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Abstract

We propose Operand-Selective Logic Gate Networks (OSLGN), a symbolic neu-1

ral architecture that builds differentiable logic circuits via operand and operator2

selection. Each logic unit dynamically selects two operands from the input and3

applies one of sixteen predefined binary logic operators, thereby forming a sym-4

bolic computation structure that remains trainable through gradient descent. Our5

operator selection builds upon prior work on differentiable logic gates, while our6

introduction of operand selection constitutes a novel modular extension. To en-7

courage locally coherent logic formation, we initialize operand selectors with a8

proximity-based prior inspired by small-world network topology. Specifically, each9

operand selector is biased toward selecting neighboring input features, allowing10

the network to efficiently compose local structures and gradually learn long-range11

dependencies. Experiments on MNIST demonstrate that this initialization improves12

generalization and stabilizes gradient flow, and we further show that despite modest13

classification performance, the trained network can be fully converted into compact14

symbolic logic expressions.15

1 Introduction16

Neural networks have achieved remarkable success across a wide range of tasks, yet their internal17

representations are often entangled and difficult to modularize. While neural-symbolic reasoning and18

differentiable logic circuits have made progress toward combining symbolic structure with trainabil-19

ity [12, 11], most architectures still struggle to express logic-based computation in a compositional20

and scalable way.21

In this work, we introduce Operand Selective Logic Gated Networks (OSLGN), a symbolic neural22

architecture where each layer is a collection of binary logic gates. Each gate selects two operands23

from the previous layer via a differentiable argmax mechanism (using a straight-through estimator),24

and applies one of 16 predefined binary logic operations (e.g., AND, OR, XOR). While prior works25

have focused on differentiable operator selection [12], our key contribution is to enable operand-level26

routing. This allows each gate to learn not only what operation to apply, but also which inputs to27

apply it to—forming discrete, modular logic circuits.28

To encourage the emergence of localized symbolic structure, we initialize operand selectors with a29

Gaussian proximity bias inspired by small-world connectivity [21, 8]. This inductive prior promotes30

compositional logic among nearby nodes while still allowing long-range dependencies to emerge31

through learning.32

We further interpret our architecture as a fine-grained form of Mixture-of-Experts [19], where33

selection happens at the operand level within each logic gate. This facilitates sparse symbolic34

computation with minimal overhead.35

Contributions.36
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• We propose Operand-Selective Logic Gated Networks (OSLGN), a symbolic neural archi-37

tecture that builds differentiable logic circuits via operand and operator selection.38

• We introduce an operand selection mechanism that enables gate-level modularity. While39

our operator routing builds on prior differentiable logic gates [12], operand selection is40

independently learned and crucial for symbolic structure.41

• We incorporate a proximity-biased operand initialization scheme inspired by small-world42

networks, promoting symbolic locality and stable training dynamics.43

• We show that OSLGN can be fully translated into compact logic expressions post-training,44

demonstrating the feasibility of distilling a neural network into an explicit symbolic circuit.45

2 OSLGN Architecture46

2.1 Overview47

Operand Selective Logic Gated Neural Network (OSLGN) is a modular architecture that performs48

binary logic operations between selected operand features using a learned differentiable selection49

mechanism. The core design of OSLGN mimics the structure of a logical expression tree, where each50

logic unit (or layer) selects two operands from the input feature space and applies a logic gate to51

compute the output.52

Each OSLGN layer consists of three components: two operand selectors and one operator selector.53

The operand selectors learn to identify and extract the most relevant features from the input by54

applying a sparse one-hot mask generated via an argmax operation over linear projections, smoothed55

using the straight-through estimator (STE) to maintain differentiability. These selectors ensure that56

the network can choose which elements of the input vector should interact logically at each step.57

The selected operands are then passed to the operator module, which computes a binary logic58

operation between them. Instead of hardcoding a specific logic gate, the operator is learned as a59

selection over a set of 16 predefined binary logic functions (e.g., AND, OR, XOR, NAND, etc.).60

Unlike softmax method from petersen’s research[12] an argmax-based weighting is applied to the61

outputs of all gates, followed by binarization through a custom STE, allowing the model to learn with62

consisting logic gate identity.63

By stacking multiple OSLGN layers, the architecture is able to represent hierarchical logic computa-64

tions, while maintaining symbolic nature. Unlike standard neural networks, which rely on additive65

and multiplicative transformations, OSLGN explicitly builds logical reasoning paths via structured66

operand and operator selection.67

Input x Operand Selector 1

Operand Selector 2

Operator Selector Output

Figure 1: A single OSLGN logic unit. Operand selectors choose relevant inputs, and a differentiable
operator module applies one of 16 logic gates.

To improve training stability and promote locally coherent symbolic structures, we initialize the68

operand selectors using a Gaussian neighborhood prior inspired by small-world network topology [21,69

8]. This bias encourages each selector to initially focus on spatially adjacent input features, facilitating70

modular logic formation while allowing long-range dependencies to emerge via learning.71

2.2 Operand Selection72

In each OSLGN layer, the operand selection modules are responsible for choosing two input sub-73

components from the feature vector x ∈ Rd that will participate in a logical operation. We refer to74
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these modules as Operand Selector 1 (OS1) and Operand Selector 2 (OS2). Each selector computes a75

linear projection over the input and applies a hard selection via the argmax function, followed by a76

one-hot masking operation.77

Since argmax is non-differentiable, we apply the straight-through estimator (STE) to allow gradient78

flow during training. Specifically, we subtract the detached projection from the one-hot mask and add79

back the original projection, enabling gradients to flow through the selected path while preserving the80

discrete behavior in the forward pass:81

w̃ = onehot(argmax(w))− w.detach() + w

where w denotes the linear projection weights.82

This masked weight vector is then used in a standard linear transformation:83

a = w̃ · x

The same mechanism is applied to both operand selectors (OS1 and OS2), producing two selected84

values a and b which are subsequently passed to the operator module.85

Selector weights w = [0.1, 2.3, −1.0]

Input x = [a, b, c]

Argmax → 1

One-hot [0,1,0]

Selected operand
Output y = w̃ · x = b

Figure 2: Operand selection with STE. The model uses learnable selector weights w to generate
a one-hot mask that selects a single operand from the binary input x via a differentiable masking
mechanism.

To promote locally structured operand selection, we initialize the selector weights w using a Gaussian86

prior centered around each output index. Specifically, for the i-th row of OS1 and OS2, the weights87

are initialized as88

wij = exp

(
− (j − ci)

2

2σ2

)
, ci = (i+ s) mod d

where d is the input dimension, s is a small center shift (e.g., s = 0 for OS1, s = 1 for OS2),89

and σ controls the locality. This initialization introduces a topological bias similar to small-world90

networks [21], favoring local operand pairing early in training.91

2.3 Operation Selection92

While Petersen et al. [12] utilize continuous gate weighting and perform post-hoc logic gate sub-93

stitution after training, our approach incorporates a straight-through estimator (STE) mechanism94

that enforces discrete operator selection during training. This results in a train-time quantization95

effect, where symbolic logic structures are formed during optimization rather than approximated96

retrospectively.97

Specifically, we use a hard one-hot mask over the operator logits with gradient-preserving relaxation:98

π̃ = onehot(argmax(w))− detach(w) + w

which yields a discrete gate selection in the forward pass, while enabling gradient-based optimiza-99

tion. This tight coupling between learning and logical structure avoids potential mismatch between100

continuous representations and their final symbolic form.101
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3 Related Work102

3.1 Logic Neural Networks and Symbolic Computation103

Neural-symbolic models aim to integrate logical reasoning into neural networks. Early efforts like104

DeepProbLog [11] and Logic Tensor Networks [17] incorporated symbolic logic via probabilistic105

inference or fuzzy semantics, but required predefined logic templates. Neural Logic Machines [4]106

introduced trainable logical operations, yet imposed rigid operand structures.107

Logical Neural Networks (LNNs) [15] extended this line by learning differentiable representations108

of logical formulas using fuzzy logic operators at the neuron level. While expressive, their logic is109

embedded in continuous-valued activations. In contrast, our model composes discrete logic circuits110

via operand and operator selection, allowing symbolic structure to emerge during training. This111

enables our system to approximate logic expressions in a form directly symbolizable.112

3.2 Mixture-of-Experts and Modular Routing113

Mixture-of-Experts (MoE) architectures enable conditional computation by activating only a subset114

of experts per input, enhancing scalability and efficiency. Pioneering works like the Sparsely-Gated115

MoE [19] and Switch Transformer [5] utilize token-level top-k routing. Expert Choice Routing [22]116

reverses this paradigm, allowing experts to select tokens, improving load balancing.117

Recent advancements introduce fine-grained routing and sparse masking techniques. DSelect-118

k [6] offers differentiable top-k selection without softmax, while BASE Layers [9] employ linear119

assignment for expert allocation, mitigating expert collapse. Hash Layers [16] provide deterministic120

routing via hashing functions, eliminating the need for learned gating.121

Our approach diverges by implementing operand and operator-level routing within logic gate modules,122

utilizing argmax with Straight-Through Estimator (STE) for discrete selection. This fine-grained,123

symbolic routing contrasts with traditional MoE strategies, enabling the construction of symbolic124

logic circuits within neural networks.125

3.3 Discrete Selection and Straight-Through Estimators126

Training neural networks with discrete operations poses challenges due to non-differentiability.127

The Straight-Through Estimator (STE) [1] addresses this by treating discrete operations as identity128

functions during backpropagation, enabling gradient flow through non-differentiable units.129

The Gumbel-Softmax trick [7, 10] offers a continuous relaxation of categorical distributions, allowing130

differentiable sampling. Combining STE with Gumbel-Softmax, the Straight-Through Gumbel-131

Softmax (ST-GS) estimator performs discrete sampling in the forward pass and uses the relaxed132

distribution for gradient computation in the backward pass.133

Recent advancements, such as Decoupled ST-GS [18], introduce separate temperature parameters for134

forward and backward passes, enhancing gradient fidelity and training stability.135

In our work, we employ argmax-based discrete selection with STE for operand and operator routing136

within logic gates. This approach ensures the construction of symbolizable logic circuits. While137

Gumbel-Softmax-based methods demonstrated faster convergence in preliminary experiments, they138

exhibited instability in training dynamics. Future work may explore integrating advanced techniques139

like Decoupled ST-GS to balance convergence speed and training stability.140

3.4 Topological Structures in Deep Learning141

Small-world networks, characterized by high clustering and short average path lengths, have been142

shown to enhance information propagation and convergence in neural networks. Early studies143

demonstrated that small-world connectivity reduces learning error and accelerates training compared144

to regular or random networks [21, 14].145

Recent architectures, such as SWNet [8], introduce small-world topologies into deep learning models,146

facilitating gradient flow and feature reuse through long-range connections. These designs improve147

convergence speed and generalization across various tasks.148
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Inspired by the efficiency of small-world connectivity, our approach integrates similar principles149

within logic gate modules. While not implementing a traditional small-world network, we adopt its150

structural characteristics to enable efficient information flow and modular reasoning. This design151

choice fosters the emergence of symbolizable logic circuits during training.152

4 Experiments153

Experiments are performed in google colab. Every ipynb is shared via link. MNIST[3] dataset is154

used.155

4.1 Ablation Study: Operand Gradient Detachment156

To assess the importance of gradient flow through operand selection, we compare two variants of the157

OSLGN model that share identical architectures but differ in how operands contribute to learning:158

• Model A (STE-enabled): Operands are selected using an argmax mask with straight-159

through estimation, enabling gradients to update operand selectors.160

• Model B (Detached): The outputs of operand selectors are detached from the computation161

graph, preventing any gradient flow into operand selection.162

Both models were trained on binarized MNIST using the same initialization, optimizer, and training163

schedule. Table 1 shows that Model A achieves significantly higher performance, reaching a test164

accuracy of 42.2% compared to just 8.9% for Model B. This suggests that operand selection must165

remain differentiable for the network to learn meaningful logic compositions.166

To ensure logical validity, all outputs of the logic gate layer were enforced to be strictly binary (0167

or 1) using runtime assertions during training. The full training script and model code are publicly168

available via Colab1, and a complete implementation of the model is included in Appendix A.169

Table 1: Operand gradient ablation: detaching operand selection leads to poor performance, confirm-
ing its critical role in learning.

Model Train Accuracy Test Accuracy
Model A (STE-enabled) 43.3% 42.2%
Model B (Detached) 10.0% 8.9%

4.2 Depth Scaling170

We investigate how the OSLGN architecture scales with network depth by evaluating variants with 2,171

4, and 8 stacked logic layers, each composed of operand and operator selection modules. All models172

are trained for 50 epochs on MNIST with identical hyperparameters.173

Figure 3 shows that the depth-8 model achieves the highest validation accuracy across all depths,174

slightly outperforming the depth-4 variant. However, the depth-4 model converges more steadily175

and reaches its peak accuracy earlier, while the depth-8 model continues to improve but with higher176

variance. The depth-2 model converges quickly but saturates early. These results suggest that deeper177

OSLGN networks can achieve higher performance, but require more training and exhibit less stability178

during convergence.179

1https://colab.research.google.com/drive/1ykNB-ezkUh9NhR1eGCZwtzsapPIp_BtM
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Figure 3: Train and validation accuracy across 50 epochs for OSLGN models of varying depth.
Depth-8 achieves the highest validation accuracy, but depth-4 shows more stable convergence.
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Figure 4: Gradient norm per layer in depth-4(left) and depth-8(right) model. Optimization of depth 8
is less stable, and layer-wise imbalance is more prominent.

Figure 4 show per-layer gradient norms for depth-4 and depth-8 models, respectively. We observe no180

gradient vanishing across layers; however, the depth-8 model exhibits more pronounced fluctuations181

and greater disparity between layers, suggesting optimization imbalance in deeper compositions.182

Unlike conventional architectures, OSLGN does not employ normalization layers or residual connec-183

tions, as these mechanisms interfere with the discrete and symbolic structure of binary logic gates.184

This design choice preserves the model’s logic circuit equivalence, but it also introduces training185

challenges, particularly in deeper networks.186

Our implementation2 is publicly available and supports configurable depth, logging, and visualization,187

allowing researchers to explore the scalability of logic-based neural circuits further.188

4.3 Logic Symbol Compression189

To evaluate the symbolic expressiveness and compressibility of OSLGN, we extract discrete Boolean190

expressions from trained models and analyze their logical redundancy. This process is made possible191

by the discrete nature of the architecture: each layer consists of a set of binary logic gates whose192

operand and operator selections are recorded during training.193

Following training, each class-specific computation path is reconstructed as a Boolean expression194

using recursive backtracking from the final output node to input variables. These expressions use195

only and, or, and not operators, forming a fully symbolic circuit.196

We apply logic minimization using the pyeda.boolalg.espresso package [13], which internally197

interfaces with the well-known ESPRESSO algorithm [2] for two-level Boolean minimization. For198

each class expression, we compare the number of logic operators before and after simplification to199

assess compressibility.200

2https://colab.research.google.com/drive/1PZhAzfH9bh_2cVn3s_Clmgkj0ezVr3Jw
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Example: Class 0201

[Original]202

((((not (x[462] or x[407]) and (x[482] or x[484]))) and203

not ((False) and not ((x[578] or not x[363]) or not (x[107])))) or (False))204

205

[Compressed]206

((not x[462] and not x[407] and x[482]) or (not x[462] and207

not x[407] and x[484]))208

While the compressed form often increases in length, this is due to disjunctive normal form (DNF)209

expansion that enumerates input conditions explicitly [20]. The native OSLGN representation is210

already compact, demonstrating its structural efficiency.211

The remaining expressions, along with full source code and symbolic reconstruction routines, are212

provided in Appendix C and available at our public Colab notebook:3213

4.4 Effect of Local Operand Initialization214

We investigate how incorporating local topological priors into operand selection affects training215

dynamics and generalization. Inspired by the locality structure of small-world networks [21], we216

initialize each operand selector (os1, os2) to prefer inputs that are spatially adjacent. Specifically,217

the i-th output of os1 is initialized to select around input index i, while os2 is initialized around218

i+ 1, using a circular Gaussian kernel. No long-range connectivity is imposed; such dependencies219

must emerge via learning.220

We compare this inductive bias (local init) with standard dense initialization (no init) using OSLGN221

models with depth 4 and width 512 on MNIST. All other configurations (loss, optimizer, batch size)222

are held constant.223

Generalization. As shown in Figure 5, the model with local operand initialization achieves higher224

validation accuracy (39.9%) compared to standard initialization (34.9%), despite having lower training225

accuracy. This suggests that early locality constraints serve as a useful regularizer for symbolic226

composition.227

Gradient Dynamics. We further observe that local init results in lower and more stable layer-wise228

gradient norms (Figure 6). This implies that operand selection in the early training phase is smoother229

and more modular, avoiding large gradient spikes often caused by arbitrary operand mixing.230

Learned Distant Connection. Although no explicit small-world graph is instantiated, our design231

encourages a functional small-world effect: high local clustering (via neighborhood initialization) and232

potential for long-range connections (via training). This stands in contrast to graph-based small-world233

CNNs [8], where topology is hard-coded rather than learned. The full code used to reproduce these234

experiments is available at: 4235
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Figure 5: Training and validation accuracy/loss over epochs for OSLGN with and without local
operand initialization. Local init generalizes better.

3https://colab.research.google.com/drive/1VxulftRzLRj1Yg6C-vhmfE6X5jJpxfwJ
4https://colab.research.google.com/drive/1iJpgwW6_7oRRcbllWPLOIW9eeZ0Hcwce?usp=

sharing
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Figure 6: Layer-wise gradient norm trajectories with (top) and without (bottom) local operand
initialization. Local init results in smoother gradient flow.

5 Discussion236

5.1 Symbolic Structure and Modularity237

Operand-Selective Logic Gate Networks (OSLGN) construct neural models using symbolic logic238

gate structures. By selecting operands and logic operators at each layer, OSLGN enables a modular239

architecture that reflects discrete symbolic computations. Unlike prior approaches that approximate240

logical rules via fuzzy semantics, our model preserves the syntactic structure of logic circuits241

throughout training.242

5.2 Discrete Selection Mechanisms243

The core mechanism in OSLGN is argmax-based selection with a Straight-Through Estimator (STE),244

applied to both operand and operator routing. This allows symbolic consistency and gradient-245

based learning, despite the discrete nature of the computation. While soft selection methods such246

as Gumbel-Softmax demonstrated faster convergence in preliminary experiments, they require247

additional stabilization strategies. Future work may explore advanced routing mechanisms to improve248

convergence speed and training stability.249

5.3 Topology-Inspired Initialization250

Inspired by the information flow properties of small-world networks [21, 8], we initialize operand251

selectors using Gaussian-weighted connectivity centered on local input indices. While not a true252

small-world topology, this bias promotes modular selection patterns and improves convergence speed,253
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as demonstrated in Section 4. This structural prior reflects local coherence and allows long-range254

dependencies to emerge during learning.255

5.4 Limitations256

OSLGN currently supports only binary logic gates with hard operand selection. This restricts257

expressivity in tasks requiring multi-bit reasoning or smooth composition. Additionally, the operand258

selection layers may introduce redundancy: the learned symbolic expressions often use only a subset259

of the full network’s capacity, suggesting overparameterization. Another challenge is training stability260

during early stages, particularly when the routing distributions are uncertain. While softmax-based261

selection is viable, convergence strategies for stable symbolic gating remain underexplored.262

5.5 Future Work263

Future directions include incorporating structured routing techniques and annealing strategies, ex-264

tending the model to multi-valued or temporal logic, and enabling end-to-end symbolic compression265

during training. Applying the framework to tasks such as program synthesis, structured decision266

making, or formal verification remains a promising avenue.267

6 Conclusion268

Operand-Selective Logic Gate Networks (OSLGN) represent a step toward unifying deep learning269

with symbolic reasoning. By learning networks of logic gates through operand and operator selection,270

OSLGN performs symbolic computation while remaining trainable via gradient-based optimization271

using the Straight-Through Estimator (STE). We showed that this architecture can be initialized with272

inductive priors to enhance convergence, trained with discrete routing, and post-hoc translated into273

compact Boolean expressions.274

While classification performance remains limited, the symbolic structure of OSLGN supports mod-275

ularity and compatibility with digital logic. A key challenge is the relatively large network size276

required to express symbolic patterns, indicating redundancy or inefficiency in operand routing. Our277

work lays the groundwork for trainable logic circuits and opens the door for future models that are278

both compact and symbolic, enabling structured and efficient AI systems.279
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Neural Network (OSLGN) model. Operand selection uses binary masking via argmax with a337

straight-through estimator (STE), and the operator module composes logic gates among 16 predefined338

binary functions. All logic outputs are strictly binary-valued and verified via runtime assertions.339

The logic operator routing and the definition of 16 binary logic gates used in the Operator module340

are adapted from Petersen et al. [12]. Their original implementation is available at https://github.341

com/Felix-Petersen/difflogic. Unlike their soft-selection approach, we apply a straight-342

through estimator (STE) to enforce discrete operator selection during training, enabling train-time343

quantization within the logic gate routing mechanism.344
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A.1 Operand Selector and Logic Operators345

Listing 1: Operand selection and logic gate definitions.
346

class Operand_selector(nn.Module):347

def __init__(self , x, y):348

super().__init__ ()349

self.p = nn.Linear(x, y, bias=False)350

351

def forward(self , x):352

w = self.p.weight353

mask = torch.zeros_like(w).scatter_(1, w.argmax(dim=-1,354

keepdim=True), 1.0)355

masked = mask - w.detach () + w356

return F.linear(x, masked)357358

A.2 Operator and Logic Layer Composition359

Listing 2: Operator routing and composition of logic layers.
360

def bin_op(a, b, i):361

if i == 0: return torch.zeros_like(a)362

elif i == 1: return a * b363

elif i == 2: return a - a * b364

elif i == 3: return a365

elif i == 4: return b - a * b366

elif i == 5: return b367

elif i == 6: return a + b - 2 * a * b368

elif i == 7: return a + b - a * b369

elif i == 8: return 1 - (a + b - a * b)370

elif i == 9: return 1 - (a + b - 2 * a * b)371

elif i == 10: return 1 - b372

elif i == 11: return 1 - b + a * b373

elif i == 12: return 1 - a374

elif i == 13: return 1 - a + a * b375

elif i == 14: return 1 - a * b376

elif i == 15: return torch.ones_like(a)377

378

379

class RoundSTE(torch.autograd.Function):380

@staticmethod381

def forward(ctx , input):382

return torch.round(input)383

@staticmethod384

def backward(ctx , grad_output):385

return grad_output386

387

def bin_op_s(a, b, i_s):388

r = torch.zeros_like(a)389

for i in range (16):390

r += i_s[..., i] * bin_op(a, b, i)391

return RoundSTE.apply(r)392

393

class Operator(nn.Module):394

def __init__(self , y):395

super().__init__ ()396

self.weights = nn.Parameter(torch.randn(y, 16))397

398

def forward(self , a, b):399

w = self.weights400

mask = torch.zeros_like(w).scatter_(1, w.argmax(dim=-1,401

keepdim=True), 1.0)402

masked = mask - w.detach () + w403

return bin_op_s(a, b, masked)404
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405

class oslgn(nn.Module):406

def __init__(self , x, y):407

super().__init__ ()408

self.os1 = Operand_selector(x, y)409

self.os2 = Operand_selector(x, y)410

self.op = Operator(y)411

412

def forward(self , x):413

a = self.os1(x)414

b = self.os2(x)415

return self.op(a, b)416417

B Depth Scaling Summary Table418

To complement the figures in Section 4.2, Table 2 presents a summary of performance metrics for419

each evaluated depth. We report the final and peak validation accuracy across 50 training epochs,420

along with final validation loss and training accuracy. This helps assess both convergence stability421

and generalization behavior. Notably, while depth-4 exhibits both high final and peak accuracy,422

deeper networks like depth-8 show a wider gap between final and peak accuracy, indicating slower423

convergence or slight overfitting.424

Table 2: Final and maximum validation accuracy, validation loss, and training accuracy for each
depth after 50 epochs.

Depth Val Acc Val Loss Train Acc

2 0.4492 / 0.5232 1.7693 0.4272
4 0.5330 / 0.5802 1.7815 0.5073
8 0.5357 / 0.5958 1.7304 0.5354

C Symbolic Compression of Learned Logic Circuits425

The symbolic logic expressions for each output class were derived from the trained OSLGN model426

(depth=4, 10 epochs). Each expression was reconstructed by backtracking the operand/operator paths427

through each logic layer. The code implementation is fully available at:428

https://colab.research.google.com/drive/429

1VxulftRzLRj1Yg6C-vhmfE6X5jJpxfwJ430

The original expressions from the model and their compressed forms are presented below.431

The symbolic logic expressions for each output class were derived from the trained OSLGN model432

(depth=4, 10 epochs). Each expression was reconstructed by backtracking the operand/operator paths433

through each logic layer. The expressions are presented below.434

C.1 Class-wise Boolean Expressions435

[Class 0]436

437

Original438

((((not (x[462] or x[407]) and (x[482] or x[484]))) and439

not ((False) and not ((x[578] or not x[363]) or not (x[107])))) or (False))440

441

Compressed442

((not x[462] and not x[407] and x[482]) or (not x[462] and443

not x[407] and x[484]))444

445
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446

[Class 1]447

Original448

((((not (x[355] or x[494])) and not (x[261] or x[438])) and not449

(((x[177] and not x[290]) or (False)) or ((x[347] and not x[234]) or (False)))))450

451

Compressed452

((not x[355] and not x[494] and not x[261] and not x[438] and453

x[290] and x[234]) or (not x[355] and not x[494] and not x[261] and not454

x[438] and not x[177] and x[234]) or (not x[355] and not x[494] and not455

x[261] and not x[438] and not x[177] and not x[347]) or (not x[355] and not456

x[494] and not x[261] and not x[438] and x[290] and not x[347]))457

458

[Class 2]459

Original460

((((not x[372] and x[541]) and not (x[347] and not x[556]))) or461

((not (x[319] or x[276])) and ((not x[343] and x[511]))))462

463

Compressed464

((not x[372] and x[541] and x[556]) or (not x[319] and not x[276] and not465

x[343] and x[511]) or (not x[347] and not x[372] and x[541]))466

467

[Class 3]468

Original469

(not (not (((x[350] or x[322]) and (x[152] or x[179])) or470

((x[649]) or (not x[455] and x[564])))))471

472

Compressed473

(x[649] or (x[322] and x[152]) or (x[350] and x[152]) or474

(not x[455] and x[564]) or (x[350] and x[179]) or (x[322] and x[179]))475

476

[Class 4]477

Original478

(not (not ((not (((x[211] and not x[68]) or (False)) or479

(x[567] or x[127]))) and ((x[401] or x[429]) and (not (x[70] or x[747]))))) or480

(((not (x[568] or x[595])) and (x[454]))))481

482

Compressed483

((x[68] and not x[567] and not x[127] and x[429] and not x[70] and not484

x[747]) or (not x[568] and not x[595] and x[454]) or (x[68] and not485

x[567] and not x[127] and x[401] and not x[70] and not x[747]) or486

(not x[211] and not x[567] and not x[127] and x[401] and not x[70] and not487

x[747]) or (not x[211] and not x[567] and not x[127] and x[429] and not488

x[70] and not x[747]))489

490

[Class 5]491

Original492

(not (((not x[562] and x[517]) and (not x[562] and x[517])) and493

((not x[562] and x[517]) and (not x[562] and x[517]))) and494

(not ((x[246]) and (x[356] and not x[587])) and (not (x[355]) and495

((x[191] and not x[276]) or (False)))))496

497

Compressed498

((not x[355] and not x[276] and not x[517] and x[587] and x[191]) or499

(not x[355] and not x[276] and x[562] and not x[356] and x[191]) or500

(not x[355] and not x[276] and x[562] and x[587] and x[191]) or501

(not x[355] and not x[276] and x[562] and not x[246] and x[191]) or502

(not x[355] and not x[276] and not x[517] and not x[356] and x[191]) or503

(not x[355] and not x[276] and not x[517] and not x[246] and x[191]))504
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505

[Class 6]506

Original507

(not ((((x[651] or x[658]))) and (((x[651] or x[658])))))508

509

Compressed510

(not x[651] and not x[658])511

512

[Class 7]513

Original514

((((not (x[377] or x[404])))))515

516

Compressed517

(not x[377] and not x[404])518

519

[Class 8]520

Original521

(True)522

523

Compressed524

(not x[377] and not x[404])525

526

[Class 9]527

Original528

(not ((((x[149] and not x[127]) and not (x[567] or x[127])) or (False)) and529

not ((x[714] and not x[203]))) or ((((x[149] and not x[127]) and530

not (x[396] or not x[126])) or (False)) and ((not x[567] and x[711]))))531

532

Compressed533

(x[567] or x[127] or not x[149] or (x[714] and not x[203]) or534

(not x[396] and x[126] and x[711]))535

536

C.2 Compression Results537

Table 3: Comparison of logic operator counts before and after symbolic compression using PyEDA.

Class Original Ops Compressed Ops Ratio Rate (%)

0 13 9 1.44 30.77
1 14 43 0.33 -207.14
2 12 15 0.8 -25
3 9 11 0.82 -22.22
4 17 46 0.37 -170.59
5 23 48 0.48 -108.7
6 18 62 0.29 -244.4
7 2 3 0.67 -50
8 0 3 0 0
9 22 10 2.2 54.55

These results confirm that OSLGN produces structurally compact logic by design, rather than relying538

on post-hoc symbolic simplification.539
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NeurIPS Paper Checklist540

1. Claims541

Question: Do the main claims made in the abstract and introduction accurately reflect the542

paper’s contributions and scope?543

Answer: [Yes]544

Justification: Since the research is originally to show our method can be learned, it is shown545

through experiment results and the codes we appended.546

Guidelines:547

• The answer NA means that the abstract and introduction do not include the claims548

made in the paper.549

• The abstract and/or introduction should clearly state the claims made, including the550

contributions made in the paper and important assumptions and limitations. A No or551

NA answer to this question will not be perceived well by the reviewers.552

• The claims made should match theoretical and experimental results, and reflect how553

much the results can be expected to generalize to other settings.554

• It is fine to include aspirational goals as motivation as long as it is clear that these goals555

are not attained by the paper.556

2. Limitations557

Question: Does the paper discuss the limitations of the work performed by the authors?558

Answer: [Yes]559

Justification: Since this model is conceptually new, intended to avoid tricks like normaliza-560

tion, and can be result in extremely compact expression, its accuracy is yet relatively low.561

However, its modularity would be effective feature when it is studied further.562

Guidelines:563

• The answer NA means that the paper has no limitation while the answer No means that564

the paper has limitations, but those are not discussed in the paper.565

• The authors are encouraged to create a separate "Limitations" section in their paper.566

• The paper should point out any strong assumptions and how robust the results are to567

violations of these assumptions (e.g., independence assumptions, noiseless settings,568

model well-specification, asymptotic approximations only holding locally). The authors569

should reflect on how these assumptions might be violated in practice and what the570

implications would be.571

• The authors should reflect on the scope of the claims made, e.g., if the approach was572

only tested on a few datasets or with a few runs. In general, empirical results often573

depend on implicit assumptions, which should be articulated.574

• The authors should reflect on the factors that influence the performance of the approach.575

For example, a facial recognition algorithm may perform poorly when image resolution576

is low or images are taken in low lighting. Or a speech-to-text system might not be577

used reliably to provide closed captions for online lectures because it fails to handle578

technical jargon.579

• The authors should discuss the computational efficiency of the proposed algorithms580

and how they scale with dataset size.581

• If applicable, the authors should discuss possible limitations of their approach to582

address problems of privacy and fairness.583

• While the authors might fear that complete honesty about limitations might be used by584

reviewers as grounds for rejection, a worse outcome might be that reviewers discover585

limitations that aren’t acknowledged in the paper. The authors should use their best586

judgment and recognize that individual actions in favor of transparency play an impor-587

tant role in developing norms that preserve the integrity of the community. Reviewers588

will be specifically instructed to not penalize honesty concerning limitations.589

3. Theory assumptions and proofs590

Question: For each theoretical result, does the paper provide the full set of assumptions and591

a complete (and correct) proof?592
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Answer: [NA]593

Justification: The research is more about extending and combining existing theories. We594

chose to show its effectiveness with experiments.595

Guidelines:596

• The answer NA means that the paper does not include theoretical results.597

• All the theorems, formulas, and proofs in the paper should be numbered and cross-598

referenced.599

• All assumptions should be clearly stated or referenced in the statement of any theorems.600

• The proofs can either appear in the main paper or the supplemental material, but if601

they appear in the supplemental material, the authors are encouraged to provide a short602

proof sketch to provide intuition.603

• Inversely, any informal proof provided in the core of the paper should be complemented604

by formal proofs provided in appendix or supplemental material.605

• Theorems and Lemmas that the proof relies upon should be properly referenced.606

4. Experimental result reproducibility607

Question: Does the paper fully disclose all the information needed to reproduce the main ex-608

perimental results of the paper to the extent that it affects the main claims and/or conclusions609

of the paper (regardless of whether the code and data are provided or not)?610

Answer: [Yes]611

Justification: Every code used in this paper are served with google colab link. And the612

python code is appended for structural reproduction.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• If the paper includes experiments, a No answer to this question will not be perceived616

well by the reviewers: Making the paper reproducible is important, regardless of617

whether the code and data are provided or not.618

• If the contribution is a dataset and/or model, the authors should describe the steps taken619

to make their results reproducible or verifiable.620

• Depending on the contribution, reproducibility can be accomplished in various ways.621

For example, if the contribution is a novel architecture, describing the architecture fully622

might suffice, or if the contribution is a specific model and empirical evaluation, it may623

be necessary to either make it possible for others to replicate the model with the same624

dataset, or provide access to the model. In general. releasing code and data is often625

one good way to accomplish this, but reproducibility can also be provided via detailed626

instructions for how to replicate the results, access to a hosted model (e.g., in the case627

of a large language model), releasing of a model checkpoint, or other means that are628

appropriate to the research performed.629

• While NeurIPS does not require releasing code, the conference does require all submis-630

sions to provide some reasonable avenue for reproducibility, which may depend on the631

nature of the contribution. For example632

(a) If the contribution is primarily a new algorithm, the paper should make it clear how633

to reproduce that algorithm.634

(b) If the contribution is primarily a new model architecture, the paper should describe635

the architecture clearly and fully.636

(c) If the contribution is a new model (e.g., a large language model), then there should637

either be a way to access this model for reproducing the results or a way to reproduce638

the model (e.g., with an open-source dataset or instructions for how to construct639

the dataset).640

(d) We recognize that reproducibility may be tricky in some cases, in which case641

authors are welcome to describe the particular way they provide for reproducibility.642

In the case of closed-source models, it may be that access to the model is limited in643

some way (e.g., to registered users), but it should be possible for other researchers644

to have some path to reproducing or verifying the results.645

5. Open access to data and code646

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-647

tions to faithfully reproduce the main experimental results, as described in supplemental648

material?649

Answer: [Yes]650

Justification: It is all given as above. Dataset we used is benchmark dataset and the code to651

retrieve is already served.652

Guidelines:653

• The answer NA means that paper does not include experiments requiring code.654

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/655

public/guides/CodeSubmissionPolicy) for more details.656

• While we encourage the release of code and data, we understand that this might not be657

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not658

including code, unless this is central to the contribution (e.g., for a new open-source659

benchmark).660

• The instructions should contain the exact command and environment needed to run to661

reproduce the results. See the NeurIPS code and data submission guidelines (https:662

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.663

• The authors should provide instructions on data access and preparation, including how664

to access the raw data, preprocessed data, intermediate data, and generated data, etc.665

• The authors should provide scripts to reproduce all experimental results for the new666

proposed method and baselines. If only a subset of experiments are reproducible, they667

should state which ones are omitted from the script and why.668

• At submission time, to preserve anonymity, the authors should release anonymized669

versions (if applicable).670

• Providing as much information as possible in supplemental material (appended to the671

paper) is recommended, but including URLs to data and code is permitted.672

6. Experimental setting/details673

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-674

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the675

results?676

Answer: [Yes]677

Justification: In the paper there are critical settings you should know, and in the code you678

are able to get exact environment.679

Guidelines:680

• The answer NA means that the paper does not include experiments.681

• The experimental setting should be presented in the core of the paper to a level of detail682

that is necessary to appreciate the results and make sense of them.683

• The full details can be provided either with the code, in appendix, or as supplemental684

material.685

7. Experiment statistical significance686

Question: Does the paper report error bars suitably and correctly defined or other appropriate687

information about the statistical significance of the experiments?688

Answer: [No]689

Justification: However, the experiment is very well known mnist and the exact method is690

available through served colab link.691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• The authors should answer "Yes" if the results are accompanied by error bars, confi-694

dence intervals, or statistical significance tests, at least for the experiments that support695

the main claims of the paper.696
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• The factors of variability that the error bars are capturing should be clearly stated (for697

example, train/test split, initialization, random drawing of some parameter, or overall698

run with given experimental conditions).699

• The method for calculating the error bars should be explained (closed form formula,700

call to a library function, bootstrap, etc.)701

• The assumptions made should be given (e.g., Normally distributed errors).702

• It should be clear whether the error bar is the standard deviation or the standard error703

of the mean.704

• It is OK to report 1-sigma error bars, but one should state it. The authors should705

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis706

of Normality of errors is not verified.707

• For asymmetric distributions, the authors should be careful not to show in tables or708

figures symmetric error bars that would yield results that are out of range (e.g. negative709

error rates).710

• If error bars are reported in tables or plots, The authors should explain in the text how711

they were calculated and reference the corresponding figures or tables in the text.712

8. Experiments compute resources713

Question: For each experiment, does the paper provide sufficient information on the com-714

puter resources (type of compute workers, memory, time of execution) needed to reproduce715

the experiments?716

Answer: [Yes]717

Justification: Experiment was performed through google colab and it is mentioned.718

Guidelines:719

• The answer NA means that the paper does not include experiments.720

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,721

or cloud provider, including relevant memory and storage.722

• The paper should provide the amount of compute required for each of the individual723

experimental runs as well as estimate the total compute.724

• The paper should disclose whether the full research project required more compute725

than the experiments reported in the paper (e.g., preliminary or failed experiments that726

didn’t make it into the paper).727

9. Code of ethics728

Question: Does the research conducted in the paper conform, in every respect, with the729

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?730

Answer: [NA]731

Justification: The paper focuses on a foundational architecture, with no direct deployment732

or societal interface. As such, it does not raise immediate social impact concerns.733

Guidelines:734

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.735

• If the authors answer No, they should explain the special circumstances that require a736

deviation from the Code of Ethics.737

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-738

eration due to laws or regulations in their jurisdiction).739

10. Broader impacts740

Question: Does the paper discuss both potential positive societal impacts and negative741

societal impacts of the work performed?742

Answer: [Yes]743

Justification: While our work is primarily foundational, symbolic reasoning systems could744

enable more controllable AI in sensitive domains. We acknowledge the potential for misuse745

in automation of decision logic and advocate for responsible deployment.746

Guidelines:747
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• The answer NA means that there is no societal impact of the work performed.748

• If the authors answer NA or No, they should explain why their work has no societal749

impact or why the paper does not address societal impact.750

• Examples of negative societal impacts include potential malicious or unintended uses751

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations752

(e.g., deployment of technologies that could make decisions that unfairly impact specific753

groups), privacy considerations, and security considerations.754

• The conference expects that many papers will be foundational research and not tied755

to particular applications, let alone deployments. However, if there is a direct path to756

any negative applications, the authors should point it out. For example, it is legitimate757

to point out that an improvement in the quality of generative models could be used to758

generate deepfakes for disinformation. On the other hand, it is not needed to point out759

that a generic algorithm for optimizing neural networks could enable people to train760

models that generate Deepfakes faster.761

• The authors should consider possible harms that could arise when the technology is762

being used as intended and functioning correctly, harms that could arise when the763

technology is being used as intended but gives incorrect results, and harms following764

from (intentional or unintentional) misuse of the technology.765

• If there are negative societal impacts, the authors could also discuss possible mitigation766

strategies (e.g., gated release of models, providing defenses in addition to attacks,767

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from768

feedback over time, improving the efficiency and accessibility of ML).769

11. Safeguards770

Question: Does the paper describe safeguards that have been put in place for responsible771

release of data or models that have a high risk for misuse (e.g., pretrained language models,772

image generators, or scraped datasets)?773

Answer: [NA]774

Justification: No deployable models or data are released; the work is conceptual.775

Guidelines:776

• The answer NA means that the paper poses no such risks.777

• Released models that have a high risk for misuse or dual-use should be released with778

necessary safeguards to allow for controlled use of the model, for example by requiring779

that users adhere to usage guidelines or restrictions to access the model or implementing780

safety filters.781

• Datasets that have been scraped from the Internet could pose safety risks. The authors782

should describe how they avoided releasing unsafe images.783

• We recognize that providing effective safeguards is challenging, and many papers do784

not require this, but we encourage authors to take this into account and make a best785

faith effort.786

12. Licenses for existing assets787

Question: Are the creators or original owners of assets (e.g., code, data, models), used in788

the paper, properly credited and are the license and terms of use explicitly mentioned and789

properly respected?790

Answer: [Yes]791

Justification: Yes.792

Guidelines:793

• The answer NA means that the paper does not use existing assets.794

• The authors should cite the original paper that produced the code package or dataset.795

• The authors should state which version of the asset is used and, if possible, include a796

URL.797

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.798

• For scraped data from a particular source (e.g., website), the copyright and terms of799

service of that source should be provided.800
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• If assets are released, the license, copyright information, and terms of use in the801

package should be provided. For popular datasets, paperswithcode.com/datasets802

has curated licenses for some datasets. Their licensing guide can help determine the803

license of a dataset.804

• For existing datasets that are re-packaged, both the original license and the license of805

the derived asset (if it has changed) should be provided.806

• If this information is not available online, the authors are encouraged to reach out to807

the asset’s creators.808

13. New assets809

Question: Are new assets introduced in the paper well documented and is the documentation810

provided alongside the assets?811

Answer: [NA]812

Justification: No new assets. However git and pip could be distributed if there are demands.813

Guidelines:814

• The answer NA means that the paper does not release new assets.815

• Researchers should communicate the details of the dataset/code/model as part of their816

submissions via structured templates. This includes details about training, license,817

limitations, etc.818

• The paper should discuss whether and how consent was obtained from people whose819

asset is used.820

• At submission time, remember to anonymize your assets (if applicable). You can either821

create an anonymized URL or include an anonymized zip file.822

14. Crowdsourcing and research with human subjects823

Question: For crowdsourcing experiments and research with human subjects, does the paper824

include the full text of instructions given to participants and screenshots, if applicable, as825

well as details about compensation (if any)?826

Answer: [NA]827

Justification: There is possiblility to contact one or two in the future, but not now.828

Guidelines:829

• The answer NA means that the paper does not involve crowdsourcing nor research with830

human subjects.831

• Including this information in the supplemental material is fine, but if the main contribu-832

tion of the paper involves human subjects, then as much detail as possible should be833

included in the main paper.834

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,835

or other labor should be paid at least the minimum wage in the country of the data836

collector.837

15. Institutional review board (IRB) approvals or equivalent for research with human838

subjects839

Question: Does the paper describe potential risks incurred by study participants, whether840

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)841

approvals (or an equivalent approval/review based on the requirements of your country or842

institution) were obtained?843

Answer: [NA]844

Justification: No chance at all.845

Guidelines:846

• The answer NA means that the paper does not involve crowdsourcing nor research with847

human subjects.848

• Depending on the country in which research is conducted, IRB approval (or equivalent)849

may be required for any human subjects research. If you obtained IRB approval, you850

should clearly state this in the paper.851
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• We recognize that the procedures for this may vary significantly between institutions852

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the853

guidelines for their institution.854

• For initial submissions, do not include any information that would break anonymity (if855

applicable), such as the institution conducting the review.856

16. Declaration of LLM usage857

Question: Does the paper describe the usage of LLMs if it is an important, original, or858

non-standard component of the core methods in this research? Note that if the LLM is used859

only for writing, editing, or formatting purposes and does not impact the core methodology,860

scientific rigorousness, or originality of the research, declaration is not required.861

Answer: [Yes]862

Justification: ChatGPT helped us a lot for making this work real and be ready to be published.863

Guidelines:864

• The answer NA means that the core method development in this research does not865

involve LLMs as any important, original, or non-standard components.866

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)867

for what should or should not be described.868
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