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Abstract
We develop universal gradient methods for
Stochastic Convex Optimization (SCO). Our al-
gorithms automatically adapt not only to the ora-
cle’s noise but also to the Hölder smoothness of
the objective function without a priori knowledge
of the particular setting. The key ingredient is a
novel strategy for adjusting step-size coefficients
in the Stochastic Gradient Method (SGD). Un-
like AdaGrad, which accumulates gradient norms,
our Universal Gradient Method accumulates ap-
propriate combinations of gradient- and iterate
differences. The resulting algorithm has state-of-
the-art worst-case convergence rate guarantees
for the entire Hölder class including, in particular,
both nonsmooth functions and those with Lips-
chitz continuous gradient. We also present the
Universal Fast Gradient Method for SCO enjoy-
ing optimal efficiency estimates.

1. Introduction
Motivation. The complexity of modern machine learning
problems makes it difficult to estimate their mathematical
properties, let alone characterize them accurately. The prob-
lems thus demand sophisticated solutions which are robust
to possible variations in the parameters. One therefore needs
algorithms that can work simultaneously under multiple as-
sumptions while implicitly adapting to the parameters of the
problem. The sheer scale of modern problems also raises
efficiency concerns, which paves the way for the stochastic
methods leveraging randomized computations.

In this paper, we study the convex optimization problem

min
x∈domψ

[
F (x) := f(x) + ψ(x)

]
, (1)
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where f is the main (difficult) part of the problem, and ψ is
a simple convex function (e.g., indicator of a set). Further-
more, we assume that f can be queried only via an unbiased
stochastic gradient oracle with (unknown) variance σ2.

Optimization algorithms are typically designed for a par-
ticular problem class and tailored to its properties. Two
standard classes are nonsmooth (f is Lipschitz continuous)
and smooth (f has Lipschitz gradient). It is common for
the problem class to dictate the selection of algorithm’s
parameters to ensure the optimal convergence.

However, in practice, every specific problem typically be-
longs to multiple problem classes at the same time, and it is
usually very difficult (if not impossible) to say in advance
which particular class better fits our problem. To address
this issue, we need universal methods that can automati-
cally adjust to the “correct” problem class when applied to
a concrete problem instance given to them.

The important example of such algorithms is given by
Universal Gradient Methods (UGMs) of (Nesterov, 2015).
These methods are capable of solving the more general class
of Hölder-smooth problems:

∥∇f(x)−∇f(y)∥ ≤ Lν∥x− y∥ν , ∀x, y ∈ domψ,

which continuously connects nonsmooth problems (ν = 0)
with the smooth ones (ν = 1). To achieve universality,
UGMs use a special line-search procedure which automati-
cally selects an appropriate step size for any possible Hölder
exponent and the corresponding Hölder constant, without
knowing these parameters. As a result, the methods automat-
ically adjust to the best possible problem class. However,
UGMs require exact computations of gradients (σ = 0).

The extension of UGMs to stochastic optimization has been
a challenging open problem. The desired algorithms should
automatically adjust not only to the Hölder smoothness of
the objective function, but also to the oracle’s noise.

In this paper, we address this open problem and provide
a solution to it. We design line-search-free variants of
UGMs which automatically adapt to: (i) Hölder exponent ν,
(ii) Hölder constant Lν , (iii) variance of the stochastic or-
acle σ, without having the prior knowledge of neither the
problem class nor the nature of the gradient information.
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Contributions. We develop new Universal Gradient Meth-
ods (UGMs) for problem (1), which are robust to the stochas-
tic noise in gradient computations. To achieve that, we
assume the knowledge of a certain upper bound D on the
diameter of the feasible set domψ (or, somewhat equiva-
lently, the distance from the initial point to the solution),
which is a common assumption in a variety of other adaptive
algorithms for Stochastic Convex Optimization (SCO).

Our main contributions can be summarized as follows:

1. We first rethink (in Section 3) the theoretical analysis
of the line-search-based UGM for deterministic opti-
mization, and identify a simple mechanism to remove
the line search from this algorithm while retaining the
same worst-case efficiency estimates. The key element
is a novel strategy for adjusting step-size coefficients
based on the idea of balancing the two error terms
appearing in the convergence analysis.

2. We then show (in Section 4) that our techniques can
easily be extended to stochastic optimization problems.
The only essential change that we need to make is to
replace the Bregman distance for the objective func-
tion, appearing in the formula for the step-size, with
the stochastic version of the symmetrized Bregman
distance involving gradient- and iterate differences.
The resulting Universal Stochastic Gradient Method
requires at most O

(
infν∈[0,1][

Lν

ϵ ]2/(1+ν)D2 + σ2D2

ϵ2

)
stochastic oracle calls to reach ϵ-accuracy in terms of
the expected function residual (Theorem 4.2).

3. Finally, we present (in Section 5) the Universal Stochas-
tic Fast Gradient Method enjoying the worst-case
optimal efficiency of O

(
infν∈[0,1][

LνD
1+ν

ϵ ]2/(1+3ν) +
σ2D2

ϵ2

)
oracle calls (Theorem 5.1).

Note that all our methods are agnostic to the smoothness
exponent ν, smoothness constant Lν and the noise level σ.
To our knowledge, this is the first work proposing algorithms
with such characteristics.

Related work. Pioneered by the AdaGrad algo-
rithm Duchi et al. (2011); McMahan & Streeter (2010),
adaptive methods have been at the forefront of training
machine learning models. AdaGrad accumulates the
sequence of observed gradient norms to construct a de-
creasing step size. This construction enables data-adaptive
regret bounds and has many useful properties. Following
the success of the AdaGrad, several methods have been
proposed (Kingma & Ba, 2015; Tieleman & Hinton, 2012;
Rakhlin & Sridharan, 2013; Reddi et al., 2018). Levy
et al. (2018) proposed the first accelerated algorithm with
data-adaptive step-size without the knowledge of Lipschitz
constant and the variance bound. They prove convergence

results for nonsmooth and smooth objectives in the presence
of stochastic noise. These results are further refined and
extended by Kavis et al. (2019); Joulani et al. (2020);
Ene et al. (2021). Despite the significant interest in the
adaptation to smoothness and noise, existing methods are
not known to handle Hölder-smooth objectives.

Another popular type of adaptive methods is known as
parameter-free. This direction is very interesting but some-
what orthogonal to ours. Parameter-free algorithms have
been studied for over a decade in online learning (McMa-
han & Streeter, 2012; Orabona, 2014; Cutkosky & Boahen,
2017; Cutkosky & Orabona, 2018; Jacobsen & Cutkosky,
2023; Mhammedi & Koolen, 2020). They are usually en-
dowed with appropriate mechanisms to achieve efficiency
bounds that are almost insensitive (typically, with logarith-
mic dependency) to the error of estimating certain problem
parameters, such as the diameter of the feasible set (Carmon
& Hinder, 2022; Ivgi et al., 2023; Defazio & Mishchenko,
2023; Khaled et al., 2023; Mishchenko & Defazio, 2023).
However, these methods typically consider the extreme
cases of the Hölder class.

Within the context of online learning, there exists an in-
dependent notion of universality such that the algorithms
adapt unknowingly to the degrees and types of convexity.
The goal is designing algorithms that achieve, up to loga-
rithmic factors, optimal regret bounds simultaneously for
convex, strongly convex and exponentially concave func-
tions (Van Erven & Koolen, 2016; Wang et al., 2020; Zhang
et al., 2022; Yan et al., 2023). The associated design and
proof techniques are not transferable to our setup as we fo-
cus on the degree of smoothness while the aforementioned
works study degrees of convexity.

The first UGM for deterministic optimization, including the
Fast UGM with optimal worst-case oracle complexity, was
proposed in (Nesterov, 2015). The corresponding methods
achieve the adaptation to Hölder smoothness by the means
of line search but must set the target accuracy a priori. A
possible extension of these algorithms to stochastic opti-
mization was considered in (Gasnikov & Nesterov, 2018).
They proposed an accelerated gradient method for stochastic
optimization problems, which adapts to the Hölder charac-
teristics of the objective using line search combined with
mini-batching. However, this method additionally relies on
the knowledge of the oracle’s variance to correctly set up
the size of the mini-batch at each iteration, and therefore
cannot be considered adaptable to the noise level.

More recently, Li & Lan (2023) studied the same problem
but with the deterministic oracle, and designed a line-search-
free universal method that estimates local smoothness in
the sense of Malitsky & Mishchenko (2020; 2023). Their
step-size formula shares some similarities to ours, and does
not require any (artificial) bounds on the diameter of the
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feasible set. However, they only consider exact gradient
computations, and it is unknown whether their construction
can be extended to stochastic problems. On a related note,
Orabona (2023) showed that, in the deterministic case, both
AdaGrad and the normalized gradient method (Nesterov,
2018, Section 3.2.3) automatically adapt to Hölder smooth-
ness. Although the corresponding proof for AdaGrad could
be extended to the stochastic setting at the expense of ad-
ditional assumptions, the same type of argument cannot be
trivially applied to the accelerated method.

2. Preliminaries
2.1. Notation

In this text, we work in the space Rn equipped with the
standard inner product ⟨·, ·⟩ and the certain Euclidean norm:

∥x∥ := ⟨Bx, x⟩1/2, x ∈ Rn, (2)

where B ∈ Sn++ is a sufficiently simple symmetric positive
definite matrix (e.g., the identity or a diagonal one). The
corresponding dual norm is defined in the standard way:

∥s∥∗ := max
∥x∥=1

⟨s, x⟩ = ⟨s,B−1s⟩1/2, s ∈ Rn. (3)

Thus, for any s, x ∈ Rn, we have the Cauchy–Schwarz
inequality |⟨s, x⟩| ≤ ∥s∥∗∥x∥.

For a convex function f : Rn → R ∪ {+∞}, by dom f :=
{x ∈ Rn : f(x) < +∞}, we denote its effective domain.
The subdifferential of f at a point x ∈ dom f is denoted
by ∂f(x). For any two points x, y ∈ dom f and any g ∈
∂f(x), we define the Bregman distance generated by f as

βgf (x, y) := f(y)− f(x)− ⟨g, y − x⟩ (≥ 0), (4)

In the case when there is no ambiguity with the subgradi-
ent g, we use a simpler notation βf (x, y).

For any t ∈ R, by [t]+ := max{t, 0}, we denote its positive
part. For random variables X and ξ, by Eξ[X] and E[X],
we denote the expectation of X w.r.t. to ξ, and the full
expectation of X , respectively.

2.2. Problem Setting

In this paper, we study the following optimization problem:

F ∗ := min
x∈domψ

[
F (x) := f(x) + ψ(x)

]
, (5)

where ψ : Rn → R ∪ {+∞} is a sufficiently simple proper
closed convex function, and f : Rn → R ∪ {+∞} is a
closed convex function which is finite and subdifferentiable
over an open set containing domψ.

Our main assumption on problem (5) is the boundedness of
the feasible set domψ.

Assumption 2.1. For problem (5), there is D > 0 such that
∥x− y∥ ≤ D for all x, y ∈ domψ.

In what follows, we assume that the diameter D is known.
This will be the only parameter in our methods. Note that
Assumption 2.1 guarantees that the problem (5) has a solu-
tion (since the objective function F is proper and closed).
An important example that satisfies this assumption is when
ψ is the indicator function of a certain compact set Q ⊆ Rn:
ψ(x) := 0 if x ∈ Q, and ψ(x) := +∞ if x /∈ Q.

By calling ψ simple, we mean the following standard as-
sumption: for any c ∈ Rn, x̄ ∈ domψ, and H ≥ 0, we can
efficiently compute a solution to the following subproblem:
minx∈domψ{⟨c, x⟩ + H

2 ∥x − x̄∥2 + ψ(x)}. For instance,
when ψ is the indicator function of a compact set Q, it
corresponds to finding a Euclidean projection onto Q (or
minimizing a linear function over Q if H = 0; in this case,
we allow for an arbitrary solution of the subproblem).

To characterize the smoothness of f in problem (5), let us
introduce, for each ν ∈ [0, 1], the Hölder constant:

Lν := sup
x,y∈domψ, x̸=y,

g(x)∈∂f(x), g(y)∈∂f(y)

∥g(x)− g(y)∥∗
∥x− y∥ν

. (6)

Of course, for certain values of the exponent ν ∈ [0, 1], it
may happen that Lν = +∞. However, we assume that there
exists (at least one) exponent for which the corresponding
Hölder constant is finite.

Assumption 2.2. For problem (5) andLν given by (6), there
exists ν ∈ [0, 1] such that Lν < +∞.

The case L0 < +∞ corresponds to the situation when f has
bounded variation of subgradients: for all x, y ∈ domψ,
and all g(x) ∈ ∂f(x), g(y) ∈ ∂f(y), it holds that ∥g(x)−
g(y)∥∗ ≤ L0. If f has bounded subgradients over domψ,
i.e., there exists L′

0 ≥ 0 such that ∥g(x)∥∗ ≤ L′
0 for all

x ∈ domψ and all g(x) ∈ ∂f(x), then L0 ≤ 2L′
0. On

the other hand, if Lν < +∞ for some ν ∈ (0, 1], then f
is actually differentiable over domψ, and, for all x, y ∈
domψ, it holds ∥∇f(x) − ∇f(y)∥∗ ≤ Lν∥x − y∥ν . The
case L1 < +∞ corresponds to the Lipschitz gradient.

One simple example of the convex function with Hölder
(sub)gradients is the p-th power of the ℓp-norm of the
residual for the system of linear equations, f(x) =
1
m

∑m
i=1|⟨ai, x⟩ − bi|p with ai ∈ Rn, bi ∈ R, p ∈ [1, 2],

which generalizes the classical least-squares loss (corre-
sponding to p = 2); this function is Hölder smooth with
ν = p − 1 but not Lipschitz smooth (unless p = 2). An-
other simple example is the similar residual but for linear
inequalities, f(x) = 1

m

∑m
i=1[⟨ai, x⟩ − bi]

p
+, which is the

smooth counterpart of the classical loss function used by the
Support Vector Machines (SVMs). More generally, there
is a duality relationship between Hölder smoothness and
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uniform convexity: if f∗ is a uniformly convex function1

of degree q ≥ 2 with parameter σq > 0, then its Fenchel

dual f is Hölder smooth with ν = 1
q−1 and Lν ≤

(
1
σq

) 1
q−1

(see, e.g., Lemma 1 in (Nesterov, 2015)), and vice versa;
in particular2, for any convex function f∗, the function
f(x) = maxs∈dom f∗ [⟨s, x⟩ − f∗(s) − σq

q ∥s∥
q
∗] is Hölder

smooth with ν = 1
q−1 and Lν ≤

(
2q−2

σq

) 1
q−1 .

It is not difficult to see from (6) that, under Assumption 2.1,
for any 0 ≤ ν1 ≤ ν2 ≤ 1, we have the following monotonic-
ity relation: Lν1D

ν1 ≤ Lν2D
ν2 . (This is the consequence

of the fact that τp is increasing in p > 0 for any fixed
τ = D

∥x−y∥ ≥ 1.) In particular, if Lν′ < +∞ for some
ν′ ∈ [0, 1], then Lν < +∞ for all ν ∈ [0, ν′].

One standard and important consequence of (6) is that, for
any ν ∈ [0, 1] (such that Lν < +∞), and all x, y ∈ domψ
and all g ∈ ∂f(x), we have the following upper bound on
the Bregman distance of the function f :

βgf (x, y) ≤
Lν

1 + ν
∥x− y∥1+ν . (7)

Our goal in this paper is to present numerical methods for
solving (5) that are universal: they can automatically adapt
to the actual level of smoothness of the function f without
knowing neither the Hölder exponent ν, nor the correspond-
ing Hölder constant Lν .

3. Universal Line-Search-Free Gradient
Method

3.1. Main Idea

To explain the main idea behind our construction of adaptive
step-size coefficients, let us consider the usual (Composite)
Gradient Method for solving problem (5):

xk+1=argmin
x∈domψ

{
⟨f ′(xk), x⟩+ψ(x)+

Hk

2
∥x−xk∥2

}
, (8)

assuming we can compute the exact (sub)gradient f ′(xk) ∈
∂f(xk) at each iteration k ≥ 0 (i.e., the oracle is determin-
istic). The question is how to choose the step-size coef-
ficients Hk at each iteration to ensure that the algorithm
properly works for any possible Hölder exponent ν and the
corresponding coefficient Lν without explicitly using these
constants in the method.

The standard convergence analysis of method (8) uses the
following central inequality (for rk+1 := ∥xk+1 − xk∥ and

1This means that ⟨f ′
∗(x) − f ′

∗(y), x − y⟩ ≥ σq∥x − y∥q for
all x, y and all f ′

∗(x) ∈ ∂f∗(x), f ′
∗(y) ∈ ∂f∗(y).

2Here we use the standard fact that 1
q
∥·∥q∗ is a uniformly convex

function of degree q with parameter 1
2q−2 , (see, e.g., Lemma 4

in (Nesterov, 2008)).

dk := ∥xk − x∗∥ with x∗ being a solution of (5)):

f(xk)+⟨f ′(xk), xk+1−xk⟩+ψ(xk+1)+
Hk

2
r2k+1+

Hk

2
d2k+1

≤ f(xk) + ⟨f ′(xk), x∗ − xk⟩+ ψ(x∗) +
Hk

2
d2k,

which is a simple consequence of the strong convexity of
the objective function in the auxiliary subproblem (8) (c.f.
Lemma E.2). Rewriting now f(xk)+⟨f ′(xk), xk+1−xk⟩ =
f(xk+1)− βf (xk, xk+1) using the Bregman distance, and
estimating f(xk) + ⟨f ′(xk), x∗ − xk⟩+ ψ(x∗) ≤ f(x∗) +
ψ(x∗) = F ∗ using the convexity of f , we get

F (xk+1)−F ∗+
Hk

2
d2k+1 ≤ Hk

2
d2k+βk+1−

Hk

2
r2k+1, (9)

where βk+1 := f(xk+1)− f(xk)− ⟨f ′(xk), xk+1 − xk⟩.

3.1.1. LINE-SEARCH APPROACH

The standard approach to proceed, pioneered by (Nesterov,
2015), is to choose the coefficient Hk in such a way that the
error term βk+1 − Hk

2 r
2
k+1 in (9) is sufficiently small:

∆k := βk+1 −
Hk

2
r2k+1 ≤ ϵ

2
(10)

(for a certain fixed ϵ > 0), and then divide both sides of (9)
by Hk to get a telescopic recurrence:

1

Hk
[F (xk+1)− F ∗] +

1

2
d2k+1 ≤ 1

2
d2k +

ϵ

2Hk
.

Telescoping and dividing by Sk :=
∑k−1
i=0

1
Hi

, we get

F (x∗k)− F ∗ ≤ D2
0

2Sk
+
ϵ

2
≤ H∗

kD
2
0

2k
+
ϵ

2
, (11)

where D0 := d0 = ∥x0 − x∗∥, H∗
k := max0≤i≤k−1Hi,

and x∗k is the “best” iterate:

x∗k := argmin
{
f(x) : x ∈ {x1, . . . , xk}

}
. (12)

(Alternatively, one could also define x∗k as the average of xi
with weights 1

Hi
.) This gives us the convergence of the func-

tion residual to ϵ, provided that H∗
k is reasonably bounded

from above (e.g., by a constant).

To ensure that (10) is satisfied for a sufficiently large Hk

and estimate the corresponding H∗
k , we start with the obser-

vation that, by (7), βk+1 ≤ Lν

1+ν r
1+ν
k+1 for any ν ∈ [0, 1], and

hence

∆k ≤ Lν
1 + ν

r1+νk+1 −
Hk

2
r2k+1 ≤ (1− ν)L

2/(1−ν)
ν

2(1 + ν)H
(1+ν)/(1−ν)
k

.

(13)
(The final inequality follows by maximizing the expression
in rk+1, see Lemma E.3; for ν = 1, the right-hand side
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should be understood as 0 if Hk ≥ Lν and +∞ otherwise.)
Making the right-hand side of the above display ≤ ϵ

2 , we
see that (10) is satisfied whenever Hk ≥ H̄ν , where

H̄ν := L2/(1+ν)
ν

[ 1− ν

(1 + ν)ϵ

](1−ν)/(1+ν)
.

Notice that ν = 1 implies H̄ν ≥ Lν . Since we do not know
the best (= smallest) possible value of Lν over all ν, we
cannot simply set Hk = H̄∗ := infν∈[0,1] H̄ν . However, we
can let the line search estimate this value for us: at each
iteration, we start with a certain initial guess H ′

k for Hk

and then repeatedly double this value until condition (10)
is satisfied (note that xk+1 depends on Hk and thus needs
to be recomputed at every iteration of the line search pro-
cedure). Provided that the initial guess H ′

0 at the very first
iteration is not sufficiently large, e.g., H ′

0 ≤ H̄∗ and that
H ′
k+1 is chosen appropriately (e.g, H ′

k+1 = 1
2Hk), we then

have the guarantee that Hk computed by the line search
does not significantly exceed the “right” value: Hk ≤ 2H̄∗;
furthermore, the total number of line search iterations across
all iterations of the algorithm is reasonably bounded. Sub-
stituting now this bound on Hk into (11) and looking at the
number of iterations k that one needs to make H∗

kD
2
0

k ≤ ϵ,
we see that the outlined above line-search method needs

O

(
inf

ν∈[0,1]

H̄νD
2
0

ϵ

)
= O

(
inf

ν∈[0,1]

[
Lν
ϵ

]2/(1+ν)
D2

0

)
(14)

iterations to reach F (x∗k)− F ∗ ≤ ϵ.

3.1.2. OUR IDEA: HOW TO AVOID LINE SEARCH

The problem with the line-search approach, which makes
it difficult to extend the corresponding reasoning to the
stochastic case, is that it creates a dependency (correlation)
between xk and Hk. This does not allow us to use the un-
biasedness of the stochastic gradient oracle once we divide
(the stochastic counterpart of) (9) by Hk (see Section 4.2).

However, we can follow a different approach to convert (9)
into a telescopic recurrence. Specifically, let us replace the
coefficient Hk in the left-hand side of (9) with Hk+1:

F (xk+1)− F ∗ +
Hk+1

2
d2k+1 −

Hk

2
d2k

≤ βk+1 −
Hk

2
r2k+1 +

1

2
(Hk+1 −Hk)d

2
k+1.

As we can see, such an operation may introduce an addi-
tional error term 1

2 (Hk+1 −Hk)d
2
k+1 if we plan to increase

our step-size coefficient: Hk ≤ Hk+1 (which is a natural
thing to do if it is currently too small making the other er-
ror term βk+1 − Hk

2 r
2
k+1 too large). Nevertheless, using

Assumption 2.1, we can easily control this additional error

term and make it telescopic:

F (xk+1)− F ∗ +
Hk+1

2
d2k+1 −

Hk

2
d2k

≤ βk+1 −
Hk

2
r2k+1 +

1

2
(Hk+1 −Hk)D

2.

(15)

Our main idea now is to choose the next coefficient Hk+1

so that the two error terms are balanced:

1

2
(Hk+1 −Hk)D

2 =
[
βk+1 −

Hk

2
r2k+1

]
+
, (16)

where we additionally put the positive part [·]+ to respect
the monotonicity relation Hk ≤ Hk+1. Recall that βk+1

and rk+1 depend only on xk and xk+1 (which themselves
depend on Hk−1 and Hk, see (8)). Thus, (16) is a simple
linear equation for Hk+1 which does not require any line
search for solving it.

Substituting our choice (16) of Hk+1 into (15) (and using
the fact that τ ≤ [τ ]+ for any τ ∈ R), we arrive at the
following simple telescopic inequality:

F (xk+1)−F ∗+
Hk+1

2
d2k+1 ≤ Hk

2
d2k+(Hk+1−Hk)D

2.

(17)
Telescoping these inequalities, we get

F (x∗k)−F ∗ ≤ 1

k

[H0

2
d20+(Hk−H0)D

2
]
≤ HkD

2

k
, (18)

where x∗k is the “best” iterate (see (12)). (Alternatively, one
could also define x∗k = 1

k

∑k
i=1 xi.)

The main question is how fast the coefficient Hk grows.
Following exactly the same argument as in (13) (and using
the fact that [·]+ is nondecreasing), we can estimate the
right-hand side of our balance equation (16) and conclude
that (Hk+1 − Hk)D

2 ≤ (1−ν)L2/(1−ν)
ν

(1+ν)H
(1+ν)/(1−ν)
k

. (Assume, for

simplicity, that ν < 1; to rigorously handle the case ν = 1
we need a more careful argument.) This is a certain recurrent
inequality that we can use to estimate the rate of growth
of Hk. This would be especially simple if we had, say,
2H

(1+ν)/(1−ν)
k+1 instead of H(1+ν)/(1−ν)

k :

(Hk+1 −Hk)D
2 ≤ (1− ν)L

2/(1−ν)
ν

2(1 + ν)H
(1+ν)/(1−ν)
k+1

. (19)

Then, a simple integration argument (see Lemma E.4 with
p = 1+ν

1−ν for which p+ 1 = 2
1−ν ) would show that

Hk ≤ Lν
D1−ν k

(1−ν)/2, (20)

provided that the initial step-size coefficient was chosen
appropriately: H0 = 0. (Note that this would not cause any
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Algorithm 1 Universal Line-Search-Free Gradient Method
1: Initialize: x0 ∈ domψ, diameter D > 0, H0 := 0.
2: for k = 0, 1, . . . do
3: Compute gk ∈ ∂f(xk).
4: xk+1 = argmin

x∈domψ
{⟨gk, x⟩+ ψ(x) + Hk

2 ∥x− xk∥2}.

5: Hk+1 := Hk +
[βk+1− 1

2Hkr
2
k+1]+

D2+ 1
2 r

2
k+1

, where

rk+1 := ∥xk − xk+1∥, βk+1 := βgkf (xk, xk+1).
6: end for

problems for the iteration (8) being well-defined since we
assume that domψ is a bounded set.)

Of course, we cannot argue that that our “real” version of
(19) (the one with H(1+ν)/(1−ν)

k instead of 2H(1+ν)/(1−ν)
k+1 )

implies the desired (19) (in fact, the relationship is exactly
the opposite since Hk ≤ Hk+1). However, we can slightly
modify the reasoning we used to pass from (15) to (18) and
the corresponding recurrent inequality for Hk. Specifically,
we can rewrite the −Hk

2 r
2
k+1 term in the right-hand side of

(15) as −Hk+1

2 r2k+1 +
1
2 (Hk+1 −Hk)r

2
k+1, and then upper

bound rk+1 ≤ D. As a result, we get βk+1 − Hk+1

2 r2k+1 +
(Hk+1 − Hk)D

2 in the right-hand of (15), and can now
choose the coefficient Hk+1 using the following balance
equation instead of (16):

(Hk+1 −Hk)D
2 =

[
βk+1 −

Hk+1

2
r2k+1

]
+
. (21)

Although this is no longer a linear equation in Hk+1, it
always has a unique solution Hk+1 ≥ Hk, which can be
easily computed: if βk+1 ≤ Hk

2 r
2
k+1, then Hk+1 = Hk;

otherwise, Hk+1 is the solution of the linear equation
(Hk+1 − Hk)D

2 = βk+1 − Hk+1

2 r2k+1 (see Lemma E.1).
Proceeding exactly is the same way as before, we get (18)
but with 2D2 instead of D2, and, most importantly, the
desired (19). As a result, (20) indeed holds and we get

F (x∗k)− F ∗ ≤ 2HkD
2

k
≤ inf
ν∈[0,1]

2LνD
1+ν

k(1+ν)/2
,

where the infimum is due to the fact that ν ∈ [0, 1] was
allowed to be arbitrary in our analysis.

3.2. The Method

Summarizing the outlined above considerations into a for-
mal algorithmic scheme, we arrive at Algorithm 1. This is
essentially the classical (Composite) Gradient Method (8)
but equipped with our novel step-size adjusting rule (21)
(the formula for Hk+1 at Line 5 is the explicitly written
solution of the balance equation (21)).

Theorem 3.1. Let Algorithm 1 be applied to problem (5)
under Assumptions 2.1 and 2.2, and let x∗k be the “best”

Algorithm 2 Universal Stochastic Gradient Method
1: Initialize: x0 ∈ domψ, D > 0, H0 := 0, g0 ∼ ĝ(x0).
2: for k = 0, 1, . . . do
3: xk+1 = argmin

x∈domψ
{⟨gk, x⟩+ ψ(x) + Hk

2 ∥x− xk∥2}.

4: gk+1 ∼ ĝ(xk+1).

5: Hk+1 := Hk +
[β̂k+1− 1

2Hkr
2
k+1]+

D2+ 1
2 r

2
k+1

, where

rk+1=∥xk+1−xk∥, β̂k+1=⟨gk+1−gk, xk+1−xk⟩.
6: end for

iterate as defined in (12). Then, for all k ≥ 1, we have

F (x∗k)− F ∗ ≤ inf
ν∈[0,1]

2LνD
1+ν

k(1+ν)/2
.

To reach F (x∗k)− F ∗ ≤ ϵ for any ϵ > 0, it thus suffices to
make infν∈[0,1][

2Lν

ϵ ]2/(1+ν)D2 iterations.

Comparing the efficiency bound from Theorem 3.1 with the
corresponding bound (14) for the line-search method, we
see that they are almost identical. The only difference is that
our method has the diameter of the feasible set D instead
of the initial distance D0. However, as we show next, our
method can be easily extended to stochastic problems.

4. Universal Gradient Method for Stochastic
Optimization

Now we assume that f in problem (5) is accessible only
via the stochastic gradient oracle ĝ. Formally, this is a
pair (g, ξ) consisting of a random variable ξ and a map-
ping g : dom f × Im ξ → Rn (with Im ξ being the image
of ξ). When queried at a point x ∈ domψ, the oracle au-
tomatically generates an independent copy ξ of its random-
ness, and then returns s = g(x, ξ) (notation: s ∼ ĝ(x))—a
random estimate of a subgradient of f at x.

We make the following standard assumption on the oracle:

Assumption 4.1. The function f in problem (5) is accessible
only via an unbiased stochastic gradient oracle ĝ = (g, ξ)
with bounded variance:

f ′(x) := Eξ[g(x, ξ)] ∈ ∂f(x), (22)

σ2 := sup
x∈domψ

Eξ[∥g(x, ξ)− f ′(x)∥2∗] < +∞. (23)

4.1. The (Stochastic) Method

Our Universal Gradient Method for problem (5) with
stochastic gradient oracle is shown in Algorithm 2. As
we can see, this method is very similar to its determinis-
tic counterpart (Algorithm 1) with two fundamental differ-
ences to accommodate stochastic feedback. First, instead of
the exact subgradients f ′(xk), we now use their stochastic

6
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estimates gk. Second, instead of the exact Bregman dis-
tance βf (xk, xk+1), we now use β̂k+1 = ⟨gk+1 − gk, xk −
xk+1⟩, which can be seen as the stochastic approximation
of the symmetrized Bregman distance β̂f (xk, xk+1) :=
⟨f ′(xk+1) − f ′(xk), xk+1 − xk⟩. (Note that, for any
x, y ∈ dom f , we have β̂f (x, y) = βf (x, y) + βf (y, x).)

Next, we present the main result on the convergence of
Algorithm 2 (see Appendix B for the proof).

Theorem 4.2. Let Algorithm 2 be applied to problem (5) un-
der Assumptions 2.1, 2.2 and 4.1, and let x̄k := 1

k

∑k
i=1 xi

be the average iterate. Then, for all k ≥ 1,

E[F (x̄k)]− F ∗ ≤ inf
ν∈[0,1]

8LνD
1+ν

k(1+ν)/2
+

4σD√
k
.

To reach E[F (x̄k)]− F ∗ ≤ ϵ for any ϵ > 0, it then suffices
to make O

(
infν∈[0,1][

Lν

ϵ ]2/(1+ν)D2 + σ2D2

ϵ2

)
oracle calls.

4.2. Main Idea and Outline of Analysis

Let us briefly explain the motivation behind the specific for-
mula for β̂k+1 in Algorithm 2 and sketch the corresponding
convergence analysis. The formal proof with all the details
can be found in Appendix B.

From the definition of xk+1, it follows that (Lemma E.2)

f(xk)+⟨gk, xk+1−xk⟩+ψ(xk+1)+
Hk

2
r2k+1+

Hk

2
d2k+1

≤ f(xk) + ⟨gk, x∗ − xk⟩+ ψ(x∗) +
Hk

2
d2k,

where rk+1 := ∥xk+1 − xk∥ and dk := ∥xk − x∗∥.

Observe that Eξk [f(xk) + ⟨gk, x∗ − xk⟩] = f(xk) +
⟨f ′(xk), x∗−xk⟩ ≤ f(x∗), where ξk is the oracle’s random-
ness defining gk ≡ g(xk, ξk). However, if we attempted to
follow the line-search idea from Section 3.1 by first dividing
both sides in the previous display by Hk, then we would
not be able to use the oracle’s unbiasedness as Hk and xk
would depend on each other.

Nevertheless, our line-search-free idea still works. Specifi-
cally, passing to expectations in the above display and using
the lower bound on f(x∗) from the previous paragraph, and
then rearranging, we obtain

E
[
F (xk+1)− F ∗ +

Hk+1

2
d2k+1 −

Hk

2
d2k

]
≤ E

[
βk+1 −

Hk+1

2
r2k+1 + (Hk+1 −Hk)D

2
]
,

(24)

where βk+1 := f(xk+1) − f(xk) − ⟨gk, xk+1 − xk⟩, and
the (Hk+1 −Hk)D

2 term corresponds to the upper bound
on 1

2 (Hk+1 −Hk)(d
2
k+1 + r2k+1).

The problem is that we cannot compute βk+1 since it in-
volves the exact function values f(xk+1) and f(xk). How-

ever, we may replace it with an appropriate stochastic ap-
proximation. Indeed, for our goals it suffices to know some
β̂k+1 which is an upper estimate for βk+1 in expectation:
Eβk+1 ≤ E β̂k+1. To get an appropriate β̂k+1, we could,
in principle, ask the oracle to provide not only stochastic
gradients but also stochastic function values. However, this
would require imposing extra requirements for the oracle.

Instead, we take another, simpler, approach. By the convex-
ity of f , we can estimate

βk+1 ≤ ⟨f ′(xk+1)−gk, xk+1−xk⟩ = Eξk+1
[β̂k+1], (25)

where β̂k+1 := ⟨gk+1 − gk, xk+1 − xk⟩ can be calculated
in the algorithm and ξk+1 is the oracle’s randomness defin-
ing gk+1 ≡ g(xk+1, ξk+1). It is important for the final
identity that ξk+1 is generated after xk and xk+1.

This leads us to the balance equation

(Hk+1 −Hk)D
2 = [β̂k+1 − 1

2Hk+1r
2
k+1]+, (26)

whose solution is given at Line 5 in Algorithm 2.

Taking into account our balance equation and (25), we ob-
tain exactly the same simple-to-telescope inequality as (17)
(valid in expectation) which then leads to

E[F (x̄k)]− F ∗ ≤ 2E[Hk]D
2

k
. (27)

The rest of the analysis focuses on estimating the (expected)
rate of growth of Hk. The key idea is that we can estimate

β̂k+1 = ⟨f ′(xk+1)− f ′(xk) + ∆k+1, xk+1 − xk⟩
≤ Lνr

1+ν
k+1 + σk+1rk+1,

where f ′(xk) := Eξk [gk] ∈ ∂f(xk) and ∆k+1 := δk+1−δk
with δk := gk − f ′(xk) being the error of the stochastic
gradient (such that E∥δk∥2 ≤ σ2), and σk+1 := ∥∆k+1∥.
This gives

(Hk+1−Hk)D
2 = [Lνr

1+ν
k+1+σk+1rk+1− 1

2Hk+1r
2
k+1]+.

Eliminating rk+1 from this inequality (by maximizing the
right-hand side in this variable), we get a certain recur-
rence for Hk+1, which is similar to (19) but with an ad-

ditional σ2
k+1

Hk+1
term in the right-hand side; carefully ana-

lyzing the resulting recurrence (see Lemma E.7), we get
Hk ≤ O

(
Lν

D1−ν k
(1−ν)/2 + 1

D (
∑k
i=1 σ

2
i )

1/2
)
. This gives us

E[Hk] ≤ O
( Lν
D1−ν k

(1−ν)/2 +
σ

D

√
k
)

after taking expectations. Substituting this bound into (27),
we get the convergence result from Theorem 4.2.
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4.3. Comparison with AdaGrad-type Methods

Let us compare the step-size coefficient Hk from Algo-
rithm 2 with that of AdaGrad-type methods. Denote
γk+1 := ∥gk+1 − gk∥∗. From the definitions of β̂k+1

and rk+1, it follows that β̂k+1 − Hk+1

2 r2k+1 ≤ γk+1rk+1 −
Hk+1

2 r2k+1 ≤ γ2
k+1

2Hk+1
. Substituting this into the balance

equation (26) (using the monotonicity of [·]+), we get

(Hk+1 −Hk)D
2 ≤

γ2k+1

2Hk+1
. (28)

From this and H0 = 0, it follows that (see Lemma E.4)

Hk ≤ H ′
k :=

1

D

( k∑
i=1

γ2i

)1/2

. (29)

Note that H ′
k is the step-size coefficient used by a variety

of other AdaGrad-type algorithms3 (see, e.g., (Kavis et al.,
2019; Ene & Lê Nguyen, 2022)). Thus, the “step size” 1

Hk

in our algorithm is at least as large as 1
H′

k
used by AdaGrad.

In fact, the theoretical reasoning we used in Section 4.2 to
arrive at our formula for the step-size coefficient, can be
seen as a more precise theoretical analysis of the Stochastic
Gradient Method with adaptive step sizes. Specifically,
coming back to our preliminary recurrence (24), we see that

AdaGrad first estimates β̂k+1 − Hk+1

2 r2k+1 ≤ γ2
k+1

2Hk+1
and

only then attempts to balance the terms. This corresponds to
the idea of choosing the coefficient Hk+1 in such a way that
(28) becomes an identity (and then we not only have (29) but
also the similar lower boundHk ≥ 1√

2
H ′
k (see Lemma E.5),

which means that Hk = Θ(H ′
k)). In contrast, our reasoning

suggests that this extra estimation step is unnecessary.

5. Universal Fast Gradient Method for
Stochastic Optimization

We now present, in Algorithm 3, the accelerated version
of our universal stochastic method for solving problem (5).
This algorithm is essentially one of the standard variants of
the Fast Gradient Method known as the Method of Simi-
lar Triangles (see, e.g., Section 6.1.3 in (Nesterov, 2018)),
which uses stochastic gradients instead of the exact ones
and is equipped with our novel rule for adjusting the step-
size coefficient Hk. The algorithm enjoys the following
efficiency estimate (see Appendix C for the proof):
Theorem 5.1. Let Algorithm 3 be applied to problem (5)
under Assumptions 2.1, 2.2 and 4.1. Then, for all k ≥ 1,

E[F (xk)]− F ∗ ≤ inf
ν∈[0,1]

32LνD
1+ν

k(1+3ν)/2
+

8σD√
3k
.

3The classical AdaGrad uses γi = ∥gi∥∗ but such a choice
does not work properly for smooth constrained optimization when
∇f(x∗) ̸= 0.

Algorithm 3 Universal Stochastic Fast Gradient Method
1: Initialize: x0 = v0 ∈ domψ, D > 0, H0 := A0 := 0.
2: for k = 0, 1, . . . do
3: ak+1 := k + 1, Ak+1 := Ak + ak+1 (> 0).
4: yk := Ak

Ak+1
xk +

ak+1

Ak+1
vk, gyk ∼ ĝ(yk).

5: vk+1=argmin
x∈domψ

{ak+1[⟨gyk , x⟩+ψ(x)]+
Hk

2 ∥x−vk∥2}

6: xk+1 := Ak

Ak+1
xk +

ak+1

Ak+1
vk+1.

7: Hk+1 := Hk +
[Ak+1β̂k+1− 1

2Hkr
2
k+1]+

D2+ 1
2 r

2
k+1

, where

rk+1 = ∥vk+1−vk∥, β̂k+1 = ⟨gxk+1−g
y
k , xk+1−yk⟩

with gxk+1 ∼ ĝ(xk+1).
8: end for
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Figure 1. Comparison of different stochastic algorithms on convex
optimization problems.

To reach E[F (xk)]−F ∗ ≤ ϵ for any ϵ > 0, it then suffices to
make O

(
infν∈[0,1][

LνD
1+ν

ϵ ]2/(1+3ν) + σ2D2

ϵ2

)
oracle calls.

In the deterministic case (σ = 0), the efficiency bound from
Theorem 5.1 coincides with that of the Universal Fast Gra-
dient Method from (Nesterov, 2015). It is worth mentioning
that, in this case, instead of the symmetrized Bregman dis-
tance, we can use the standard one, β̂k+1 = β

gyk
f (yk, xk+1),

in Algorithm 3, and get similar convergence estimates but
with slightly better absolute constants (see Theorem D.1).

6. Experiments
In this section, we present some preliminary computational
experiments for the proposed methods.

6.1. Convex optimization

Least-Squares. Let us consider the following problem:

min
x∈Rn

{
F (x) :=

1

2
∥Ax− b∥2 : ∥x∥ ≤ 1

}
, (30)

where A ∈ Rm×n, b ∈ Rm. We run the experiment on real-
world diabetes dataset from LIBSVM4. In the stochastic

4https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/
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Figure 2. Comparison between the proposed universal stochastic
gradient method, Adam, and AdaGrad in neural network training.

setting, we run the proposed USGM (Algorithm 2) and US-
FGM (Algorithm 3), and compare them against SGD, Ada-
Grad, UnixGrad (Kavis et al., 2019), and AcceleGrad (Levy
et al., 2018). The result in Figure 1.(a) shows that the pro-
posed method attains a convergence rate comparable to
AdaGrad and AcceleGrad.

Logistic regression. We also focus on the logistic loss:

min
x∈Rn

{
F (x) :=

m∑
i=1

log
(
1+ exp(−bi⟨ai, x⟩)

)
: ∥x∥ ≤ 1

}
,

where ai ∈ Rn is the feature vector and bi ∈ {0, 1} is the
label. We run the experiment on the a1a and ionosphere
datasets from LIBSVM. The remaining setup is the same
as in the case of Least-Squares. We present the result in
Figure 1.(b-c), where ASUGM and SUGM are slightly faster
than AdaGrad while performing similarly to UniXGrad.

6.2. Non-convex neural networks training

We now show that the proposed method can also be applied
to non-convex neural network training. Specifically, we
focus on classification tasks with the cross-entropy loss on
MNIST dataset. A three-layer fully connected networks
with layer dimensions [28 × 28, 256, 256, 10] and ReLU
activation function are selected. We compare the proposed
method against AdaGrad and Adam. We select the mini-
batch size as 256. Step-size of each method is tuned by
a parameter sweep over {10, 1, 0.1, 0.01, 0.001, 0.0001}.
The diameter of the proposed method is tuned by sweeping
over {50, 35, 20, 10, 5}. We present the result in Figure 2,
where we can see the proposed stochastic universal gradient
method can solve non-convex problems as well.

7. Conclusion
We have proposed first universal gradient methods that are
provably adaptive simultaneously to the noise level in the
gradient feedback, the Hölder exponent and the associated

Hölder constant of the objective function, while achieving
optimal efficiency bounds. Unlike the majority of the works
on adaptive methods relying on AdaGrad step-size construc-
tions, our algorithm design is inspired by the line search
approach. We have proposed a nonlinear balance equation
for updating the step-size coefficient, which results in a
tighter analysis of adaptive stochastic gradient algorithms
compared to existing AdaGrad methods.

Note that our analysis exploits the fact that the feasible
set has the bounded diameter D, knowledge of which is
available to our algorithms. While this assumption may
seem rather restrictive, it is nevertheless quite similar to
the classical assumption on the knowledge of an upper
bound R0 on the distance ∥x0 − x∗∥ from the initial point
to the minimizer. Indeed, if we know R0, we can easily
convert our original problem (5) into an equivalent one,
minx∈domψD

[f(x) + ψD(x)], where ψD is the restriction
of ψ onto the ball B0 := {x ∈ Rn : ∥x− x0∥ ≤ R0} or, in
other words, the sum of ψ and the indicator function of B0.
For this new problem, we can run our methods with diame-
ter D = 2R0. The only detail that one needs to address is
how to compute the proximal-point step for the function ψD
via the corresponding operation for ψ. But this is usually
not difficult and requires solving a certain one-dimensional
nonlinear equation, which can be done very efficiently by
Newton’s method (at no extra queries to the stochastic gra-
dient oracle). In some special cases, this equation can even
be solved analytically, e.g., when the original problem is
unconstrained, one simply needs to perform the projection
on the B0 ball. Nonetheless, it is still an interesting open
question whether the same type of results can be obtained
without this (somewhat artificial) replacement of the orig-
inal problem. More importantly, it would be interesting
to obtain parameter-free versions of our algorithms similar
to (Carmon & Hinder, 2022; Ivgi et al., 2023), which could
work with a sufficiently loose approximation of R0.

Having that said, we would like to make a few remarks
regarding the technical challenges involved in the design
of optimal universal methods for stochastic optimization.
Note that the existing accelerated adaptive methods for min-
imizing smooth convex functions (Levy et al., 2018; Kavis
et al., 2019; Joulani et al., 2020), which assume bounded
domains and use AdaGrad-inspired step-sizes, do not triv-
ially extend to the Hölder class of functions. Essentially,
they rely on the knowledge that the objective function is
either Lipschitz smooth (ν = 1) or Lipschitz continuous
(ν = 0), and the analysis is not directly compatible with
intermediate values of ν ∈ (0, 1). Our approach is based
on different, more suitable, techniques and yields a new
adaptive step-size schedule that enables fast universal rates
in the noisy setting.
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A. Proof of Theorem 3.1
Theorem 3.1. Let Algorithm 1 be applied to problem (5) under Assumptions 2.1 and 2.2, and let x∗k be the “best” iterate as
defined in (12). Then, for all k ≥ 1, we have

F (x∗k)− F ∗ ≤ inf
ν∈[0,1]

2LνD
1+ν

k(1+ν)/2
.

To reach F (x∗k)− F ∗ ≤ ϵ for any ϵ > 0, it thus suffices to make infν∈[0,1][
2Lν

ϵ ]2/(1+ν)D2 iterations.

Proof. i. We are going to prove that, for any k ≥ 1,

F (x∗k)− F ∗ ≤ F (x∗k)− Φ∗
k ≤ 1

k

k∑
i=1

F (xi)− Φ∗
k ≤ 2HkD

2

k
≤ inf
ν∈[0,1]

2LνD
1+ν

k(1+ν)/2
. (31)

where

Φ∗
k := min

x∈domψ

{
Φk(x) :=

1

k

k−1∑
i=0

[f(xi) + ⟨gi, x− xi⟩] + ψ(x)
}

(≤ F ∗). (32)

(The inequality follows from the fact that gi ∈ ∂f(xi) for all i ≥ 0 and (5).)

Note that the function Φk, defined in (32), is the sum of an affine function and ψ. Since ψ is simple by our assumptions,
we can easily compute its minimal value Φ∗

k. This value allows us to compute the quantities ϵ∗k := F (x∗k) − Φ∗
k and

ϵ̄k := 1
k

∑k
i=1 F (xi) − Φ∗

k, appearing in (31), and thus equip Algorithm 1 with a reliable stopping criterion ϵ∗k ≤ ϵ (or
ϵ̄k ≤ ϵ) which guarantees that F (x∗k)− F ∗ ≤ ϵ for some given ϵ > 0.

The first inequality in (31) follows from (32). The second one follows from the definition of x∗k in (12).

ii. Let us prove the third inequality in (31).

For each k ≥ 0, let ζk : Rn → R ∪ {+∞} be the function

ζk(x) := f(xk) + ⟨gk, x− xk⟩+ ψ(x). (33)

Let k ≥ 0 and x ∈ domψ be arbitrary. By the definition of xk+1 at Line 4 and Lemma E.2, we have

ζk(x) +
1
2Hk∥x− xk∥2 ≥ ζk(xk+1) +

1
2Hk∥xk+1 − xk∥2 + 1

2Hk∥x− xk∥2. (34)

According to (33), (4) and (5),

ζk(xk+1) = f(xk) + ⟨gk, xk+1 − xk⟩+ ψ(xk+1) = F (xk+1)− βgkf (xk, xk+1).

Substituting this into (34) and taking into account the definitions of rk+1 and βk+1, we get

ζk(x) +
1
2Hk∥x− xk∥2 ≥ F (xk+1)− βgkf (xk, xk+1) +

1
2Hk∥xk+1 − xk∥2 + 1

2Hk∥x− xk∥2

= F (xk+1)− βk+1 +
1
2Hkr

2
k+1 +

1
2Hk∥x− xk∥2.

Consequently,

F (xk+1) +
1
2Hk+1∥x− xk+1∥2 ≤ ζk(x) +

1
2Hk∥x− xk∥2 + [βk+1 − 1

2Hk+1r
2
k+1]

+ 1
2 (Hk+1 −Hk)(∥x− xk+1∥2 + r2k+1).

(35)

Note that, by construction, Hk ≤ Hk+1. Also, in view of Assumption 2.1 (and the fact that xi ∈ domψ for any i ≥ 0), we
have rk+1 ≤ D and ∥x− xk+1∥ ≤ D. Therefore,

1
2 (Hk+1 −Hk)(∥x− xk+1∥2 + r2k+1) ≤ (Hk+1 −Hk)D

2. (36)
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At the same time, by the definition of Hk+1 at Line 5 and Lemma E.1, it satisfies the following equation:

(Hk+1 −Hk)D
2 = [βk+1 − 1

2Hk+1r
2
k+1]+. (37)

Therefore,
βk+1 − 1

2Hk+1r
2
k+1 ≤ [βk+1 − 1

2Hk+1r
2
k+1]+ = (Hk+1 −Hk)D

2. (38)

Substituting (36) and (38) into (35), we get

F (xk+1) +
1
2Hk+1∥x− xk+1∥2 ≤ ζk(x) +

1
2Hk∥x− xk∥2 + 2(Hk+1 −Hk)D

2. (39)

Let k ≥ 1 be arbitrary. Summing up (39) for all indices 0 ≤ k′ ≤ k − 1 and using the fact that H0 = 0, we obtain

k∑
i=1

F (xi) ≤
k−1∑
i=0

ζi(x) + 2HkD
2 = kΦk(x) + 2HkD

2,

where the final identity follows from (33) and (32) (and we have dropped the nonnegative term 1
2Hk∥x− xk∥2 from the

left-hand side). Since x ∈ domψ was arbitrary, this proves the second inequality in (31).

iii. It remains to estimate the rate of growth of the coefficients Hk.

Let ν ∈ [0, 1] be arbitrary such that Hν < +∞. From (7) and the definitions of βk+1 and rk+1, we obtain βk+1 ≤ Lν

1+ν r
1+ν
k+1

for any k ≥ 0. Hence, according to (37), for all k ≥ 0, we have the following bound:

(Hk+1 −Hk)D
2 ≤

[ Lν
1 + ν

r1+νk+1 −
1

2
Hk+1r

2
k+1

]
+
.

Applying Lemma E.6 (with Ω := D2, M := Lν , γk := 1), we get, for all k ≥ 1,

Hk ≤
[ 1

(1 + ν)D2
k
](1−ν)/2

Lν ≤ Lν
D1−ν k

(1−ν)/2.

Substituting this estimate into (31) and using the fact that ν ∈ [0, 1] was arbitrary, we obtain the final inequality in (31).

B. Proof of Theorem 4.2
Theorem 4.2. Let Algorithm 2 be applied to problem (5) under Assumptions 2.1, 2.2 and 4.1, and let x̄k := 1

k

∑k
i=1 xi be

the average iterate. Then, for all k ≥ 1,

E[F (x̄k)]− F ∗ ≤ inf
ν∈[0,1]

8LνD
1+ν

k(1+ν)/2
+

4σD√
k
.

To reach E[F (x̄k)]− F ∗ ≤ ϵ for any ϵ > 0, it then suffices to make O
(
infν∈[0,1][

Lν

ϵ ]2/(1+ν)D2 + σ2D2

ϵ2

)
oracle calls.

Proof. i. We will show that

E[F (x̄k)]− F ∗ ≤ 2E[Hk]D
2

k
≤ inf
ν∈[0,1]

8LνD
1+ν

k(1+ν)/2
+

4σD√
k
. (40)

ii. Let k ≥ 0 be arbitrary. Let ζk : Rn → R ∪ {+∞} be the function

ζk(x) := f(xk) + ⟨gk, x− xk⟩+ ψ(x). (41)

Note that, by definition, gk = g(xk, ξk), where ξk is independent of xk. Therefore, in view of (22) and (5), in expectation,
ζk is a global lower bound on the objective function F : for all x ∈ domψ, we have

Eξk [ζk(x)] = Eξk [f(xk) + ⟨f ′(xk), x− xk⟩] + ψ(x) ≤ f(x) + ψ(x) = F (x). (42)
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Let x ∈ domψ be arbitrary. By the definition of xk+1 (Line 3) and Lemma E.2,

ζk(x) +
1
2Hk∥x− xk∥2 ≥ ζk(xk+1) +

1
2Hk∥xk+1 − xk∥2 + 1

2Hk∥x− xk+1∥2. (43)

According to (41) and (5), we have

ζk(xk+1) = f(xk) + ⟨gk, xk+1 − xk⟩+ ψ(xk+1) = F (xk+1)− βk+1, (44)

where βk+1 := f(xk+1)− f(xk)− ⟨gk, xk+1 − xk⟩. Using (22), we can estimate

βk+1 ≤ ⟨f ′(xk+1)− gk, xk+1 − xk⟩ = ⟨gk+1 − gk, xk+1 − xk⟩+∆k+1, (45)

where ∆k+1 := ⟨f ′(xk+1)− gk+1, xk+1 − xk⟩. Recall that gk+1 = g(xk+1, ξk+1) with ξk+1 being independent of xk and
xk+1. Therefore, according to (22),

Eξk+1
[∆k+1] = 0. (46)

Substituting (44) and (45) into (43), we obtain

ζk(x) +
1
2Hk∥x− xk∥2 ≥ F (xk+1)− ⟨gk+1 − gk, xk+1 − xk⟩ −∆k+1

+ 1
2Hk∥xk+1 − xk∥2 + 1

2Hk∥x− xk+1∥2

= F (xk+1)− β̂k+1 +
1
2Hkr

2
k+1 +

1
2Hk∥x− xk+1∥2 −∆k+1,

where the last identity is due to the definitions of rk+1 and βk+1. Rearranging, we get

F (xk+1) +
1
2Hk+1∥x− xk+1∥2 ≤ ζk(x) +

1
2Hk∥x− xk∥2 + [β̂k+1 − 1

2Hk+1r
2
k+1]

+ 1
2 (Hk+1 −Hk)(∥x− xk+1∥2 + r2k+1) + ∆k+1.

(47)

By construction, Hk ≤ Hk+1 (Line 5). Also, in view of Assumption 2.1 (and the fact that xi ∈ domψ for all i ≥ 0),
∥x− xk+1∥ ≤ D and rk+1 ≤ D. Therefore,

1
2 (Hk+1 −Hk)(∥x− xk+1∥2 + r2k+1) ≤ (Hk+1 −Hk)D

2. (48)

Further, by the definition of Hk+1 at Line 5, it satisfies the following equation (see Lemma E.1):

(Hk+1 −Hk)D
2 = [β̂k+1 − 1

2Hk+1r
2
k+1]+. (49)

Substituting (48) and (49) into (47), we obtain

F (xk+1) +
1
2Hk+1∥x− xk+1∥2 ≤ ζk(x) +

1
2Hk∥x− xk∥2 + 2(Hk+1 −Hk)D

2 +∆k+1. (50)

Let k ≥ 1 be arbitrary. Summing up (50) for all indices 0 ≤ k′ ≤ k − 1 and using the fact that H0 = 0, we get

k∑
i=1

F (xi) ≤
k−1∑
i=0

ζi(x) + 2HkD
2 +

k∑
i=1

∆i.

Hence, by the convexity of F and the definition of x̄k,

F (x̄k) ≤
1

k

k∑
i=1

F (xi) ≤
1

k

k−1∑
i=0

ζi(x) +
2HkD

2

k
+

1

k

k∑
i=1

∆i.

Passing to expectations and taking into account (42) and (46), we conclude that

E[F (x̄k)] ≤ F (x) +
2E[Hk]D

2

k
.

This proves the first inequality in (40) since x ∈ domψ was arbitrary.

iii. Let us estimate the rate of growth of the coefficients Hk.
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For each k ≥ 0, denote
δk := gk − f ′(xk) = g(xk, ξk)− f ′(xk). (51)

Note that, according to (22) and (23), we have

Eξk [δk] = 0, Eξk [∥δk∥2∗] ≤ σ2. (52)

Let ν ∈ [0, 1] be arbitrary such that Lν < +∞. Let k ≥ 0 be arbitrary. By the definitions of β̂k+1 and rk+1, and by (51),
we have

β̂k+1 = ⟨gk+1 − gk, xk+1 − xk⟩ = ⟨f ′(xk+1)− f ′(xk), xk+1 − xk⟩+ ⟨δk+1 − δk, xk+1 − xk⟩
≤ ∥f ′(xk+1)− f ′(xk)∥∗rk+1 + ∥δk+1 − δk∥∗rk+1 ≤ Lνr

1+ν
k+1 + σk+1rk+1,

(53)

where σk+1 := ∥δk+1 − δk∥∗, the first inequality is the Cauchy–Schwartz, and the final one is due to (6) and (22). Recall
that ξk+1 is independent of xk and ξk. Hence, it is also independent of δk (see (51)). Therefore, according to (3) and (52),
we have

Eξk,ξk+1
[σ2
k+1] = Eξk,ξk+1

[∥δk+1∥2∗ + ∥δk∥2∗ + ⟨δk+1, B
−1δk⟩]

= Eξk
[
Eξk+1

[∥δk+1∥2∗] + ∥δk∥2∗
]
≤ Eξk [σ2 + ∥δk∥2∗] ≤ 2σ2.

(54)

In particular, the same inequality holds for the full expectation.

Substituting (53) into (49) (using the monotonicity of [·]+), we get, for any k ≥ 0,

(Hk+1 −Hk)D
2 ≤ [Lνr

1+ν
k+1 + σk+1rk+1 − 1

2Hk+1r
2
k+1]+.

Applying Lemma E.7 (with Ω := D2, L := Lν , αk := 1, γk := σk), we obtain, for all k ≥ 1,

Hk ≤ [2(1 + ν)](1+ν)/2
Lν
D1−ν k

(1−ν)/2 +
( 2

D2

k∑
i=1

σ2
i

)1/2

.

By Jensen’s inequality E[X1/2] ≤ (E[X])1/2 and (54), for all k ≥ 1, it holds

E
[( 2

D2

k∑
i=1

σ2
i

)1/2
]
≤

( 2

D2

k∑
i=1

E[σ2
i ]
)1/2

≤
√

2

D2
(2σ2)k =

2σ

D

√
k.

Thus, for all k ≥ 1,

E[Hk] ≤ [2(1 + ν)](1+ν)/2
Lν
D1−ν k

(1−ν)/2 +
2σ

D

√
k ≤ 4Lν

D1−ν k
(1−ν)/2 +

2σ

D

√
k.

Substituting this estimate into (40) and taking into account the fact that ν ∈ [0, 1] was arbitrary, we obtain the final inequality
in (40).

C. Proof of Theorem 5.1
Theorem 5.1. Let Algorithm 3 be applied to problem (5) under Assumptions 2.1, 2.2 and 4.1. Then, for all k ≥ 1,

E[F (xk)]− F ∗ ≤ inf
ν∈[0,1]

32LνD
1+ν

k(1+3ν)/2
+

8σD√
3k
.

To reach E[F (xk)]− F ∗ ≤ ϵ for any ϵ > 0, it then suffices to make O
(
infν∈[0,1][

LνD
1+ν

ϵ ]2/(1+3ν) + σ2D2

ϵ2

)
oracle calls.

Proof. i. We will show that

E[F (xk)]− F ∗ ≤ 2E[Hk]D
2

Ak
≤ 4E[Hk]D

2

k(k + 1)
≤ inf
ν∈[0,1]

32LνD
1+ν

k(1+3ν)/2
+

8σD√
3k
. (55)
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ii. For each k ≥ 0, denote

δyk := gyk − f ′(yk) ≡ g(yk, ξ
y
k)− f ′(yk), (56)

δxk+1 := gxk+1 − f ′(xk+1) ≡ g(xk+1, ξ
x
k+1)− f ′(xk+1), (57)

where ξyk , ξxk+1, k = 0, 1, . . . are independent copies of the oracle’s randomness.

Note that ξyk (resp., ξyk+1) is generated after (and independently) of yk (resp., xk+1). Therefore, according to (22) and (23),

Eξyk [δ
y
k ] = 0, Eξyk [∥δ

y
k∥

2
∗] ≤ σ2, (58)

Eξxk+1
[δxk+1] = 0, Eξxk+1

[∥δxk+1∥2∗] ≤ σ2. (59)

iii. Let k ≥ 0 be arbitrary. Let ζk : Rn → R ∪ {+∞} be the global lower bound on the objective function F obtained by
linearizing f at yk:

ζk(x) := f(yk) + ⟨f ′(yk), x− yk⟩+ ψ(x) (≤ F (x)), (60)

and let ζ̂k : Rn → R ∪ {+∞} be its stochastic approximation:

ζ̂k(x) := f(yk) + ⟨gyk , x− yk⟩+ ψ(x) = ζk(x) + ∆y
k(x), (61)

where
∆y
k(x) := ⟨δyk , x− yk⟩. (62)

Recall that ξyk is independent of yk. Therefore, for any (possibly random variable) x ∈ Rn that is also independent of ξyk , we
have

Eξyk [∆
y
k(x)] = 0. (63)

Let x ∈ domψ be an arbitrary (deterministic) point. Applying Lemma E.2 to the definition of vk+1 at Line 5 and taking
into account (61), we obtain

ak+1ζ̂k(x) +
1
2Hk∥x− vk∥2 ≥ ak+1ζ̂k(vk+1) +

1
2Hk∥vk+1 − vk∥2 + 1

2Hk∥x− vk+1∥2

= ak+1ζ̂k(vk+1) +
1
2Hk∥x− vk+1∥2 + 1

2Hkr
2
k+1,

(64)

where the last identity follows from the definition of rk+1.

In view of (60) and (61), we have

AkF (xk) + ak+1ζ̂k(vk+1) ≥ Akζk(xk) + ak+1ζ̂k(vk+1)

= Ak ζ̂k(xk) + ak+1ζ̂k(vk+1)−Ak∆
y
k(xk) ≥ Ak+1ζ̂k(xk+1)−Ak∆

y
k(xk),

(65)

where the last inequality follows from the convexity of ζ̂k and the definitions of xk+1 andAk+1 at Lines 6 and 3, respectively.
According to (61) and (5),

ζ̂k(xk+1) = f(yk) + ⟨gyk , xk+1 − yk⟩+ ψ(xk+1) = F (xk+1)− βk+1, (66)

where βk+1 := f(xk+1)− f(yk)− ⟨gyk , xk+1 − yk⟩. Using (22) and the definition of β̂k+1, we can estimate

βk+1 ≤ ⟨f ′(xk+1)− gyk , xk+1 − yk⟩ = β̂k+1 +∆x
k+1, (67)

where ∆x
k+1 := ⟨δxk+1, yk − xk+1⟩ (see (57)). Note that ξxk+1 is generated after (and independently) of xk+1 and yk. Hence,

in view of (59),
Eξxk+1

[∆x
k+1] = 0. (68)

Putting together (65)–(67) we obtain

AkF (xk) + ak+1ζ̂k(vk+1) ≥ Ak+1[F (xk+1)− βk+1]−Ak∆
y
k(xk)

≥ Ak+1[F (xk+1)− β̂k+1]−Ak∆
y
k(xk)−Ak+1∆

x
k+1.
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Combining the above inequality with (64), we get

AkF (xk) + ak+1ζ̂k(x) +
1
2Hk∥x− vk∥2

≥ Ak+1[F (xk+1)− β̂k+1] +
1
2Hkr

2
k+1 +

1
2Hk∥x− vk+1∥2 −Ak∆

y
k(xk)−Ak+1∆

x
k+1.

After rearranging, we can write

Ak+1F (xk+1) +
1
2Hk+1∥x− vk+1∥2

≤ AkF (xk) +
1
2Hk∥x− vk∥2 + ak+1ζ̂k(x) + [Ak+1β̂k+1 − 1

2Hk+1r
2
k+1]

+ 1
2 (Hk+1 −Hk)[∥x− vk+1∥2 + r2k+1] +Ak∆

y
k(xk) +Ak+1∆

x
k+1.

Note that, by construction, Hk ≤ Hk+1 (Line 7). Further, in view of Assumption 2.1 (and the fact that vi ∈ domψ for all
i ≥ 0), we have ∥x− vk+1∥ ≤ D and rk+1 ≤ D. Hence,

1
2 (Hk+1 −Hk)[∥x− vk+1∥2 + r2k+1] ≤ (Hk+1 −Hk)D

2.

On the other hand, from the definition of Hk+1 at Line 7 and Lemma E.1 (with β := Ak+1β̂k+1, ρ := 1
2r

2
k+1, Ω := D2), it

follows that
(Hk+1 −Hk)D

2 = [Ak+1β̂k+1 − 1
2Hk+1r

2
k+1]+. (69)

Combining the above three displays, we obtain

Ak+1F (xk+1) +
1
2Hk+1∥x− vk+1∥2

≤ AkF (xk) +
1
2Hk∥x− vk∥2 + ak+1ζ̂k(x) + 2(Hk+1 −Hk)D

2 +Ak∆
y
k(xk) +Ak+1∆

x
k+1.

(70)

Note that this inequality is valid for any k ≥ 0.

Let k ≥ 1 be arbitrary. Summing up (70) for all indices 0 ≤ k′ ≤ k − 1 and taking into account that H0 = A0 = 0 (by
definition), we get

AkF (xk) ≤
k−1∑
i=0

ai+1ζ̂i(x) + 2HkD
2 +

k−1∑
i=0

(Ai∆
y
i (xi) +Ai+1∆

x
i+1),

where we have additionally dropped the nonnegative term 1
2Hk∥x− vk∥2 from the left-hand side. Combining this with (61)

and (60), we obtain

AkF (xk) ≤
k−1∑
i=0

ai+1[ζi(x) + ∆y
i (x)] + 2HkD

2 +

k−1∑
i=0

(Ai∆
y
i (xi) +Ai+1∆

x
i+1)

≤ AkF (x) + 2HkD
2 +

k−1∑
i=0

(ai+1∆
y
i (x) +Ai∆

y
i (xi) +Ai+1∆

x
i+1),

where we have used the fact that Ak =
∑k
i=1 ai (see Line 3).

Observe that, by definitions at Line 3, the coefficients ai and Ai are deterministic for each i ≥ 0. Also, recall that x is
assumed to be deterministic as well. Therefore, passing to expectations in the above inequality, we get

Ak E[F (xk)] ≤ AkF (x) + 2E[Hk]D
2 +

k−1∑
i=0

(ai+1 E[∆y
i (x)] +Ai E[∆y

i (xi)] +Ai+1 E[∆x
i+1]).

Note that, for any i ≥ 0, the random variable ξyi is generated after xi, and hence they are independent. Therefore, according
to (62) and (68), for each i ≥ 0, we have E[∆y

i (x)] = E[∆y
i (xi)] = E[∆x

i+1] = 0. Thus, the above display reads

Ak E[F (xk)] ≤ AkF (x) + 2E[Hk]D
2.

This proves the first inequality in (55) since x ∈ domψ was arbitrary.
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iv. From the definitions at Line 3 and the fact that A0 = 0, it follows that

Ak =

k∑
i=1

ai =

k∑
i=1

i = 1
2k(k + 1) (≥ 1

2k
2) (71)

for any k ≥ 1. This proves the second inequality in (55).

v. To prove the final inequality in (55), it remains to estimate the expected growth rate of regularization parameters Hk.

Let ν ∈ [0, 1] be arbitrary such that Lν < +∞. Let k ≥ 0 be arbitrary. According to the definition of β̂k+1 and (56)
and (57), we have

β̂k+1 = ⟨gxk+1 − gyk , xk+1 − yk⟩ = ⟨f ′(xk+1)− f ′(yk), xk+1 − yk⟩+ ⟨δxk+1 − δyk , xk+1 − yk⟩
≤ ∥f ′(xk+1)− f ′(yk)∥∗∥xk+1 − yk∥+ σk+1∥xk+1 − yk∥ ≤ Lν∥xk+1 − yk∥1+ν + σk+1∥xk+1 − yk∥,

(72)

where σk+1 := ∥δxk+1 − δyk∥∗, the first inequality is the Cauchy–Schwarz inequality, and the final one is due to (6) and (22).
Recall that δyk is a function of yk and ξyk (see (56)), and ξxk+1 is generated after yk and ξyk . Therefore, ξxk+1 is independent
of δyk . Hence, according to (3), (58) and (59),

Eξyk ,ξxk+1
[σ2
k+1] = Eξyk ,ξxk+1

[∥δxk+1∥2∗ + ∥δyk∥
2
∗ + 2⟨δxk+1, B

−1δyk⟩]

= Eξyk
[
Eξxk+1

[∥δxk+1∥2∗] + ∥δyk∥
2
∗
]
≤ Eξyk [σ

2 + ∥δyk∥
2
∗] ≤ 2σ2.

(73)

Further, by the definitions of yk and xk+1 at Lines 4 and 6, xk+1−yk = ak+1

Ak+1
(vk+1−vk), which means that ∥xk+1−yk∥ =

ak+1

Ak+1
rk+1. Substituting this into (72) and using the definition of ak+1 at Line 3 together with (71), we obtain

Ak+1β̂k+1 ≤ Ak+1

[
Lν

( ak+1

Ak+1
rk+1

)1+ν

+ σk+1
ak+1

Ak+1
rk+1

]
= Lν

a1+νk+1

Aνk+1

r1+νk+1 + ak+1σk+1rk+1

≤ Lν
(k + 1)1+ν

[( 12 (k + 1)2]ν
r1+νk+1 + (k + 1)σk+1rk+1 = 2νLν(k + 1)1−νr1+νk+1 + (k + 1)σk+1rk+1.

Combining the above inequality with (69) (using the monotonicity of [·]+), we come to the following recurrence relation:

(Hk+1 −Hk)D
2 ≤ [2νLν(k + 1)1−νr1+νk+1 + (k + 1)σk+1rk+1 − 1

2Hk+1r
2
k+1]+,

which is valid for any k ≥ 0.

Let k ≥ 1 be arbitrary. Applying Lemma E.7 (with Ω := D2, L := 2νLν , αk := k and γk := kσk), we conclude that

Hk ≤ [2(1 + ν)](1+ν)/22νLν

( 1

D2

k∑
i=1

i2
)(1−ν)/2

+
( 2

D2

k∑
i=1

(iσi)
2
)1/2

= 2(1+3ν)/2(1 + ν)(1+ν)/2
Lν
D1−ν

( k∑
i=1

i2
)(1−ν)/2

+
( 2

D2

k∑
i=1

i2σ2
i

)1/2

.

Note that, by Jensen’s inequality E[X1/2] ≤ (E[X])1/2 and (73),

E
[( 2

D2

k∑
i=1

i2σ2
i

)1/2
]
≤

( 2

D2

k∑
i=1

i2 E[σ2
i ]
)1/2

≤ 2σ

D

( k∑
i=1

i2
)1/2

.

Thus,

E[Hk] ≤ 2(1+3ν)/2(1 + ν)(1+ν)/2
Lν
D1−ν

( k∑
i=1

i2
)(1−ν)/2

+
2σ

D

( k∑
i=1

i2
)1/2

≤ 2(1+3ν)/2(1 + ν)(1+ν)/2
Lν
D1−ν

(1
3
k(k + 1)2

)(1−ν)/2
+

2σ

D

(1
3
k(k + 1)2

)1/2

=
2(1+3ν)/2(1 + ν)(1+ν)/2

3(1−ν)/2
Lν
D1−ν k

(1−ν)/2(k + 1)1−ν +
2√
3

σ

D

√
k (k + 1)

≤ 8Lν
D1−ν k

(1−ν)/2(k + 1)1−ν +
2√
3

σ

D

√
k (k + 1),
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where we have used the fact that
∑k
i=1 i

2 = 1
6k(k + 1)(2k + 1) ≤ 1

3k(k + 1)2. Consequently,

4E[Hk]D
2

k(k + 1)
≤ 32LνD

1+ν k
(1−ν)/2(k + 1)1−ν

k(k + 1)
+

8σD√
3

√
k (k + 1)

k(k + 1)

=
32LνD

1+ν

k(1+ν)/2(k + 1)ν
+

8σD√
3k

≤ 32LνD
1+ν

k(1+3ν)/2
+

8σD√
3k
.

This proves the final inequality in (55) since ν ∈ [0, 1] was arbitrary.

D. Universal Line-Search-Free Fast Gradient Method
Theorem D.1. Let Algorithm 3 be applied for solving problem (5) under Assumptions 2.1 and 2.2 with the deterministic
gradient oracle g(x, ξ) ≡ ∇f(x) and with β̂k+1 := β

gyk
f (yk, xk+1) (Line 7) at each iteration k ≥ 0. Then, for all k ≥ 1, it

holds that

F (xk)− F ∗ ≤ 4HkD
2

k(k + 1)
≤ inf
ν∈[0,1]

8LνD
1+ν

k(1+3ν)/2
. (74)

Proof. We proceed exactly in the same way as in the proof of Theorem 5.1 (Appendix C) but do not upper bound
βk+1 = βf (yk, xk+1) with β̂k+1 in (67). We then arrive, exactly as before, at the following inequality that holds for any
k ≥ 1:

F (xk)− F ∗ ≤ 4HkD
2

k(k + 1)
. (75)

To upper bound Hk, we use, as before, the following equation:

(Hk+1 −Hk)D
2 = [Ak+1βk+1 − 1

2Hk+1r
2
k+1]+,

that holds for any k ≥ 0, but now we can upper bound

βk+1 ≤ Lν
1 + ν

Ak+1∥xk+1 − yk∥1+ν .

This is essentially the same bound that we had in (72) with the formal change of Lν to L′
ν := Lν

1+ν . Proceeding exactly as
before, we then obtain

Ak+1βk+1 ≤ 2νLν
1 + ν

(k + 1)1−νr1+νk+1

for any k ≥ 0 and arbitrary ν ∈ [0, 1], which gives us

(Hk+1 −Hk)D
2 ≤

[ 2νLν
1 + ν

(k + 1)1−νr1+νk+1 −
Hk+1

2
r2k+1

]
+
.

Instead of Lemma E.7, we can now apply a slightly more precise result (in terms of absolute constants)—Lemma E.6 (with
Ω := D2, M := 2νLν , γk := k)—to conclude that, for all k ≥ 1,

Hk ≤
[ 1

(1 + ν)D2

k∑
i=1

i2
](1−ν)/2

2νLν ≤ 2ν
[ 1

3(1 + ν)
k(k + 1)2

](1−ν)/2 Lν
D1−ν ≤ 2Lν

D1−ν k
(1−ν)/2(k + 1)1−ν ,

where the second inequality is due to
∑k
i=1 i

2 = 1
6k(k + 1)(2k + 1) ≤ 1

3k(k + 1)2, and the final inequality follows from
the fact that 2ν/[3(1 + ν)](1−ν)/2 monotonically increases in ν ∈ [0, 1]. Substituting the above bound into (75), we get

F (xk)− F ∗ ≤ 2LνD
1+ν k

(1−ν)/2(k + 1)1−ν

k(k + 1)
=

2LνD
1+ν

k(1+ν)/2(k + 1)ν
≤ 2LνD

1+ν

k(1+3ν)/2
.

20



Universal Gradient Methods for Stochastic Convex Optimization

E. Auxiliary Results
Lemma E.1. Let H,β, ρ ≥ 0 and Ω > 0. Then, the equation

(H+ −H)Ω = [β −H+ρ]+ (76)

has a unique solution given by

H+ := H +
[β −Hρ]+

Ω+ ρ
. (77)

Proof. Denote the left- and right-hand sides in (76) (as functions of H+) by ζ1(H+) and ζ2(H+), respectively, and let
ζ(H+) := ζ1(H+) − ζ2(H+). Note that both ζ1 and ζ2 are continuous functions, ζ1 is strictly increasing, while ζ2 is
decreasing, hence ζ is a continuous strictly increasing function. When H+ = H , we have ζ1(H) = 0, while ζ2(H) ≥ 0,
hence ζ(H) ≤ 0. When H+ → +∞, ζ1(H+) tends to +∞, while ζ2(H+) tends to a finite number (either 0 if ρ > 0, or
β if ρ = 0), hence ζ(H+) tends to +∞. Thus, there exists a unique point H+ ≥ H such that ζ(H+) = 0. This point is
exactly the unique solution of equation (76).

It remains to show that (77) is indeed a solution to (76). But this is simple. Indeed, if β ≤ Hρ, then, according to (77),
H+ = H + (β −Hρ)/(Ω + ρ), and hence

β −H+ρ = β −Hρ− β −Hρ

Ω+ ρ
ρ =

Ω

Ω+ ρ
(β −Hρ) = (H+ −H)Ω (≥ 0),

which means that H+ satisfies (76). If β > Hρ, then, by (77), H+ = H , and hence

[β −H+ρ]+ = [β −Hρ]+ = 0 = (H+ −H)Ω,

which also means that H+ satisfies (76).

Lemma E.2. Let ζ : Rn → R∪{+∞} be a convex function, x̄ ∈ dom ζ ,H ≥ 0. Then, for any x∗ ∈ Argminx∈dom ζ{ζ(x)+
1
2H∥x− x̄∥2} and any x ∈ dom ζ, we have

ζ(x) + 1
2H∥x− x̄∥2 ≥ ζ(x∗) + 1

2H∥x∗ − x̄∥2 + 1
2H∥x− x∗∥2.

Proof. This is a standard result that can be seen as a consequence of the fact that ζH(x) := ζ(x) + H
2 ∥x− x̄∥2 is a strongly

convex function with constant H , and hence ζH(x) ≥ ζH(x∗) + H
2 ∥x− x∗∥2 for any x ∈ dom ζ.

Lemma E.3. Let ν ∈ [0, 1), M ≥ 0 and H > 0. Then,

max
r≥0

{ M

1 + ν
r1+ν − H

2
r2
}
=

1− ν

2(1 + ν)

M2/(1−ν)

H(1+ν)/(1−ν) . (78)

Proof. After the change of variables t = r1+ν , the objective function inside the max becomes concave in t (since
r2 = t2/(1+ν) with 2

1+ν ≥ 1). Computing its derivative and setting to zero, we see that the maximum is attained at the point
r∗ := (M/H)1/(1−ν). Thus,

max
r≥0

{ M

1 + ν
r1+ν − H

2
r2
}
=

M

1 + ν

(M
H

)(1+ν)/(1−ν)
− H

2

(M
H

)2/(1−ν)

=
1

1 + ν

M2/(1−ν)

H(1+ν)/(1−ν)

(
1− 1

2
(1 + ν)

)
=

1− ν

2(1 + ν)

M2/(1−ν)

H(1+ν)/(1−ν) .

Lemma E.4. Let (Hk)
∞
k=0 be a nonnegative nondecreasing sequence of reals such that, for any k ≥ 0,

(p+ 1)Hp
k+1(Hk+1 −Hk) ≤ αk+1,

where p ≥ 0 is real and (αk)
∞
k=1 is a nonnegative sequence of reals. Then, for any k ≥ 1, it holds that

Hk ≤
(
Hp+1

0 +

k∑
i=1

αi

)1/(p+1)

.
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Proof. Since Hk ≤ Hk+1 for any k ≥ 0 and p ≥ 0, we can estimate

αk+1 ≥ (p+ 1)Hp
k+1(Hk+1 −Hk) ≥ (p+ 1)

∫ Hk+1

Hk

tpdt = Hp+1
k+1 −Hp+1

k .

Telescoping these inequalities, we obtain, for any k ≥ 1,

Hp+1
k −Hp+1

0 ≤
k∑
i=1

αi,

and the claim follows.

Lemma E.5. Let (Hk)
∞
k=0 be a nonnegative nondecreasing sequence of reals such that, for any k ≥ 0,

Hk+1(Hk+1 −Hk) ≥ αk+1,

where (α)∞k=1 is a nonnegative sequence of reals. Then, for any k ≥ 0, it holds that

Hk ≥
(
H2

0 +

k∑
i=1

αi

)1/2

.

Proof. Indeed, for any k ≥ 0, we can estimate

αk+1 ≤ Hk+1(Hk+1 −Hk) ≤ (Hk+1 +Hk)(Hk+1 −Hk) = H2
k+1 −H2

k .

Summing up these inequalities and rearranging, we obtain the claim.

Lemma E.6. Let (Hk)
∞
k=0 be a nondecreasing sequence such that H0 = 0 and, for all k ≥ 0, it holds

(Hk+1 −Hk)Ω ≤
[ 1

1 + ν
Mγ1−νk+1r

1+ν
k+1 −

1

2
Hk+1r

2
k+1

]
+
, (79)

where Ω > 0, M ≥ 0, ν ∈ [0, 1] are certain constants, and (γk)
∞
k=1 and (rk)

∞
k=1 are certain positive and nonnegative

sequences, respectively. Then, for all k ≥ 1, we have

Hk ≤
[ 1

(1 + ν)Ω

k∑
i=1

γ2i

](1−ν)/2
M. (80)

Proof. Suppose ν = 1. Then, according to (79), for all k ≥ 0, we have

(Hk+1 −Hk)Ω ≤ [ 12Mr2k+1 − 1
2Hk+1r

2
k+1]+ = [M −Hk+1]+

1
2r

2
k+1. (81)

Since H0 = 0 ≤M , this implies that Hk ≤M for all k ≥ 0 (which is exactly (80) for ν = 1). Indeed, if Hk ≤M < Hk+1

for some k ≥ 0, then the left-hand side in (81) is strictly positive, while the right-hand side is zero, which is a contradiction.

From now on, suppose ν < 1. Without loss of generality, we can assume that Hk+1 > 0 for all k ≥ 0. Let k ≥ 0 be
arbitrary. Applying Lemma E.3 to bound the right-hand side in (79) (and using the monotonicity of [·]+), we obtain

(Hk+1 −Hk)Ω ≤ 1− ν

2(1 + ν)

(Mγ1−νk+1 )
2/(1−ν)

H
(1+ν)/(1−ν)
k+1

=
1− ν

2(1 + ν)

M2/(1−ν)

H
(1+ν)/(1−ν)
k+1

γ2k+1.

Applying Lemma E.4 (with p = 1+ν
1−ν for which p+ 1 = 2

1−ν ) and using the fact that H0 = 0, we conclude that

Hk ≤
[M2/(1−ν)

2(1 + ν)Ω

k∑
i=1

γ2i

](1−ν)/2
=

[ 1

(1 + ν)Ω

k∑
i=1

γ2i

](1−ν)/2
M.
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Lemma E.7. Let (Hk)
∞
k=0 be a nondecreasing sequence such that H0 = 0 and, for all k ≥ 0, it holds

(Hk+1 −Hk)Ω ≤ [Lα1−ν
k+1r

1+ν
k+1 + γk+1rk+1 − 1

2Hk+1r
2
k+1]+, (82)

where Ω > 0, M ≥ 0, ν ∈ [0, 1] are certain constants, (αk)∞k=1 is a certain positive sequence, and (rk)
∞
k=1 and (γk)

∞
k=1

are certain nonnegative sequences. Then, for all k ≥ 1,

Hk ≤ [2(1 + ν)](1+ν)/2L
( 1

Ω

k∑
i=1

α2
i

)(1−ν)/2
+

( 2

Ω

k∑
i=1

γ2i

)1/2

. (83)

Remark E.8. Setting γk ≡ 0 in Lemma E.7, we recover Lemma E.6.

Proof. i. Without loss of generality, we can assume that Hk+1 > 0 for all k ≥ 0. Indeed, otherwise, either Hk = 0 for
all k ≥ 0, and (83) is trivial, or we can work with the subsequence (Hk)

∞
k=k0

, where k0 ≥ 0 is the first integer such that
Hk0+1 > 0.

ii. Suppose5 ν = 1. In this case, (82) reads

(Hk+1 −Hk)Ω ≤ [(L− 1
2Hk+1)r

2
k+1 + γk+1rk+1]+ (84)

for all k ≥ 0, and we need to prove that, for all k ≥ 1,

Hk ≤ 4L+
( 2

Ω

k∑
i=1

γ2i

)1/2

. (85)

(This is exactly (83) for ν = 1.)

Since H0 = 0, we can assume that there exists an index k0 ≥ 0 such that

Hk0 ≤ 4L < Hk0+1. (86)

(Otherwise, Hk ≤ 4L for all k ≥ 0, and (85) is trivial.) As (Hk)
∞
k=0 is nondecreasing, (85) is clearly valid for all indices

0 ≤ k ≤ k0. Let us prove that it is also valid for all k ≥ k0 + 1.

Let k ≥ k0 be arbitrary. By monotonicity of (Hi)
∞
i=0, from (86), it follows that Hk+1 ≥ Hk0+1 > 4L. Therefore,(

L− 1

2
Hk+1

)
r2k+1 + γk+1rk+1 ≤ γk+1rk+1 −

1

4
Hk+1r

2
k+1 ≤

γ2k+1

Hk+1
,

where the final inequality follows from Lemma E.3 (with ν := 0 and H := 1
2Hk+1). Combining this with (84) (using the

monotonicity of [·]+), we get

(Hk+1 −Hk)Ω ≤
γ2k+1

Hk+1
.

Thus, for all k ≥ k0, we have
(H2

k+1 −H2
k)Ω ≤ 2Hk+1(Hk+1 −Hk)Ω ≤ 2γ2k+1. (87)

(Recall that Hk ≤ Hk+1.)

Let k ≥ k0 + 1 be arbitrary. Summing up (87) for all indices k0 ≤ k′ ≤ k − 1 and rearranging, we get

H2
k ≤ H2

k0 +
2

Ω

k∑
i=k0+1

γ2i ≤ (4L)2 +
2

Ω

k∑
i=1

γ2i ,

where the last inequality is due to (86) (and the fact that k0 ≥ 0). Using the fact that
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0,

we obtain (85).
5In principle, we can cover the case ν = 1 by only considering the values of ν ∈ [0, 1) and then passing to the limit as ν → 1.

However, we prefer to present a more explicit proof without using the limiting argument.
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iii. Now suppose ν < 1. Let k ≥ 0 be arbitrary. Applying Lemma E.3 twice, we obtain

Lα1−ν
k+1r

1+ν
k+1 + γk+1rk+1 − 1

2Hk+1r
2
k+1 = [Lα1−ν

k+1r
1+ν
k+1 −

1
4Hk+1r

2
k+1] + [γk+1rk+1 − 1

4Hk+1r
2
k+1]

≤ 1− ν

2(1 + ν)

[(1 + ν)Lα1−ν
k+1]

2/(1−ν)

( 12Hk+1)(1+ν)/(1−ν)
+

1

2

γ2k+1
1
2Hk+1

= (1− ν)
M2/(1−ν)

H
(1+ν)/(1−ν)
k+1

α2
k+1 +

γ2k+1

Hk+1
,

where

M :=
2(1+ν)/2(1 + ν)

[2(1 + ν)](1−ν)/2
L = 2ν(1 + ν)(1+ν)/2L. (88)

Combining this with (82) (using the monotonicity of [·]+), we get

(Hk+1 −Hk)Ω ≤ (1− ν)
M2/(1−ν)

H
(1+ν)/(1−ν)
k+1

α2
k+1 +

γ2k+1

Hk+1
.

Since Hk ≤ Hk+1, it follows that

1

2
(H2

k+1 −H2
k)Ω ≤ Hk+1(Hk+1 −Hk)Ω ≤ (1− ν)

M2/(1−ν)

H
2ν/(1−ν)
k+1

α2
k+1 + γ2k+1.

Note that this inequality is valid for all k ≥ 0.

Applying Lemma E.9 (with Ck := H2
k , α′

k := 2
Ωα

2
k and γ′k := 2

Ωγ
2
k), we conclude that, for all k ≥ 1,

H2
k ≤M2

( k∑
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2

Ω
α2
i

)1−ν
+
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2

Ω
γ2i = 22ν(1 + ν)1+νL2
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2

Ω
α2
i
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Ω
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( 1

Ω
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α2
i
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+

2

Ω
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γ2i ,

where the second identity follows from (88). Using the fact that
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0, we obtain (83).

Lemma E.9. Let (Ck)∞k=1 be a positive sequence satisfying, for all k ≥ 0,

Ck+1 − Ck ≤ (1− ν)
M2/(1−ν)

C
ν/(1−ν)
k+1

αk+1 + γk+1, (89)

where C0 := 0, and M ≥ 0, ν ∈ [0, 1) are certain constants, and (αk)
∞
k=1 and (γk)

∞
k=1 are certain nonnegative sequences.

Then, for all k ≥ 1, we have

Ck ≤M2
( k∑
i=1

αi

)1−ν
+

k∑
i=1

γi. (90)

Proof. For each k ≥ 0, let Ĉk be the right-hand side of (90):

Ĉk :=M2A1−ν
k +

k∑
i=1

γi, Ak :=

k∑
i=1

αi, (91)

with the convention that Ĉ0 = A0 = 0. Note that Ĉk > 0 for all k ≥ 1. Indeed, if Ĉk = 0 for some k ≥ 1, then Ĉ1 = 0
(by the monotonicity of (Ĉk)∞k=1), which means that γ1 = 0 and either M = 0 or α1 = 0; but then, according to (89),
C1 − C0 ≤ 0; since C0 = 0, this implies C1 ≤ 0, which contradicts our assumption about the positivity of (Ck)∞k=1.

Let us prove by induction that Ck ≤ Ĉk for all k ≥ 0. Clearly, this inequality is satisfied for k = 0 since C0 = Ĉ0 = 0.
Now suppose that Ck ≤ Ĉk for some k ≥ 0, and let us prove that Ck+1 ≤ Ĉk+1.
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Let χk+1 : (0,+∞) → R be the function

χk+1(C) := C − (1− ν)
M2/(1−ν)

Cν/(1−ν)
αk+1. (92)

According to (89) and the inductive hypothesis, we have

χk+1(Ck+1) ≤ Ck + γk+1 ≤ Ĉk + γk+1. (93)

Since the function χk+1 is strictly increasing, to prove that Ck+1 ≤ Ĉk+1, it suffices to show that χk+1(Ck+1) ≤
χk+1(Ĉk+1). According to (93), for this, it suffices to show that

Ĉk + γk+1 ≤ χk+1(Ĉk+1).

Substituting (92) and rearranging, we see that we need to prove that (Ĉi)∞i=0 satisfies (90) with the reversed sign:

Ĉk+1 − Ĉk ≥ (1− ν)
M2/(1−ν)

Ĉ
ν/(1−ν)
k+1

αk+1 + γk+1.

In view of (91), we have
Ĉk+1 − Ĉk =M2[A1−ν

k+1 −A1−ν
k ] + γk+1.

Thus, we need to check if

M2[A1−ν
k+1 −A1−ν

k ] ≥ (1− ν)
M2/(1−ν)

Ĉ
ν/(1−ν)
k+1

αk+1,

or, equivalently, if
Ĉ
ν/(1−ν)
k+1 [A1−ν

k+1 −A1−ν
k ] ≥ (1− ν)M2ν/(1−ν)αk+1.

From (91), it follows that Ĉk+1 ≥M2A1−ν
k+1. Hence,

Ĉ
ν/(1−ν)
k+1 [A1−ν

k+1 −A1−ν
k ] ≥M2ν/(1−ν)Aνk+1[A

1−ν
k+1 −A1−ν

k ].

Thus, it suffices to show that
Aνk+1[A

1−ν
k+1 −A1−ν

k ] ≥ (1− ν)αk+1.

But this is indeed true, as for any 0 ≤ t1 ≤ t2, by the concavity of t 7→ t1−ν , we have tν2(t
1−ν
2 − t1−ν1 ) ≥ (1− ν)(t2 − t1),

while Ak+1 −Ak = αk+1 according to (91).

F. Additional Related Work
Within the context of Problem (5), we most commonly consider that f and ψ are both convex and ψ is a simple, non-smooth
function, such that we could solve (5) efficiently by means of a proximity function.

Classical methods: Focusing on the setting where ψ is the indicator function of a compact setQ, we can solve the problem
at a rate of O(1/

√
k) when f is non-smooth while we can accelerate the convergence to O(1/k2) when f has Lipschitz

continous gradients, i.e., f is smooth. These rates are shown to be tight when the gradient feedback is noiseless (Nemirovsky
& Yudin, 1983). When the first-order oracle is stochastic with variance σ2, the lower bounds imply a convergence rate
of O(σ/

√
k) (Nemirovski et al., 2009; Lan, 2012).

The simple (sub-)gradient descent (GD) (Cauchy, 1847), i.e., xk+1 = xk − γkg(xk), with a sufficiently small γ0 that
decays as O(1/

√
k) achieves O(1/

√
k) rate for non-smooth minimization. Although this rate matches the information

theoretic lower bounds, the same method converges at an O(1/k) rate under smoothness, which is suboptimal. Nesterov
(1983) introduced the idea of “momentum” and proposed the first order-optimal algorithm, accelerated gradient descent
(AGD), which manages to decrease the error at a rate of O(1/k2). Since then, various different interpretations of Nesterov’s
acceleration has been proposed. For a broad review of acceleration mechanisms, we refer the reader to Nesterov (2005);
Xiao (2010); Tseng (2008); Beck & Teboulle (2009); Diakonikolas & Orecchia (2018); Wang & Abernethy (2018) and
references therein.
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(a) Synthetic, n=100, m=200.
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(b) Synthetic, n=200, m=400.
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(c) Diabetes.
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Figure 3. Comparison of different deterministic algorithms on convex optimization problems.

Figure 4. Comparison of different stochastic algorithms on non-convex optimization problems.

An integral components of the classical methods, such as GD, AGD and its variants, is the dependence on the knowledge
of problem parameters, specifically the Lipschitz constant of the problem. When the step-size is not selected sufficiently
small with respect to the Lipschitz constant, then these methods are destined to diverge. Similar arguments hold for
stochastic methods such that the initial step-size needs to be sufficiently small to guarantee convergence for smooth
problems (Nemirovsky & Yudin, 1983). Additionally, the step-size must decay optimally at the rate ofO(1/

√
k), irrespective

of the smoothness of the problem, to control the effect of noise and ensure convergence to the set of solutions (Robbins &
Monro, 1951).

Line-search methods: A fundamental technique to overcome the dependence on problem parameters is the line-search
machinery (Armijo, 1966; Wolfe, 1969; Nocedal & Wright, 2006), which dynamically selects step-size every iteration by
using local information. There are several strategies such as exact line-search and backtracking line-research, which could
be implemented with appropriate “sufficient decrease” and curvature conditions. Essentially, line-search helps estimate a
locally-valid step-size, enabling larger step-sizes than using the globally worst-case Lipschitz constant. When equipped with
an appropriate line-search mechanism, GD and AGD could achieve the same convergence rates without the need to know
the Lipschitz parameter. However, this comes at the expense of an iterative search procedure which demands function value
evaluations per iteration of the line-search subroutine. Similarly, stochastic variants of line-search are available, nonetheless,
they enforce extra assumptions on the objective and gradient information (Paquette & Scheinberg, 2020).

G. Additional Experiments
In this section, we first elaborate on our experiments in the deterministic setting. We focus on the least-square problem
in (30). We first run the experiment on real-world diabetes dataset from LIBSVM. Next, we consider a synthetic dataset,
where we randomly generate an optimal solution x∗ in the surface of a unit ball. Next, we sample each element of A from a
uniform distribution over [0, 1] and set b = Ax∗. We test the proposed Algorithm 1, denoted by UGM, and its accelerated
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version (AUGM). The baselines include GD, Nesterov’s GM (Nesterov, 2015), AdaGrad, UnixGrad (Kavis et al., 2019),
AcceleGrad (Levy et al., 2018) and AC-FGM (Li & Lan, 2023). In GD, we set the step size as 1/L while other methods
are tuned via grid search. The result is presented in Figure 3, where we observe that the proposed UGM shows better
performance than UniXGrad and AcceleGrad.

Next, we include additional experiments on the stochastic setting. To be specific, we train a ResNet18 (He et al., 2016) on
CIFAR-10 (Krizhevsky & Hinton, 2009). We select the mini-batch size as 512. The step size of each method is tuned by a
parameter sweep over {10, 1, 0.1, 0.01, 0.001, 0.0001}. The diameter of the proposed method is tuned by sweeping over
{50, 35, 20, 10, 5}. We show the result in Figure 4, where we can observe that the proposed stochastic universal gradient
method can be applied on non-convex problems as well.
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