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Abstract

We propose Operand-Selective Logic Gate Networks (OSLGN), a symbolic neu-
ral architecture that builds differentiable logic circuits via operand and operator
selection. Each logic unit dynamically selects two operands from the input and
applies one of sixteen predefined binary logic operators, thereby forming a sym-
bolic computation structure that remains trainable through gradient descent. Our
operator selection builds upon prior work on differentiable logic gates, while our
introduction of operand selection constitutes a novel modular extension. To en-
courage locally coherent logic formation, we initialize operand selectors with a
proximity-based prior inspired by small-world network topology. Specifically, each
operand selector is biased toward selecting neighboring input features, allowing
the network to efficiently compose local structures and gradually learn long-range
dependencies. Experiments on MNIST demonstrate that this initialization improves
generalization and stabilizes gradient flow, and we further show that despite modest
classification performance, the trained network can be fully converted into compact
symbolic logic expressions.

1 Introduction

Neural networks have achieved remarkable success across a wide range of tasks, yet their internal
representations are often entangled and difficult to modularize. While neural-symbolic reasoning and
differentiable logic circuits have made progress toward combining symbolic structure with trainabil-
ity [12,[11]], most architectures still struggle to express logic-based computation in a compositional
and scalable way.

In this work, we introduce Operand Selective Logic Gated Networks (OSLGN), a symbolic neural
architecture where each layer is a collection of binary logic gates. Each gate selects two operands
from the previous layer via a differentiable arg max mechanism (using a straight-through estimator),
and applies one of 16 predefined binary logic operations (e.g., AND, OR, XOR). While prior works
have focused on differentiable operator selection [12], our key contribution is to enable operand-level
routing. This allows each gate to learn not only what operation to apply, but also which inputs to
apply it to—forming discrete, modular logic circuits.

To encourage the emergence of localized symbolic structure, we initialize operand selectors with a
Gaussian proximity bias inspired by small-world connectivity [21}8]]. This inductive prior promotes
compositional logic among nearby nodes while still allowing long-range dependencies to emerge
through learning.

We further interpret our architecture as a fine-grained form of Mixture-of-Experts [19]], where
selection happens at the operand level within each logic gate. This facilitates sparse symbolic
computation with minimal overhead.

Contributions.
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* We propose Operand-Selective Logic Gated Networks (OSLGN), a symbolic neural archi-
tecture that builds differentiable logic circuits via operand and operator selection.

* We introduce an operand selection mechanism that enables gate-level modularity. While
our operator routing builds on prior differentiable logic gates [12]], operand selection is
independently learned and crucial for symbolic structure.

* We incorporate a proximity-biased operand initialization scheme inspired by small-world
networks, promoting symbolic locality and stable training dynamics.

* We show that OSLGN can be fully translated into compact logic expressions post-training,
demonstrating the feasibility of distilling a neural network into an explicit symbolic circuit.

2 OSLGN Architecture

2.1 Overview

Operand Selective Logic Gated Neural Network (OSLGN) is a modular architecture that performs
binary logic operations between selected operand features using a learned differentiable selection
mechanism. The core design of OSLGN mimics the structure of a logical expression tree, where each
logic unit (or layer) selects two operands from the input feature space and applies a logic gate to
compute the output.

Each OSLGN layer consists of three components: two operand selectors and one operator selector.
The operand selectors learn to identify and extract the most relevant features from the input by
applying a sparse one-hot mask generated via an argmax operation over linear projections, smoothed
using the straight-through estimator (STE) to maintain differentiability. These selectors ensure that
the network can choose which elements of the input vector should interact logically at each step.

The selected operands are then passed to the operator module, which computes a binary logic
operation between them. Instead of hardcoding a specific logic gate, the operator is learned as a
selection over a set of 16 predefined binary logic functions (e.g., AND, OR, XOR, NAND, etc.).
Unlike softmax method from petersen’s research[12]] an argmax-based weighting is applied to the
outputs of all gates, followed by binarization through a custom STE, allowing the model to learn with
consisting logic gate identity.

By stacking multiple OSLGN layers, the architecture is able to represent hierarchical logic computa-
tions, while maintaining symbolic nature. Unlike standard neural networks, which rely on additive
and multiplicative transformations, OSLGN explicitly builds logical reasoning paths via structured
operand and operator selection.

Input x Operand Selector 1 Operator Selector Output

/

Figure 1: A single OSLGN logic unit. Operand selectors choose relevant inputs, and a differentiable
operator module applies one of 16 logic gates.

Operand Selector 2

To improve training stability and promote locally coherent symbolic structures, we initialize the
operand selectors using a Gaussian neighborhood prior inspired by small-world network topology [21}
8l]. This bias encourages each selector to initially focus on spatially adjacent input features, facilitating
modular logic formation while allowing long-range dependencies to emerge via learning.

2.2 Operand Selection

In each OSLGN layer, the operand selection modules are responsible for choosing two input sub-
components from the feature vector x € R? that will participate in a logical operation. We refer to
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these modules as Operand Selector 1 (OS1) and Operand Selector 2 (0S2). Each selector computes a
linear projection over the input and applies a hard selection via the argmax function, followed by a
one-hot masking operation.

Since argmax is non-differentiable, we apply the straight-through estimator (STE) to allow gradient
flow during training. Specifically, we subtract the detached projection from the one-hot mask and add
back the original projection, enabling gradients to flow through the selected path while preserving the
discrete behavior in the forward pass:

w = onehot(arg max(w)) — w.detach() + w
where w denotes the linear projection weights.
This masked weight vector is then used in a standard linear transformation:
a=w-x

The same mechanism is applied to both operand selectors (OS1 and OS2), producing two selected
values a and b which are subsequently passed to the operator module.

Selector weights w = [0.1, 2.3, —1.0]

h

Argmax — 1

h

Input x = [a, b, ] One-hot [0,1,0]

h

Selected operand
Outputy = w -x =b

h

Figure 2: Operand selection with STE. The model uses learnable selector weights w to generate
a one-hot mask that selects a single operand from the binary input x via a differentiable masking
mechanism.

To promote locally structured operand selection, we initialize the selector weights w using a Gaussian
prior centered around each output index. Specifically, for the i-th row of OS1 and OS2, the weights
are initialized as

(J— Ci)2

w;j = exp (_W> , ¢ =(i+s)modd

where d is the input dimension, s is a small center shift (e.g., s = 0 for OS1, s = 1 for 0S2),
and o controls the locality. This initialization introduces a topological bias similar to small-world
networks [21]], favoring local operand pairing early in training.

2.3 Operation Selection

While Petersen et al. [[12] utilize continuous gate weighting and perform post-hoc logic gate sub-
stitution after training, our approach incorporates a straight-through estimator (STE) mechanism
that enforces discrete operator selection during training. This results in a train-time quantization
effect, where symbolic logic structures are formed during optimization rather than approximated
retrospectively.

Specifically, we use a hard one-hot mask over the operator logits with gradient-preserving relaxation:
7 = onehot(arg max(w)) — detach(w) + w

which yields a discrete gate selection in the forward pass, while enabling gradient-based optimiza-
tion. This tight coupling between learning and logical structure avoids potential mismatch between
continuous representations and their final symbolic form.
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3 Related Work

3.1 Logic Neural Networks and Symbolic Computation

Neural-symbolic models aim to integrate logical reasoning into neural networks. Early efforts like
DeepProbLog [[11]] and Logic Tensor Networks [17] incorporated symbolic logic via probabilistic
inference or fuzzy semantics, but required predefined logic templates. Neural Logic Machines [4]]
introduced trainable logical operations, yet imposed rigid operand structures.

Logical Neural Networks (LNNs) [[15] extended this line by learning differentiable representations
of logical formulas using fuzzy logic operators at the neuron level. While expressive, their logic is
embedded in continuous-valued activations. In contrast, our model composes discrete logic circuits
via operand and operator selection, allowing symbolic structure to emerge during training. This
enables our system to approximate logic expressions in a form directly symbolizable.

3.2 Mixture-of-Experts and Modular Routing

Mixture-of-Experts (MoE) architectures enable conditional computation by activating only a subset
of experts per input, enhancing scalability and efficiency. Pioneering works like the Sparsely-Gated
MoE [19] and Switch Transformer [3]] utilize token-level top-k routing. Expert Choice Routing [22]
reverses this paradigm, allowing experts to select tokens, improving load balancing.

Recent advancements introduce fine-grained routing and sparse masking techniques. DSelect-
k [6] offers differentiable top-k selection without softmax, while BASE Layers [9] employ linear
assignment for expert allocation, mitigating expert collapse. Hash Layers [16]] provide deterministic
routing via hashing functions, eliminating the need for learned gating.

Our approach diverges by implementing operand and operator-level routing within logic gate modules,
utilizing argmax with Straight-Through Estimator (STE) for discrete selection. This fine-grained,
symbolic routing contrasts with traditional MoE strategies, enabling the construction of symbolic
logic circuits within neural networks.

3.3 Discrete Selection and Straight-Through Estimators

Training neural networks with discrete operations poses challenges due to non-differentiability.
The Straight-Through Estimator (STE) [[1]] addresses this by treating discrete operations as identity
functions during backpropagation, enabling gradient flow through non-differentiable units.

The Gumbel-Softmax trick [[7,[10] offers a continuous relaxation of categorical distributions, allowing
differentiable sampling. Combining STE with Gumbel-Softmax, the Straight-Through Gumbel-
Softmax (ST-GS) estimator performs discrete sampling in the forward pass and uses the relaxed
distribution for gradient computation in the backward pass.

Recent advancements, such as Decoupled ST-GS [[18], introduce separate temperature parameters for
forward and backward passes, enhancing gradient fidelity and training stability.

In our work, we employ argmax-based discrete selection with STE for operand and operator routing
within logic gates. This approach ensures the construction of symbolizable logic circuits. While
Gumbel-Softmax-based methods demonstrated faster convergence in preliminary experiments, they
exhibited instability in training dynamics. Future work may explore integrating advanced techniques
like Decoupled ST-GS to balance convergence speed and training stability.

3.4 Topological Structures in Deep Learning

Small-world networks, characterized by high clustering and short average path lengths, have been
shown to enhance information propagation and convergence in neural networks. Early studies
demonstrated that small-world connectivity reduces learning error and accelerates training compared
to regular or random networks [21} [14].

Recent architectures, such as SWNet [8], introduce small-world topologies into deep learning models,
facilitating gradient flow and feature reuse through long-range connections. These designs improve
convergence speed and generalization across various tasks.
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Inspired by the efficiency of small-world connectivity, our approach integrates similar principles
within logic gate modules. While not implementing a traditional small-world network, we adopt its
structural characteristics to enable efficient information flow and modular reasoning. This design
choice fosters the emergence of symbolizable logic circuits during training.

4 [Experiments

Experiments are performed in google colab. Every ipynb is shared via link. MNIST[3]] dataset is
used.

4.1 Ablation Study: Operand Gradient Detachment

To assess the importance of gradient flow through operand selection, we compare two variants of the
OSLGN model that share identical architectures but differ in how operands contribute to learning:

* Model A (STE-enabled): Operands are selected using an arg max mask with straight-
through estimation, enabling gradients to update operand selectors.

* Model B (Detached): The outputs of operand selectors are detached from the computation
graph, preventing any gradient flow into operand selection.

Both models were trained on binarized MNIST using the same initialization, optimizer, and training
schedule. Table [I] shows that Model A achieves significantly higher performance, reaching a test
accuracy of 42.2% compared to just 8.9% for Model B. This suggests that operand selection must
remain differentiable for the network to learn meaningful logic compositions.

To ensure logical validity, all outputs of the logic gate layer were enforced to be strictly binary (0
or 1) using runtime assertions during training. The full training script and model code are publicly
available via Cola‘tﬂ and a complete implementation of the model is included in Appendix

Table 1: Operand gradient ablation: detaching operand selection leads to poor performance, confirm-
ing its critical role in learning.

Model Train Accuracy Test Accuracy
Model A (STE-enabled) 43.3% 42.2%
Model B (Detached) 10.0% 8.9%

4.2 Depth Scaling

We investigate how the OSLGN architecture scales with network depth by evaluating variants with 2,
4, and 8 stacked logic layers, each composed of operand and operator selection modules. All models
are trained for 50 epochs on MNIST with identical hyperparameters.

Figure [3| shows that the depth-8 model achieves the highest validation accuracy across all depths,
slightly outperforming the depth-4 variant. However, the depth-4 model converges more steadily
and reaches its peak accuracy earlier, while the depth-8 model continues to improve but with higher
variance. The depth-2 model converges quickly but saturates early. These results suggest that deeper
OSLGN networks can achieve higher performance, but require more training and exhibit less stability
during convergence.

"https://colab.research.google.com/drive/1ykNB-ezkUhONhR1eGCZwtzsapPIp_BtM
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Figure 3: Train and validation accuracy across 50 epochs for OSLGN models of varying depth.
Depth-8 achieves the highest validation accuracy, but depth-4 shows more stable convergence.

Gradient Norm Trajectory (Depth=4) Gradient Norm Trajectory (Depth=8)

Figure 4: Gradient norm per layer in depth-4(left) and depth-8(right) model. Optimization of depth 8
is less stable, and layer-wise imbalance is more prominent.

Figure ] show per-layer gradient norms for depth-4 and depth-8 models, respectively. We observe no
gradient vanishing across layers; however, the depth-8 model exhibits more pronounced fluctuations
and greater disparity between layers, suggesting optimization imbalance in deeper compositions.

Unlike conventional architectures, OSLGN does not employ normalization layers or residual connec-
tions, as these mechanisms interfere with the discrete and symbolic structure of binary logic gates.
This design choice preserves the model’s logic circuit equivalence, but it also introduces training
challenges, particularly in deeper networks.

Our implementatiorﬂis publicly available and supports configurable depth, logging, and visualization,
allowing researchers to explore the scalability of logic-based neural circuits further.

4.3 Logic Symbol Compression

To evaluate the symbolic expressiveness and compressibility of OSLGN, we extract discrete Boolean
expressions from trained models and analyze their logical redundancy. This process is made possible
by the discrete nature of the architecture: each layer consists of a set of binary logic gates whose
operand and operator selections are recorded during training.

Following training, each class-specific computation path is reconstructed as a Boolean expression
using recursive backtracking from the final output node to input variables. These expressions use
only and, or, and not operators, forming a fully symbolic circuit.

We apply logic minimization using the pyeda.boolalg. espresso package [13], which internally
interfaces with the well-known ESPRESSO algorithm [2] for two-level Boolean minimization. For
each class expression, we compare the number of logic operators before and after simplification to
assess compressibility.

*https://colab.research.google.com/drive/1PZhAzfHIObh_2cVn3s_ClmgkjOezVr3Jw
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Example: Class 0

[Original]
((((not (x[462] or x[407]) and (x[482] or x[484]))) and

not ((False) and not ((x[578] or not x[363]) or not (x[107])))) or (False))

[Compressed]
((not x[462] and not x[407] and x[482]) or (mot x[462] and
not x[407] and x[484]))

While the compressed form often increases in length, this is due to disjunctive normal form (DNF)
expansion that enumerates input conditions explicitly [20]. The native OSLGN representation is
already compact, demonstrating its structural efficiency.

The remaining expressions, along with full source code and symbolic reconstruction routines, are
provided in Appendix [C|and available at our public Colab notebookﬂ

4.4 Effect of Local Operand Initialization

We investigate how incorporating local topological priors into operand selection affects training
dynamics and generalization. Inspired by the locality structure of small-world networks [21]], we
initialize each operand selector (os1, 0s2) to prefer inputs that are spatially adjacent. Specifically,
the i-th output of os1 is initialized to select around input index ¢, while os2 is initialized around
i + 1, using a circular Gaussian kernel. No long-range connectivity is imposed; such dependencies
must emerge via learning.

We compare this inductive bias (local inif) with standard dense initialization (no init) using OSLGN
models with depth 4 and width 512 on MNIST. All other configurations (loss, optimizer, batch size)
are held constant.

Generalization. As shown in Figure [5] the model with local operand initialization achieves higher
validation accuracy (39.9%) compared to standard initialization (34.9%), despite having lower training
accuracy. This suggests that early locality constraints serve as a useful regularizer for symbolic
composition.

Gradient Dynamics. We further observe that local init results in lower and more stable layer-wise
gradient norms (Figure[6). This implies that operand selection in the early training phase is smoother
and more modular, avoiding large gradient spikes often caused by arbitrary operand mixing.

Learned Distant Connection. Although no explicit small-world graph is instantiated, our design
encourages a functional small-world effect: high local clustering (via neighborhood initialization) and
potential for long-range connections (via training). This stands in contrast to graph-based small-world
CNNss [8]], where topology is hard-coded rather than learned. The full code used to reproduce these
experiments is available at:

Train/Validation Accuracy per Epoch Train/Validation Loss per Epoch

Figure 5: Training and validation accuracy/loss over epochs for OSLGN with and without local
operand initialization. Local init generalizes better.

*https://colab.research.google.com/drive/1Vxul ftRzLRj1Yg6C- vhmfE6X5 ] Jpxfw]
*https://colab.research.google.com/drive/1iJpgwW6_7oRRcbl1WPLOIW9eeZOHcwce7usp=
sharing
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Figure 6: Layer-wise gradient norm trajectories with (top) and without (bottom) local operand
initialization. Local init results in smoother gradient flow.

5 Discussion

5.1 Symbolic Structure and Modularity

Operand-Selective Logic Gate Networks (OSLGN) construct neural models using symbolic logic
gate structures. By selecting operands and logic operators at each layer, OSLGN enables a modular
architecture that reflects discrete symbolic computations. Unlike prior approaches that approximate
logical rules via fuzzy semantics, our model preserves the syntactic structure of logic circuits
throughout training.

5.2 Discrete Selection Mechanisms

The core mechanism in OSLGN is argmax-based selection with a Straight-Through Estimator (STE),
applied to both operand and operator routing. This allows symbolic consistency and gradient-
based learning, despite the discrete nature of the computation. While soft selection methods such
as Gumbel-Softmax demonstrated faster convergence in preliminary experiments, they require
additional stabilization strategies. Future work may explore advanced routing mechanisms to improve
convergence speed and training stability.

5.3 Topology-Inspired Initialization

Inspired by the information flow properties of small-world networks [21 8], we initialize operand
selectors using Gaussian-weighted connectivity centered on local input indices. While not a true
small-world topology, this bias promotes modular selection patterns and improves convergence speed,
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as demonstrated in Section[d} This structural prior reflects local coherence and allows long-range
dependencies to emerge during learning.

5.4 Limitations

OSLGN currently supports only binary logic gates with hard operand selection. This restricts
expressivity in tasks requiring multi-bit reasoning or smooth composition. Additionally, the operand
selection layers may introduce redundancy: the learned symbolic expressions often use only a subset
of the full network’s capacity, suggesting overparameterization. Another challenge is training stability
during early stages, particularly when the routing distributions are uncertain. While softmax-based
selection is viable, convergence strategies for stable symbolic gating remain underexplored.

5.5 Future Work

Future directions include incorporating structured routing techniques and annealing strategies, ex-
tending the model to multi-valued or temporal logic, and enabling end-to-end symbolic compression
during training. Applying the framework to tasks such as program synthesis, structured decision
making, or formal verification remains a promising avenue.

6 Conclusion

Operand-Selective Logic Gate Networks (OSLGN) represent a step toward unifying deep learning
with symbolic reasoning. By learning networks of logic gates through operand and operator selection,
OSLGN performs symbolic computation while remaining trainable via gradient-based optimization
using the Straight-Through Estimator (STE). We showed that this architecture can be initialized with
inductive priors to enhance convergence, trained with discrete routing, and post-hoc translated into
compact Boolean expressions.

While classification performance remains limited, the symbolic structure of OSLGN supports mod-
ularity and compatibility with digital logic. A key challenge is the relatively large network size
required to express symbolic patterns, indicating redundancy or inefficiency in operand routing. Our
work lays the groundwork for trainable logic circuits and opens the door for future models that are
both compact and symbolic, enabling structured and efficient Al systems.
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A.1 Operand Selector and Logic Operators

Listing 1: Operand selection and logic gate definitions.

class Operand_selector (nn.Module):
def __init__(self, x, y):
super () .__init__Q)
self.p = nn.Linear(x, y, bias=False)

def forward(self, x):
w = self.p.weight

mask = torch.zeros_like(w).scatter_(1, w.argmax(dim=-1,
keepdim=True), 1.0)
masked = mask - w.detach() + w

return F.linear (x, masked)

A.2 Operator and Logic Layer Composition

Listing 2: Operator routing and composition of logic layers.

def bin_op(a, b, i):

if i == 0: return torch.zeros_like(a)
elif i == 1: return a * b

elif i == 2: return a - a * b

elif i == 3: return a

elif i == 4: return b - a * b

elif i == 5: return b

elif i == 6: return a + b - 2 * a *x b
elif i == 7: return a + b - a * b

elif i == 8: return 1 - (a + b a * b)
elif i == 9: return 1 - (a + b - 2 * a * b)
elif i == 10: return 1 - Db

elif i == 11: return 1 - b + a * b

elif i == 12: return 1 - a

elif i == 13: return 1 - a + a * b

elif i == 14: return 1 - a * b

elif i == 15: return torch.ones_like(a)

class RoundSTE(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
return torch.round(input)
@staticmethod
def backward(ctx, grad_output):
return grad_output

def bin_op_s(a, b, i_s):

r = torch.zeros_like(a)
for i in range(16):
r += i_s[..., i] * bin_op(a, b, i)

return RoundSTE.apply(r)

class Operator (nn.Module):
def __init__(self, y):
super () . __init__Q)

self .weights = nn.Parameter (torch.randn(y, 16))

def forward(self, a, b):
w = self.weights

mask = torch.zeros_like(w).scatter_(1, w.argmax(dim=-1,
keepdim=True), 1.0)
masked = mask - w.detach() + w

return bin_op_s(a, b, masked)
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class oslgn(nn.Module):
def __init__(self, x, y):

super () . __init__Q)
self.osl = Operand_selector(x, y)
self.os2 = Operand_selector(x, y)

self.op = Operator(y)

def forward(self, x):
a = self.osl(x)
b = self.os2(x)
return self.op(a, b)

B Depth Scaling Summary Table

To complement the figures in Section[4.2] Table 2] presents a summary of performance metrics for
each evaluated depth. We report the final and peak validation accuracy across 50 training epochs,
along with final validation loss and training accuracy. This helps assess both convergence stability
and generalization behavior. Notably, while depth-4 exhibits both high final and peak accuracy,
deeper networks like depth-8 show a wider gap between final and peak accuracy, indicating slower
convergence or slight overfitting.

Table 2: Final and maximum validation accuracy, validation loss, and training accuracy for each
depth after 50 epochs.

Depth  Val Acc Val Loss  Train Acc

2 0.4492/0.5232 1.7693 0.4272
4 0.5330/0.5802 1.7815 0.5073
8 0.5357/0.5958 1.7304 0.5354

C Symbolic Compression of Learned Logic Circuits

The symbolic logic expressions for each output class were derived from the trained OSLGN model
(depth=4, 10 epochs). Each expression was reconstructed by backtracking the operand/operator paths
through each logic layer. The code implementation is fully available at:

https://colab.research.google.com/drive/
1VxulftRzLRj1Yg6C-vhmfE6X5 ] Jpxfw]
The original expressions from the model and their compressed forms are presented below.

The symbolic logic expressions for each output class were derived from the trained OSLGN model
(depth=4, 10 epochs). Each expression was reconstructed by backtracking the operand/operator paths
through each logic layer. The expressions are presented below.

C.1 Class-wise Boolean Expressions

[Class 0]

Original
((((not (x[462] or x[407]) and (x[482] or x[484]))) and
not ((False) and not ((x[578] or not x[363]) or not (x[107])))) or (False))

Compressed

((not x[462] and not x[407] and x[482]) or (not x[462] and
not x[407] and x[484]))
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447 [Class 1]

448 Original

449 ((((not (x[355] or x[494])) and not (x[261] or x[438])) and not

450 (((x[177] and not x[290]) or (False)) or ((x[347] and not x[234]) or (False)))))

452 Compressed

453 ((not x[355] and not x[494] and not x[261] and not x[438] and

454 x[290] and x[234]) or (not x[355] and not x[494] and not x[261] and not

455 x[438] and not x[177] and x[234]) or (not x[355] and not x[494] and not

456 x[261] and not x[438] and not x[177] and not x[347]) or (not x[355] and not
457 x[494] and not x[261] and not x[438] and x[290] and not x[347]))

459 [Class 2]

460 Original

461 ((((not x[372] and x[541]) and not (x[347] and not x[556]))) or
42 ((not (x[319] or x[276]1)) and ((not x[343] and x[5111))))

464 Compressed
465 ((not x[372] and x[541] and x[556]) or (not x[319] and not x[276] and not
466 x[343] and x[511]) or (not x[347] and not x[372] and x[541]))

468 [Class 3]

469 Original

470 (not (nmot (((x[350] or x[322]) and (x[152] or x[179])) or
471 ((x[649]) or (not x[455] and x[564]1)))))

473 Compressed
474 (x[649] or (x[322] and x[152]) or (x[350] and x[152]) or
475  (not x[455] and x[564]) or (x[350] and x[179]) or (x[322] and x[179]))

477 [Class 4]

478 Original

479 (not (mot ((mot (((x[211] and not x[68]) or (False)) or

480 (x[567] or x[127]1))) and ((x[401] or x[429]) and (not (x[70] or x[747]))))) or
481 (((not (x[568] or x[595])) and (x[4541))))

483 Compressed

484 ((x[68] and not x[567] and not x[127] and x[429] and not x[70] and not

485 x[747]) or (not x[568] and not x[595] and x[454]) or (x[68] and not

486 x[567] and not x[127] and x[401] and not x[70] and not x[747]) or

487 (not x[211] and not x[567] and not x[127] and x[401] and not x[70] and not
488 x[747]) or (mot x[211] and not x[567] and not x[127] and x[429] and not

489 x[70] and not x[747]))

491 [Class 5]

492 Original

493 (not (((not x[562] and x[517]) and (not x[562] and x[517])) and
494 ((not x[562] and x[517]) and (not x[562] and x[517]))) and

495 (not ((x[246]) and (x[356] and not x[587])) and (not (x[355]) and
496 ((x[191] and not x[276]) or (False)))))

498 Compressed

499  ((not x[355] and not x[276] and not x[517] and x[587] and x[191]) or

s00 (not x[355] and not x[276] and x[562] and not x[356] and x[191]) or

501 (not x[355] and not x[276] and x[562] and x[587] and x[191]) or

502 (not x[355] and not x[276] and x[562] and not x[246] and x[191]) or

503 (not x[355] and not x[276] and not x[517] and not x[356] and x[191]) or
504 (not x[355] and not x[276] and not x[517] and not x[246] and x[191]))
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505
s06 [Class 6]

507 Original

s08  (not ((((x[651] or x[658]))) and (((x[651] or x[658]1)))))

509

510 Compressed

511 (not x[651] and not x[658])

512

513 [Class 7]

514 Original

515 ((((not (x[377] or x[4041)))))

516

517 Compressed

st8  (not x[377] and not x[404])

519

s20 [Class 8]

521 Original

522 (True)

523

524 Compressed

525 (not x[377] and not x[404])

526

527 [Class 9]

s28 Original

529 (not ((((x[149] and not x[127]) and not (x[567] or x[127])) or (False)) and
s30 not ((x[714] and not x[203]))) or ((((x[149] and not x[127]) and
531 not (x[396] or not x[126])) or (False)) and ((not x[567] and x[711]))))
532

533 Compressed

534 (x[567] or x[127] or not x[149] or (x[714] and not x[203]) or

535 (not x[396] and x[126] and x[711]))

536

s37 C.2 Compression Results

Table 3: Comparison of logic operator counts before and after symbolic compression using PyEDA.

Class \ Original Ops Compressed Ops Ratio Rate (%)

0 13 9 1.44 30.77
1 14 43 0.33 -207.14
2 12 15 0.8 -25

3 9 11 0.82 -22.22
4 17 46 0.37 -170.59
5 23 48 0.48 -108.7
6 18 62 0.29 -244.4
7 2 3 0.67 -50

8 0 3 0 0

9 22 10 22 54.55

538 These results confirm that OSLGN produces structurally compact logic by design, rather than relying
539 on post-hoc symbolic simplification.

14



540

541

542
543

544

545
546

547

548
549
550
551
552
553

555
556

557

558

559

560
561
562

563

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

590

591
592

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Since the research is originally to show our method can be learned, it is shown
through experiment results and the codes we appended.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Since this model is conceptually new, intended to avoid tricks like normaliza-
tion, and can be result in extremely compact expression, its accuracy is yet relatively low.
However, its modularity would be effective feature when it is studied further.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The research is more about extending and combining existing theories. We
chose to show its effectiveness with experiments.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Every code used in this paper are served with google colab link. And the
python code is appended for structural reproduction.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: It is all given as above. Dataset we used is benchmark dataset and the code to
retrieve is already served.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the paper there are critical settings you should know, and in the code you
are able to get exact environment.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: However, the experiment is very well known mnist and the exact method is
available through served colab link.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Experiment was performed through google colab and it is mentioned.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [NA]

Justification: The paper focuses on a foundational architecture, with no direct deployment
or societal interface. As such, it does not raise immediate social impact concerns.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: While our work is primarily foundational, symbolic reasoning systems could
enable more controllable Al in sensitive domains. We acknowledge the potential for misuse
in automation of decision logic and advocate for responsible deployment.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No deployable models or data are released; the work is conceptual.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets. However git and pip could be distributed if there are demands.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There is possiblility to contact one or two in the future, but not now.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No chance at all.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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852 * We recognize that the procedures for this may vary significantly between institutions

853 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
854 guidelines for their institution.

855 * For initial submissions, do not include any information that would break anonymity (if
856 applicable), such as the institution conducting the review.

857 16. Declaration of LLM usage

858 Question: Does the paper describe the usage of LLMs if it is an important, original, or
859 non-standard component of the core methods in this research? Note that if the LLM is used
860 only for writing, editing, or formatting purposes and does not impact the core methodology,
861 scientific rigorousness, or originality of the research, declaration is not required.

862 Answer: [Yes]

863 Justification: ChatGPT helped us a lot for making this work real and be ready to be published.
864 Guidelines:

865 * The answer NA means that the core method development in this research does not
866 involve LLMs as any important, original, or non-standard components.

867 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
868 for what should or should not be described.
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