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Summary
For reinforcement learning agents to be deployed in high-risk settings, they must achieve

a high level of robustness to unfamiliar scenarios. One method for improving robustness is
unsupervised environment design (UED), a suite of methods aiming to maximise an agent’s
generalisability across configurations of an environment. In this work, we study UED from an
optimisation perspective, providing stronger theoretical guarantees for practical settings than
prior work. Whereas previous methods relied on guarantees if they reach convergence, our
framework employs a nonconvex-strongly-concave objective for which we provide a provably
convergent algorithm in the zero-sum setting. We empirically verify the efficacy of our method,
outperforming prior methods in a number of environments with varying difficulties.

Contribution(s)
1. We provide a reformulation of UED that is strongly concave in the adversary’s strategy,

allowing for easier convergence.
Context: Dennis et al. (2020)’s initial UED work PAIRED uses a nonconvex-nonconcave
objective, which is known to be unstable in training (Wiatrak et al., 2020). Moreover,
follow-up works such as (Chung et al., 2024) that improve PAIRED’s level generator with
generative models maintain this property.

2. We provide convergence guarantees for any score function that is a zero-sum game over the
policy’s negative return (e.g. regret or negative return).
Context: Prior works in UED (Dennis et al., 2020; Jiang et al., 2021a) assert guarantees if
the UED game reaches a saddle point, but fail to converge to one. We propose a method
that provably converges.

3. We provide an empirical evaluation of our methods on current UED benchmarks, using rel-
evant optimisation heuristics and a new score function that generalises the work of Ruther-
ford et al. (2024) to general deterministic RL environments.
Context: Learnability (Rutherford et al., 2024) fails to obtain the same guarantees as the
zero-sum setting without additional (potentially second-order) optimisation techniques that
are beyond the scope of this work (Zeng & Doan, 2024; Hong et al., 2023).
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Abstract

For reinforcement learning agents to be deployed in high-risk settings, they must1
achieve a high level of robustness to unfamiliar scenarios. One method for improv-2
ing robustness is unsupervised environment design (UED), a suite of methods aiming3
to maximise an agent’s generalisability across configurations of an environment. In4
this work, we study UED from an optimisation perspective, providing stronger theo-5
retical guarantees for practical settings than prior work. Whereas previous methods6
relied on guarantees if they reach convergence, our framework employs a nonconvex-7
strongly-concave objective for which we provide a provably convergent algorithm in8
the zero-sum setting. We empirically verify the efficacy of our method1, outperforming9
prior methods in a number of environments with varying difficulties.10

1 Introduction11

How to train reinforcement learning (RL) agents that are robust to a variety of scenarios is an im-12
portant and long-studied research question (Morimoto & Doya, 2000). Unsupervised Environment13
Design (UED) is a contemporary approach to robustness within RL that seeks to learn policies that14
are versatile to a diverse set of environments. Using a parametrised environment simulator, UED15
methods progress agents from easy to difficult environment parametrisations, called levels. These16
methods aim to train agents that perform well in a wide range of unseen levels, and do this by17
constructing a two-player game between the agent and a level-selecting adversary (Dennis et al.,18
2020).19

Most current methods use a variation of the minimax regret approach, in which levels with high20
regret, meaning an agent performs far from optimal, are selected by an adversary for the agent to21
learn in. This forces the agent to learn from highly learnable environments (Dennis et al., 2020; Jiang22
et al., 2021b;a; 2022; Parker-Holder et al., 2023). Using regret as a score function is intuitive, since23
it shows how suboptimal a policy is with regard to a specific level. However, despite some empirical24
success (Dennis et al., 2020; Jiang et al., 2021b), more recent works have presented a number of25
issues with the minimax regret formulation (Jiang et al., 2022; Beukman et al., 2024; Rutherford26
et al., 2024), motivating the creation of new ways of determining the score (i.e. learning potential)27
of a level. The canonical formulation of UED faces several other challenges, including difficulties28
with convergence and instability when searching for useful levels in a large space. In our work,29
we provide a reformulation of minimax regret as the expected regret when sampling levels from a30
categorical distribution. Hence, we provide a gradient-based algorithm that is provably convergent31
to the objective’s solution set, in stark contrast to the existing paradigm that only has theoretical32
guarantees if convergence is reached. In particular we compute gradients for both the agent and33
adversary, and update the adversary with a much larger learning rate than the agent to ensure we34
find an approximate solution.35

1Code released upon acceptance.
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Figure 1: A visual representation of our training loop, which has simultaneous updates for the agent
x and the adversary y. The agent’s update is trained on levels λ sampled from y, and the adversary’s
update is computed with scores computed from the policy on all levels from level-buffer Λ. We use
the Craftax environment from Matthews et al. (2024) for illustration.

Minimax regret is theoretically attractive because it maintains the zero-sum property between the36
agent and the adversary, thus allowing for stronger guarantees from single-loss optimisation. How-37
ever, the levels with highest regret may not be those that lead to efficient learning. Furthermore,38
regret is intractable in practice, as it requires an optimal policy for each level. Inspired by this,39
Rutherford et al. (2024) used learnability (Tzannetos et al., 2023) as an effective scoring function,40
but it is limited to deterministic, binary-outcome domains. Motivated by the interpretation of learn-41
ability as the variance of agent success, we generalise this score function to arbitrary deterministic42
settings by using the normalised standard deviation of level-returns. Using this, we develop a prac-43
tical UED algorithm, NCC (see Figure 1), which obtains competitive results in several challenging44
domains.45

In this work, we provide a stepping stone towards more robust RL algorithms by creating a theo-46
retically sound optimisation framework that offers competitive empirical results. We contribute the47
following:48

1. A reformulation of UED that is strongly concave in the adversary’s strategy, allowing for easier49
convergence.50

2. Convergence guarantees for any score function that is zero-sum with negative return (e.g., regret).51

3. An approximation of our objective in the general-sum case, which induces a better curriculum.52

4. A generalised learnability score function that is applicable to all deterministic domains.53

5. An empirical evaluation demonstrating that our new approach either matches or outperforms the54
evaluation set performance of current state-of-the-art methods in several domains.55

2 Limitations and Strengths of Related Works56

2.1 UED with a Level-Sampling Adversary57

The most basic UED method is Domain Randomisation (DR), which trains on randomly sampled58
levels at every training iteration (Tobin et al., 2017). DR is not a particularly effective method with59
more difficult testbeds (Matthews et al., 2025), however it was highlighted in Coward et al. (2024)60
that DR performs better than or equivalently to contemporary methods in simpler environments (i.e.,61
mazes with 25 walls instead of 60).62
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An important takeaway from DR that has been used in other methods like Prioritised Level Replay63
(Jiang et al., 2021b;a, PLR) and Sampling For Learnability (Rutherford et al., 2024, SFL) is that64
the adversary will benefit from performing some variation of an ϵ-greedy policy. Namely, there65
is value in replaying previously-sampled levels, while also training on newly-generated levels to66
ensure diversity. Moreover, PLR improves DR by allowing for a guided search over the level space67
via a dynamic buffer filled with high-scoring levels. SFL builds on this by using the improved score68
function learnability, and replaces a distribution over a dynamic buffer with a heuristic random69
search to periodically sample a uniform set of levels.70

Such sampling-based methods fail to establish a convergent system due to the use of heuristics71
in place of gradient-based optimisation. Instead, we establish a game objective that is efficiently72
optimisable with gradients. Moreover, we provide convergence guarantees for regret, but defer the-73
oretical considerations of learnability to future work, as the general-sum setting induces a departure74
from our current method. In practice we use a dynamic buffer to search over large level spaces,75
which can be seen as a modified version of SFL to better suit the policy’s optimisation process.76

2.2 UED with a Level-Generating Adversary77

PAIRED (Dennis et al., 2020) places neural policies in zero-sum competition with each other, along-78
side the use of a level-generating adversary . Moreover, PAIRED’s generator has seen success when79
replaced by probabilistic generative models (Azad et al., 2023; Li & Varakantham, 2024; Garcin80
et al., 2024). Such nonconvex-nonconcave saddle point problems are generally known to have is-81
sues with instability and convergence, especially in the study of generative adversarial networks82
(Wiatrak et al., 2020). Our method does not use a generative model, but unifies the generative and83
sampling approaches by learning the sampling distribution with gradient optimisation.84

3 Background85

3.1 Underspecified POMDP’s86

The underlying theoretical framework behind UED is the Underspecified Partially Observable87
Markov Decision Process (UPOMDP). The UPOMDP (Dennis et al., 2020) describes an environ-88
ment with level space L, such that we train over some subset Λ ⊆ L, where each parametrisation89
λ ∈ Λ represents a POMDP. We formally define the UPOMDP by the tuple (L,S,O,A, r, P, ρ, γ).90
We define S as the state space, O as the observation space, where each o ∈ O is typically a limited91
view of the global state of the environment. The action space is A, and the reward function is defined92
as r : L × S × A → R. We additionally define the transition probability function P which has a93
varying definition depending on the environment dynamics, but for the discrete-state case we write94
P : L × S × A → ∆(S), where ∆(S) is the probability simplex of size equal to the cardinality of95
set S. We finally define the discount factor γ and initial state distribution function ρ : L → ∆(S).96

Consider the agent’s parameter space X , and policy π : X ×O → ∆(A), where the policy may also97
consider a hidden state h as input in the partially observable setting. We define the expected return98
of the agent on a given level to be J : L × X → R. Moreover, we define the general objective of99
our agent to be the following, where Λ(y) is some distribution over levels parametrised by y:100

max
x∈X

Eλ∼Λ(y)

[
J(πx, λ)

]
, (1)

3.2 Learning in Games101

A game is a scenario where there are agents interacting with each other by taking actions, typically102
under the assumption that each agent is trying to maximise their own utility.103

Solutions of Games Learning a game generally involves solving for an equilibrium point between104
the players via optimisation techniques. Typically, the hope is that the players will achieve a Nash105
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Equilibrium (Nash, 1951, NE), which requires that neither player can unilaterally deviate their strat-106
egy to obtain a better utility. In such equilibria, players are robust to changes to the opponent’s107
strategy. Hence, the robustness guarantees of prior UED works (Dennis et al., 2020; Jiang et al.,108
2021a) are derived under an assumption that their systems have converged to a NE.109

First-Order Nash Equilibria Following Nouiehed et al. (2019), we consider the solution concept110
of the (ϵ-approximate) first-order Nash Equilibrium. For ϵ ≥ 0, unconstrained x, and y constrained111
to Y , a first-order NE (x∗, y∗) of the objective minx maxy∈Y f(x, y), is defined by112

∥∇xf(x
∗, y∗)∥ ≤ ϵ

max
y∈Y

⟨∇yf(x
∗, y), y − y∗⟩ ≤ ϵ s.t. ∥y − y∗∥ ≤ 1 . (2)

An interpretation of the first-order NE is more clear when one considers a single variable and fixes113
the other; in particular, neither x or y are able to become more optimal w.r.t. f via first-order gradient114
optimisation except for by some (small) distance ϵ.115

3.3 Game Theory and UED116

Zero-sum UED Prior works frame UED as a zero-sum game between an agent (the policy in-117
teracting with the environment) and a level-generating adversary (Dennis et al., 2020; Jiang et al.,118
2021a). The adversary tends to maximise the agent’s score on the levels. A common score function119
is regret, defined as Reg(πx, λ) = J(πλ

∗ , λ)− J(πx, λ), for a level λ ∈ Λ and its optimal policy πλ
∗ .120

An agent that maximises its expected return on a given level is equivalently minimising its regret,121
hence the a regret-maximising adversary is zero-sum with a return-maximising agent.122

Minimax Regret PAIRED (Dennis et al., 2020), uses a generator parameterised by y as their123
adversary. While not explicitly stated, the objective being optimised is124

min
π

max
y

Eλ∼Λ(y)

[
Reg(π, λ)

]
. (3)

We aim to clarify the analysis of PAIRED, specifically with regards to convergence and policy op-125
timisation. In order to construct a normal form game (i.e., a game represented by a payoff matrix126
for each player), it is assumed that the action space of the agent is the (finite) set of possible deter-127
ministic policies. Practically, however, PAIRED trains a stochastic neural network-based policy via128
PPO (Schulman et al., 2017), and is not deterministic during training. In addition, due to the use of129
nonlinear neural networks for both the policy and the generator, the objective is in fact nonconvex-130
nonconcave. Hence, the normal-form construction (which is convex-concave) is not a reasonable131
representation of the UED problem. Instead, we argue that UED should be viewed as a min-max132
optimisation problem over the parameters of the agent and adversary.133

PAIRED further makes two unrealistic assumptions. Primarily, all of the theoretical results hold134
only at Nash Equilibrium, but there is no guarantee that this NE will be reached. In fact, this is135
unlikely due to the nonconvex-nonconcave objective, alongside the practical difficulties of min-max136
optimisation with neural networks. The nonconvex-nonconcave setting is not well-understood in the137
optimisation literature without additional structural assumptions which are not met (Mertikopoulos138
et al., 2019; Jin et al., 2020; Cai et al., 2024). Consequently, assuming convergence to NE is an139
assumption unlikely to be met. Secondly, the minimax theorem does not hold on the account of the140
nonconvexity/nonconcavity of the optimised variables. We circumvent both issues by constructing141
a nonconvex-strongly-concave objective for UED and proving that the variables involved converge142
to a first-order NE without needing to invoke the minimax theorem for analysis.143

3.4 Choice of Score Function144

Beyond issues with the theoretical framework of minimax regret, regret is often not a practically145
viable choice as a score function. While regret incentivises the adversary to propose levels where146
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the agent has much capacity to improve, these levels may not lead to optimal learning, and in fact147
may not be conducive to learning at all. Regret also relies on the optimal policy, which is generally148
not available. Additionally, Beukman et al. (2024) established the regret stagnation problem, where149
due to some stochasticity or partial observability in an environment, the regret is not reducible below150
some non-minimal value2. This problem is in particular an issue when utilising a regret-maximising151
adversary, because the score function is no longer representative of policy learning potential.152

One prevailing alternative to regret is the learnability of a level (Rutherford et al., 2024). Consid-153
ering a policy’s trajectory distribution on a level to be πx(λ), we denote the policy’s return on a154
trajectory τ to be R(τ, λ). Learnability can be written:155

Varτ∼πx(λ)

[
R(τ, λ)

]
(4)

s.t. R(τ, λ) ∈ {0, 1}.

Learnability has a number of interpretations that are explored in Tzannetos et al. (2023) and Ruther-156
ford et al. (2024), but the variance interpretation is intuitive in the sense that levels with low variance157
of returns are rather too difficult or too easy, and should not be prioritised during training. Thus,158
we would prefer an adversary that maximizes the variance of the level-returns. Notably, Rutherford159
et al. (2024) only applied this in the goal-based setting, thus having (deterministic) binary return3.160

4 Optimising a Curriculum for UED161

We first reformulate UED as a regularised game over expected score. We then describe our gen-162
eral algorithm and finally discuss added heuristics that are typical from UED and model-free RL163
literature.164

4.1 Core Optimisation Problem165

Consider s : L × X → R and vector of scores s(πx,Λ) corresponding to the scores of policy πx166
on each level in Λ. Additionally, we define Y := ∆(Λ) as the feasibility set for y. Motivated by167
the unstated formulations of Dennis et al. (2020) and Jiang et al. (2021a), we establish the expected168
score objective for UED, similar to Qian et al. (2019), which is linear in the adversary’s strategy:169

min
x∈X

max
y∈Y

Eλ∼Λ(y)

[
s(πx, λ)

]
= min

x∈X
max
y∈Y

yT s(πx,Λ) . (5)

Extending the soft UED framework of Chung et al. (2024), we add an entropy regularization term170
H(y) = −yT log y to the objective of our adversary:171

min
x∈X

max
y∈Y

f(x, y) := min
x∈X

max
y∈Y

yT s(πx,Λ) + αH(y) , (6)

where α > 0 is a temperature coefficient. Our justification is twofold: first, as per Chung et al.172
(2024) the agent needs to train on several different levels at each iteration, requiring the adversary’s173
distribution to have greater entropy instead of collapsing to a single level whose score is largest. We174
also introduce an additional justification: entropy regularization ensures that f is strongly concave175
in y, guaranteeing best-iterate convergence (Theorem 5.1). In the case of a general score function,176
the optimisation problem can instead be written as:177

min
x∈X

f(x, y) = −yTJ(πx,Λ) , max
y∈Y

g(x, y) = yT s(πx,Λ) + αH(y) . (7)

Because UED conventionally uses a nonlinear neural network to parameterise its policy (and value178
function), we have an objective that is nonconvex in x and concave in y. Lin et al. (2020) have179

2For example, if return R(·, λ) ∈ [0, 1], the minimal return value would be 0 but R(·, λ) might be irreducible below 0.3.
3We abuse notation, as an environment could have a goal, but also (for example) could impose penalties on the return for

various agent behaviours.
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shown that under certain assumptions (ζ-greediness, and typical continuous activation functions),180
we can guarantee (best-iterate) convergence using two-timescale stochastic gradient descent-ascent,181
which assumes a separation of learning rates. Moreover, there exists optimisation heuristics to scale182
this approach to neural networks and high-dimensional parameter spaces (Li et al., 2023). Thus,183
we propose NonConvex-Concave optimisation for UED (NCC) as a theoretically based method for184
optimisation in the UED setting.185

4.2 Method for Optimisation186

To perform gradient based optimisation for the adversary, we construct score vector s after each187
iteration of RL training (TRAIN_RL is agnostic to RL algorithm) to construct y’s gradient. For188
the adversary, we perform projected gradient ascent constrained to the probability simplex, and189
for x we perform unconstrained gradient ascent. The training loop is summarised in Algorithm 1190
(illustrated in Figure 1), where PX (·) represents the euclidean projection onto set X . For learning191
rates ηy ≫ ηx, and stochastic gradient estimators F̂ and Ĝ defined in Equations (10) and (11), our192
update rule can be summarised as the following:193

xt+1 = xt − ηx · F̂ , yt+1 = PY
(
yt + ηy · Ĝ

)
. (8)

In theory, NCC uses a single stochastic gradient step of x using the gradient estimator in Equation194
(10), and relies on a static buffer. Furthermore, while we make typical assumptions about the policy195
architecture (like ζ-greediness) for the sake of theoretical analysis, we do not necessarily use these196
in practice. However, in implementation, we use tricks that have proven practically useful for UED197
methods in the past, such as dynamic buffer sampling and mini-batch PPO (Schulman et al., 2017).198
This provides a trade-off between theoretical convergence guarantees and empirical performance.199

4.3 Searching the level space200

Given that the problem has a large enough level space (i.e. |L| ≫ |Λ|) especially when there201
are higher chances of sampling levels that are too easy or too hard, it has been demonstrated that202
intermittently sampling new levels and exchanging them for low-scoring levels in the level buffer is203
often necessary for good performance (Jiang et al., 2021b).204

In consideration of the tradeoff between a simpler optimisation problem with a static buffer and205
the non-stationary dynamic buffer problem, we assert that the dynamic buffer is more essential to206
ensuring good performance. Inherently, if the level space contains a high proportion of irrelevant207
(low-scoring) levels, the initially-sampled Λ would lead to a poor training process if it were kept208
static. Considering this intuition, alongside the empirical results of Jiang et al. (2021b), we consider209
the non-stationary case in practice.210

To implement such a dynamic buffer, we compute the scores of newly sampled levels at every211
training iteration, and update the buffer with levels of higher score than the lowest in the buffer prior212
to constructing the adversary’s gradient. We give the altered procedure for Algorithm 1 in maroon.213

4.4 Heuristics and General-Sum UED214

General-Sum UED In practice, we use the same gradient estimators for x and y regardless of215
score function, and we find this method with general-sum score functions can lead to performance216
gains. However, with score functions that are not zero-sum with the policy’s negative return, our217
method is a heuristic that lacks convergence guarantees. However, we note that the baselines that we218
test our method against (i.e., PLR (Jiang et al., 2021b), DR (Tobin et al., 2017), and SFL (Rutherford219
et al., 2024)) also lack convergence guarantees. We recognise that one could use the theory of bilevel220
optimisation (Hong et al., 2023) as an approach to provide a provably convergent method, but that221
adds the complexities of an unconstrained strongly-concave objective for y with an update rule that222
often leverages second-order information (Chen et al., 2024). Thus, adding theoretical support for223
general-sum score functions would induce a significant departure from our current method, and is224
beyond the scope of our work.225
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Algorithm 1 Nonconvex-concave Optimisation for UED (Dynamic Buffer)

Require: Initial policy x0, distribution y0 = 1
|Λ|1, stepsizes ηx, ηy , initial level set Λ0.

for t = 0, 1, . . . do
Sample batch of training levels λ ∼ Λt(yt)
Construct score vector s = s(πx,Λ)
Sample new levels Λ′ ∼ L
Construct alternate score vector s′ = s(πx,Λ

′)
Λt+1 = top |Λ| elements from Λt ∩ Λ′

Construct merged score vector s̃ = s(πx,Λ
t)

xt+1 = TRAIN_RL(xt, λ, ηx)

yt+1 = PY

(
yt + ηy Ĝ(xt, yt; s, s̃)

)
with Ĝ defined in Equation (11)

end for
return Best-iterate policy parameters x∗

Generalised Learnability We extend the learnability score function of Rutherford et al., 2024,226
to general deterministic domains. As in the binary-outcome case, we aim to prioritise levels of227
intermediate difficulty for the current policy. We start with the standard deviation of the returns228
for a given level. However, unlike Equation 4, we cannot entirely rely on a variance metric as229
we empirically find that in several domains, levels where agents do very poorly have a high return230
variance. In order to bias scoring against levels that are not of intermediate difficulty, we scale the231
standard error values with a Gaussian over the mean return of the level buffer Λ. This reduces the232
score for levels of significant distance from the mean reward. While this approach could bias scores233
towards levels with a high range of reward outcomes, empirically we do not find this to be an issue.234

Concretely, given a set of M trajectories on level λ ∈ Λ, we compute the level-wise empirical mean235
µλ = 1

|M|
∑

τ∈M R(τ, λ), the overall mean µ = 1
|Λ|

∑
λ∈Λ µλ, the level-wise empirical variance236

σ2
λ = ( 1

|M|
∑

τ∈M R(τ, λ)2) − µ2
λ, and the overall variance σ2 = ( 1

|Λ|
∑

λ µ
2
λ) − ( 1

|Λ|
∑

λ µλ)
2.237

We use the Gaussian probability density function N (·|µ, σ2) to get the level-wise generalised learn-238
ability function:239

σλ · N (µλ|µ, σ2). (9)

In Appendix B.1 we repeat the score function analysis of Rutherford et al. (2024), demonstrating240
the score function’s effectiveness on Minigrid.241

5 Provably Convergent UED242

In order to guarantee convergence in the zero-sum setting, we use two-timescale stochastic gradi-243
ent descent-ascent (Lin et al., 2020), as given by Algorithm 1, to find an approximate solution to244
the optimisation problem defined by Equation (6). We first make the necessary assumptions and245
definitions, and then state the guarantees of our theoretical algorithm.246

5.1 Preliminaries and Assumptions247

Notation We denote F = ∇xf(x, y), G = ∇yf(x, y), and H = ∇f = (F,G). Moreover,248
we let N = |Λ| be the number of levels and λi be the i-th level. We denote trajectories by τ t =249
(ot, at, rt), with πx(τ

t) := πx(a
t|ot) for short. We write Ψt(τ, λ) for the baseline used in policy250

gradients, corresponding either to the advantage function Aπx(τ t, λ) or the return R(τ t, λ) from251
time t onwards. Finally, let M be the batch size used for each gradient update.252

In order to prove convergence guarantees, we need to make some basic regularity assumptions on253
the UED and policy network architecture.254
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Assumption 1. The number of levels N and the longest episode length T are finite, and the reward255
space is bounded. In particular, we denote by R∗ = maxτ,λ |R(τ, λ)| the largest absolute return256
across trajectories and levels.257

Assumption 2. πx is an ζ-greedy policy parametrised by a continously differentiable, L-Lipschitz258
neural network. This includes any network composed of fully-connected, convolutional or max-259
pooling layers, dropout, batch normalization and smooth activation functions (e.g. Sigmoid, Soft-260
max, Tanh, ArcTan, SoftPlus, Softsign) (Virmaux & Scaman, 2018). Moreover, we constrain the261
adversary probability simplex Y to be ξ-truncated, namely, Y = ∆ξ(Λ) := {y ∈ ∆(Λ) | yi ≥ ξ ∀i}.262

Gradient Estimators For the purpose of analysis, we generalize REINFORCE (Williams, 1992)263
to the UED setting by defining an unbiased estimator for our agent’s gradient F as an expectation264
over levels λi sampled from Λ(y), with a batch size M :265

F̂ (x, y) = − 1

NM

∑
i,j

T∑
t=0

∇x log πx(τ
t
ij , λi)Ψ

t(τij , λi) , (10)

where λi ∼ Λ(y) and trajectories τij ∼ πx(λi) are sampled independently. For the adversary, the266
unbiased estimator gradient is similarly given by267

Ĝ(x, y) = ŝ(πx,Λ) + α∇yH(y) , (11)

where ŝ is the empirical score vector, given by ŝ(πx, λi) = − 1
M

∑
j R(τij , λi) for s = −J and268

ŝ(πx, λi) = maxτ R(τ, λi)− 1
M

∑
j R(τij , λi) for s = Reg.269

5.2 Convergence Guarantees270

Proposition 1. Under Assumptions 1 and 2, the estimator Ĥ = (F̂ , Ĝ) defined by Equations (10)
and (11), with M = 1, has σ2-bounded variance with

σ2 = 4R2
∗

(
N +

T 2L2

ζ2

)
.

Moreover, the corresponding objective function f(x, y) = Eλ [s(πx, λ)] + αH(y) is α-strongly
concave in y and σ-Lipschitz. Finally, πx is K-smooth for some K ∈ R and f is ℓ-smooth with

ℓ =
TR∗

ζ

(
TL2 +K +

L2

ζ
+ 2TL

)
+

α

ξ
.

Proof. In Appendix A.271

Theorem 5.1 (Best-Iterate Convergence). Under Assumptions 1 and 2, let σ, ℓ be the constants
defined in Proposition 1, α the entropy temperature, and ∆ = maxy f(x

0, y) − maxy f(x
∗, y)

the objective distance between initial and optimal policies. For learning rates ηx = Θ(α2/ℓ3) and
ηy = Θ(1/ℓ), and a batch size M = Θ(max{1, σ2ℓ/αϵ2}), Algorithm 1 finds an ϵ-stationary policy
πx∗ such that ∥∇x maxy f(x

∗, y)∥ < ϵ in

O

(
∆ℓ3

α2ϵ2
+

2ℓ3

αϵ4

)
iterations, provided TRAIN_RL consists of a single gradient step using the estimator F̂ .272

Proof. Apply Proposition 1 and Lin et al. (2020, Theorem 4.5), with D ≤
√
2 being the diameter of273

the ξ-truncated probability simplex Y and κ = ℓ/α the condition number.274

We remark that while we are only concerned with finding a stationary policy πx∗ in the UED setting,275
the corresponding optimal distribution y∗ = argmaxy∈Y f(x∗, y) can efficiently be computed via276
projected gradient ascent due to the strong concavity of f in y. The resulting point (x∗, y∗) meets277
the conditions of Equation (2), and is therefore an ϵ-approximate first-order Nash Equilibrium.278
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6 Experiments279

Alongside our theoretical considerations, our method outperforms contemporary works on UED280
benchmarks after being extended to a practical algorithm. In this section we detail the choice of281
benchmarks and provide an experimental evaluation of our method’s performance.282

6.1 Experimental Setup283

We test our policy on benchmarks from Rutherford et al. (2024), although we decline to use JaxNav284
as the single-agent setting’s results are highly saturated, and the multi-agent setting introduces addi-285
tional optimisation challenges. Thus, we report results on Minigrid (Chevalier-Boisvert et al., 2023)286
using the implementation from Coward et al. (2024) and XLand-Minigrid (Nikulin et al., 2023).287
We refer the reader to Rutherford et al. (2024) for more details on the individual environments.288
Additionally, we show that our method can obtain competitive performance on a more complex289
benchmark, Craftax (Matthews et al., 2024).290

We first observe that our method achieves performance that is competitive to other approaches in291
a simple environment, and then highlight our method’s performance on more difficult benchmarks.292
All provided plots refer to our method as “NCC” with the attached score function (see Rutherford293
et al. (2024) for a further discussion of such score functions). We test NCC with both (generalised)294
learnability and positive value loss (PVL), the latter of which is a regret approximation that we found295
to lead to more stable training than MaxMC. Our contributions are labeled with bold font in the plots.296
For Minigrid, we use a bar plot for the sake of easier interpretation, whereas for XLand-Minigrid297
and Craftax we use curve plots to display our final result and rate of learning.298

Experiments were written in JAX (Bradbury et al., 2018) and we perform all experiments on a299
single NVIDIA L40S GPU. Results are averaged across 10 seeds, and standard error from the mean300
is displayed in the plots. All experiments use PPO (Schulman et al., 2017) as the RL algorithm of301
choice, although we remark that in theory our method could be used with other algorithms. For302
NCC we use the TiAda-Adam optimiser (Li et al., 2023) for both our policy and adversary, but for303
the rest of the benchmarks we used Adam (Kingma & Ba, 2017), as TiAda-Adam is only defined304
when there are gradients for both x and y.305

We include all hyperparameters for our experiments in Appendix B. We largely use the hyperpa-306
rameters from (Rutherford et al., 2024) and (Matthews et al., 2024) when available. We highlight307
in Appendix C the evolution of Minigrid examples throughout training, and show that our method308
weighs levels that are more challenging but still solvable in comparison to DR and SfL.309

6.2 Results310

0.72 0.80 0.88 0.96
Mean Solve Rate on Evaluation Set

PLR

DR

SFL

NCC-Reg

NCC-Learn

Final Mean Return on Evaluation Set
Figure 2: Mean solve rates with 95% confidence intervals on Minigrid, a common UED testbed.

Minigrid We observe similar performance to SFL on Minigrid with 60-wall mazes, on the same311
held-out set of test-levels. Due to the closeness of results, we plot our final mean solve rates, in312
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addition to a 95% confidence interval using the analysis from Agarwal et al. (2021), but using mean313
instead of interquartile mean to match the other plots. As per the results in Coward et al. (2024)314
and Rutherford et al. (2024), Minigrid does not leave much room for improvement as a benchmark,315
and thus there is only a small performance difference across methods. Additionally, because we316
have access to an optimal return oracle for Minigrid, we test true regret instead of PVL or MaxMC.317
Despite the stauration, we report results on Minigrid to verify that our method is successful in the318
benchmarks of prior work.319
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Figure 3: Performance on more difficult benchmarks, with our contributions highlighted in bold.

XLand-Minigrid Our most significant improvement from prior work is in XLand-Minigrid. We320
note that out of the given testbeds, this environment has results that are less saturated, and thus leave321
more room for improvement. We offer a considerably improved solve rate as compared to prior322
works, although we remark that this is only the case when using learnability as the score function.323

Craftax We use our new generalisation of learnability to outperform the highest-performing UED324
baseline from Matthews et al. (2024, PLR-MaxMC), although we find that domain randomisation325
to perform slightly better than PLR. We remark that we find performance is stronger in Craftax326
with a static buffer, and we highlight this to mention that in environments with a higher density327
of “good” levels, it may not be necessary to use a dynamic buffer.4 Moreover, due to such a level328
space, we found that it more effective to anneal our entropy regularisation coefficient α by the rule329
αt = α

3
√
t+1

, thus resulting in a more diverse set of training levels at the start of training. We maintain330
the training regime of Matthews et al. (2024) by using “inner” and “outer” rollouts, where we update331
after multiple parallelised sub-sequences within an episode. However, when computing our score332
vector we roll-out our policy for 500 steps per level. For generalised SFL, our learnability batch set333
size was 20000, buffer size was 4000, and we changed our buffer every 10 iterations. We attribute334
similar performance across generalised SFL and NCC with learnability to the algorithms’ shared335
emphasis on levels with high learnability.336

7 Future Work337

Our work obtains best-iterate convergence guarantees, which is commonplace in nonconvex mini-338
max optimisation (Lin et al., 2020; Kalogiannis et al., 2024). However, last-iterate convergence is339
a more desirable property that has been widely explored in game theory literature (Daskalakis &340
Panageas, 2020; Lei et al., 2021), and we leave open the question of last-iterate convergence in the341
UED setting to future work that corresponds with future advancements in the optimisation literature342
(Lin et al., 2020). Moreover, while it may be possible to analyse the general-sum UED setting under343
the lens of bilevel optimisation (Hong et al., 2023), we would suggest that future work investigates344

4In Craftax, the DR distribution of levels is the same as the evaluation distribution.
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practical and more scalable ways to produce convergent methods when the zero-sum condition is not345
met. Finally, considering the emergence of analysis of more sophisticated reinforcement learning346
algorithms like PPO (Grudzien et al., 2022), we suggest future work that further analyses the more347
practical variant of our algorithm.348

8 Conclusion349

In this paper, we build on the work of prior UED methods in order to establish the area’s first350
provably convergent method. We incorporate strengths from prior works alongside introducing a351
new score function that generalises learnability to arbitrary deterministic settings. Moreover, we352
extend our method to include practicalities such as PPO (Schulman et al., 2017) and specialised353
optimisers (Li et al., 2023) that achieve competitive performance on UED benchmarks with a wide354
range of complexity. Ultimately, we believe that our method provides a gateway to the creation of355
practical robust RL methods with guarantees under reasonable assumptions.356

A Proof of Proposition 1357

Proposition 1. Under Assumptions 1 and 2, the estimator Ĥ = (F̂ , Ĝ) defined by Equations (10)
and (11), with M = 1, has σ2-bounded variance with

σ2 = 4R2
∗

(
N +

T 2L2

ζ2

)
.

Moreover, the corresponding objective function f(x, y) = Eλ [s(πx, λ)] + αH(y) is α-strongly
concave in y and σ-Lipschitz. Finally, πx is K-smooth for some K ∈ R and f is ℓ-smooth with

ℓ =
TR∗

ζ

(
TL2 +K +

L2

ζ
+ 2TL

)
+

α

ξ
.

Proof. For simplicity, recall Equations (10) and (11) with M = 1 from the main text:358

F̂ (x, y) = − 1

N

∑
i

T∑
t=0

∇x log πx(τ
t
i , λi)Ψ

t(τi, λi) ,

Ĝ(x, y) = ŝ(πx,Λ) + α∇yH(y) ,

where λi ∼ Λ(y) and τi ∼ πx(λi) are sampled independently for each level i, and ŝ is the empirical359
score vector given by ŝ(πx, λi) = −R(τi, λi) for s = −J and ŝ(πx, λi) = maxτ R(τ, λi) −360
R(τi, λi) for s = Reg. Finally, denote z = (x, y) for joint parameters.361

(1) Bounded variance. First note that the variance of the entropy term is zero, hence362

E
[∥∥∥Ĥ(z)−H(z)

∥∥∥2] = E
[∥∥∥F̂ (z)− F (z)

∥∥∥2]+ E
[
∥ŝ(πx,Λ)− s(πx,Λ)∥2

]
≤ E

[∥∥∥F̂ (z)
∥∥∥2]+ E

[
∥ŝ(πx,Λ)∥2

]
, .

For the second term, we easily obtain, for M = 1,363

E
[
∥ŝ(πx,Λ)∥2

]
≤

∑
i

E
[
ŝ(πx, λi)

2
]
≤ 4NR2

∗

for both s = −J and s = Reg. For the first term, we invoke Lipschitzness and ζ-greediness364
of the policy π. For any trajectory τ and any level λ, we have |

∑
t Ψt(τ, λ)| ≤ 2TR∗ for both365

Ψt(τ, λ) = Rt(τ, λ) and Ψt(τ, λ) = Aπx(τ t, λ), which combined with366 ∥∥∇x log πx(τ
t, λ)

∥∥ =
∥∇xπx(τ

t, λ)∥
πx(τ t, λ)

≤ L

ζ
,
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implies that367

E
[∥∥∥F̂ (z)

∥∥∥2] ≤

∥∥∥∥∥∑
t

∇x log πx(τ
t, λ)Ψt(τ, λ)

∥∥∥∥∥
2

≤ 4T 2R2
∗L

2

ζ2

and hence368

E
[∥∥∥Ĥ(z)−H(z)

∥∥∥2] ≤ 4NR2
∗ +

4T 2R2
∗L

2

ζ2
= σ2

as required.369

(2) Strong concavity of f in y. Trivial, since ∇2
yf(x, y) = diag(−α/y) ⪯ −αI .370

(3) Lipschitzness of f . Follows directly from part (1) of the proof by applying Jensen’s inequality:371

∥∇f(z)∥2 =
∥∥∥E [

Ĥ(z)
]∥∥∥2 ≤ E

[
∥Ĥ(z)2∥

]
≤ σ2 .

(4) Smoothness of π. The composition of Lipschitz functions is Lipschitz, so we need only show372
that the gradient of any layer in the neural network is Lipschitz. This trivially holds for fully-373
connected, convolutional, max-pooling and batch-norm since they are piecewise linear, while the374
second derivative of the chosen activation functions (Sigmoid, Softmax, Tanh, ArcTan, SoftPlus,375
Softsign) are all bounded. It follows that under Assumption 2,

∥∥∇2
xπ

∥∥ ≤ K for some K ∈ R which376
is upper-bounded by the product of Lipschitz constants for each layer’s gradient.377

(5) Smoothness of f . The policy gradient Hessian is given by (Shen et al., 2019)

∇2
xJ(πx, λ) = Eτ

[∑
t

Rt(τ, λ)
(
∇x log πx(τ

t)∇x log p(τ | πx)
T +∇2

x log πx(τ
t)
)]

where p(τ | πx) = ρ(s0)
∏

t P (st+1 | st, at)πx(τ
t) for initial and transition distributions ρ and P378

(omitting λ for convenience). For the first term, writing P (τ) =
∏

t P (st+1 | st, at), we have379

∇xp(τ | πx) = ρ(s0)P (τ)
∑
t

∇xπx(τ
t)
∏
s̸=t

πx(τ
t)

which implies380

∥∇xp(τ | πx)∥ ≤ TL ,

hence the first term is bounded for each t:381 ∥∥∇x log πx(τ
t)∇x log p(τ | πx)

T
∥∥ ≤ TL2

ζ
.

For the second term, we use the smoothness of π proven in part (4) above to obtain:382 ∥∥∇2
x log πx(τ

t)
∥∥ =

∥∥∥∥∇2
xπx(τ

t)

πx(τ t)
− ∇xπx(τ

t)∇xπx(τ
t)T

πx(τ t)2

∥∥∥∥ ≤ K

ζ
+

L2

ζ2
.

Putting everything together, we obtain383 ∥∥∇2
xf(z)

∥∥ =
∥∥yT∇2

xJ(πx,Λ)
∥∥ ≤ max

λ

∥∥∇2
xJ(πx, λ)

∥∥ ≤ TR∗

ζ

(
TL2 +K +

L2

ζ

)
.

Now notice that
∥∥∇2

yf(z)
∥∥ = ∥diag(−α/y)∥ ≤ α/ξ since yi ≤ ξ for all i. Moreover,∥∥∇2

xyf(z)
∥∥ = ∥∇xJ(πx,Λ)∥ ≤ 2TR∗L

ζ

by the same argument as part (1) of the proof, so we conclude∥∥∇2f(z)
∥∥ ≤ TR∗

ζ

(
TL2 +K +

L2

ζ
+ 2TL

)
+

α

ξ
= ℓ

as required.384
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B Additional Experimental Details562

B.1 Generalised Learnability Score Function563

In Figure 4 we repeat the analysis of UED score functions conducted by Rutherford et al. (2024).564
To give us a success rate metric, we conduct this analysis in Minigrid using a policy trained for565
1100 update steps with SFL (i.e. 1/4 of a usual training run). We randomly sample 5000 levels and566
rollout the policy for 2000 timesteps on each. The trend illustrated by the quadratic demonstrates567
the generalised learnability score function’s ability to identify levels of intermediate difficulty.568
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Figure 4: Analysis of Generalised Learnability Score function on Minigrid. The black lines represent
a quadratic fit to the scatter data.

B.2 Compute Time569

Table 1 reports the compute time for all experimental evaluations. Each Minigrid seed was run on 1570
Nividia A40 using a server that has 8 Nvidia A40’s and two AMD EPYC 7513 32-Core Processor571
(64 cores in total). Meanwhile, for XLand and Craftax, each individual seed was run on 1 Nvidia572
L40s using a server that has 8 NVIDIA L40s’, two AMD EPYC 9554 processors (128 cores in total).573

Method Minigrid XLand Craftax

NCC Learn 0:53:45 (0:00:28) 3:31:57 (0:01:06) 5:35:06 (0:00:59)
NCC Regret 0:58:41 (0:00:29) - -
NCC PVL - 2:52:31 (0:00:53) 4:13:16 (0:00:39)
SFL 0:28:19 (0:00:03) 9:16:31 (0:01:17) 4:29:17 (0:00:31)
PLR 0:45:16 (0:00:10) 2:47:53 (0:00:47) 3:24:46 (0:00:24)
DR 0:43:28 (0:00:16) 2:42:27 (0:00:43) 3:28:06 (0:00:08)

Table 1: Mean and standard deviation of time take for experimental evaluations. Each evaluation
consisted of 10 independent seeds.
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B.3 Hyperparameters574

Hyperparameter Minigrid XLand Craftax

ηx 0.001 0.0001 0.0001
ηy 0.05 0.01 0.01
α 0.05 0 0.05
|Λ| 4000 4000 4000
|Λ′| 256 8192 0
|λ| 256 8192 1024
γ 0.995 0.99 0.995
GAE λ 0.98 0.95 0.95
clip_eps 0.2 0.2 0.2
critic_coeff 0.5 0.5 0.5
entropy_coeff 0.001 0.01 0.01
num_epochs 1 1 4
max_grad_norm 0.5 0.5 1.0
num_minibatches 1 16 2
num_parallel_envs 256 8192 1024

Figure 5: NCC Hyperparameters

Hyperparameter Minigrid XLand Craftax

ηx 0.00025 0.0001 0.0002
|Λ| 4000 4000 4000
γ 0.995 0.99 0.99
GAE λ 0.98 0.95 0.9
clip_eps 0.2 0.2 0.2
critic_coeff 0.5 0.5 0.5
entropy_coeff 0 0.01 0.01
num_epochs 4 1 5
max_grad_norm 0.5 0.5 1.0
num_minibatches 4 16 2
num_parallel_envs 256 8192 1024
replay_prob 0.5 (0) 0.95 (0) 0.5 (0)
staleness_coeff 0.3 0.3 0.3
temperature 1 1 1

Figure 6: PLR (DR) Hyperparameters
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Hyperparameter Minigrid XLand Craftax

ηx 0.00025 0.001 0.0001
|Λ| 1000 8192 4000
γ 0.99 0.99 0.995
GAE λ 0.95 0.95 0.95
clip_eps 0.04 0.2 0.2
critic_coeff 0.5 0.5 0.5
entropy_coeff 0 0.01 0.01
num_epochs 4 1 4
max_grad_norm 0.5 0.5 1.0
num_minibatches 4 16 2
num_parallel_envs 256 8192 1024
batch_size 1000 40000 4000
num_batches 5 1 5

Figure 7: SFL Hyperparameters
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C Difficulty of Levels575

To show how our method evolves over time, we compare minigrid levels at halfway and final576
timesteps in training. Firstly, we plot levels from DR in Figure 8. Levels from DR are not well577
selected, as there are unsolvable levels, as well as trivial levels at the end of training. Secondly, as578
is explainable by them both selecting for learnability, NCC with learnability (Figure 10) and SFL579
(Figure 9) both have what appear to be difficult (but not impossible) levels halfway and at the end of580
training, although we do note that NCC appears to weigh some levels with shorter optimal paths at581
the end of training in comparison to SFL (particularly the left and middle levels of NCC). This may582
be to retain diversity in the difficulty of the batch of sampled levels, to prevent overfitting to a certain583
class of problems. However, our analysis is a hypothesis, as our approach is learned, meaning it is584
more black-box (i.e. uninterpretable).

Figure 8: DR: Sampled levels at halfway through training (top row) and the end of training (bottom
row)

585
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Figure 9: SFL: Highest learnability scoring levels at halfway through training (top row) and the end
of training (bottom row)

Figure 10: NCC-Learn: Highest weighted levels at halfway through training (top row) and the end
of training (bottom row)
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