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Abstract

The reward model for Reinforcement Learn-001
ing from Human Feedback (RLHF) has proven002
effective in fine-tuning Large Language Mod-003
els (LLMs). This paper explores enhancing004
RLHF with Prototypical Networks to improve005
reward models. We propose a framework uti-006
lizing Prototypical Networks to enhance re-007
ward models under limited human feedback,008
enabling more stable and reliable structural009
learning from fewer samples. This enhances010
the model’s adaptability and accuracy in inter-011
preting human preferences. Our experiments012
demonstrate that this approach significantly im-013
proves the performance of reward models and014
LLMs in human feedback tasks, surpassing tra-015
ditional methods, especially in data-limited sce-016
narios.017

1 Introduction018

Reinforcement Learning from Human Feedback019

(RLHF) is a crucial technique that combines hu-020

man intuitive judgment with the model’s capac-021

ity for large-scale data processing (Cortes et al.,022

2015; Bai et al., 2022a; Stiennon et al., 2020). This023

approach allows language models to better under-024

stand and adapt to human communication styles025

and preferences (Yuan et al., 2023). By utilizing026

Reinforcement Learning (RL) instead of supervised027

fine-tuning, RLHF captures the complexity of hu-028

man language, which involves emotions, context,029

and subtle linguistic differences (Ouyang et al.,030

2022). This results in greater adaptability and flexi-031

bility in interactions with humans.032

In Reinforcement Learning from Human Feed-033

back, the learning of the reward model is crucial034

and typically requires a substantial amount of data035

for effective training (Wang et al., 2024; Lee et al.,036

2023; Bai et al., 2022b; Gilardi et al., 2023). A037

high-quality reward model is essential to ensure038

the accuracy and efficiency of the RLHF learn-039

ing process (Ouyang et al., 2022). Particularly in040

complex Reinforcement Learning environments, a 041

well-tuned reward model can guide the model to 042

learn along the correct path, preventing deviation 043

from the target (Paulus et al., 2017). However, if 044

the quality of the reward model is inadequate, it 045

may learn a complex and inaccurate surface, lead- 046

ing the model to discover high-scoring yet inaccu- 047

rate points during the Reinforcement Learning pro- 048

cess (Chen et al., 2019; Li, 2017). This could result 049

in the model "overfitting" the reward model by gen- 050

erating peculiar outputs to maximize rewards. In 051

such cases, we may end up with a strange strategy 052

that, although scoring high, is misleading and devi- 053

ates from the actual objectives (Wang et al., 2021). 054

This can significantly cause the RLHF learning 055

outcomes to stray far from human preferences. 056

To solve these challenges, we propose the Pro- 057

totypical Reward Model (Proto-RM). Prototypical 058

Networks are instance-based learning algorithms 059

that learn representative prototypes for each class 060

to perform classifications or other tasks (Snell et al., 061

2017). These networks are particularly suitable for 062

few-shot learning scenarios, as they efficiently ex- 063

tract key features from limited samples and use 064

them for decision-making (Liu et al., 2020). By 065

optimizing the embedding process in the reward 066

model using Prototypical Networks, we leverage 067

the strengths of Prototypical Networks in few-shot 068

learning. This integration enables the reward model 069

to learn more stable and reliable data representation 070

structures with limited sample sizes. Particularly 071

in enhancing the model’s learning and generaliza- 072

tion from human feedback samples, this method 073

is especially suitable, given the limitations of sam- 074

ple quantity and the complexity of human prefer- 075

ences (Bai et al., 2022b). 076

To enhance the effectiveness of the reward model 077

within limited human feedback data, we explore a 078

range of methods. These methods aim to decrease 079

reliance on human feedback without diminishing 080

the performance of the reward model. The funda- 081
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Figure 1: Framework of 1) enhanced reward model with 2) Prototypical Network 3) fine-tuning language models.

mental principle of the reward model is to learn082

from human feedback to evaluate and guide the083

output of the model, ensuring it aligns with human084

expectations and standards. Its key capability lies085

in effectively learning and extracting vital parame-086

ter information from limited human feedback, thus087

guiding the model’s behavior. Therefore, we need088

to preserve and maximize the use of the network089

structure and parameterization capabilities of the090

reward model.091

In this context, we need a method that performs092

well in small-sample learning scenarios, which is093

suitable for learning from human feedback samples094

and does not affect the network structure of the095

reward model.096

Our method can be summarized in three key097

steps: First, we do Sample Encoding and Pro-098

totype Initialization. We encode samples using099

the reward model. We first initialize a set of pro-100

totypes using a subset of sample encodings. Then,101

we compare and relate the encodings of other sam-102

ples with these initialized prototypes. Second, we103

go through Prototype Update and Addition. The104

sample encoding is updated based on the probabil-105

ity calculated from its distance to the prototypes.106

We adjust the reward model’s parameters by vali-107

dating the effectiveness of predictions made with108

updated sample encodings. Continuous updating109

and refining of prototypes ensure they accurately110

represent the characteristics of the samples. More111

effective prototypes lead to better updates of sam-112

ple encodings, thus enhancing the learning from113

human feedback samples. Finally, we adopt the Re-114

ward Model Fine-tuning. With the prototypes and115

encodings generated in the above process, we train116

the reward model to more precisely evaluate and117

guide the output of the language model, thereby118

improving the performance of LLMs during the119

fine-tuning process.120

Our main contributions are as follows:121

1. We propose a structure using the Prototypical 122

Network to improve the reward model. This 123

structure allows for training with fewer hu- 124

man feedback samples without compromising 125

the learning ability of the reward model in 126

scenarios with ample samples. 127

2. We explore a prototypical learning method 128

for human feedback samples. This method is 129

effective in handling human feedback that is 130

difficult to quantify and varies in length. 131

3. We conduct a series of experiments to validate 132

the effectiveness and robustness of our method 133

(Proto-RM) across different dataset sizes and 134

evaluate the performance of LLM fine-tuned 135

by Proto-RM. The experiments demonstrate 136

that our method exhibits significant advan- 137

tages and achieves the effectiveness of using 138

more samples, even with limited samples. 139

2 Related Work 140

2.1 Reinforcement Learning from Human 141

Feedback 142

RLHF is a vital component in training advanced 143

Large Language Models (LLMs) (Christiano et al., 144

2017; Ziegler et al., 2019; Ouyang et al., 2022; 145

Casper et al., 2023), such as OpenAI’s GPT- 146

4 (Achiam et al., 2023), Google’s Bard (Singh 147

et al., 2023), and Meta’s Llama 2-Chat (Touvron 148

et al., 2023). RLHF and similar methods enable 149

LLMs to adjust their distributions of texts so that 150

the model outputs are more favored by human eval- 151

uators (Song et al., 2023). 152

RLHF combines three interconnected processes: 153

feedback collection, reward modeling, and pol- 154

icy optimization. After collecting assessments of 155

model outputs from humans, the reward model- 156

ing process uses supervised learning to train a re- 157

ward model that mimics these assessments (Lam- 158

bert et al., 2023; Dong et al., 2019). The policy 159
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optimization process fine-tunes the AI system to160

produce outputs that receive positive evaluations161

from the reward model (Zheng et al., 2023). RLHF162

is effective for being relatively easier to identify163

“good” behavior compared to other methods for164

specifying or learning rewards. However, the re-165

liance on large volumes of human feedback data166

for RLHF fine-tuning poses challenges like high167

costs (Beeching et al., 2023).168

2.2 Prototype and Prototypical Network169

Prototypical Learning is a powerful approach for170

improving model interpretability and accuracy in171

few-shot classification scenarios (Liu et al., 2020;172

Kim et al., 2014). Numerous researchers have en-173

hanced prototypical networks for category learn-174

ing (Pan et al., 2019; Ding et al., 2020; Ji et al.,175

2020). The advantages of Prototypical Networks176

lie in their simplicity and intuitiveness, enabling177

rapid adaptation to new samples and categories178

without the need for extensive data or complex179

training processes (Fort, 2017). While these net-180

works are commonly used in classification prob-181

lems with distinct category labels, their application182

is notably absent in the domain of non-quantitative183

semantic understanding and text comparison.184

3 Problem Formulation185

The primary challenge addressed in this work is to186

train a reward model with limited human-annotated187

data. With this reward model we can train a pol-188

icy that generates high-quality texts as judged by189

humans.190

Input. The input of the reward model consists of a191

dataset of paired human-annotated texts. We define192

this dataset as D =
{
(xi, y

+
i , y

−
i ), (z

+
i , z

−
i )

}N

i=1
.193

Here, N represents the total number of data pairs.194

For each text pair, x ∈ X is the common post for195

two corresponding summaries y+ and y− ∈ Y,196

and z+ and z− represent the annotations for y+197

and y−, respectively. The annotations z+, z− ∈198

Z = {chosen, rejected}.199

Output. The outputs consist of 1) s(xi,y
+
i ) and200

s(xi,y
+
i ), which are the predicting score pair of the201

input example (x, y+, y−); 2) the reward model202

fϕ : X × Y → E , where E is an embedding203

space. Here fϕ includes embedding process eϕ204

and aligned linear score output process.205

4 Methodology 206

In this process, our key task is to train a reward 207

model to predict which answer y ∈ (y+, y−) is 208

better as judged by a human, given a prompt x. 209

4.1 Reward Model with Prototypical Network 210

Reward Model for RLHF. The role of the reward 211

model is to evaluate the quality of outputs gen- 212

erated by the language model and provide feed- 213

back that guides the fine-tuning process to align the 214

model’s outputs with human preferences. Given the 215

input dataset D, the reward model for RLHF first 216

converts text pairs into encodings in the embedding 217

space E with parameter ϕ: 218

eϕ(x, y)→ e ∈ E , e = (ex, ey) (1) 219

Here, e is the representation of the input (x, y), ex 220

and ey are the representations of the prompt and 221

answer, respectively. 222

Prototypical Network. In the prototypical net- 223

work, a set of prototype vectors pk is categorized 224

into two groups: p+ and p−. The classification 225

of each sample pair’s embedding e(xi,y∗i )
, y∗ ∈ 226

{y+, y−} is determined by the proportion of these 227

two classes of prototypes within the adjacent pro- 228

totypes. The embedding e(xi,y∗i )
is updated based 229

on all the prototype vectors in their respective cat- 230

egory, with weights assigned according to their 231

importance. The importance of prototype pk is 232

computed using the distance metric d(·, ·): 233

P(pk|(xi, y∗i )) ∝ exp(−d(e(xi,y∗i )
,pk)) (2) 234

where d(·, ·) is usually taken as squared L2 dis- 235

tance. We then update the embedding for each 236

sample according to its class. For a sample em- 237

bedding related to the p∗ prototype, we update its 238

embedding e(xi,y∗i )
using all j p∗ prototypes. We 239

express the formula for updating the embedding as: 240

e(xi,y∗i )
=

1

j

j∑
k=1

(P(pk|(xi, y∗i )) · pk) (3) 241

The updated embedding is then transformed into a 242

score within a linear layer. 243

4.2 Reward Model with Protonet 244

Prototype Initialization. During the initializa- 245

tion phase, our goal is to reasonably initialize two 246

classes of prototypes pk ∈ {p+,p−}. We ran- 247

domly select n sample pairs and separate them ac- 248

cording to their sample labels zi. Specifically, we 249
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Figure 2: The framework consists of three components: 1) Reward model embedding, 2) Protonet adjustment and 3)
RLHF Process. The reward model compress and align the sample text pair embeddings to produce representative
prototypes, and the prototypes adjust the embeddings to update the reward model.

initialize different prototypes using the sample em-250

beddings labeled as “chosen” and “rejected”. This251

strategy is employed to allow the model to better252

learn human preferences as opposed to mere differ-253

ences in the content of the samples. We process the254

prompt and answer components of each text bar255

separately. For those embeddings that initialize p0,256

we perform pairwise sample alignment to ensure257

uniformity and fairness in compression and compu-258

tation across positive and negative examples. This259

alignment method guarantees that the prototypes260

are updated in a consistent manner, reflecting a bal-261

anced representation of both prompt and answer262

components in the embedding space.263

exi ← align(exi ,max ∥exi∥) (4)264

where align means the embedding exi is updated265

to a new vector with the same maximum length as266

the longest embedding vector among all exi , and267

we pad additional elements beyond the original268

length of exi with zeros. Similarly, we have:269

ey∗i ← align(ey∗i ,max ∥ey∗i ∥) (5)270

e(xi,y∗i )
= (exi , ey∗i ) (6)271

An initial prototype constructed from n text pairs272

is defined as p0 = 1
n

∑
e(xi,y∗i )

, with a length of273

∥p0∥ = (max ∥exi∥+max ∥ey∗i ∥), i = 1, 2, . . . n.274

This ensures that the prototype encapsulates the275

essential features of both prompt and answer.276

We derive an initial set of K prototypes. In our 277

case, we choose mean pooling as the aggregate 278

function with the parameter of the reward model ϕ 279

frozen. Furthermore, during initialization, we dis- 280

able the gradient updates of the prototype vectors, 281

ensuring that the initialization is not influenced by 282

other model parameters. This guarantees the ro- 283

bustness of the initialization process. 284

Prototype Update and Addition. Our goal is to 285

represent the samples effectively and comprehen- 286

sively by the prototypes. However, a fixed number 287

of prototypes may not suffice for this purpose. Too 288

few prototypes can lead to the loss of important 289

information, while too many prototypes can affect 290

their representativeness and increase computational 291

costs (Snell et al., 2017; Ming et al., 2019). 292

Therefore, we consider employing the technique 293

of Incremental Mixture Prototypes (IMP) (Allen 294

et al., 2019) to automatically add prototypes, allow- 295

ing the model to appropriately increase the number 296

of prototypes during training based on the distance 297

relationship between the prototypes and the sam- 298

ples. This technique is commonly used in the clas- 299

sification of graphical samples, but its application 300

in textual information is relatively less frequent. 301

Prototype methods excel in processing graphical 302

samples with their visual and intuitive features, but 303

the abstract and multidimensional characteristics of 304

text, covering semantics, syntax, and context, com- 305

plicate their use in textual data. Due to our reliable 306

embedding and alignment of text samples using the 307

reward model, we successfully implement IMP for 308
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effective learning from human feedback samples.309

After initializing the prototypes, we activate the310

Prototypical Network to better assimilate new input311

text pairs. To enhance the representativeness and312

diversity of the prototypes, we 1) appropriately add313

new prototypes and 2) continually update existing314

ones.315

1) We define the set of prototypes as P. To in-316

crease the representativeness and diversity of the317

prototypes, for each sample (xi, y
∗
i ) ∈ D, if the318

minimum distance between e(xi,y∗i )
and any proto-319

types in P exceeds a threshold λ, we create a new320

prototype based on e(xi,y∗i )
. The threshold distance321

λ is defined as:322

λ = 2σ log

(
α

(1 + ρ
σ )

d/2

)
(7)323

where σ is the cluster variance learned jointly with324

ϕ, ρ is the standard deviation for the base distribu-325

tion from which the cluster means are sampled, and326

α is a hyperparameter controlling the concentration327

of clusters in the Chinese Restaurant Process. Our328

approach can balance between fitting simple data329

distributions with low capacity and complex distri-330

butions with high capacity.331

2) We then compute the Euclidean distance from332

each text bar in a text pair to every prototype pk333

in their class, denoted as d(e(xi,y∗i )
,pk). Then, uti-334

lizing the negative of these distances, we calculate335

the softmax to obtain a probability distribution of336

sample (xi, y
∗
i ) belongs to prototype pj . Addition-337

ally, during the update of sample embeddings, we338

incorporate a proportionate dropout of the proto-339

types, which enhances the model’s ability to gener-340

alize and avoid overfitting to specific patterns, as341

expressed by the following equation:342

P (pi = pj |(xi, y∗i )) =
exp(−d(e(xi,y∗i )

,pj))∑⌊ρK⌋
k=1 exp(d(e(xi,y∗i )

,pk))
(8)343

where ρ is the dropout ratio, and K is the total344

number of prototypes, ⌊·⌋ represents the floor func-345

tion. Here we compare prototypes within the same346

class using cosine similarity and drop out the pro-347

totypes with the lowest similarity proportionally,348

instead of random dropout. This method allows the349

prototypes to be more representative.350

After yielding the probabilities with respect to351

each prototype, we then multiply these probabili-352

ties by the embedding of the respective prototype353

pk to obtain the new embedding e′(xi,y∗i )
after the 354

Prototypical Network processing. 355

e′(xi,y∗i )
=

K∑
k=1

P (pi = pk|(xi, y∗i )) · pk (9) 356

Annotation Prediction. We then evaluate the per- 357

formance of the model and update it. We predict the 358

annotation zi of the new embedding e′(xi,y∗i )
. The 359

embedding transform into a score s(xi,y∗i )
through 360

a linear layer. By comparing the scores s(xi,y
+
i ) 361

with s(xi,y
−
i ), the model annotate the one with the 362

higher score as “chosen”, and the one with the 363

lower score as “rejected”. We evaluate the model’s 364

predictions zi against real human annotations and 365

perform backpropagation accordingly. 366

Loss and Backpropagation. The final step in- 367

volves the computation of the overall loss, includ- 368

ing reward loss and diversity loss to enhance the 369

model’s performance and reduce the risk of overfit- 370

ting. 371

For reward loss Lr, we adopt the reward loss 372

structure of (Stiennon et al., 2020): 373

Lr =− E(xi,y
+
i ,y−i )∼Z [log(σ(rϕ(xi, y

+
i )

− rϕ(xi, y−i )))]
(10) 374

where rϕ(xi, y∗i ) is the scalar output of the re- 375

ward model for prompt xi and answer y∗i with pa- 376

rameter ϕ, and Z is the collection of human anno- 377

tations. At the end of training, we normalize the 378

reward model outputs such that the reference text 379

pairs from the dataset achieve a mean score of 0. 380

For diversity lossLdiv, in order to ensure a sparse 381

distribution among prototype points, we employ 382

a hyperparameter τ to constrain the average Eu- 383

clidean distance between prototype points. As 384

model parameters, prototypes are involved in back- 385

propagation through gradient descent, allowing for 386

dynamic refinement. The sparsity constraint is im- 387

plemented via a diversity loss Ldiv (Ji et al., 2022), 388

which is guided by the average Euclidean distance 389

between prototypes: 390

ψ =

{
Euc(Φ)− τ if Euc(Φ) ≥ τ,
τ − Euc(Φ) if Euc(Φ) < τ,

(11) 391

392
Ldiv = log(ψ + 1). (12) 393
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The full objective L linearly combines Lr and394

Ldiv using a hyperparameter ρd:395

L = Lr + ρdLdiv (13)396

Algorithm 1 Reward model with Protonet

1: Input: D =
{
(xi, y

+
i , y

−
i ), (z

+
i , z

−
i )

}N

i=1
,

where each z+, z− ∈ Z = {chosen, rejected}
2: Output: The predicting score pair
S(x, y+, y−) = (s+, s−) and the reward
model fϕ

3: Initialize K Prototypes through Prototype Ini-
tialization

4: for minibatch Br ∈ D do
5: Perform Prototype Update and Addition

and estimate λ according to Eq. 7
6: for (xi, y

+
i , y

−
i ) ∈ Br do

7: Converts (xi, y+i , y
−
i ) into encodings

e(xi,y
+
i ) and e(xi,y

−
i )

8: for y∗i ∈ y+, y− do
9: Allign e(xi,y∗i )

according to Eq. 4
10: Calculate di,k = d(e(xi,y∗i )

,pk) for
pk ∈ p∗, and di,k = +∞ for pk /∈
p∗

11: Update the embedding according
to Eq. 3

12: if min di,k > λ then
13: Create the K + 1-th prototype

pK+1 using e(xi,y∗i )
; Increment

K by 1
14: end if
15: Compute s(xi,y∗i )

though Annota-
tion Prediction

16: end for
17: end for
18: end for

5 Experiments397

In this section, we first compare the consistency398

of annotations between Proto-RM and Baseline399

Reward Model (Baseline RM) with real human400

feedback on Prompt-Answer text pairs. Subse-401

quently, we contrast the differences in text quality402

of LLM outputs after fine-tuning with Proto-RM403

versus Baseline RM. Following this, we explore the404

significance of different modules in the learning of405

the reward model, assessing the effectiveness of406

our innovative points.407

5.1 Experiment Settings 408

Datasets. We train reward models using three 409

datasets at varying data proportions. The datasets 410

employed are as follows: 411

Webgpt Pairwise Summarize

5% 979 1,657 9,692
10% 1,958 3,314 19,384
20% 3,916 6,629 38,768
Total 19,578 33,143 193,841

Table 1: Data distribution across different datasets

Webgpt Comparisons (Webgpt) (Nakano et al., 412

2021) contains pairs of model answers with human 413

preference scores in the WebGPT project. 414

Synthetic Instruct GPT-J Pairwise (Pair- 415

waise) (Alex et al., 2021) contains human feedback 416

for reward modeling, featuring pairwise summary 417

evaluations and Likert scale quality assessments. 418

Summarize from Feedback (Summarize) (Stien- 419

non et al., 2020) contains pairwise summaries with 420

human annotations from the TL;DR dataset. 421

Models. For the pre-trained LLM we adopt the 422

GPT-J model (Wang and Komatsuzaki, 2021). And 423

we use the trlX framework (Havrilla et al., 2023) 424

to implement our algorithm. 425

Implemetation Settings. In our experiments, we 426

apply a batch size of 8 and initialize each prototype 427

using n = 2 examples. The sequence length is 428

set to 550. We fix the value of α at 0.1 and the 429

initial value of ρ at 5. For the optimization pro- 430

cess, we use the AdamW optimizer (Zhuang et al., 431

2022). We search for the best learning rate within 432

the range of [1e− 6, 1e− 5]. Other hyperparame- 433

ters are set to their default values. All experiments 434

are conducted for a maximum of 5 epochs with 435

early stopping implemented. Regarding hardware, 436

our experiments are run on server equipped with 437

NVIDIA Tesla A100 GPU (80GB memory). 438

5.2 Comparison with Baseline Reward Model 439

To compare the performance of Baseline RM and 440

Proto-RM, we train and test both reward models on 441

three datasets by different radios. From Table 2 we 442

can see that, across the different data proportions 443

on the three datasets, Proto-RM consistently sur- 444

passes Baseline-RM. On the Webgpt dataset, there 445

is an accuracy improvement ranging from 1.48% to 446

2.15%; on the Pairwise dataset, the improvement 447

spans from 0.48% to 0.59%, with Proto-RM nearly 448

achieving perfect accuracy; and on the Summa- 449

rize dataset, especially at the 20% data proportion, 450
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Datasets Webgpt Pairwise Summarize
RM Baseline-RM Proto-RM Baseline-RM Proto-RM Baseline-RM Proto-RM
5% 57.46± 0.21 58.94± 0.22(+1.48) 98.96± 0.15 99.44± 0.18(+0.48) 65.36± 0.19 67.67± 0.23(+2.31)
10% 58.86± 0.24 59.30± 0.26(+0.44) 99.14± 0.17 99.65± 0.20(+0.51) 66.51± 0.21 67.76± 0.25(+1.25)
20% 58.41± 0.28 60.56± 0.29(+2.15) 99.45± 0.16 99.84± 0.11(+0.39) 67.46± 0.22 68.72± 0.27(+1.26)

Table 2: Comparison with Baseline in different sizes of various datasets, the accuracy of Proto-RM consistently
exhibits an exceedance over Baseline-RM.
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Figure 3: Comparison of reward models’ accuracy on 5%, 10%, and 20% datasets.

Proto-RM exhibits the most significant accuracy451

gain of 1.26%.452

The line graphs Figure 4 reinforce the table’s453

data, showcasing that the Proto-RM model main-454

tains a higher accuracy across epochs compared to455

the Baseline-RM for the 5%, 10%, and 20% of the456

Summarize dataset. Proto-RM not only starts at a457

higher accuracy but also demonstrates less variabil-458

ity and ends with a higher accuracy, indicating a459

more robust model.460

5.3 RLHF Performance461

To ensure consistency in scoring and to maintain462

the integrity of the evaluation, all outputs from463

GPT-J (6B) (Wang and Komatsuzaki, 2021) are464

assessed by GPT-4 (OpenAI, 2024) across four465

dimensions, as many studies and attempts to use466

LLMs for text annotation (Gilardi et al., 2023;467

Alizadeh et al., 2023; Bai et al., 2022b), indicat-468

ing that high-quality LLMs are capable of achiev-469

ing human-like text evaluation abilities (Lee et al.,470

2023). The scoring standards, which include con-471

siderations of factual accuracy, text relevance, in-472

formation completeness, and clarity of expression,473

are uniformly applied. Each aspect is scored on a474

scale up to 10, with increments of 0.5. The over-475

all score is derived as the average of these four476

individual scores:477

Accuracy (Acc): Assesses whether the content478

of the answer or summary accurately reflects the479

information and intention of the original prompt.480

Relevance (Rel): Checks whether the answer or481

summary is closely related to the original prompt.482

Completeness (Comp): Evaluates whether the483

provided information is comprehensive, covering484

all key points and details in the prompt. 485

Expression (Expr): Considers whether the lan- 486

guage expression of the answer or summary is clear 487

and understandable. 488

The results in Figure 4 indicates that the LLM 489

fine-tuned with Proto-RM outperforms the Base- 490

line across all four aspects, showing an increase 491

from 0.4/10 to 0.54/10 in overall score, which is 492

significantly higher than the Baseline. Moreover, 493

it demonstrates a clear advantage in both Accu- 494

racy and Expression, with the highest scores reach- 495

ing 0.76/10 and 0.82/10 respectively. Table 3 496

demonstrates the differences in the output text qual- 497

ity of GPT-J with no fine-tuning, fine-tuned using 498

Baseline-RM, and fine-tuned using Proto-RM. The 499

discrepancies highlighted also validate the efficacy 500

of our improved reward model. 501

5.4 Ablation Study 502

Study of IMP. We explore and compare the effects 503

of using different numbers of prototypes with var- 504

ious methods for setting the prototype quantities. 505

Specifically, we examine the outcomes of setting 506

the prototype numbers to twice and thrice the de- 507

fault amount and the outcomes of gradually increas- 508

ing the number of prototypes from the default to 509

double and triple using the IMP method. Figure 5 510

illustrates that adopting the IMP method for proto- 511

type numbers yields better results in both accuracy 512

and stability compared to fixed prototype numbers. 513

The lines representing IMP methods (both IMP- 514

Double and IMP-Triple) show higher accuracy over 515

the epochs. Additionally, the IMP lines demon- 516

strate a smoother progression with less fluctuation, 517

suggesting greater stability in model performance 518
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Figure 4: Performance of LLM with reward model fine-tuning.

Prompt: SUBREDDIT: r/relationships TITLE: My girlfriend (20f) of two years cheated on me (20m) by kissing two guys at
a Halloween party.
POST: Lately her and I have been having a few problems, and these problems have been brought up before a few times... I
feel terrible about it, but this time I was really trying to change for her. For Halloween she went to visit her step brother at a
college and I got drunk with my friends and watched movies. Last night (11/1) we got in a huge fight about me not changing
and how our relationship won’t work out and basically broke up over the phone. So in an effort to try and fix it I drove to her

house. She told me how at the parties she went to that two guys kissed her... Should I even try to fix it or would I be better
off cutting all ties...
TL;DR:
GPT-J without Fine-tuning GPT-J with Baseline Reward Model GPT-J with Protonet-Reward Model
Girlfriend cheated on me and
now we may be fixing things up,
but we’re not too sure if I should.
I love her and we both want to
fix things . Should we?

girlfriend of 2 years kissed two guys at Hal-
loween party and I don’t know what to do.
But I want to try and fix it .

Girlfriend and I broke up over me

not changing , decided to fix that, find out

she kissed someone else at a Halloween
party. Should we work it out or not?

Table 3: Comparative responses from GPT-J models to a given prompt.

across epochs.519
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Figure 5: Impact of IMP.

Study of Dropout. Showing in Figure 6, we find520

that employing a Dropout method, which propor-521

tionally drops out a part of the prototypes during522

the sample embedding updates, yields better results.523

Specifically, as the line chart illustrates, adopting a524

Dropout method significantly outperforms the ap-525

proach of not using Dropout in terms of accuracy.526

Among the Dropout approaches, the method utiliz-527

ing Cosine Similarity Dropout achieves higher ac-528

curacy compared to Random Dropout and exhibits529

greater stability. This underscores the effectiveness530

of using Cosine Similarity Dropout.531
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Figure 6: Impact of Dropout.

6 Conclution 532

In conclusion, our research demonstrates the effi- 533

cacy of Prototypical Networks in refining RLHF 534

processes, especially in scenarios with limited hu- 535

man feedback. The enhanced reward model shows 536

a marked improvement in aligning LLM outputs 537

with human preferences, as evidenced by our exper- 538

imental results. However, our method’s application 539

to more diverse and extensive datasets remains an 540

area for future exploration to further validate its 541

effectiveness and adaptability. 542
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