Prototypical Reward Network for Data Efficient Model Alignment

Anonymous ACL submission

Abstract

The reward model for Reinforcement Learn-
ing from Human Feedback (RLHF) has proven
effective in fine-tuning Large Language Mod-
els (LLMs). This paper explores enhancing
RLHF with Prototypical Networks to improve
reward models. We propose a framework uti-
lizing Prototypical Networks to enhance re-
ward models under limited human feedback,
enabling more stable and reliable structural
learning from fewer samples. This enhances
the model’s adaptability and accuracy in inter-
preting human preferences. Our experiments
demonstrate that this approach significantly im-
proves the performance of reward models and
LLMs in human feedback tasks, surpassing tra-
ditional methods, especially in data-limited sce-
narios.

1 Introduction

Reinforcement Learning from Human Feedback
(RLHF) is a crucial technique that combines hu-
man intuitive judgment with the model’s capac-
ity for large-scale data processing (Cortes et al.,
2015; Bai et al., 2022a; Stiennon et al., 2020). This
approach allows language models to better under-
stand and adapt to human communication styles
and preferences (Yuan et al., 2023). By utilizing
Reinforcement Learning (RL) instead of supervised
fine-tuning, RLHF captures the complexity of hu-
man language, which involves emotions, context,
and subtle linguistic differences (Ouyang et al.,
2022). This results in greater adaptability and flexi-
bility in interactions with humans.

In Reinforcement Learning from Human Feed-
back, the learning of the reward model is crucial
and typically requires a substantial amount of data
for effective training (Wang et al., 2024; Lee et al.,
2023; Bai et al., 2022b; Gilardi et al., 2023). A
high-quality reward model is essential to ensure
the accuracy and efficiency of the RLHF learn-
ing process (Ouyang et al., 2022). Particularly in

complex Reinforcement Learning environments, a
well-tuned reward model can guide the model to
learn along the correct path, preventing deviation
from the target (Paulus et al., 2017). However, if
the quality of the reward model is inadequate, it
may learn a complex and inaccurate surface, lead-
ing the model to discover high-scoring yet inaccu-
rate points during the Reinforcement Learning pro-
cess (Chen et al., 2019; Li, 2017). This could result
in the model "overfitting" the reward model by gen-
erating peculiar outputs to maximize rewards. In
such cases, we may end up with a strange strategy
that, although scoring high, is misleading and devi-
ates from the actual objectives (Wang et al., 2021).
This can significantly cause the RLHF learning
outcomes to stray far from human preferences.

To solve these challenges, we propose the Pro-
totypical Reward Model (Proto-RM). Prototypical
Networks are instance-based learning algorithms
that learn representative prototypes for each class
to perform classifications or other tasks (Snell et al.,
2017). These networks are particularly suitable for
few-shot learning scenarios, as they efficiently ex-
tract key features from limited samples and use
them for decision-making (Liu et al., 2020). By
optimizing the embedding process in the reward
model using Prototypical Networks, we leverage
the strengths of Prototypical Networks in few-shot
learning. This integration enables the reward model
to learn more stable and reliable data representation
structures with limited sample sizes. Particularly
in enhancing the model’s learning and generaliza-
tion from human feedback samples, this method
is especially suitable, given the limitations of sam-
ple quantity and the complexity of human prefer-
ences (Bai et al., 2022b).

To enhance the effectiveness of the reward model
within limited human feedback data, we explore a
range of methods. These methods aim to decrease
reliance on human feedback without diminishing
the performance of the reward model. The funda-

Texts with Human Preference Feedback

Rewards for Reinforcement Learning

Prompt: T want to Human 29 Reward Model with Protonet Fine-tuning ooroo
know... Annotations &3 ® O |*= ? Answer: T 00
-= suggest that : i
Answer 1: You can . ® @) © Oe+ o\ you go to see =5 Environment
T 68.3% likes i i
search about it on.. o) ; Policy
® o\ o .
_____ ° I'like your answer,)
Answer 2: T don' think . | | . Reward!
W e 31.7% likes = Clustered Prototypes ® % \ @ W
Proto-RM

Figure 1: Framework of 1) enhanced reward model with 2) Prototypical Network 3) fine-tuning language models.

mental principle of the reward model is to learn
from human feedback to evaluate and guide the
output of the model, ensuring it aligns with human
expectations and standards. Its key capability lies
in effectively learning and extracting vital parame-
ter information from limited human feedback, thus
guiding the model’s behavior. Therefore, we need
to preserve and maximize the use of the network
structure and parameterization capabilities of the
reward model.

In this context, we need a method that performs
well in small-sample learning scenarios, which is
suitable for learning from human feedback samples
and does not affect the network structure of the
reward model.

Our method can be summarized in three key
steps: First, we do Sample Encoding and Pro-
totype Initialization. We encode samples using
the reward model. We first initialize a set of pro-
totypes using a subset of sample encodings. Then,
we compare and relate the encodings of other sam-
ples with these initialized prototypes. Second, we
go through Prototype Update and Addition. The
sample encoding is updated based on the probabil-
ity calculated from its distance to the prototypes.
We adjust the reward model’s parameters by vali-
dating the effectiveness of predictions made with
updated sample encodings. Continuous updating
and refining of prototypes ensure they accurately
represent the characteristics of the samples. More
effective prototypes lead to better updates of sam-
ple encodings, thus enhancing the learning from
human feedback samples. Finally, we adopt the Re-
ward Model Fine-tuning. With the prototypes and
encodings generated in the above process, we train
the reward model to more precisely evaluate and
guide the output of the language model, thereby
improving the performance of LLMs during the
fine-tuning process.

Our main contributions are as follows:

1. We propose a structure using the Prototypical
Network to improve the reward model. This
structure allows for training with fewer hu-
man feedback samples without compromising
the learning ability of the reward model in
scenarios with ample samples.

2. We explore a prototypical learning method
for human feedback samples. This method is
effective in handling human feedback that is
difficult to quantify and varies in length.

3. We conduct a series of experiments to validate
the effectiveness and robustness of our method
(Proto-RM) across different dataset sizes and
evaluate the performance of LLM fine-tuned
by Proto-RM. The experiments demonstrate
that our method exhibits significant advan-
tages and achieves the effectiveness of using
more samples, even with limited samples.

2 Related Work

2.1 Reinforcement Learning from Human
Feedback

RLHF is a vital component in training advanced
Large Language Models (LLMs) (Christiano et al.,
2017; Ziegler et al., 2019; Ouyang et al., 2022;
Casper et al.,, 2023), such as OpenAI’s GPT-
4 (Achiam et al., 2023), Google’s Bard (Singh
et al., 2023), and Meta’s Llama 2-Chat (Touvron
et al., 2023). RLHF and similar methods enable
LLMs to adjust their distributions of texts so that
the model outputs are more favored by human eval-
uators (Song et al., 2023).

RLHF combines three interconnected processes:
feedback collection, reward modeling, and pol-
icy optimization. After collecting assessments of
model outputs from humans, the reward model-
ing process uses supervised learning to train a re-
ward model that mimics these assessments (Lam-
bert et al., 2023; Dong et al., 2019). The policy

optimization process fine-tunes the Al system to
produce outputs that receive positive evaluations
from the reward model (Zheng et al., 2023). RLHF
is effective for being relatively easier to identify
“good” behavior compared to other methods for
specifying or learning rewards. However, the re-
liance on large volumes of human feedback data
for RLHF fine-tuning poses challenges like high
costs (Beeching et al., 2023).

2.2 Prototype and Prototypical Network

Prototypical Learning is a powerful approach for
improving model interpretability and accuracy in
few-shot classification scenarios (Liu et al., 2020;
Kim et al., 2014). Numerous researchers have en-
hanced prototypical networks for category learn-
ing (Pan et al., 2019; Ding et al., 2020; Ji et al.,
2020). The advantages of Prototypical Networks
lie in their simplicity and intuitiveness, enabling
rapid adaptation to new samples and categories
without the need for extensive data or complex
training processes (Fort, 2017). While these net-
works are commonly used in classification prob-
lems with distinct category labels, their application
is notably absent in the domain of non-quantitative
semantic understanding and text comparison.

3 Problem Formulation

The primary challenge addressed in this work is to
train a reward model with limited human-annotated
data. With this reward model we can train a pol-
icy that generates high-quality texts as judged by
humans.

Input. The input of the reward model consists of a
dataset of paired human-annotated texts. We define
this dataset as D = {(z;,y;,y;), (z;r,zi_)}i]il.
Here, N represents the total number of data pairs.
For each text pair, z € X is the common post for
two corresponding summaries y* and y~ € Y,
and z* and 2~ represent the annotations for 3™
and y~, respectively. The annotations 2,2~ €
Z = {chosen, rejected}.

Output. The outputs consist of 1) S (2it) and

S (ait)’ which are the predicting score pair of the
input example (z,y™,y~); 2) the reward model
fo : X xY — £, where £ is an embedding
space. Here f, includes embedding process e

and aligned linear score output process.

4 Methodology

In this process, our key task is to train a reward
model to predict which answer y € (y*,y7) is
better as judged by a human, given a prompt x.

4.1 Reward Model with Prototypical Network

Reward Model for RLHF. The role of the reward
model is to evaluate the quality of outputs gen-
erated by the language model and provide feed-
back that guides the fine-tuning process to align the
model’s outputs with human preferences. Given the
input dataset D, the reward model for RLHF first
converts text pairs into encodings in the embedding
space £ with parameter ¢:

ey(z,y) e €& e= (e ey) (1)

Here, e is the representation of the input (z,y), e,
and e, are the representations of the prompt and
answer, respectively.

Prototypical Network. In the prototypical net-
work, a set of prototype vectors p, is categorized
into two groups: p* and p~—. The classification
of each sample pair’s embedding e(xivy;),y* €
{y™*,y ™} is determined by the proportion of these
two classes of prototypes within the adjacent pro-
totypes. The embedding e(,,) is updated based
on all the prototype vectors in their respective cat-
egory, with weights assigned according to their
importance. The importance of prototype py is
computed using the distance metric d(-, -):

P(pk|(zi, y7)) < exp(—d(e(,), Pr)) (2)

where d(-, -) is usually taken as squared L2 dis-
tance. We then update the embedding for each
sample according to its class. For a sample em-
bedding related to the p* prototype, we update its
embedding €(z; y¥) using all j p* prototypes. We
express the formula for updating the embedding as:

1 J
ey = = > (PPkl(@1,57) - pr) 3)

J k=1

The updated embedding is then transformed into a
score within a linear layer.

4.2 Reward Model with Protonet

Prototype Initialization. During the initializa-
tion phase, our goal is to reasonably initialize two
classes of prototypes pr € {p",p~}. We ran-
domly select n sample pairs and separate them ac-
cording to their sample labels z;. Specifically, we

: | Two classes of class +
| The reward model @ I initial prototypes
| is trained with a I'are the average :
I text datatset. Prompt l'of the ®
| embeddings of

l
: et and e

, Each sample | respectively.
| includes a real :

| world prompt and

I two answers to this Answer Answer | The sample's

: grompt produced Z:;t;ec%ilsltlgd

e L based on its

I The sample text | distance to

: pair includes two | prototypes of ~----------
 text bar with R | the class.

, same prompt eward Model | :

, and different | When a sample

(28 1037650009 [055] [126]660) | embedding’s :
iz | distance toall

|
| [i
| prototypes in its!

| answers.

I Two text bars \ | class exceeds a |

| areembedded W | threshold), this
by the reward compress | embedding ‘
model . | becomes a new @

| . I { {
: prototype.

o o)
score s for Linear
O o each answer. "'(X y) S(x,y)
P1 (o)
4
P > [San)
The answer
©O | with higher
(o) score is
© P2 © Ps marked s(xy) g N
"chosen", the } Loss
(o] other one is @ P
o "rejected". -
"""" Given a new
prompt, the Prompt
LLM generates

A linear
calculates a e(x v

aresponse,
and the reward
model
provides
feedback to
fine-tune the
LLM.

Answer

Figure 2: The framework consists of three components: 1) Reward model embedding, 2) Protonet adjustment and 3)
RLHF Process. The reward model compress and align the sample text pair embeddings to produce representative
prototypes, and the prototypes adjust the embeddings to update the reward model.

initialize different prototypes using the sample em-
beddings labeled as “chosen” and “rejected”. This
strategy is employed to allow the model to better
learn human preferences as opposed to mere differ-
ences in the content of the samples. We process the
prompt and answer components of each text bar
separately. For those embeddings that initialize py,
we perform pairwise sample alignment to ensure
uniformity and fairness in compression and compu-
tation across positive and negative examples. This
alignment method guarantees that the prototypes
are updated in a consistent manner, reflecting a bal-
anced representation of both prompt and answer
components in the embedding space.

e;, < align(e,,, max|ey,||))

where align means the embedding e, is updated
to a new vector with the same maximum length as
the longest embedding vector among all e;;, and
we pad additional elements beyond the original
length of e, with zeros. Similarly, we have:

e,: < align(eyr, max [le,:||) ®)

C(aiyy) = (ewiv ey;“) (6)

An initial prototype constructed from n text pairs
is defined as pg = % > €(x; yr)» With a length of
Ipoll = (max [le, |+ max e, [).i = 1,2,...n
This ensures that the prototype encapsulates the
essential features of both prompt and answer.

We derive an initial set of K prototypes. In our
case, we choose mean pooling as the aggregate
function with the parameter of the reward model ¢
frozen. Furthermore, during initialization, we dis-
able the gradient updates of the prototype vectors,
ensuring that the initialization is not influenced by
other model parameters. This guarantees the ro-
bustness of the initialization process.

Prototype Update and Addition. Our goal is to
represent the samples effectively and comprehen-
sively by the prototypes. However, a fixed number
of prototypes may not suffice for this purpose. Too
few prototypes can lead to the loss of important
information, while too many prototypes can affect
their representativeness and increase computational
costs (Snell et al., 2017; Ming et al., 2019).

Therefore, we consider employing the technique
of Incremental Mixture Prototypes (IMP) (Allen
et al., 2019) to automatically add prototypes, allow-
ing the model to appropriately increase the number
of prototypes during training based on the distance
relationship between the prototypes and the sam-
ples. This technique is commonly used in the clas-
sification of graphical samples, but its application
in textual information is relatively less frequent.
Prototype methods excel in processing graphical
samples with their visual and intuitive features, but
the abstract and multidimensional characteristics of
text, covering semantics, syntax, and context, com-
plicate their use in textual data. Due to our reliable
embedding and alignment of text samples using the
reward model, we successfully implement IMP for

effective learning from human feedback samples.

After initializing the prototypes, we activate the
Prototypical Network to better assimilate new input
text pairs. To enhance the representativeness and
diversity of the prototypes, we 1) appropriately add
new prototypes and 2) continually update existing
ones.

1) We define the set of prototypes as P. To in-
crease the representativeness and diversity of the
prototypes, for each sample (z;,y;) € D, if the
minimum distance between € (z;,y7) and any proto-
types in P exceeds a threshold A\, we create a new
prototype based on e(,, ,+). The threshold distance
A is defined as:

A = 20log (M) ™

where o is the cluster variance learned jointly with
¢, p is the standard deviation for the base distribu-
tion from which the cluster means are sampled, and
« is a hyperparameter controlling the concentration
of clusters in the Chinese Restaurant Process. Our
approach can balance between fitting simple data
distributions with low capacity and complex distri-
butions with high capacity.

2) We then compute the Euclidean distance from
each text bar in a text pair to every prototype pg
in their class, denoted as d(e(%y;), Pk)- Then, uti-
lizing the negative of these distances, we calculate
the softmax to obtain a probability distribution of
sample (z;,y;) belongs to prototype p;. Addition-
ally, during the update of sample embeddings, we
incorporate a proportionate dropout of the proto-
types, which enhances the model’s ability to gener-
alize and avoid overfitting to specific patterns, as
expressed by the following equation:

exp(_d<e(xl,y;‘) y pj))

P(p; = T
(pZ p]’(Zvyz)) EkaiJ eXp(
®)
where p is the dropout ratio, and K is the total
number of prototypes, |- | represents the floor func-
tion. Here we compare prototypes within the same
class using cosine similarity and drop out the pro-
totypes with the lowest similarity proportionally,
instead of random dropout. This method allows the
prototypes to be more representative.
After yielding the probabilities with respect to
each prototype, we then multiply these probabili-
ties by the embedding of the respective prototype

($i7yf)’pk))

P to obtain the new embedding e’(x_) after the
Prototypical Network processing. '

K

€y = O P(Di = Pel(zin) o1 (9)
k=1

Annotation Prediction. We then evaluate the per-
formance of the model and update it. We predict the
annotation z; of the new embedding e’(mi’yj). The
embedding transform into a score s, ,,«) through
a linear layer. By comparing the scores 8 (2it)
with 8 (zs,) the model annotate the one with the
higher score as “chosen”, and the one with the
lower score as “rejected”. We evaluate the model’s
predictions z; against real human annotations and
perform backpropagation accordingly.
Loss and Backpropagation. The final step in-
volves the computation of the overall loss, includ-
ing reward loss and diversity loss to enhance the
model’s performance and reduce the risk of overfit-
ting.

For reward loss £,, we adopt the reward loss
structure of (Stiennon et al., 2020):

L= Epy o rozlos(o(ro(ei, u)

(10)
— (i y;)]

where r4(z;, y;) is the scalar output of the re-
ward model for prompt x; and answer y; with pa-
rameter ¢, and Z is the collection of human anno-
tations. At the end of training, we normalize the
reward model outputs such that the reference text
pairs from the dataset achieve a mean score of 0.

For diversity loss Lgiy, in order to ensure a sparse
distribution among prototype points, we employ
a hyperparameter 7 to constrain the average Eu-
clidean distance between prototype points. As
model parameters, prototypes are involved in back-
propagation through gradient descent, allowing for
dynamic refinement. The sparsity constraint is im-
plemented via a diversity loss Lgiy (Ji et al., 2022),
which is guided by the average Euclidean distance
between prototypes:

. {Euc(@) o f Buc(®) > 7, an
7 — Euc(®) if Euc(®) < 7,
Laiv = 10g(w + 1). (12)

The full objective L linearly combines £, and
Lgiv using a hyperparameter pg:

L =L, + paLlaiv (13)

Algorithm 1 Reward model with Protonet

I: Input:. D = {(xi,y;r,y;),(zf,z;)}éil,
where each 2+, 2~ € Z = {chosen, rejected }

2: Output: The predicting score pair
S(x,yT,y~) = (sT,s7) and the reward
model fg

3: Initialize K Prototypes through Prototype Ini-
tialization

4: for minibatch B, € D do

5: Perform Prototype Update and Addition
and estimate A according to Eq. 7
6: for (xi,y;“,yi_) € B, do
7: Converts (z;,y;",y;) into encodings
Cleiy) M4 €)
8: for y* € y™,y~ do
9: Allign e(,, .~ according to Eq. 4
10: Calculate d; j, = d(e(xivy;), py) for
pr € p*, and d; j, = +o0 for p ¢
p*
11: Update the embedding according
to Eq. 3
12: if mind; , > A then
13: Create the K + 1-th prototype
Px+1 using € (x; y7)5 Increment
Kbyl
14: end if
15: Compute s(;, ,+) though Annota-
tion Prediction
16: end for
17: end for
18: end for

5 Experiments

In this section, we first compare the consistency
of annotations between Proto-RM and Baseline
Reward Model (Baseline RM) with real human
feedback on Prompt-Answer text pairs. Subse-
quently, we contrast the differences in text quality
of LLM outputs after fine-tuning with Proto-RM
versus Baseline RM. Following this, we explore the
significance of different modules in the learning of
the reward model, assessing the effectiveness of
our innovative points.

5.1 Experiment Settings

Datasets. We train reward models using three
datasets at varying data proportions. The datasets
employed are as follows:

Webgpt Pairwise Summarize

5% 979 1,657 9,692

10% 1,958 3,314 19,384
20% 3,916 6,629 38,768
Total 19,578 33,143 193,841

Table 1: Data distribution across different datasets

Webgpt Comparisons (Webgpt) (Nakano et al.,
2021) contains pairs of model answers with human
preference scores in the WebGPT project.

Synthetic Instruct GPT-J Pairwise (Pair-
waise) (Alex et al., 2021) contains human feedback
for reward modeling, featuring pairwise summary
evaluations and Likert scale quality assessments.

Summarize from Feedback (Summarize) (Stien-

non et al., 2020) contains pairwise summaries with
human annotations from the TL;DR dataset.
Models. For the pre-trained LLM we adopt the
GPT-J model (Wang and Komatsuzaki, 2021). And
we use the trlX framework (Havrilla et al., 2023)
to implement our algorithm.
Implemetation Settings. In our experiments, we
apply a batch size of 8 and initialize each prototype
using n = 2 examples. The sequence length is
set to 550. We fix the value of « at 0.1 and the
initial value of p at 5. For the optimization pro-
cess, we use the AdamW optimizer (Zhuang et al.,
2022). We search for the best learning rate within
the range of [le — 6, le — 5]. Other hyperparame-
ters are set to their default values. All experiments
are conducted for a maximum of 5 epochs with
early stopping implemented. Regarding hardware,
our experiments are run on server equipped with
NVIDIA Tesla A100 GPU (80GB memory).

5.2 Comparison with Baseline Reward Model

To compare the performance of Baseline RM and
Proto-RM, we train and test both reward models on
three datasets by different radios. From Table 2 we
can see that, across the different data proportions
on the three datasets, Proto-RM consistently sur-
passes Baseline-RM. On the Webgpt dataset, there
is an accuracy improvement ranging from 1.48% to
2.15%; on the Pairwise dataset, the improvement
spans from 0.48% to 0.59%, with Proto-RM nearly
achieving perfect accuracy; and on the Summa-
rize dataset, especially at the 20% data proportion,

Datasets Webgpt Pairwise Summarize

RM Baseline-RM Proto-RM Baseline-RM Proto-RM Baseline-RM Proto-RM

5% 57.46 £0.21 58.94+ 0.22(+1.48) 98.96+0.15 99.44 £ 0.18(+0.48) 65.36 £0.19 67.67 + 0.23(+2.31)
10% 58.86 £0.24 59.30 +0.26(+0.44) 99.14 £0.17 99.65 + 0.20(+0.51) 66.51 £0.21 67.76 + 0.25(+1.25)
20% 58.41 £0.28 60.56 + 0.29(+2.15) 99.45+0.16 99.84 +£0.11(+0.39) 67.46+0.22 68.72 4+ 0.27(+1.26)

Table 2: Comparison with Baseline in different sizes of various datasets, the accuracy of Proto-RM consistently

exhibits an exceedance over Baseline-RM.

Accuracy on 5% of Summarize

Accuracy on 10% of Summarize

Accuracy on 20% of Summarize

=4
Y
a

Model

Accuracy
Accuracy

o
@
3

= Baseline RM
== Proto-RM

0.675

0.650

Model

Model

Accuracy

0.625
= Baseline RM

== Proto-RM

= Baseline RM
== Proto-RM

0.600

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20
Epoch

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20
Epoch Epoch

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10

Figure 3: Comparison of reward models’ accuracy on 5%, 10%, and 20% datasets.

Proto-RM exhibits the most significant accuracy
gain of 1.26%.

The line graphs Figure 4 reinforce the table’s
data, showcasing that the Proto-RM model main-
tains a higher accuracy across epochs compared to
the Baseline-RM for the 5%, 10%, and 20% of the
Summarize dataset. Proto-RM not only starts at a
higher accuracy but also demonstrates less variabil-
ity and ends with a higher accuracy, indicating a
more robust model.

5.3 RLHF Performance

To ensure consistency in scoring and to maintain
the integrity of the evaluation, all outputs from
GPT-J (6B) (Wang and Komatsuzaki, 2021) are
assessed by GPT-4 (OpenAl, 2024) across four
dimensions, as many studies and attempts to use
LLMs for text annotation (Gilardi et al., 2023;
Alizadeh et al., 2023; Bai et al., 2022b), indicat-
ing that high-quality LLMs are capable of achiev-
ing human-like text evaluation abilities (Lee et al.,
2023). The scoring standards, which include con-
siderations of factual accuracy, text relevance, in-
formation completeness, and clarity of expression,
are uniformly applied. Each aspect is scored on a
scale up to 10, with increments of 0.5. The over-
all score is derived as the average of these four
individual scores:

Accuracy (Acc): Assesses whether the content
of the answer or summary accurately reflects the
information and intention of the original prompt.

Relevance (Rel): Checks whether the answer or
summary is closely related to the original prompt.

Completeness (Comp): Evaluates whether the
provided information is comprehensive, covering

all key points and details in the prompt.

Expression (Expr): Considers whether the lan-
guage expression of the answer or summary is clear
and understandable.

The results in Figure 4 indicates that the LLM
fine-tuned with Proto-RM outperforms the Base-
line across all four aspects, showing an increase
from 0.4/10 to 0.54/10 in overall score, which is
significantly higher than the Baseline. Moreover,
it demonstrates a clear advantage in both Accu-
racy and Expression, with the highest scores reach-
ing 0.76/10 and 0.82/10 respectively. Table 3
demonstrates the differences in the output text qual-
ity of GPT-J with no fine-tuning, fine-tuned using
Baseline-RM, and fine-tuned using Proto-RM. The
discrepancies highlighted also validate the efficacy
of our improved reward model.

5.4 Ablation Study

Study of IMP. We explore and compare the effects
of using different numbers of prototypes with var-
ious methods for setting the prototype quantities.
Specifically, we examine the outcomes of setting
the prototype numbers to twice and thrice the de-
fault amount and the outcomes of gradually increas-
ing the number of prototypes from the default to
double and triple using the IMP method. Figure 5
illustrates that adopting the IMP method for proto-
type numbers yields better results in both accuracy
and stability compared to fixed prototype numbers.
The lines representing IMP methods (both IMP-
Double and IMP-Triple) show higher accuracy over
the epochs. Additionally, the IMP lines demon-
strate a smoother progression with less fluctuation,
suggesting greater stability in model performance

Webgpt Pairwise Summarize
Group
7.5 M Baseline
75 7.5 M Proto-RM
7.0
,,:§7 0 g 7.0 g
g g £65
6.5 6.5
6.0
6.0 6.0 55
Acc Rel Comp Expr Overall Acc Rel Comp Expr Overall ' Acc Rel Comp Expr Overall

Aspects

Aspects

Aspects

Figure 4: Performance of LLM with reward model fine-tuning.

Prompt: SUBREDDIT: r/relationships TITLE: My girlfriend (20f) of two years cheated on me (20m) by kissing two guys at

a Halloween party.

POST: Lately her and I have been having a few problems, and these problems have been brought up before a few times... I

feel terrible about it, but this time I was really trying to change for her. For Halloween she went to visit her step brother at a
college and I got drunk with my friends and watched movies. Last night (11/1) we got in a huge fight about me not changing

and how our relationship won’t work out and basically 'broke up over the phone. So in an effort to try and fix it I drove to her

house. She told me how at the parties she went to that two guys kissed her... Should I even try to fix it or would I be better

off cutting all ties...
TL;DR:

GPT-J without Fine-tuning

GPT-J with Baseline Reward Model

GPT-J with Protonet-Reward Model

Girlfriend cheated on me and

now we may be fixing things up,

but we’re not too sure if I should.
I love her and we both want to
fix things . Should we?

girlfriend of 2 years kissed two guys at Hal-
loween party and I don’t know what to do.
But I want to try and fix it .

Girlfriend and I [brokeup over me
not changing , decided to fix that, find out

she kissed someone else at a Halloween

party. Should we work it out or not?

Table 3: Comparative responses from GPT-J models to a given prompt.

across epochs.

Accuracy Comparison Across Prototype Settings

=4
)

Accuracy

Method
— Fixed-Double
— Fixed-Triple
IMP-Double
— IMP-Triple
0.00 0.50 1.00 1.50 2.00 2.50 3.00
Epoch

o
o

Figure 5: Impact of IMP.

Study of Dropout. Showing in Figure 6, we find
that employing a Dropout method, which propor-
tionally drops out a part of the prototypes during
the sample embedding updates, yields better results.
Specifically, as the line chart illustrates, adopting a
Dropout method significantly outperforms the ap-
proach of not using Dropout in terms of accuracy.
Among the Dropout approaches, the method utiliz-
ing Cosine Similarity Dropout achieves higher ac-
curacy compared to Random Dropout and exhibits
greater stability. This underscores the effectiveness
of using Cosine Similarity Dropout.

Accuracy Comparison Across Dropout Methods

0.68

o
@
X

Accuracy

o
@
=]

Method

— Cosine Similarity Dropou
No Dropout
Random Dropout

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
Epoch

Figure 6: Impact of Dropout.

6 Conclution

In conclusion, our research demonstrates the effi-
cacy of Prototypical Networks in refining RLHF
processes, especially in scenarios with limited hu-
man feedback. The enhanced reward model shows
a marked improvement in aligning LLLM outputs
with human preferences, as evidenced by our exper-
imental results. However, our method’s application
to more diverse and extensive datasets remains an
area for future exploration to further validate its
effectiveness and adaptability.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Beatrice Alex, Clare Llewellyn, Pawel Orzechowski,
and Maria Boutchkova. 2021. The online pivot:
Lessons learned from teaching a text and data mining
course in lockdown, enhancing online teaching with
pair programming and digital badges. In Proceed-
ings of the Fifth Workshop on Teaching NLP, pages
138-148, Online. Association for Computational Lin-
guistics.

Meysam Alizadeh, Maél Kubli, Zeynab Samei,
Shirin Dehghani, Juan Diego Bermeo, Maria Ko-
robeynikova, and Fabrizio Gilardi. 2023. Open-
source large language models outperform crowd
workers and approach chatgpt in text-annotation
tasks. arXiv preprint arXiv:2307.02179.

Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua
Tenenbaum. 2019. Infinite mixture prototypes for
few-shot learning. In International conference on
machine learning, pages 232-241. PMLR.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022a. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022b. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Edward Beeching, Younes Belkada, Kashif Rasul,
Lewis Tunstall, Leandro von Werra, Nazneen Ra-
jani, and Nathan Lambert. 2023. Stackllama:
an rl fine-tuned llama model for stack exchange
question and answering. See https://huggingface.
co/blog/stackllama (accessed 14 April 2023).

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, Pedro Freire, et al. 2023. Open problems
and fundamental limitations of reinforcement
learning from human feedback. arXiv preprint
arXiv:2307.15217.

Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan
Qi, and Le Song. 2019. Generative adversarial user
model for reinforcement learning based recommenda-
tion system. In International Conference on Machine
Learning, pages 1052-1061. PMLR.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017. Deep

reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Corinna Cortes, N Lawarence, D Lee, M Sugiyama, and
R Garnett. 2015. Advances in neural information
processing systems 28. In Proceedings of the 29th
Annual Conference on Neural Information Process-
ing Systems.

Kaize Ding, Jianling Wang, Jundong Li, Kai Shu,
Chenghao Liu, and Huan Liu. 2020. Graph proto-
typical networks for few-shot learning on attributed
networks. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge
Management, pages 295-304.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Advances in neural information process-
ing systems, 32.

Stanislav Fort. 2017. Gaussian prototypical networks
for few-shot learning on omniglot. arXiv preprint
arXiv:1708.02735.

Fabrizio Gilardi, Meysam Alizadeh, and Maél Kubli.
2023. Chatgpt outperforms crowd-workers for text-
annotation tasks. arXiv preprint arXiv:2303.15056.

Alexander Havrilla, Maksym Zhuravinskyi, Duy Phung,
Aman Tiwari, Jonathan Tow, Stella Biderman,
Quentin Anthony, and Louis Castricato. 2023. trIX:
A framework for large scale reinforcement learning
from human feedback. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8578-8595, Singapore. As-
sociation for Computational Linguistics.

Bin Ji, Shasha Li, Shaoduo Gan, Jie Yu, Jun Ma, and
Huijun Liu. 2022. Few-shot named entity recognition
with entity-level prototypical network enhanced by
dispersedly distributed prototypes. arXiv preprint
arXiv:2208.08023.

Zhong Ji, Xingliang Chai, Yunlong Yu, Yanwei Pang,
and Zhongfei Zhang. 2020. Improved prototypical
networks for few-shot learning. Pattern Recognition
Letters, 140:81-87.

Been Kim, Cynthia Rudin, and Julie A Shah. 2014.
The bayesian case model: A generative approach
for case-based reasoning and prototype classification.

Advances in neural information processing systems,
217.

Nathan Lambert, Thomas Krendl Gilbert, and Tom Zick.
2023. The history and risks of reinforcement learning
and human feedback. arXiv e-prints, pages arXiv—
2310.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.

https://doi.org/10.18653/v1/2021.teachingnlp-1.24
https://doi.org/10.18653/v1/2021.teachingnlp-1.24
https://doi.org/10.18653/v1/2021.teachingnlp-1.24
https://doi.org/10.18653/v1/2021.teachingnlp-1.24
https://doi.org/10.18653/v1/2021.teachingnlp-1.24
https://doi.org/10.18653/v1/2021.teachingnlp-1.24
https://doi.org/10.18653/v1/2021.teachingnlp-1.24
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/2023.emnlp-main.530
https://doi.org/10.18653/v1/2023.emnlp-main.530

Yuxi Li. 2017. Deep reinforcement learning: An
overview. arXiv preprint arXiv:1701.07274.

Jinlu Liu, Liang Song, and Yonggiang Qin. 2020. Pro-
totype rectification for few-shot learning. In Com-
puter Vision—-ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part I 16, pages 741-756. Springer.

Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. 2019.
Interpretable and steerable sequence learning via pro-
totypes. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 903-913.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu,
Long Ouyang, Christina Kim, Christopher Hesse,
Shantanu Jain, Vineet Kosaraju, William Saunders,
et al. 2021. Webgpt: Browser-assisted question-
answering with human feedback. arXiv preprint
arXiv:2112.09332.

OpenAl. 2024. Chatbot interaction for textual analy-
sis and assistance. Conversational interactions with
OpenATI’s ChatGPT for generating text and providing
language model assistance.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Yingwei Pan, Ting Yao, Yehao Li, Yu Wang, Chong-
Wah Ngo, and Tao Mei. 2019. Transferrable pro-
totypical networks for unsupervised domain adapta-
tion. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
2239-2247.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. arXiv preprint arXiv:1705.04304.

Shashi Kant Singh, Shubham Kumar, and Pawan Singh
Mehra. 2023. Chat gpt & google bard ai: A review.
In 2023 International Conference on loT, Communi-
cation and Automation Technology (ICICAT), pages
1-6. IEEE.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30.

Feifan Song, Bowen Yu, Minghao Li, Haiyang Yu, Fei
Huang, Yongbin Li, and Houfeng Wang. 2023. Pref-
erence ranking optimization for human alignment.
arXiv preprint arXiv:2306.17492.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

10

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan
Dou, Caishuang Huang, Wei Shen, Senjie Jin, Enyu
Zhou, Chenyu Shi, et al. 2024. Secrets of rlhf in large
language models part ii: Reward modeling. arXiv
preprint arXiv:2401.06080.

Xiting Wang, Xinwei Gu, Jie Cao, Zihua Zhao, Yulan
Yan, Bhuvan Middha, and Xing Xie. 2021. Rein-
forcing pretrained models for generating attractive
text advertisements. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery &
Data Mining, KDD 21, page 3697-3707, New York,
NY, USA. Association for Computing Machinery.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2023. Rrhf:
Rank responses to align language models with
human feedback without tears. arXiv preprint
arXiv:2304.05302.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua,
Wei Shen, Binghai Wang, Yan Liu, Senjie Jin, Qin
Liu, Yuhao Zhou, et al. 2023. Secrets of rlhf in
large language models part i: Ppo. arXiv preprint
arXiv:2307.04964.

Zhenxun Zhuang, Mingrui Liu, Ashok Cutkosky, and
Francesco Orabona. 2022. Understanding adamw
through proximal methods and scale-freeness. arXiv
preprint arXiv:2202.00089.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

https://openai.com
https://openai.com
https://openai.com
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1145/3447548.3467105
https://doi.org/10.1145/3447548.3467105
https://doi.org/10.1145/3447548.3467105
https://doi.org/10.1145/3447548.3467105
https://doi.org/10.1145/3447548.3467105

