locally on robots, require network
connectivity to query remote LLM endpoints, increase response latency, and raise privacy
concerns. Smaller models that can run locally on robots, on the other hand, are unfortunately

https://amrl.cs.utexas.edu/robo-instruct/

Published as a conference paper at COLM 2025

Generate Verify Programs Against Domain-specific Constraints . Revise Instruction to
Instruction Reject Align with Program
Program Pair
~

Observation / ® Instruction é}

gctcniahiicel » (RetVal, Success/Error)

il
Simulation Verified? @

Initialize World o
Instructionfz) D Entity DEntity
Check
—_ [l Type ==+ []Type
Updats Gstate GState 5}
N Aligned Instruction
o,)
80 nlli Evaluation Results Robo-Instruct Evol-Instruct
70 Self-Instruct Base Model
67.5 68.75 68.75

60 625 62.5 o N _ % 625 60 o

50 d d d

“ 55 55 o5 515
o 425

40

® 30
@
S 20

10

0 0 -
peepsee Sorao ML coder? CodeLlama-78 Llama-3-88 Qwen-78 Gemma2-9B

Figure 1: High-level overview of the ROBO-INSTRUCT framework. This figure also shows
the pass@1 score performance of ROBO-INSTRUCT fine-tuned LLM compared to other LLMs
on ROBOEVAL.

unable to match the performance of larger models — which naturally raises the question of
how to finetune small models for robot-specific code generation.

Obtaining high-quality training
data is crucial for fine-tuning
LLMs. Unlike some domains

LLM Generated Program LLM Generated Program

T | def task_program(): def task_program():
where training data exist (e.g., if not is_in_room("apple"):| pick("apple")
Meditron (Chen et al., 2023) pick("apple") pick("apple")

for medical Al), robots vary in @k
their capabilities, and manual Dt et

A Real-world Constraint Violationl] Robot Configuration Violation
data construction becomes unscal-

able. Thus/ methods like SELE- Cannot pick up an apple that Cannot pick up two apples at
INSTRUCT(Wan et al 2022) and does not exist at the current once due to the robot having
g v location. only one arm.

EVOL-INSTRUCT (Xu et al., 2024)

provide promising approaches for

generating synthetic training data. Figure 2: Examples of programs violating domain-
specific constraints.

However, generating robot pro-

grams presents unique challenges,

as robots interact with the real world and must adhere to robot- and environment-specific
constraints, which these existing approaches do not verify. For instance, as illustrated in
Fig. 2, a candidate program might instruct the robot to pick up an apple that is not present
at its current location (example 1) or attempt to pick up multiple objects simultaneously,
which is physically impossible if the robot can only hold one at a time (example 2). These
constraints are domain-specific to the robot’s intended tasks, and while a developer may
recognize such violations, automating their detection is non-trivial. One potential solution is
to execute the program in a robot simulator with well-defined environments. However, such
simulations require pre-enumerating relevant entities and their states, which depend on
the specific actions the program dictates. Since approaches like SELF-INSTRUCT generate a
diverse range of programs, pre-enumerating all possible environments becomes impractical.
Additionally, we observe that the generated instruction-program pairs may be inconsistent;
Fig. 10 illustrates this problem, where the instruction specifies checking for an apple, but
the program fails to perform this check.

To address these challenges, this work introduces ROBO-INSTRUCT, a framework for gen-
erating synthetic robot program training data to fine-tune open-weight LLMSs for domain-

Published as a conference paper at COLM 2025

specific service robot tasks. As illustrated in Fig. 1, ROBO-INSTRUCT offers a principled
approach for robot developers to define task constraints and verify candidate programs
against such constraints. Drawing inspiration from Angelic Execution (Broy & Wirsing,
1981), ROBO-INSTRUCT opportunistically infers entity properties and enforces correspond-
ing constraints by synthesizing simulation environments as the program executes. Once
violations are detected, ROBO-INSTRUCT then employs a rejection sampling mechanism
by invoking SELF-INSTRUCT to generate a new program based on the same instruction.
To further address misalignment between the candidate instruction and program, ROBO-
INSTRUCT incorporates an LLM-aided post-processing step that refines the instruction to
better reflect the verified program’s intent.

We show the effectiveness of ROBO-INSTRUCT by fine-tuning several LLMs to generate
domain-specific robot programs, and evaluating them using ROBOEVAL (Hu et al., 2024), a
benchmark designed for service mobile robots. Our ROBO-INSTRUCT-fine-tuned models
significantly outperform their corresponding base models, achieving an average 19.9%
improvement in pass@1 scores. They also outperform their SELF-INSTRUCT-fine-tuned and
EVOL-INSTRUCT-fine-tuned counterparts by 9.7% and 7.2%, respectively. Moreover, the
ROBO-INSTRUCT-fine-tuned models surpass or match the performance of several larger
code models, including GPT-40-mini (OpenAl et al., 2024a), Starcoder2-15B (Lozhkov et al.,
2024), and Deepseek-R1-Qwen-32B (DeepSeek-Al et al., 2025).

2 ROBO-INSTRUCT

World (step 0) ~Worid 1 (step) T " World 1 (step2) T
def task_program(): def task_program(): def task_program():
if is_in_room("apple"): if is_in_room("apple"):
pick("apple") pick("apple")
go_to("kitchen") go_to("kitchen") go_to("kitchen")
place("apple") place("apple") place("apple") 1
else:) else:) else: 1
pick("apple") f - pick("apple") pick("apple") @ eee Success
API Call E API Call 1
(True, Success) : (None, Success)
World i World 1] World 1
) robot z : | E@robot ;| @ robot
bot CN H robot 2 H robot 2) i . . :
- 3| et 1 R 7 This program will be
© at(start) > @ Cat(start) H e Gat(start) _ J: : rejected because it
o, e T H e
% Wiorld 2 (step 1) World 2 (step 2) f§||5 I @Iniz @I e 4
World 1 d def task_program(): def task_program(): simulation worlds.—
if is_in_room("apple"): if is_in_room("apple"):
c The model randomly infers that an pick("apple") pick("apple”) :
apple is present go_to("kitchen") go_to("kitchen")
.) place("apple") place("apple”
e After the robot picks up the apple, it else: else: — "
becomes undefined whether the pick("apple") @ » pick("apple") Fail
apple is still present. s oTC o —
World 2 is_in_room (False, Success) pick StateError)
o The model randomly infers that the World 2 World 2
apple is not present. robot ®ap‘?19 Qrobot 83‘”?1&
. [2] robot [object 3 [] robot ClptaE
The robot cannot pick up an apple E © exist(false)
that isn't there. ©at(start) C at(start) @ at(start) ©at(start)

Figure 3: Illustration of ROBO-INSTRUCT executing a task program while incrementally
building the simulation environment. The environment starts with only the robot’s initial
position (gray, step 0). As the program runs, it branches into two possible execution paths.
To evaluate each path, two simulation environments are sampled (world 1 and world 2). In
this example, the program fails because it attempts to pick up an apple that isn’t present.

2.1 Overall Framework

ROBO-INSTRUCT generates task and robot program pairs as training data to fine-tune open-
weight LLMs for domain-specific service robot tasks. As shown in Fig. 1, ROBO-INSTRUCT
first uses SELF-INSTRUCT to propose novel tasks. For each task, using in-context learning,
it prompts a LLM to generate a candidate program to perform the task using the robot
APIs in the given context (detailed prompts in Appendix A.5.2). Then ROBO-INSTRUCT
verifies the candidate program by synthesizing a simulation environment on-the-fly as API
functions are executed (explained in Sec. 2.2). When the simulator catches violations of

O ® N Ul W N e

Published as a conference paper at COLM 2025

domain-specific constraints, it rejects the candidate program and re-prompts the LLM for a
new candidate program. If the program successfully terminates with no simulation failures,
ROBO-INSTRUCT synthesizes additional simulation environments (up to a pre-defined limit)
to check for the correctness of the candidate program from different initial configurations and
environmental states. ROBO-INSTRUCT is thus able to catch candidate programs that are not
robust to environmental variations. Finally, once the candidate program is verified, ROBO-
INSTRUCT incorporates an LLM-assisted instruction-program alignment procedure, which
revises natural language instructions using the verified candidate programs to enhance
alignment between the two (as detailed in Sec. 2.3). Fig. 3 shows an example of how ROBO-
INSTRUCT executes and verifies a candidate program while incrementally constructing the
simulation environments (world 1 and world 2) on-the-fly. In the following sections, we
present these components in detail.

2.2 Verifying Candidate Programs Against Domain-specific Constraints

To verify candidate programs, we introduce an algorithm inspired by Angelic Execu-
tion (Broy & Wirsing, 1981), which infers program properties from incomplete API specs.
As shown in Pseudocode 1, it lets developers combine task constraints with robot APIs,
automatically synthesizing simulation environments and detecting constraint violations
during execution. The algorithm is built around three core concepts essential for service
robots to reason about:

1. Different entities, e.g., “apple”, “kitchen".

2. The type of the entities, and hence their affordances, e.g., “apple" is an object, you
can pick it up; “kitchen" is a location, you can go to it, and it contains objects.

3. The state of the entities in the world, e.g., the “apple" is in the “kitchen".

Pseudocode 1 ROBO-INSTRUCT for Simulating Robot API calls.

def RoboInstruct_Sim (api_function_call, args):

world = O
entity_names = (api_function_call, args)
for entity_name in entity_names:
if (world, entity_name):
Synthesize a new entity inferred from the API call
required_type = (api_function_call, args)
entity = (world, entity_name, required_type)

The entity's state can be initialized either randomly or deterministically, based
— on the API function and its arguments
inferred_state = (entity_name,

api_function_call, args)

else:
Check if the entity's type and state is consistent with the API call
required_type = (api_function_call, args)
inferred_type = (world, entity_name)

if required_type != inferred_type:
return [None, 'TypeError']

state_requirements = (world, entity_name)
inferred_state = (entity_name, api_function_call, args)
if (inferred_state, state_requirements):

return [None, 'StatelnconsistentError']
Update the state of the entity in the world

world = (world, entity_name, inferred_state)
Randomly sample a value consistent with API call and the current world
ret_val = (world, api_function_call, args)

return [ret_val, 'Success']

These concepts are closely tied to the robot APIs, where each API invocation during program
execution updates the simulation environment. For example, the go_to(loc) action takes

Published as a conference paper at COLM 2025

only entities of type “location” as arguments, and executing it changes the state of the robot
to be at the new location.

Unlike static simulation environments, ROBO-INSTRUCT synthesizes the simulation en-
vironment on-the-fly. Consider an API function call like is_in_room(obj), which takes an
argument of type “object” and checks whether that object is present in the robot’s current
location. When this API is called with a specific parameter (e.g., is_in_room(“apple")),
ROBO-INSTRUCT performs the following steps, as illustrated in Pseudocode 1. First, it
retrieves the current simulation environment and infers the entity name (e.g., “apple”) (lines
2-3). Next, it checks whether an entity with this name has already been initialized (line 6).
If not, ROBO-INSTRUCT synthesizes the entity by inferring its type and state based on the
API call (line 7-11).

A feature of ROBO-INSTRUCT is that an entity’s state can be initialized randomly or de-
terministically, depending on the specific API function (line 10). For example, consider
two API function calls: is_in_room(“apple”) and go_to(“kitchen”). is_in_room(“apple”)
randomly initializes the state of the “apple”, as the “apple” may or may not be present
in the same room as the robot. In contrast, go_to(kitchen”) deterministically updates the
robot’s location to the “kitchen” (assuming the API is executed successfully). This flexibility
allows ROBO-INSTRUCT to simulate diverse environments and test program robustness
under varying conditions.

If an entity has already been initialized during program exe-
cution, its type and state are checked against domain-specific
constraints (lines 14-21). First, the entity’s type must remain
consistent across different API calls (lines 14-17). For example,
consider the program shown in Program Example 1. The API
pick(obj) expects an argument of type object, while go_to(loc)
expects a location 1. By executing API calls sequentially, ROBO-
INSTRUCT first infers that “apple” is an object. Then when go_to(“apple”) is called, ROBO-
INSTRUCT detects a type inconsistency and returns with an error (line 17). Next, ROBO-
INSTRUCT computes the requirements for the robot’s next state based on the current world
state and compares them with the inferred next state (lines 18-21). If the inferred state
violates these requirements, ROBO-INSTRUCT raises an error (line 21). As illustrated in bullet
point 4 of Fig. 3, ROBO-INSTRUCT detects a constraint violation when the robot attempts
to pick up an “apple” that does not exist in the environment. This mismatch between the
expected and actual state leads ROBO-INSTRUCT to reject the candidate program.

def task_program():
pick("apple™)
go_to("apple”)

Program Example 1

Another feature of ROBO-INSTRUCT is that the states of entities in the simulator resemble
STRIPS-style planning (Fikes & Nilsson, 1971), where each state can be either “true” or
“false”, as illustrated in bullet points 1 and 3 of Fig. 3. However, unlike traditional STRIPS
planning, ROBO-INSTRUCT also explicitly includes an “undefined” value for states. This
value represents the default state of any entity not explicitly defined during a program’s
execution. For instance, as shown in bullet point 2 of Fig. 3, after the robot picks up an apple,
ROBO-INSTRUCT marks the apple’s state as “undefined” since it does not track how many
apples remain in the environment and cannot determine whether an apple still exists at the
robot’s location. As a result, this state information is omitted in subsequent executions (a
more detailed comparison with STRIPS planning is discussed in Appendix A.2).

Finally, ROBO-INSTRUCT infers return values according to the API specification and the
current simulation context. As shown in bullet points 1 and 3 of Fig. 3, ROBO-INSTRUCT
randomly decides whether the apple is present, which leads to different return values across
simulation runs. A program is considered valid if it terminates successfully in all simulated
environments.

1In this example, type compatibility check is strict (i.e., “apple” is only an object and no further
inference is made about its location). Nevertheless, the algorithm is also capable of handling more
advanced scenarios.

Published as a conference paper at COLM 2025

2.3 LLM-aided Instruction-Program Alignment Procedure

A key challenge in generating synthetic training data is the mismatch between instruc-
tions and programs—e.g., a program may skip a step implied by the instruction (see Ap-
pendix Fig. 10). Rejection sampling only checks program validity, not whether it fully
matches the instruction. Thus, valid programs can still fail to fulfill the instruction’s intent.

To address this challenge, ROBO-INSTRUCT employs a post-processing procedure to align
instructions with their corresponding programs. The key intuition behind this approach is
that since the program has already been verified, it can remain fixed, and the task shifts to
finding an instruction that accurately aligns with the program. Hence, leveraging the advanced
code understanding capabilities of modern LLMs (Roziére et al., 2024; Nam et al., 2024;
Leinonen et al., 2023; Li et al., 2023; Lekshmi-Narayanan et al., 2024), ROBO-INSTRUCT
applies Chain-of-Thought reasoning (Wei et al., 2022) to generate and compare revised
instructions, selecting the one that best reflects the program. Detailed prompt designs for
this process are provided in AppendixA.5.4.

3 Analysis and Experiments

3.1 Experiments Setup

Benchmark. In this work, we evaluate on the ROBOEVAL benchmark (Hu et al., 2024), a
domain-specific program generation benchmark for service mobile robots (See Appendix A.3
for details.). In this domain, a service mobile robot can perceive objects, navigate to various
locations, manipulate items, and communicate with humans. Accordingly, we design ROBO-
INSTRUCT to align with the constraints of the APIs used in this benchmark. We use the
pass@1 metric to assess the performance of LLMs in generating correct robot programs.

Data Generation. To generate a diverse dataset, we choose to use the open-weight Llama-3
model (Grattafiori et al., 2024) with nucleus sampling to create instruction-program pairs,
setting the temperature T = 1 and the top p = 0.95. The maximum resampling limit is
capped at 3 to accommodate instructions that initially produce invalid programs, and each
verification process duplicates the program 100 times to ensure robust probabilistic coverage
of different execution branches. For the LLM used for post-processing, we empirically adjust
the generation temperature to T = 0.3 to optimize performance (See Fig. 7). Furthermore, we
assess the edit similarity between token sequences of each instruction pair in the dataset (Lee
et al., 2022), removing duplicates where the similarity score exceeds 0.6. The same similarity-
based approach is used to decontaminate the dataset against the ROBOEVAL benchmark
tasks (more details are presented in Appendix A.4.3).

Training Setup. We used PEFT (Hu et al., 2022) with unsloth (Unslothai, 2024) to fine-tune
four popular open-weight CodeLLMs, including Codellama-Python (Roziére et al., 2024),
Llama3 (Grattafiori et al., 2024), Qwen2.5-Coder (Hui et al., 2024), and Gemma?2(Team
et al., 2024). The learning rate is set to be 3e-5 with a warmup ratio of 3% and a constant Ir
scheduler. We employ the AdamW optimizer (Loshchilov & Hutter, 2019) with an effective
batch size of 8, training each model for 5 epochs using a sequence length of 2048 tokens.

Baselines. We compare the performance of the ROBO-INSTRUCT fine-tuned models
against the same models fine-tuned using two popular data generation methods: SELF-
INSTRUCT(Wang et al., 2022) and EVOL-INSTRUCT(Xu et al., 2024). Additionally, we com-
pare their performance against larger models, categorized into two groups: (1) propri-
etary LLMs, including GPT (OpenAl et al., 2024b); and (2) open-weight LLMs, including
Codellama-Python-34B, Starcoder2-15B (Lozhkov et al., 2024), and Deepseek-R1-Distill-
Qwen-32B (DeepSeek-Al et al., 2025).

3.2 Is ROBO-INSTRUCT Effective at Generating Training Data to Fine-Tune a Small
Language Model for Generating Domain-Specific Robot Programs?

Tab. 1 presents the average pass@1 results for different LLMs on ROBOEVAL using two
decoding settings: greedy decoding (T = 0) and nucleus sampling (T = 0.2). ROBO-
INSTRUCT-fine-tuned models outperform base models by an average of 19.9% in pass@1

Published as a conference paper at COLM 2025

ROBOEVAL pass@1

Fine-tune Model # Param T—0 T—02 Licensing
= GPT-4.5 = 88.75% 88.25% Proprietary
- GPT-4 - 83.75% 85.81% Proprietary
= GPT-40-mini = 62.50% 61.63% Proprietary
- Codellama-Python 34B 46.25% 48.25% Open

- Starcoder2 15B 62.5% 60.94% Open

- DeepSeek-R1-Qwen 32B 67.50% 65.13% Open

- Codellama-Python 7B 40.00% 39.31% Open
Self-Instruct CodeLlama-Python 7B 55.00% 52.69% Open
Evol-Instruct CodeLlama-Python 7B 57.50% 55.38% Open
Robo-Instruct (ours) CodelLlama-Python 7B 68.75% 66.00% Open

- Llama3 8B 42.5% 36.69% Open
Self-Instruct Llama3 8B 55.00% 53.75% Open
Evol-Instruct Llama3 8B 57.50% 54.87% Open
Robo-Instruct (ours) Llama3 8B 66.25% 62.44% Open

- Qwen2.5-Coder 7B 55.00% 55.25% Open
Self-Instruct Qwen2.5-Coder 7B 62.50% 59.38% Open
Evol-Instruct Qwen2.5-Coder 7B 65.00% 62.75% Open
Robo-Instruct (ours) Qwen2.5-Coder 7B 68.75% 67.00% Open

- Gemma?2 9B 51.50% 52.00% Open
Self-Instruct Gemma?2 9B 57.50% 57.88% Open
Evol-Instruct Gemma?2 9B 60.00% 59.50% Open
Robo-Instruct (ours) Gemma?2 9B 65.00% 62.63% Open

Table 1: Pass@1 results of different LLMs on ROBOEVAL computed with greedy decoding
T = 0 and nucleus sampling T = 0.2.

scores and surpass their SELF-INSTRUCT-fine-tuned and EVOL-INSTRUCT-fine-tuned coun-
terparts by 9.7% and 7.2%, respectively (analyses of the generated data in Appendix A.4.3).
Notably, despite having significantly fewer parameters, ROBO-INSTRUCT-fine-tuned models
match or exceed the performance of larger open-weight models and even the proprietary
GPT-40-mini.

3.3 Evaluating the Contributions of ROBO-INSTRUCT Components

T=0 T=0.2

Invalid
Method pass@1 Improv. pass@1 Improv. Programs
Codellama-7B-Python 40.00% +0% 39.31% +0% 38.31%
SELF-INSTRUCT 55.00% +15.00% 52.69% +13.38% 20.94%
+Reject Unsolvable (RU) 60.00% +20.00% 57.62% +18.31% 23.38%
+Verify Program + RU 63.75% +23.75% 63.88% +24.57% 14.13%
+LLM-aided Align + RU 58.75% +18.75% 59.81% +20.50% 23.44%
+Both (ROBO-INSTRUCT) 68.75% +28.75% 66.00% +26.69% 17.07%

Table 2: Pass@1 results of different methods on ROBOEVAL computed with greedy decoding
T = 0 and nucleus sampling T = 0.2. The Invalid Programs column indicates the percentage
of programs that result in execution errors when tested on ROBOEVAL tasks.

We conduct an ablation study to examine how verifying programs against domain-specific
constraints (+Verify Program) and applying the LLM-aided Instruction-Program Alignment
procedure (+LLM-aided Align) affect the performance of ROBO-INSTRUCT. Since SELF-
INSTRUCT may generate instructions for which no corresponding valid program can be
generated given an instruction, we include Reject Unsolvable (RU) as an additional baseline.
SELF-INSTRUCT+RU keeps only the instructions that lead to at least one successful program

Published as a conference paper at COLM 2025

execution and removes those that do not produce any valid results. Tab. 2 shows the average
pass@1 results from CodeLlama-7B-Python fine-tuned on different datasets generated by
each method. Results from SELF-INSTRUCT + RU indicate that simply discarding invalid
instructions improves model performance. In addition, using either “Verify Program”
or “LLM-aided Align” alone improves upon the baseline SELF-INSTRUCT results, and
incorporating both within ROBO-INSTRUCT achieves the best pass@1 performance. For
more ablation experiments and analysis on the generated data, we refer the readers to
Appendix A.1 for more results.of

LLM Generated Program ' LLM Generated Program

1 def task_program(): 1 def task_program():

2 go_to("game room") 2 list_of_rooms = get_all_rooms()

3 if is_in_room("Jack"): 3 rooms_with_robots = []

4 say("Hello Jack") 4 for room in list_of_rooms:

5 response = ask("Jack", 5 if "robot" in is_in_room("robot"):
"Want to play a game?", 6 go_to(room)
["Yes", "No"])

Real-world Constraint Violation Return Value Violation

Line 3 checks if Jack is in the room. If he | Line 5 “is_in_room()" returns a boolean,
is absent, line 5 raises an error, as it is |which leads to a Python runtime error due
illogical to ask Jack a question when he is | to a type mismatch.

not present.

LLM Generated Program H LLM Generated Program n

1 def task_program(): 1 def task_program():

2 go_to("item storage room") 2 for room in get_all_rooms():

3 pick("item storage room") if room != "living room":

go_to(room)

pick("toy")

go_to("living room")

if not is_in_room("toy"):
place("toy")

0NV AW

Entity Type Violation fak Robot Configuration Violation fak
The robot cannot pick up a location. If there are more than two rooms, the robot

will attempt to pick up two toys, resulting in
a violation of its configuration, as the robot
is equipped with only one arm.

Figure 4: SELF-INSTRUCT-Generated Program Errors. Examples highlight errors that violate
domain-specific constraints.

3.4 Qualitative analysis of the generated program errors

We qualitatively analyze invalid programs identified by ROBO-INSTRUCT, as shown in
Fig. 4. The first three examples are easily recognizable to humans as flawed. However, the
last example is more complex and involves an error when the robot can navigate to more
than two rooms. After the robot places a toy in the living room, ROBO-INSTRUCT updates
the environment to reflect that a toy is now in the room (line 8). However, when the robot
returns to the living room later (line 6), it will not drop the item it’s holding (line 8). As a
result, when the robot enters a third room (line 4) and tries to pick up another toy (line 5),
an error will occur because the robot is only capable of carrying one item at a time. This
example demonstrates that ROBO-INSTRUCT can detect invalid programs beyond those
easily identifiable through human inspection.

3.5 Real-World Deployment Demo

We deployed the ROBO-INSTRUCT fine-tuned model (on a local 3080 Ti and an H100 server)
to generate and execute mobile robot programs in real-world environments, as illustrated
in Fig. 5. Unlike GPT models, our locally deployed fine-tuned model offers significantly

2Programs have been adapted to succinctly demonstrate the types of errors and fit within the
figure.

Published as a conference paper at COLM 2025

Models GPT-4.5 GPT-4 GPT-4o-Mini Robo-Instruct (Local) Robo-Instruct (Server)
Inference Speed 10 tokens/s 19 tokens/s 41 tokens/s 57 tokens/s 114 tokens/s

Table 3: Inference speed of different models.

faster program generation. Additional results on long-horizon tasks beyond ROBOEVAL are
presented in Appendix A.6.

Compile a list of ingredients for grilled cheese. Go to Zarko's office, and ask him
which of them he has. Come back and tell me what he does not have.

def task_program M User-Provided Instruction
start_loc = get_current_location Generated program
missing_ingredients - '
go_to("Zarko’s offic
for ingredient i
response = a
if response
missing_ingredients.append(ingredient
go_to(start_loc
say("Zarko is missing: " + ", ".join(missing_ingredients) + "ingredients"

! Generate Code Execute!
364.30ms.

Figure 5: Deployment of the ROBO-INSTRUCT fine-tuned model to generate programs based
on user-provided instructions and execute them on the robot.

"cheese", “butter"
ko", "Do you have " + ingredient + "?", ["Yes", "No"

4 Related Work

LLMs for Robot Code Generation LLM:s are performant in generating robot programs
from natural language (Liang et al., 2022; Singh et al., 2023; Huang et al., 2023a). One
common approach involves generating composable costmaps for motion planning, as
seen in Voxposer (Huang et al., 2023b) for tabletop tasks and NavCon (Biggie et al., 2023)
for navigation. LLMs are also effective at creating reward functions—Eureka (Ma et al.,
2023; 2024) and Language-to-Rewards (Yu et al., 2023) enable robots to learn complex
skills through LLM-generated rewards. For high-level planning, LLM+p (Liu et al., 2023a)
outputs PDDL plans, while Tidybot (Wu et al., 2023) learns user preferences from examples
to generate sequential task programs. RoboEval (Hu et al., 2024) targets service robots,
generating and validating domain-specific programs for long-horizon tasks.

Generating Datasets For Fine-tuning LLMs To improve code generation, many studies
create specialized datasets (Muennighoff et al., 2024; Kopf et al., 2023; Muennighoff et al.,
2022). SELF-INSTRUCT(Wang et al., 2022) is a popular approach that uses LLMs to generate
synthetic data. This approach is later extended by Code Alpaca (Chaudhary, 2023) and
Gorilla-LM (Patil et al., 2023) for code and ML APIs. In addition, Evol-Instruct (Xu et al.,
2024; Luo et al., 2024) proposes an approach to iteratively update instructions to become
more complex through different prompting strategies. OSS-Instruct (Wei et al., 2023) uses
open-source code to train Magicoder, matching GPT-3.5-Turbo on HumanEval (Chen et al.,
2021). While prior work focuses on seed instruction generation, we explore post-processing
methods, especially for robotics programs (Hu et al., 2024), where we can effectively leverage
constraints to filter out erroneous programs.

Relevance to Program Analysis Our approach is inspired by angelic execution (Broy &
Wirsing, 1981), where we apply nondeterminism to resolve the types and state of input
arguments for each predefined robot API, in the context of LLM-based program generation.
Outside the application of LLMs, related ideas have been explored in program analysis
techniques such as symbolic execution, exemplified by KLEE (Cadar et al., 2008), which
generates high-coverage tests for complex, environment-intensive programs. Large-scale
static analysis tools (Calcagno et al., 2015; Bessey et al., 2010; Ayewah et al., 2008) also
demonstrate the effectiveness of analyzing codebases at scale to uncover bugs and enforce
correctness properties.

Published as a conference paper at COLM 2025

5 Conclusion, Limitation and Future Works

In this work, we introduce ROBO-INSTRUCT, a novel framework for generating synthetic
robot program training data to fine-tune open-weight LLMs for domain-specific service
robot tasks. ROBO-INSTRUCT features a novel algorithm to synthesize simulation environ-
ments on-the-fly to check for any violations of domain-specific constraints and an LLM-aided
instruction alignment procedure that refines instructions to better match the generated pro-
grams. Experimental results show that ROBO-INSTRUCT-fine-tuned models significantly
outperform baseline approaches using SELF-INSTRUCT and EVOL-INSTRUCT, while also
matching or surpassing larger open-weight LLMs and proprietary models like GPT-40-mini
in generating service robot programs. However, ROBO-INSTRUCT is not without limitations.
The framework enforces necessary—but not sufficient—conditions for program correctness: while a
program that fails our checks is guaranteed to violate at least one domain-specific constraint,
a passing program is not necessarily correct in all possible scenarios. For instance, consider
a simplified program containing only the instruction pick_up(“building”). ROBO-INSTRUCT
may synthesize a scenario in which a “building” is treated as a pickable object, which is
clearly unrealistic. As a result, while ROBO-INSTRUCT effectively detects many domain-
specific violations, it may miss feasibility issues beyond the defined task constraints. Despite
this limitation, our experiments demonstrate that ROBO-INSTRUCT is effective in identifying
a wide range of domain-specific violations. Future work could explore integrating ROBO-
INSTRUCT within a reinforcement learning fine-tuning loop, allowing models to iteratively
learn from violations, thereby improving their ability to generate robust and realistic robot
programs for domain-specific applications.

Acknowledgments

This work was partly supported by NSF grants CCF-2313027, 11S-2416461, CAREER-2046955
and UT Austin through the Associate Professor Experimental (APX) program.

References

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program
synthesis with large language models, 2021.

Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David Morgenthaler, and John
Penix. Using static analysis to find bugs. IEEE Software, 25(5):22-29, 2008. doi: 10.1109/
MS.2008.130.

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-
Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of code later:
using static analysis to find bugs in the real world. Commun. ACM, 53(2):66-75, February
2010. ISSN 0001-0782. doi: 10.1145/1646353.1646374. URL https://doi.org/10.1145/
1646353.1646374.

Harel Biggie, Ajay Narasimha Mopidevi, Dusty Woods, and Christoffer Heckman. Tell me
where to go: A composable framework for context-aware embodied robot navigation,
2023.

Manfred Broy and Martin Wirsing. On the algebraic specification of nondeterministic
programming languages. In Proceedings of the 6th Colloquium on Trees in Algebra and
Programming, CAAP ’81, pp. 162-179, Berlin, Heidelberg, 1981. Springer-Verlag. ISBN
3540108289.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI'08, pp. 209224,
USA, 2008. USENIX Association.

10

https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374

Published as a conference paper at COLM 2025

Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Mar-
tino Luca, Peter O’'Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez.
Moving fast with software verification. In Klaus Havelund, Gerard Holzmann, and
Rajeev Joshi (eds.), NASA Formal Methods, pp. 3-11, Cham, 2015. Springer International
Publishing. ISBN 978-3-319-17524-9.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation.
https://github.com/sahil280114/codealpaca, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, et al. Evaluating large language models trained on
code. 2021.

Zeming Chen, Alejandro Hernandez-Cano, et al. Meditron-70b: Scaling medical pretraining
for large language models, 2023.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, et al.
Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Richard E. Fikes and Nils J. Nilsson. Strips: a new approach to the application of theorem
proving to problem solving. In Proceedings of the 2nd International Joint Conference on Artifi-
cial Intelligence, IJCAI'71, pp. 608-620, San Francisco, CA, USA, 1971. Morgan Kaufmann
Publishers Inc.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy
Yang, Angela Fan, et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with apps. NeurIPS, 2021.

Edward] Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=nZeVKeeFYf9.

Zichao Hu, Francesca Lucchetti, Claire Schlesinger, Yash Saxena, Anders Freeman, Sadanand
Modak, Arjun Guha, and Joydeep Biswas. Deploying and evaluating llms to program
service mobile robots. IEEE Robotics and Automation Letters, 9(3):2853-2860, 2024. doi:
10.1109/LRA.2024.3360020.

Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps
for robot navigation. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), London, UK, 2023a.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Vox-
poser: Composable 3d value maps for robotic manipulation with language models. In 7th
Annual Conference on Robot Learning, 2023b.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men,
Fei Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren,
Xuancheng Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024.
URL https://arxiv.org/abs/2409.12186.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
Stevens, Abdullah Barhoum, Duc Minh Nguyen, Oliver Stanley, Richdrd Nagyfi, Shahul
ES, Sameer Suri, David Alexandrovich Glushkov, Arnav Varma Dantuluri, Andrew
Maguire, Christoph Schuhmann, Huu Nguyen, and Alexander Julian Mattick. Openas-
sistant conversations - democratizing large language model alignment. In Thirty-seventh

11

https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2409.12186

Published as a conference paper at COLM 2025

Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
URL https://openreview.net/forum?id=VSJotgbPHF.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer,
Wen-Tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable
benchmark for data science code generation. ArXiv, abs/2211.11501, 2022.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris
Callison-Burch, and Nicholas Carlini. Deduplicating training data makes language
models better. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 8424-8445, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.577. URL https://aclanthology.org/2022.
acl-long.577.

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne Kim,
Andrew Tran, and Arto Hellas. Comparing code explanations created by students and
large language models. In Proceedings of the 2023 Conference on Innovation and Technology
in Computer Science Education V. 1, ITiCSE 2023, pp. 124-130, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400701382. doi: 10.1145/3587102.
3588785. URL https://doi.org/10.1145/3587102.3588785.

Arun-Balajiee Lekshmi-Narayanan, Priti Oli, Jeevan Chapagain, Mohammad Hassany, Rabin
Banjade, Peter Brusilovsky, and Vasile Rus. Explaining code examples in introductory
programming courses: LIm vs humans, 2024. URL https://arxiv.org/abs/2403.05538.

Jierui Li, Szymon Tworkowski, Yingying Wu, and Raymond]J. Mooney. Explaining
competitive-level programming solutions using llms. CoRR, abs/2307.05337, 2023. doi:
10.48550/ ARXIV.2307.05337. URL https://doi.org/10.48550/arXiv.2307.05337.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, et al. Competition-level code generation with alphacode. Science, 378(6624):
1092-1097, 2022. doi: 10.1126/science.abq1158. URL https://www.science.org/doi/abs/
10.1126/science.abq1158.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In
arXiv preprint arXiv:2209.07753, 2022.

Bo Liu, Yugian Jiang, et al. LLM+P: Empowering Large Language Models with Optimal
Planning Proficiency. arXiv:2304.11477, 2023a.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code gener-
ation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL
https://openreview.net/forum?id=1qvx610Cu7.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkgb6RiCqY7.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier,
Nouamane Tazi, et al. Starcoder 2 and the stack v2: The next generation, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang
Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large
language models with evol-instruct. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=UnUwSIgK5W.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward
design via coding large language models. arXiv preprint arXiv: Arxiv-2310.12931, 2023.

12

https://openreview.net/forum?id=VSJotgbPHF
https://aclanthology.org/2022.acl-long.577
https://aclanthology.org/2022.acl-long.577
https://doi.org/10.1145/3587102.3588785
https://arxiv.org/abs/2403.05538
https://doi.org/10.48550/arXiv.2307.05337
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=UnUwSIgK5W

Published as a conference paper at COLM 2025

Yecheng Jason Ma, William Liang, Hungju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert
Bastani, and Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer.
2024.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman,
Teven Le Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, et al.
Crosslingual generalization through multitask finetuning. arXiv preprint arXiv:2211.01786,
2022.

Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack:
Instruction tuning code large language models. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=mw1PWNSWZP.

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad Myers.
Using an llm to help with code understanding. In Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ICSE "24, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.
3639187. URL https://doi.org/10.1145/3597503.3639187.

OpenAl :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh,
Aidan Clark, AJ Ostrow, et al. Gpt-40 system card, 2024a. URL https://arxiv.org/abs/
2410.21276.

OpenAl, Josh Achiam, Steven Adler, et al. Gpt-4 technical report, 2024b.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language
model connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov,
Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis
Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open
foundation models for code, 2024.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,
Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot
task plans using large language models. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 11523-11530, 2023. doi: 10.1109/ICRA48891.2023.10161317.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval,
pp- 132-142. Taylor Graham Publishing, GBR, 1988. ISBN 0947568212.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, et al. Gemma 2:
Improving open language models at a practical size, 2024. URL https://arxiv.org/abs/
2408.00118.

Unslothai. Unsloth: Finetune llama 3, mistral & gemma llms 2-5x faster with 80 URL
https://github.com/unslothai/unsloth. Accessed: 2024-05-22.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language model with self generated
instructions, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H.
Chi, Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large
language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source
code is all you need, 2023.

13

https://openreview.net/forum?id=mw1PWNSWZP
https://doi.org/10.1145/3597503.3639187
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://github.com/unslothai/unsloth

Published as a conference paper at COLM 2025

Jimmy Wu, Rika Antonova, Adam Kan, Marion Lepert, Andy Zeng, Shuran Song, Jeannette
Bohg, Szymon Rusinkiewicz, and Thomas Funkhouser. Tidybot: Personalized robot
assistance with large language models. Autonomous Robots, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao,
Qingwei Lin, and Daxin Jiang. WizardLM: Empowering large pre-trained language
models to follow complex instructions. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=CfXh93NDgH.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonza-
lez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian
Ichter, Ted Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie
Tan, Yuval Tassa, and Fei Xia. Language to rewards for robotic skill synthesis. Arxiv
preprint arXiv:2306.08647, 2023.

14

https://openreview.net/forum?id=CfXh93NDgH

Published as a conference paper at COLM 2025

A Appendix

A.1 Overview

In this appendix, we first outline the relationship between ROBO-INSTRUCT and the clas-
sic STRIPS planning formulation in subsection A.2, providing a new perspective on the
proposed algorithm. Subsection A.3 shows mode detailed descriptions of the ROBOEVAL
benchmark. In subsection A.4, we present additional ablation experiments to analyze the
percentage of invalid programs generated by SELF-INSTRUCT and the effectiveness of the
rejection-sampling strategy combined with ROBO-INSTRUCT. We also explore how the
generation temperature in the LLM-aided Instruction-Program Alignment Procedure im-
pacts final performance and compare the dataset diversity produced by ROBO-INSTRUCT
and SELF-INSTRUCT. Subsection A.5 lists the seed tasks used in ROBOEVAL and the CoT
prompts. in subsection A.6, we report real-world experiments that empirically evaluate the
performance of our fine-tuned model on two long-horizon tasks, which differ significantly
from those in ROBOEVAL, and assess the model’s latency in generating programs. Although
this work focuses on service mobile robots, the proposed framework is adaptable to other
domains. In subsection A.7, we offer toy examples showing how ROBO-INSTRUCT can be
extended to verify programs by incorporating domain-specific constraints.

A.2 Relevance to STRIPS planning

The proposed ROBO-INSTRUCT shares significant similarities with the formulation of STRIPS
planning. A STRIPS instance is typically represented as a tuple (I, G, A, P), where I denotes
the initial state of the simulation environment, G represents the desired goal state that the
robot aims to achieve, A defines the set of actions available to transition between states,
and P is the set of preconditions that must be satisfied before performing actions. Thus,
ROBO-INSTRUCT can be reformulated to align with the STRIPS formulation as shown in
Alg. 2. Each API invocation corresponds to an action, and its precondition consists of a set
of literals, representing specific combinations of entities, types, and states.

To address this, we extend the classic STRIPS formulation by incorporating dynamically
discovered literals. Unlike the conventional STRIPS approach, where each literal is bi-
nary—True when defined and False when not—we introduce a third value, "Undefined."
This means a literal must be explicitly defined as either True or False; otherwise, it remains
in the Undefined state. When an action requires a literal that is undefined, a random
value (True or False) is assigned to it, and the literal is added to the state of the simulation
environment (line 7). Once the precondition is fully defined, the action is executed, and
domain-specific constraints are checked for any violations (line 10). This extension enables
ROBO-INSTRUCT to handle arbitrary programs effectively.

Pseudocode 2 ROBO-INSTRUCT — STRIPS(api_fn, params, W)

1: Input: api_fn > The API function name
2: Input: api_inputs > The input received by the API invocation
3: Input: W > The current state of the simulation environment
4: p < GETPRECOND(api_fn, params) > Get the parameter-specific precondition for api_fn
5: forl € pdo > Loop through every literal in the precondition
6: if CHECKDEFINED(W,) is Undefined then
7 W < GROWWORLD(l, W) > Randomly instantiate the literal and grow W to include it
8: endif
9: end for
10: retval, W < EXECUPDATE(api_fn, params, W) > Execute api_fn and update W
11: return retval

A.3 ROBOEVAL Benchmark
ROBOEVAL is a domain-specific code generation benchmark, featuring a suite of 16 tasks

designed to evaluate the ability of LLMs to understand custom APIs and generate programs
for service robots. In this domain, a service robot can perceive objects, navigate to various

15

Published as a conference paper at COLM 2025

RoboEval Domain-Specific API Definitions 16 RoboEval Benchmark Tasks

Get the current location of the robot.
def get_current_location() -> str

ElevatorTour FindBackpack GetDrink WeatherPoll
Get a list of all rooms.
def get_all_rooms() -> list[str]

Task Instruction

Check if an object is in the current room. Go to the elevator. Wait until someone shows up and ask them if they are here for the tour. If
def is_in_room(object : str) -> bool yes, welcome them to the university, tell them to follow you, and take them to the main

Go to a specific named location. conference room. If not, wait for the next person. When you get to the conference room, say
def go_to(location : str) -> None you have arrived at the conference room and also say enjoy your visit here!

Ask a person a question, and offer a set of specific))
options for the person to respond. Returns the response Canonical Solution

selected by the person. 1 def task_program():
def ask(person : str, question : str, 2 go_to("elevator")

options: list[str]) -> str 3 while True:

4 if is_in_room("person"):

Say the message out loud. 5 response = ask("", "Are you here for the conference?", ["Yes", "No"])
def say(message : str) -> None 6 if response == "Yes":
Pick up an object if you are not already holding one. You 7 say("Welcome to the university. Please follow me.")
can only hold one object at a time. 8 break

def pick(obj: str) -> None 9 time.sleep(1)
10 go_to("conference room”)

Place an object down if you are holding one. " N N . "
11 say("We have arrived. Enjoy your time here")

def place(obj: str) -> None

Figure 6: ROBOEVAL APIs and benchmark task example.

locations, manipulate items, and communicate with humans. Furthermore, the robot should
be capable of basic commonsense reasoning and executing complex tasks that involve
conditional and repetitive actions. To facilitate these capabilities, ROBOEVAL defines a set
of 8 API functions in Python as skill primitives. Fig. 6 illustrates these function signatures
and definitions, alongside an example task instruction and its canonical solution from the
benchmark. In addition, unlike other popular code generation benchmark tasks (Chen et al.,
2021; Austin et al., 2021; Li et al., 2022; Liu et al., 2023b; Lai et al., 2022; Hendrycks et al.,
2021), the order of the robot’s actions is crucial for successfully completing the specified
tasks. For instance, in the task "bring me a marker from the classroom that does not have a
whiteboard,” the robot must check each classroom until it finds one without a whiteboard,
whereas simply bringing back a marker is insufficient. Hence, ROBOEVAL evaluates the
generated program by executing it in a simulator to capture the action traces, which are
subsequently validated for sequence correctness using temporal logic.

A.4 Ablation Experiments

A.4.1 the Effectiveness of the Rejection-Sampling Strategy

We analyze the percentage of instruction-program pairs discarded by ROBO-INSTRUCT
at various maximum resampling limits, as shown in Fig. 7. Initially, with the maximum
resampling limit set to 0, disabling the rejection-sampling method, approximately 51% of
the programs generated by SELF-INSTRUCT contain errors. As the limit increases, fewer
programs are discarded. However, there is a diminishing return; even with the maximum
resampling limit set to 10, about 15% of the instructions still result in invalid programs.

68
50
40 66 T
S
3
ki ~ 64
T3P0 ® p
gc @
3 o 62 :
o9 20 & \.
o
10 60
0 58
0 1 2 3 4 5 6 7 8 9 10 0.1 0.3 0.5 0.7 0.9
Maximum Resampling Limit InstAlign LLM Generation Temperature

Figure 7: Ablation Experiment Results

16

Published as a conference paper at COLM 2025

A.4.2 Instruction Alignment model temperature

We further investigate how varying LLM temperatures for generating the revised instruction
in the LLM-aided Instruction-Program Alignment Procedure impact the performance of
the fine-tuned model. Fig. 7 shows the bar chart of the pass@1 score of the models fine-
tuned over datasets generated using different LLM temperatures. The model performs the
best when fine-tuned on the dataset generated using LLM temperature T = 0.3. As the
temperature increases, we observe a decrease in performance.

A4.3 Analysis of Generated Dataset

0.14

- . 0.14 Self-Instruct
—— Self-Instruct; Median Score: 0.117 Robo-Instruct

0.121 Robo-Instruct; Median Score: 0.120 0.12
] 1
& 0.10 : o
0.08 : g
E /J\\ 5 008
$ 0067 B 5
Ej i f ; \ E 0.06
gooaq iy :
0.02 - / _\ 0.04
0.00 - T : T — o f 0.02
0.0 0.1 0.2 0.3 0.4 0.5
Cosine Similarity Score s 200 w o w0 1000
Figure 8: Cosine similarities between ROBOE- Figure 9: Token length distribution for
VAL and generated data. each instruction-program pair.

Similar to Magicoder (Wei et al., 2023), we show the improvements from ROBO-INSTRUCT
are not merely due to selection bias, i.e., including data more aligned with the distribution of
ROBOEVAL tasks than SELF-INSTRUCT. We pair each sample from the generated dataset with
task instructions and their canonical solutions, then compute cosine similarity using TF-IDF
embeddings (Sparck Jones, 1988). Fig. 8 shows comparable token similarities between both
methods. Additionally, Fig. 9 presents the token length distribution, which also appears
similar for both.

Method Size Ngram=4 Score # Synth. Loc. # Synth. Ob;.
SELF-INSTRUCT 5K 0.581 956 1060
ROBO-INSTRUCT 5K 0.587 1025 928

Table 4: Dataset Statistics

Since ROBO-INSTRUCT does not rely on pre-defined simulation environments, we aim
to assess the diversity of programs generated by SELF-INSTRUCT and whether ROBO-
INSTRUCT can maintain this diversity. To do so, we measure the number of distinct entities,
such as synthetic locations and objects. As shown in Tab. 4, with a dataset of only 5,000
samples, approximately 1,000 unique objects and locations are generated, highlighting that
conventional robot simulations with pre-defined environments are insufficient. Additionally,
Tab. 4 presents the n-gram diversity scores for each dataset, indicating that both distributions
and dataset statistics are highly similar. This suggests that ROBO-INSTRUCT not only
preserves but enhances the quality of generated data compared to SELF-INSTRUCT, rather
than simply aligning the dataset with benchmark tasks.

A.5 Prompts

A.5.1 ROBOEVAL Seed Task Example
Seed Task Example 1:

17

Published as a conference paper at COLM 2025

Instruction: Go to Arjun's office, ask him if he is ready to head out,
and come back and tell me what he said
def task_program():
start_loc = get_current_location()
go_to("Arjun's office")
response = ask("Arjun”,
"Are you ready to go?”,
["Yes", "No"1)
go_to(start_loc)
say("Arjun said:

O 0 N O Ul e W N =

n

=
o

+ response)

Seed Task Example 2:

Instruction: Ask Alice if she needs 1, 2, or 3 boxes.

Go to the storage room and ask if they have that many boxes.
If so, go place the boxes in Alice's office.

Otherwise, tell Alice you could not get the boxes.

O 00 N N Ul ke N =

I T S T S S U R gy
N = S0 ® 9 Gk ®N ~ O

O 0 N N Ul R W N

[
[TS U)

def task_program():
go_to("Alice's office")
num_boxes = ask("Alice",
"How many boxes do you need?”,
grar, "2m, "3"1)
go_to("storage room™)
response = ask("",

"Do you have" + num_boxes + " boxes?",

["Yes", "No"1)
if response == "Yes":
for _ in range(int(num_boxes)):
pick("box")
go_to("Alice's office")
place("box™)
go_to("storage room™)
else:
go_to("Alice's office")

say("I could not get the boxes™)

Seed Task Example 3:

Instruction: Check if there is a red marker in the main
office, and if so, tell Eve that there is a marker there.

If not, go to the supply room and
bring a red marker to the main office.
def task_program():

go_to("main office”)

red_marker_found = is_in_room("red marker")

if red_marker_found:
go_to("Eve's office”)

say("There is a red marker in the main office")

else:
go_to("supply room™)
pick("red marker™)
go_to("main office")
place("red marker™)

Seed Task Example 4:

1 # Instruction: Check every classroom if there is a whiteboard.
2 # Go to Aiden's office to tell him which room does not

18

O ® N o U W

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Published as a conference paper at COLM 2025

have a whiteboard. Come back and tell me task is completed.

def task_program():
start_loc = get_current_location()
list_of_rooms = get_all_rooms()
room_without_whiteboard = []
for room in list_of_rooms:
if "classroom” not in room:
continue
go_to(room)
if not is_in_room("whiteboard"):

room_without_whiteboard.append(room)

go_to("Aiden's office")
if len(room_without_whiteboard) > 0:
message = ""

for room in room_without_whiteboard:

n n

message += room +

message += "do not have a whiteboard”

else:

message = "all classrooms have a whiteboard”

say(message)
go_to(start_loc)
say("task is completed”)

Seed Task Example 5:

Instruction: Go to the kitchen and wait for someone
to show up. When someone shows up, ask them to open
the fridge, then pick up a diet coke.

Finally, put the diet coke in the living room.

O 0 N N Ul R W

[B e T T
N Ul o W N = O

R e N I I I N

e
@ N = O

def task_program():
go_to("kitchen™)
while True:
if is_in_room("person”):
response = ask("",
"Please open the fridge",
["Yes", "No"1)

if response == "Yes":
pick("diet coke™)
break

time.sleep(1)
go_to("living room™)
place("diet coke")

Seed Task Example 6:

Instruction: Take a bed sheet from the laundry room

and put it in each of the bedrooms.
def task_program():
start_loc = get_current_location()
list_of_rooms = get_all_rooms()
for room in list_of_rooms:
if "bedroom” not in room:
continue
go_to("laundry room")
pick("bed sheet”)
go_to(room)
place("bed sheet")
go_to(start_loc)

19

R e S I I I N

NN RN = 2 o o o2 1 a3
N = S © ® 9 o G k& @ N = O

O ® NN Ul e W N e

[T
G Bk W N = O

Published as a conference paper at COLM 2025

A.5.2 Prompts to Generate Synthetic Dataset Using SELF-INSTRUCT

You are a helpful assistant. Here is a robot that has the
following capabilities:

- def get_current_location() -> str:

- def get_all_rooms() -> list[str]:

- def is_in_room(object : str) -> bool:

- def go_to(location : str) -> None:

- def ask(person : str, question : str, options: list[str]) -> str:
- def say(message : str) -> None:

- def pick(obj: str) -> None:

- def place(obj: str) -> None:

Generate an interesting robot task that can be accomplished using the
above capabilities.

{SEED EXAMPLE 1}

Generate an interesting robot task that can be accomplished using the
above capabilities.
{SEED EXAMPLE 6}

Generate an interesting robot task that can be accomplished using the
above capabilities.

A.5.3 LLM-aided Instruction-Program Alignment Procedure

def task_program():
pick("apple")
go_to("kitchen") /X

i
|
I
I
1
1
1
I place("apple") |/

!
| choose

|
1 | |
1
1 If there is an apple, bring it to ! -)
:Revmedlnsﬂucnon .
' :
I

] .
, Bring an apple to the
:the kitchen.

1

I

1 .

| 1 kitchen.
' b1 b3
Figure 10: Overview of the LLM-aided Instruction-Program Alignment Procedure.

A.54 CoT Prompts for LLM-aided Instruction-Program Alignment Procedure

Role

You are an expert at understanding robot programs.

You will be given a task instruction and robot program pair.

However, the instruction may not align with the program well.

You need to correct the task instruction to match the given robot program.

Context

The robot only has access to the following 8 APIs and

standard Python functions

- def get_current_location() -> str:

- def get_all_rooms() -> list[str]:

- def is_in_room(object : str) -> bool:

- def go_to(location : str) -> None:

- ask(person : str, question : str, options: list[str]) -> str:
- say(message : str) -> None:

20

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

N Ul R W N =

O ® N O Ul e W N e

T S e = T e T
N Uk W N = O

Published as a conference paper at COLM 2025

- def pick(obj: str) -> None:
- def place(obj: str) -> None:

Inputs
Original Instruction

This is a task instruction that may not align with the robot program
Robot Program

This is a python function starting with ~def task_program():~

Task

1. Write down all the provided APIs used in the program and

explain the effect of each API in this program

2. Examine these APIs and write down step by step what the program does
3. Combine all the results above and rewrite the instruction

You need to be specific and clear in your final corrected instruction.

A.6 Real-world Experiments
A.6.1 Program Generation Results Beyond ROBOEVAL

We conducted a small qualitative experiment to assess the performance of the base model,
SELF-INSTRUCT fine-tuned models, ROBO-INSTRUCT fine-tuned models, and GPT-4 on
long-horizon tasks. To showcase performance, we created two new long-horizon tasks
that differ significantly from those in the ROBOEVAL benchmark. Using a temperature
setting of 0, we generated programs with each model and found that our ROBO-INSTRUCT
fine-tuned model successfully produced correct programs, while both the base model and
SELF-INSTRUCT fine-tuned model failed. Additionally, GPT-4 made an error on the second
instruction. We show the generation results from ROBO-INSTRUCT fine-tuned models and
GPT-4 below.

Task instruction 1:

Let's play a game: Double and give it to the next person. Start with

1 dollar. Go to rooms A, B, C, D, E, F, and G. If you see someone, tell
them how much money you have. Then ask if they would like to take the
money now or double the amount and give it to the next person. If they
choose to take it, the game is over, and you should come back to me.
Otherwise, double your money and continue. If, in the end, no one takes
the money, tell me how much you still have.

ROBO-INSTRUCT fine-tuned model (Ours) [Success]

def task_program():
start_loc = get_current_location()
list_of_rooms = ["A", "B", "C", "D", "E", "F", "G"]
money = 1
for room in list_of_rooms:
go_to(room)
if is_in_room("person”):
say("I have $" + str(money))
response = ask("", """Would you like to take the money now
or double the amount and give it to the next person?""",
["Take now"”, "Double and give"])
if response == "Take now":
go_to(start_loc)
say("The game is over, I gave the money to
return
else:
money *= 2

n

+ room)

21

18
19

O ® N O Ul N e

P S S S
S © ® 9> Gk ® N = O

[B N e R N R

O ® N O Ul W N e

NN RN R = o o om
DN R, SV ® N0 G R®NE O

Published as a conference paper at COLM 2025

go_to(start_loc)
say(”"No one took the money, I still have $" + str(money))

GPT-4 [Success]

def task_program():
start_loc = get_current_location()
rooms = ["A”, "B", "C", "D", "E", "F", "G"]
money = 1
for room in rooms:
go_to(room)
if is_in_room("person”):
say("I have " + str(money) + " dollars"”)
response = ask("", """Would you like to take the money now
or double the amount and give it to the next person?""",
["Take it", "Double it"1])
if response == "Take it":
say("Game over. The person in room
" took the money.")
go_to(start_loc)
return
else:
money *= 2
go_to(start_loc)

n

+ room +

say(”"No one took the money. I still have " + str(money) + " dollars.”)

Task instruction 2:

Go to my office and check if I have a table, a chair, and a monitor
there. If any of these items are missing, go to Jason's office and

see if he is there. If he is, ask him if I can borrow the missing items.
If he agrees, pick up each missing item and bring it to my office.

If Jason is not in his office or he says no, come back and tell me the
reason.

ROBO-INSTRUCT fine-tuned model (Ours) [Success]

def task_program():
start_loc = get_current_location()
go_to("my office"”)
table_found = is_in_room("table”)
chair_found = is_in_room("chair")
monitor_found = is_in_room("monitor")
if not table_found:
go_to("Jason's office")
if is_in_room("Jason"):
response = ask("”Jason”, "Can I borrow the table from you?",
["Yes", "No"1)
if response == "Yes":
go_to("Jason's office")
pick("table™)
go_to("my office"”)
place("table")
else:
go_to(start_loc)
say("Jason said no")
else:
go_to(start_loc)
say("Jason is not in his office")
if not chair_found:

22

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

O 00 N N Ul R W =

NN RN NN N RN = o sl 2 s 3 s
S U E YN R, S 0 ® U kRN~ O

Published as a conference paper at COLM 2025

go_to("Jason's office")
if is_in_room("Jason"):
response = ask("”Jason”, "Can I borrow the chair from you?",
["Yes", "No"1)
if response == "Yes":
go_to("Jason's office")
pick("chair™)
go_to("my office”)
place(”chair™)
else:
go_to(start_loc)
say("Jason said no")
else:
go_to(start_loc)
say("Jason is not in his office")
if not monitor_found:
go_to("Jason's office")
if is_in_room("Jason"):

response = ask("Jason”, "Can I borrow the monitor from you?",

["Yes", "No"1)
if response == "Yes":
go_to("Jason's office")
pick("monitor™)
go_to("my office”)
place("monitor™)
else:
go_to(start_loc)
say("Jason said no")
else:
go_to(start_loc)
say("Jason is not in his office")
go_to(start_loc)
say("task is completed"”)

GPT-4 [Failure]

def task_program():
start_loc = get_current_location()
go_to("my office”)
missing_items = []
for item in ["table”, "chair"”, "monitor"]:
if not is_in_room(item):
missing_items.append(item)
if len(missing_items) > 0:
go_to("Jason's office")
if is_in_room("Jason"):
for item in missing_items:

response = ask("Jason”, "Can I borrow your " + item +

"2, ["Yes”, "No"1)

if response == "Yes":

BUG: did not return to Jason's office after going back to my office

pick(item)
go_to("my office"”)
place(item)

else:

go_to(start_loc)
say("Jason did not allow me to borrow his
return

n

+ item)

else:
go_to(start_loc)
say("Jason is not in his office")
return

23

Published as a conference paper at COLM 2025

27 go_to(start_loc)
28 say("Task is completed”)

24

Published as a conference paper at COLM 2025

A.6.2 Generation Latency

Go to the elevator. Wait until someone shows up and ask them if they are here for the tour. If yes,
welcome them to the university, tell them to follow you, and take them to the main conference room. If
not, wait for the next person. When you get to the conference room, say you have arrived at the
conference room and also say enjoy your visit here!

def task_program()
start_loc = get_current_location()
while True
go_to("elevator")
if is_in_room("person"
response = ask("", "Are you here for the tour?", ["Yes", "No"])
if response == "Yes"
say("Welcome to the university! Please follow me.")
go_to("main conference room")
break
time.sleep(1)
say("I have arrived at the conference room. Enjoy your visit here!")
go_to(start_loc)

Execute! Generate Code

_ Generated by our model

(a) Example Program 1 generated by our fine-tuned model.

Go to the elevator. Wait until someone shows up and ask them if they are here for the tour. If yes,
welcome them to the university, tell them to follow you, and take them to the main conference room. If
not, wait for the next person. When you get to the conference room, say you have arrived at the
conference room and also say enjoy your visit here!

def task_program()
go_to("elevator")
while True
if is_in_room("person™)
response = ask("", "Are you here for the tour?", ["Yes", "No"
if response == "Yes"
say("Welcome to the university! Please follow me to the main conference room.")
go_to("main conference room")
say("We have arrived at the main conference room. Enjoy your visit here!")
break
time.sleep(1)

Execute! Generate Code

— Generated by GPT-4

(b) Example Program 1 generated by GPT-4.

Figure 11: Our fine-tuned model is approximately 6x faster in inference speed than GPT-4
(Part 1).

25

WO e

Published as a conference paper at COLM 2025

Go to the elevator. Wait until someone shows up and ask them if they are here for the tour. If yes,
welcome them to the university, tell them to follow you, and take them to the main conference room. If
not, wait for the next person. When you get to the conference room, say you have arrived at the
conference room and also say enjoy your visit here!

def task_program
go_to("elevator"
while True
if is_in_room("person"”
response = ask("", "Are you here for the tour?" "Yes", "No"
if response == "Yes"
say("Welcome to the university! Please follow me to the main conference room."
go_to("main conference room"
say("We have arrived at the main conference room. Enjoy your visit here!"
break
time.sleep(1

Execute! Generate Code

_ Generated by GPT-4

(c) Another Example Program generated by GPT-4.

Go to the elevator. Wait until someone shows up and ask them if they are here for the tour. If yes,
welcome them to the university, tell them to follow you, and take them to the main conference room. If
not, wait for the next person. When you get to the conference room, say you have arrived at the
conference room and also say enjoy your visit here!

def task_program
go_to("elevator"
while True
if is_in_room("person"”
response = ask("", "Are you here for the tour?" "Yes", "No"
if response == "Yes"
say("Welcome to the university! Please follow me to the main conference room."
go_to("main conference room"
say("We have arrived at the main conference room. Enjoy your visit here!"
break
time.sleep(1

Execute! Generate Code

— Generated by GPT-4

(d) Another Example Program generated by GPT-4.

Figure 12: Our fine-tuned model is approximately 6x faster in inference speed than GPT-4
(Part 2).

A.7 Toy Examples Beyond Service Mobile Robots
A.7.1 Robot with low-level controls

Consider a tabletop manipulation scenario with a potential API function,
is_rotate(robot_gripper_ name, radians), where the robot’s gripper has a physical
constraint, allowing rotation only within the range [—~%,] radians. For the following

generated program snippet:

def task_program():
rotate("left hand”, math.pi/6)
rotate("left hand”, math.pi/6)
rotate("left hand”, math.pi/6)

26

[I O I N

Published as a conference paper at COLM 2025

ROBO-INSTRUCT will first infer that "left hand" is an entity of the robot gripper type. Then,
regardless of the initial configuration of the gripper, ROBO-INSTRUCT will throw an error
because the program causes the gripper to exceed its allowable range of motion.

A.7.2 Al-powered personal digital assistant

Consider a broader application than robotics: code generation for an Al-powered personal
digital assistant. This Al assistant could handle scheduling events using an API function
like schedule_on_calendar(event, start_time, duration). Given the instruction: "My schedule
is free tomorrow morning. Please create two 1-hour timeslots for office hours for my robotics and
deep learning class.” The assistant could generate a program to create these timeslots:

def task_program():
schedule_on_calendar("robotics class office hour”,
"9:30 am”, "1 hr")
schedule_on_calendar(“"deep learning class office hour”,
"10:00 am”, "1 hr")

In this example, ROBO-INSTRUCT needs to reason about the entities “robotics class office
hour" and “deep learning class office hour", which are categorized as event types. The event
type indicates that these entities have associated timeslots. The state of these entities is
defined by the time they occur: robotics class office hour is set for 9:30-10:30 am, and deep
learning class office hour is set for 10:00-11:00 am. During evaluation, ROBO-INSTRUCT
can identify a time conflict between these two office hours and thus determine that the
generated program is invalid.

27

	Introduction
	Robo-Instruct
	Overall Framework
	Verifying Candidate Programs Against Domain-specific Constraints
	LLM-aided Instruction-Program Alignment Procedure

	Analysis and Experiments
	Experiments Setup
	Is Robo-Instruct Effective at Generating Training Data to Fine-Tune a Small Language Model for Generating Domain-Specific Robot Programs?
	Evaluating the Contributions of Robo-Instruct Components
	Qualitative analysis of the generated program errors
	Real-World Deployment Demo

	Related Work
	Conclusion, Limitation and Future Works
	Appendix
	Overview
	Relevance to STRIPS planning
	RoboEval Benchmark
	Ablation Experiments
	the Effectiveness of the Rejection-Sampling Strategy
	Instruction Alignment model temperature
	Analysis of Generated Dataset

	Prompts
	RoboEval Seed Task Example
	Prompts to Generate Synthetic Dataset Using Self-Instruct
	LLM-aided Instruction-Program Alignment Procedure
	CoT Prompts for LLM-aided Instruction-Program Alignment Procedure

	Real-world Experiments
	Program Generation Results Beyond RoboEval
	Generation Latency

	Toy Examples Beyond Service Mobile Robots
	Robot with low-level controls
	AI-powered personal digital assistant

