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Abstract

Recent studies on Vision-Language-Action (VLA) models have shifted from the1

end-to-end action-generation paradigm toward a pipeline involving task planning2

followed by action generation, demonstrating improved performance on various3

complex, long-horizon manipulation tasks. However, existing approaches vary4

significantly in terms of network architectures, planning paradigms, representations,5

and training data sources, making it challenging for researchers to identify the6

precise sources of performance gains and components to be further improved. To7

systematically investigate the impacts of different planning paradigms and rep-8

resentations isolating from network architectures and training data, in this paper,9

we introduce VLA-OS, a unified VLA architecture series capable of various task10

planning paradigms, and design a comprehensive suite of controlled experiments11

across diverse object categories (rigid and deformable), visual modalities (2D and12

3D), environments (simulation and real-world), and end-effectors (grippers and13

dexterous hands). Our results demonstrate that: 1) visually grounded planning14

representations are generally better than language planning representations; 2)15

the Hierarchical-VLA paradigm generally achieves superior or comparable per-16

formance than other paradigms on task performance, pretraining, generalization17

ability, scalability, and continual learning ability, albeit at the cost of slower training18

and inference speeds. Video results are in https://vlacamp.github.io/.19

1 Introduction20

Building intelligent and generalizable robots capable of perceiving, reasoning about, and interacting21

with physical environments remains a persistent challenge in the robotics community [34, 23]. Recent22

studies have increasingly emphasized the development of foundational models for robot manipulation23

tasks by training large Vision-Language-Action models (VLAs) on extensive datasets [8, 82, 43,24

54, 2, 12, 7, 22]. Different from end-to-end foundation models in computer vision [58, 45, 40]25

and natural language processing tasks [1, 30, 89], recent studies of VLAs have shifted toward a26

new paradigm capable of performing task planning and policy learning either simultaneously or27

sequentially [98, 95, 27, 72, 48, 5, 77, 82]. This shift arises from the inherent complexity of robotic28

manipulation tasks, which naturally exhibit hierarchical structures involving both high-level task29

planning and low-level physical interactions [9]. Compared to end-to-end VLAs that only generate30

actions, these methods demonstrate stronger capabilities in task reasoning and comprehension for31

long-horizon tasks [104, 82], better success rates [95, 72], and higher sample efficiency [39, 27, 87].32

However, current task-planning approaches in VLA are mainly based on intuitive designs and lack33

fair and systematic comparisons, as these methods vary along multiple dimensions, including network34

architectures, planning paradigms, data representations, and training data sources. For example, some35
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Figure 1: Left: four different VLA paradigms. Note that in this paper, we didn’t explore PlanningOnly-
VLA since they usually cannot be trained with the provided datasets and perform worse than others.
Right: VLA paradigm comparison results. Hierarchical-VLA exhibits a generally better performance
than ActionOnly-VLA and Integrated-VLA, while it incurs larger training and inference costs. This
motivates future work on improving training and inference algorithms for Hierarchical-VLA models.

works [72, 5, 27, 77] use a separate high-level task planning model to generate various task planning36

representations for a low-level VLA model, while others [82, 95, 98] use a single VLA to generate37

task planning representations and actions together. Consequently, substantial disagreement remains38

within the VLA community regarding the appropriate design and effective utilization of task planning.39

This makes it difficult for researchers to clearly identify which specific component contributes to40

performance gains or requires further improvement, hindering progress in the field.41

Among these challenges, five core questions stand out: 1) Representation: What representation42

should we adopt for task planning and policy learning? Does using multiple representations yield43

better results, or could they conflict with one another? 2) Paradigm: Should we employ a monolithic44

model that jointly performs task planning and policy learning, or should we opt for a hierarchical45

paradigm where two separate models handle these tasks independently? 3) Bottleneck: Between task46

planning and policy learning, which presents a greater challenge for current manipulation tasks? 4)47

Scalability and Pretraining: Do VLAs that incorporate task planning preserve the advantageous48

properties of end-to-end foundation models, such as model and data scalability, as well as benefits49

derived from pretraining? and 5) Performance: Do VLAs employing task planning have better50

generalization and continual learning ability than end-to-end VLAs? Addressing these questions will51

provide the community with a clearer understanding of how task planning works in VLA models,52

and offer empirical evidence and guidance for future developments.53

In this work, we aim to answer these questions with systematic and controllable experiments. First,54

to avoid biases introduced by specific neural network choices, we develop VLA-OS1 model series:55

a unified and composable family of VLA models for general-purpose manipulation tasks capable56

of different task planning paradigms. Concretely, we designed VLA-OS-A, VLA-OS-I, and VLA-57

OS-H that correspond to three mainstream VLA paradigms (ActionOnly-VLA, Integrated-VLA,58

Hierarchical-VLA), respectively, as illustrated in Figure 1. VLA-OS series features a unified,59

interchangeable VLM backbone that can be directly downloaded from HuggingFace, various plug-60

1“OS” stands for “Operating System” and designates that our model family provides unified and organized
interfaces of advanced VLA architectures with various planning heads and different paradigms for users.
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and-play planning heads for different representations, and two different action heads both supporting61

2D/3D tasks, as shown in Figure 2. We show in Table 1 that VLA-OS exhibits superior performance62

compared to most existing VLA methods with fewer parameters and without pretraining.63

Next, to answer the representation question, we annotate three kinds of task reasoning representa-64

tions, including language reasoning, visual reasoning, and goal images, and conducted exhaustive65

combinatorial experiments with Integrated-VLA and Hierarchical-VLA models on LIBERO [51]66

benchmark to identify representations that yield optimal performance. Subsequently, employing67

the optimal representations identified, we conducted performance comparisons among three VLA68

paradigms on six benchmarks to answer the paradigm question, including rigid body manipulation69

tasks [51], visual generalization tasks [64], complex long-horizon tasks [32], real-world deformable70

manipulation tasks, dexterous manipulation tasks [3], and dual-arm manipulation tasks [28]. Fur-71

thermore, to answer the bottleneck question, we designed a novel set of evaluation metrics tailored72

to separately assess the performance of task planning and policy learning parts. To answer the73

scalability question, we use LIBERO [51] to test the model and data scalability as well as the effects74

of pretraining among different paradigms. And lastly, we test the generalization capabilities and75

continual learning ability of different VLA paradigms to answer the performance question.76

Our experiments yield three primary findings: 1) Visually grounded planning representations (visual77

reasoning and image foresight planning) outperform language-based planning representations across78

multiple dimensions including task performance, generalization, training and speed, and low-level79

policy execution; 2) Hierarchical-VLA matches or exceeds the performance of Integrated-VLA and80

ActionOnly-VLA in terms of task performance, generalization, scalability, planning scores, continual81

learning, and gains from task-planning pretraining, albeit at the expense of increased training cost82

and slower inference; 3) On LIBERO [51] benchmark tasks, policy learning is consistently more83

challenging than task planning, regardless of which planning representation is used. We believe that84

our findings (as well as source codes, annotated datasets, and checkpoints) will provide significant85

help and guidance for future research within the VLA community and the broader robotics community.86

87

2 Related Works88

2.1 VLA Paradigms for Robot Manipulation89

Vision-Language-Action Models (VLAs) refer to multi-modal comprehensive models that can handle90

visual and language inputs and generate robot actions for control. The word “VLA" was first proposed91

and studied in RT-2 [11], where they train a VLM to output actions as text tokens for robot control.92

After that, more VLA works are emerging. According to how they incorporate the task planning93

process, we divide VLAs into four paradigms and introduce each of them as follows.94

PlanningOnly-VLA These works leverage pretrained LLMs or VLMs to reason and perform task95

planning without generating the low-level action. They break up the given task into simpler sub-tasks96

that can be performed by either using a set of pre-trained sub-skills [36, 2, 65, 71, 19], or outputting the97

parameters of pre-defined motions or cost functions for optimization [49, 73, 38, 37, 78, 57, 25, 26].98

The problem is that their VLMs and low-level skills usually cannot be trained with further datasets,99

which frequently places them at a disadvantage compared to other VLA paradigms capable of training100

on given datasets [97, 92]. Consequently, we do not include PlanningOnly-VLA in this study.101

ActionOnly-VLA These works employ an end-to-end fashion to directly map visual and language102

inputs to robot actions with a multi-modal network. Pioneering works mainly focus on verifying the103

effectiveness of large-scale robot learning [10, 11, 59, 75], while later works start to explore different104

model architectures, training objectives, and extra multi-modal representations and information fusion105

designs to make this paradigm more effective and efficient [8, 54, 43, 84, 46, 102, 62, 99, 100, 4, 103,106

66]. In this work, we design VLA-OS-A for this paradigm by synthesizing several advanced model107

designs that have been verified to be superior in recent works [47, 8, 4].108

Integrated-VLA These works use a single model to perform task planning and policy learning109

simultaneously. According to whether the action generation process is conditioned on the planning110

embeddings or results, they can be further divided into explicit planning and implicit planning. For111

explicit planning, EmbodiedCoT [95] and CotVLA [98] generate either language-based or goal-image-112

based embodied chain-of-thought [79] reasoning before generating actions, and the action generation113

process is conditioned on the embeddings of CoT. For implicit planning, MDT [69] and PIDM [77]114

use goal image foresight generation loss as an auxiliary objective for planning, while RoboBrain [39]115
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Figure 2: The VLA-OS model family. Left: the VLM and the composable heads. Our VLM has the
same architecture with different numbers of parameters. Although we only draw Qwen2.5 here, our
code supports any kind of LLM backbone from HuggingFace. Right: four VLA-OS architectures
used in our experiments. To minimize the effects of different numbers of parameters in different
models, we restrict the number of parameters of all heads to about 5% of the VLM.

and ChatVLA [104] train VLA with auxiliary task reasoning loss in language representations. Some116

recent works also seek to use latent action tokens [93, 70, 13, 16, 35] that serve as forward dynamics117

representations to generate future images as image foresight planning, and decode these latent actions118

to real actions with another action head. The inputs to the action head are from the VLM encoder,119

and they do not need the planning heads (decoder) during inference [93, 70, 13, 16] or they only need120

one planning forward pass [35], so we also see these methods as implicit planning. In this work, we121

design VLA-OS-I for this paradigm with various plug-and-play planning heads upon VLA-OS-A for122

different planning representations, and design corresponding variants for both explicit and implicit123

planning paradigms as VLA-OS-I-I and VLA-OS-I-E.124

Hierarchical-VLA These works use two separate models for task planning and policy learning,125

with no connection or gradient between them. The idea of hierarchical models has always existed126

in robotics research [25, 26, 87, 14, 80]. RT-H [5] is the first work of this paradigm, where they127

use two identical VLMs to generate languages and actions respectively. Later works [72, 83, 82]128

also follow this idea but use different model architectures for task planning and action generation.129

Other works seek to generate multi-modal planning results for policy learning, such as image flows or130

trajectories [29, 27, 48], future videos [20, 91], affordance [55, 56], keypose [17], and keypoints [94].131

In this work, we design VLA-OS-H for this paradigm.132

2.2 VLA Benchmarks and Evaluations133

With the rapid advancement of VLA models, benchmarks and evaluation studies for VLA have also134

experienced significant growth. Given the complexity and multi-dimentionality of robot manipulation135

tasks and VLA models, different works usually focus on evaluating one or several specific dimensions136

of VLA. Some works focus on the VLA model designs and training algorithms, such as different137

model architectures and input and output spaces [47, 88]. Other works aim to build benchmark138

environments and tasks to evaluate different capacities of current VLA models, such as spatial and139

visual generalization ability [97], long-horizon task reasoning ability [92], and different training data140

modalities [104]. In this work, we focus on task planning paradigms for VLA and keep the model141

architectures the same with systematically designed controllable experiments.142

3 VLA-OS Model Family Design143

3.1 Preliminaries144

We study imitation learning for robot manipulation tasks. Specifically, for each task T , we assume a145

set of demonstrations DT = {(o1i , a1i ), (o2i , a2i ), · · · , (o
Ti
i , aTi

i )}Ni=1 and a language goal are given,146
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where Ti is the episode length, o is the observation, a is the robot action, and N is the number147

of demonstrations. We use a history of multi-view images and proprioception information as148

observations. In this work, we set the image resolution as 224 × 224. For actions, we use a149

normalized continuous delta end-effector pose δp action space and gripper open/close action σ for150

training. We also let the policy generate action chunks, i.e., at = ([δp, σ]
t, · · · , [δp, σ]t+L−1). For151

dexterous hands, we use the delta joint values as the action space. We train the policy with either flow152

matching [50, 53] loss (for multi-modal demonstration datasets) or L1 loss (for simple and uni-modal153

demonstration datasets) under the suggestion of previous works [44, 8, 4, 47].154

3.2 VLA-OS-A for ActionOnly-VLA Paradigm155

VLA-OS-A model series directly generates actions without task planning stages. It is also used as the156

base model for other paradigms. We design a block-wise causal attention VLA drawing inspiration157

from [8], as shown in Figure 2. First, a VLM encodes the visual and language inputs, where the vision158

encoder will encode input image patches and project them into language embedding space with an159

MLP. Then, we use a separate set of weights as an action head for the robotics-specific tokens (action160

and proprioception states). The action head is a transformer decoder that has the same number of161

layers as the LLM, and for each layer, the queries of the proprioception tokens can attend to both the162

keys and values from the LLM and the proprioception keys and values, and the queries of the action163

tokens can attend to the keys and values from the LLM, the proprioception tokens, and themselves.164

Compared to π0 [8], we make two changes in VLA-OS-A: 1) we use an ensemble of vision encoders165

(DINOV2 [58]+SigLIP [96]), which is proven to be better than using a single vision encoder [41];166

2) to support the model scalability experiments, we need a set of LLMs with the same structure167

but have different number of parameters. Thus, we choose Qwen2.5 [89] LLM series with 0.5B,168

1.5B, 3B, 7B pretrained checkpoints rather than the original PaliGamma [6]. To make it a VLM, we169

finetune Qwen2.5 LLMs with the vision encoders and the projector on LLaVa v1.5 [52] data mixture170

by ourselves. We call our VLA family that uses 0.5B, 1.5B, 3B, 7B LLM backbones with suffixes171

of -S(mall), -B(ase), -M(iddle), and -L(arge). Detailed information can be found in Appendix C.172

Note, although we use Qwen2.5 in this work, our codes support any kind of LLM from HuggingFace,173

which makes VLA-OS highly flexible compared to [8] that is restricted to a specific backbone.174

For 3D action head, we also take in multi-view depth images as input, and fuse the multi-view RGBD175

images to 3D point cloud using camera intrinsics and extrinsics, and inject additional CLIP features176

onto the point cloud, as in 3D diffuser actor [42]. We also downsample the point cloud with farthest177

point sampling. Each point from the downsampled point cloud will be seen as a token and these 3D178

tokens are sent to the action head as additional inputs.179

3.3 VLA-OS-I for Integrated-VLA Paradigm180

To perform task planning with different kinds of representations, we design three kinds of task181

planning heads for VLA-OS. We first annotate three kinds of task reasoning datasets corresponding182

to each planning representation, as shown in Figure 3. Here we only briefly introduce each of them.183

Details of the data annotation process can be found in Appendix B.184

The language reasoning data contains 8 different keys [95] for each timestep, including Task, Plan,185

Subtask, Subtask Reason, Move, Move Reason, Gripper Position, and Object Bounding Boxes,186

containing the understanding of the scene and decomposition of the task. The visual reasoning data187

contains spatial semantic information and is more grounded in input images compared to language188

reasoning. We follow [61, 86] and use location tokens <loc i> to represent the i-th bin token from top-189

left to bottom-right. We use this kind of token to represent object bounding boxes, end-effector190

flow, and target object affordance as the visual planning representations. The image foresight191

reasoning data is a third-person view image at the K-th future step as the short-horizon goal image.192

We then design language planning head, visual planning head, and image foresight planning head193

for each kind of representation, as shown in Figure 2. All of them are transformers that have the194

same number of layers with the LLM backbone, and use the block-wise causal attention mechanism195

to acquire the keys and values from each layer of the LLM backbone as conditions. The language196

planning head uses the LLM’s tokenizer for decoding, whereas the visual planning head uses an197

extended tokenizer vocabulary to predict location tokens. The image foresight planning head is198

an autoregressive image generation model similar to the recent SOTA image generator [31]. It199

auto-regressively generates the image in a coarse-to-fine paradigm proposed by VAR [76]. The200
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Figure 3: The formats and contents of the language reasoning dataset, the visual reasoning dataset,
and the image foresight reasoning dataset in this work. We use various vision-language models for
data annotation. We illustrate the language reasoning data annotation process on the top left part.

language and visual planning heads are trained with cross-entropy loss, while the image foresight201

planning head is trained with the special loss in [31].202

For all three planning heads, there are two kinds of ways to use them: 1) implicit planning: the203

action head is independent of the planning heads, i.e., the planning heads serve as auxiliary losses204

for the VLA training and will not be executed during inference. This may help the model avoid205

planning accumulation error and improve the inference speed; 2) explicit planning: the action head206

also attends to the keys and values from each layer of the planning heads, and during inference, the207

VLA must first perform task planning before generating actions. This may help solve complex tasks208

in a chain-of-thought [79, 95, 98] manner.209

3.4 VLA-OS-H for Hierarchical-VLA Paradigm210

This model uses two networks for task planning and policy learning respectively. As shown in211

Figure 2, we use the VLM together with planning heads for task planning, and modify the action212

head to an encoder-decoder transformer for policy learning. This action head can take as input the213

images, proprioception observations, and the planning representations to generate actions. To keep214

the comparison fair, we make the layer of the encoder and decoder of the action head half of the other215

two VLA-OS paradigms. We also give frozen image features from AM-Radio [67] and language216

features from Qwen2.5 [89] for the inputs of the action head to compensate for deficiencies in visual217

and linguistic features not captured by the VLM. Training details are in Appendix C.218

4 Experiments and Findings219

In this section, we perform systematic and controllable experiments with the VLA-OS model series220

on various manipulation tasks shown in Figure 4 to answer the research questions in Section 1. More221

experiments and findings are in Appendix D. All models are trained on 8×NVIDIA A100 80G GPUs.222

4.1 Sanity Check of VLA-OS223

Before investigating different VLA paradigms for our research questions, we first verify the correct-224

ness and basic performance of our VLA-OS models to serve as a foundational sanity check. We train225
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Figure 4: Benchmarks used in our evaluations, including LIBERO [51] and FurnitureBench [32]
for 2D rigid body manipulation experiments, The COLOSSEUM [64] for 3D and generalization
evaluation, real-world deformable object manipulation tasks (fold the handkerchief, unfold the jean,
and straighten the rope), DexArt [3] for dexterous tasks, and PerAct2 [28] for dual-arm tasks.

VLA-OS-A-S on four suites from LIBERO [51] (LIBERO-Spatial, LIBERO-Object, LIBERO-Goal,226

LIBERO-Long) from scratch with L1 loss and compare them with Diffusion-Policy [18], fine-tuned227

OpenVLA [43], fine-tuned CoT-VLA [98], fine-tuned DiT Policy [33], and the state-of-the-art228

methods: fine-tuned π0 [8] and its variant π0-FAST [62]. Results are shown in Table 1.229

Table 1: Sanity check. Success rates on four LIBERO benchmarks. Baseline results are from their
papers [43, 8, 44]. Our results are the average of top-3 checkpoints averaged over 20 rollouts for each
task suite. Bold indicates the best result except SOTA, and underline indicates comparable result.

LIBERO-Spatial LIBERO-Object LIBERO-Goal LIBERO-Long Average

Diffusion Policy [18] (scratch) 78.3 92.5 68.3 50.5 72.4
OpenVLA [43] (fine-tuned) 84.7 88.4 79.2 53.7 76.5
CoT-VLA [98] (fine-tuned) 87.5 91.6 87.6 69.0 81.1
DiT Policy [33] (fine-tuned) 84.2 96.3 85.4 63.8 82.4
π0-FAST [62] (fine-tuned) 96.4 96.8 88.6 60.2 85.5

VLA-OS-A-S (scratch, ours) 87.0 96.5 92.7 66.0 85.6
π0 [8] (fine-tuned, SOTA) 96.8 98.8 95.8 85.2 94.2

We can see that VLA-OS-A-S performs better (+13.2%) than Diffusion Policy (trained from scratch)230

and the fine-tuned OpenVLA model (+9.1%), CoT-VLA (+4.5%), and DiT Policy (+3.2%), and is231

comparable to fine-tuned π0-FAST (+0.1%). Although our model is worse than the SOTA method,232

these results sufficiently demonstrate that our model design is excellent and competitive. Note that233

VLA-OS-A-S is trained from scratch and utilizes only a 0.5B LLM backbone.234

Finding 1: For downstream tasks, larger VLA models trained on large-scale datasets do not necessar-235

ily outperform smaller models that are trained from scratch. Model architectures and algorithmic236

designs are still important at the current moment.237

4.2 Planning Representation Experiments238

To explore which representation is better for task planning and policy learning, we perform compre-239

hensive experiments with language planning (L), visual planning (V), image foresight planning (IF),240

and their combinations on LIBERO-LONG [51] benchmark that contains 10 long-horizon tasks with241

50 demonstrations in each task for VLA-OS-I and VLA-OS-H. The best representation will be used242

as the default representation for all later experiments. Table 2 shows the results.243

Table 2: Different planning representation comparison on LIBERO-Long. All results are the average
of top-3 checkpoints averaged over 20 rollouts. Numbers in parentheses indicate the change relative
to the result of VLA-OS-A in Table 1.

L V IF L+V L+IF V+IF L+V+IF

VLA-OS-I-I 68.0 (↑2.0) 71.0 (↑5.0) 72.5 (↑6.5) 66.7 (↑0.7) 73.3 (↑7.3) 71.0 (↑5.0) 71.7 (↑5.7)
VLA-OS-I-E 60.5 (↓5.5) 52.5 (↓13.5) 67.5 (↑1.5) 42.7 (↓23.3) 56.7 (↓9.3) 56.7 (↓9.3) 50.7 (↓15.3)
VLA-OS-H 63.5 (↓2.5) 69.0 (↑3.0) 71.7 (↑5.7) 71.5 (↑5.5) 72.0 (↑6.0) 73.7 (↑7.7) 74.2 (↑8.2)

Finding 2: For Integrated-VLA paradigm, implicit planning can yield a positive performance gain,244

whereas explicit planning incurs a significant performance degradation when trained from scratch.245
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VLA-OS-A VLA-OS-I VLA-OS-H

LIBERO-LONG (2D) 66.0 73.3 (↑ 7.3) 74.2 (↑ 8.2)
The COLOSSEUM (3D) 34.4 35.7 (↑ 1.3) 35.3 (↑ 0.9)
Deformable (Real-World) 28.5 35.4 (↑ 6.9) 33.6 (↑ 5.1)

FurnitureBench 11.0 14.0 (↑ 3.0) 14.0 (↑ 3.0)
DexArt 45.0 49.0 (↑ 4.0) 48.0 (↑ 3.0)
PerAct2 21.0 28.0 (↑ 7.0) 29.0 (↑ 8.0)

Generalization 6.1 6.2 (↑ 0.1) 7.4 (↑ 1.3)

Planning Head Pretraining – 79.1 (↑5.8) 79.8 (↑5.6)

(a) Success rates of different VLA paradigms on more benchmarks, as
well as the generalization and task planning pretraining experiments.
All results are averaged over 20 rollouts among 3 best checkpoints.

(b) Training cost and inference time
for different representations.

Figure 6: More results for different paradigms and inference time and training cost for different
representations. Results of the right figure are calculated from the LIBERO-LONG benchmark.

Analysis: The implicit planning paradigm leverages various auxiliary task planning objectives as addi-246

tional losses for training, and during inference, there is no difference between it and ActionOnly-VLA,247

thus it brings performance improvement. This shows that using task planning as auxiliary losses248

can improve the performance. However, the explicit planning paradigm will have to first complete the249

entire planning process before the action head generation during inference, and this will bring severe250

planning accumulation error issues. Typically, the length of planning tokens significantly exceeds251

that of action tokens (approximately 2000 vs. 8), which will exacerbate the accumulation error issue252

than purely with action tokens. Additionally, the embeddings from every layer of the planning head253

are fed into the action head, affecting its internal representations. Meanwhile, the action head does254

not receive raw visual or language inputs. It only receives embeddings from the VLM and planning255

heads, which makes it lack the necessary error-correction capability. Instead, Hierarchical-VLA will256

not only take in the raw visual observation and language instruction as inputs, but also confine the257

planning accumulation errors exclusively to the explicit representation level, rather than allowing258

them to propagate into the deeper embedding layers.259

Figure 5: Comparison between VLA-
OS-I-E and VLA-OS-H with the same
planning errors. The three planning rep-
resentations shown in this figure all have
small planning errors (highlighted).

For qualitative comparisons, we show in Figure 5 an exam-260

ple that when VLA-OS-H uses the same planning heads261

as VLA-OS-I-E where there are some planning errors, it262

can correct the behavior while VLA-OS-I-E cannot.263

Finding 3: Visually grounded planning representations264

work better than language planning representations, and265

also have faster inference speed and smaller training cost.266

From the results in Table 2, we can see that visual planning267

and image foresight planning are better than language plan-268

ning (↑5.75 v.s. ↑2.0 for VLA-OS-I-I and ↑4.35 v.s. ↓2.5269

for VLA-OS-H). We also illustrate the inference speed and270

training cost in Figure 6b (introduced in Section D.3) to271

show the speed and cost advantages of visually grounded272

planning representations.273

Finding 4: When employing multiple planning repre-274

sentations concurrently, Hierarchical-VLA outperforms275

Integrated-VLA paradigms.276

4.3 More Performance, Generalization,277

and Benefit from Planning Head Pretraining278

To further compare different planning paradigms, we perform additional experiments to explore their279

performance on: 1) more manipulation benchmarks including 3D manipulation tasks [64], real-world280

deformable tasks, furniture assembly tasks [32], dexterous manipulation tasks [3], and dual-arm281

manipulation tasks [28]; 2) generalization ability; and 3) benefits from planning head pretraining.282

For 1), in COLOSSEUM, we train and test on the No-Perturbation setting. For 2), we use THE283

COLOSSEUM and train on No-Perturbation but test on ALL-Perturbation setting, including changes284

in color, texture, size of objects, table-tops, backgrounds, lighting, distractors, physical properties,285
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and camera poses. For 3), a lot of literature [27, 48, 13, 72, 94, 91] claim that the primary advantage286

of using task planning in VLA rather than ActionOnly-VLA is that their task-planning components287

can be trained on large-scale task-agnostic planning data without costly action annotations. Here,288

we train them on LIBERO-90, a larger dataset with 90 manipulation tasks and 50 demonstrations289

for each task. We only train the planning components, i.e., the VLM and planning heads. Then we290

fine-tune the pretrained VLM and planning heads together with the action head on LIBERO-LONG291

with both the task reasoning and policy learning losses. Results are in Table 6a.292

Finding 5: Integrated-VLA and Hierarchical-VLA outperform ActionOnly-VLA across a broad293

spectrum of tasks (2D, 3D, simulation, and real-world), with their performances largely comparable.294

Finding 6: Both Integrated-VLA and Hierarchical-VLA benefit similarly from task-planning pretrain-295

ing, exhibiting analogous gains in task success rate.296

Finding 7: Hierarchical-VLA demonstrates the best generalization ability.297

5 Conclusion and Limitation298

We provide a systematic investigation across different VLA paradigms and task planning represen-299

tations through various kinds of manipulation tasks. Experiments show the superiority of visually300

grounded planning representations and the Hierarchical-VLA paradigm. Specifically, our findings301

can be summarized as follows:302

1. The time has not yet come to scale up VLA model sizes.303

2. Visually grounded representations (visual and image foresight) are better than language304

representations in terms of success rates, low-level following, and continual learning.305

3. Integrated-VLA and Hierarchical-VLA outperform ActionOnly-VLA on task performance306

and generalization ability, but incur faster forgetting.307

4. Integrated-VLA and Hierarchical-VLA perform comparably on task performance and Plan-308

ning Head Pretraining, but Hierarchical-VLA generalizes better and has better task-planning309

performance.310

5. All VLA paradigms have the data scalability. For tasks trained from scratch with roughly311

5,000 demonstrations, the LLM backbone should be limited to 0.5B parameters, or keeping312

the total model size under 1B parameters.313

We believe our findings offer meaningful insights that can inform future research in VLA and the314

broader robotics community. We recommend the following research directions for the community315

based on our findings:316

1. Why are visually grounded representations better than language?317

2. How to avoid gradient conflict between planning head losses and action head losses on the318

VLM backbone? This is because that in both explicit v.s. implicit and Hierarchical v.s.319

Integrated comparisons, reducing the influence of action head training on VLM improves320

the performance.321

3. How to design network architectures to effectively extract information from VLM? There322

could be better mechanism than the current KV extraction method.323

4. How to design faster planning heads for autoregressive planning heads?324

5. How to design better low-level action heads with better planning-following ability?325

6. How to construct large-scale task planning datasets for VLA? How to transfer current326

datasets to task planning datasets? This is because that our finding 6 shows that task327

planning pretraining is useful.328

The limitations of this paper are: 1) despite the VLA-OS family encompassing a wide array of task329

planning paradigms for VLA, there remain several designs and variants that we have not yet covered,330

such as using latent actions [93, 13] for image generation rather than VAR [76, 31]-like generator in331

VLA-OS, video generation for planning [91, 20], and scene flow for planning [27, 81]; 2) we didn’t332

explore embodiment transfer, sim2real transfer, and 2D to 3D transfer problems for VLA; 3) our333

training dataset remains limited to fewer than 10,000 trajectories, and we have not yet investigated334

the research questions that arise from pretraining on larger datasets such as the OXE [60] dataset.335
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A Benchmarks and Dataset Details659

A.1 VLM Pretraining Dataset660

The LLM backbones we choose are Qwen-2.5 [89] series. Since they are not VLM, we first pretrain661

it to VLM with LLaVa v1.5 [52] data mixture, which consists of two subsets used for a multi-stage662

training pipeline. The first subset consists of a 558K sample mixture of examples sourced from663

various captioning datasets, while the second consists of 665K multimodal instruct tuning examples664

comprised of synthetic data generated in [52], as well as examples from existing vision-language665

training sets. According to the conclusion from Prismatic-VLMs [41], we only use the first subset to666

train the VLM in a single-stage optimization procedure, that is, directly fine-tuning all parameters.667

We implement the training code with PyTorch using Fully Sharded Data Parallel (FSDP [101]) and668

BF16 mixed precision and train the VLM with 2 epochs for all Qwen2.5 model types (0.5B, 1.5B,669

3B, and 7B). The training hyperparameters are shown in Table 3.670

Table 3: Training hyperparameters of VLM for Qwen2.5 LLM.
Hyperparameter Value

Batch Size 64
Max Gradient Norm 1.0

Weight Decay 0.1
Learning Rate 2e-5

Optimizer AdamW
Scheduler Warmup & Cosine Decay

Warmup Ratio 0.03

A.2 LIBERO Dataset671

The LIBERO Dataset [51] contains five subsets: LIBERO-Spatial, LIBERO-Object, LIBERO-GOAL,672

LIBERO-LONG, and LIBERO-90. The first four subsets contain 10 tasks for each of them, with 50673

demonstrations for each task. The last subset contains 90 tasks with also 50 demonstrations for each674

task. All tasks have a language instruction that describes the task. We use the two camera views for675

all subsets (the agentview and eye-in-hand view). We use a resolution of 224× 224 for each view of676

the image. The action space is 7-dim, containing 6-dim δx, δy, δz, δroll, δpitch, δyaw and 1-dim677

gripper open/close. We use a history length of 2 and a future action length of 8.678

Following OpenVLA [43], we further clean up the original LIBERO datasets by:679

• We filter out all “no-op” actions from the dataset, i.e., actions that have near-zero magnitude680

in the translation and rotation components and do not change the state of the robot’s gripper.681

• We replay all demonstrations in the corresponding simulation environments and filter out the682

demonstrations that fail to complete the task (as determined by the environments’ success683

criteria).684

A.3 The COLOSSEUM Dataset685

For 3D manipulation tasks and generalization experiments, we use The Colosseum [64] as our task686

benchmark. This benchmark contains 20 single-arm manipulation tasks in simulation. Each task has687

various variants such as lighting, distractors, physical properties perturbations, and camera pose. The688

cameras in this benchmark are depth cameras, so we can get the depth map and then get the point689

cloud observations by fusing all cameras. We follow 3D-DA [42] to preprocess the 3d observations690

to point cloud tokens. Then we send the point cloud tokens to the action head (or the low-level action691

head) as additional inputs, together with the original multi-view images. This makes the action heads692

have the 3D-aware property. For each task, we have 100 demonstrations. The action space is 8-dim,693

containing 3-dim δx, δy, δz and 4-dim δw, δqx, δqy, δqz as the delta quaternion for rotation, and694

1-dim gripper open/close. We use a history length of 2 and action length of 8.695
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A.4 The Real-World Deformable Manipulation Dataset696

For deformable object manipulation tasks, we design three real-world deformable object manipulation697

tasks: unfold the jeans, fold the handkerchief, and straighten the rope, as shown in Figure 4. We use698

two camera views for these tasks, where a third-view camera is mounted on another X-Arm, and699

an eye-in-hand-view camera is mounted on the main X-Arm, as shown in Figure 7. We collect 100700

demonstrations for each task with human teleoperation. The cameras we use are RealSense D435i.701

We freeze the rotation of the X-Arm, so the action space is 4-dim: 3-dim δx, δy, δz and 1-dim gripper702

open/close. The average horizon of these tasks is 214 steps. We also use an observation history length703

of 2 and a future action length of 8.704

(a) The jeans unfold task. (b) The handkerchief folding task. (c) The rope straightening task.

Figure 7: The real-world deformable object manipulation tasks.

A.5 The DexArt Dataset705

We use the DexArt [3] benchmark for dexterous manipulation tasks. This benchmark contains four706

dexterous manipulation tasks built on the Sapien [85] simulator, including turn on the faucet, open707

the laptop, lift the bucket, and open the toilet. The original benchmark is a reinforcement learning708

benchmark, and they provide the official trained policy checkpoint. We load these checkpoints and709

collect 100 demonstrations for each task. We use one camera view for each task.710

A.6 The FurnitureBench Dataset711

For long-horizon complex manipulation tasks, we choose FurnitureBench [32] as our task bench-712

mark. This benchmark provides corresponding simulation environments called FurnitureSim, and it713

provides demonstrations for four tasks: cabinet, lamp, one-leg, and round-table. Each task has 100714

demonstrations. The action space is 8-dim, containing 3-dim δx, δy, δz and 4-dim δw, δqx, δqy, δqz715

as the delta quaternion for rotation, and 1-dim gripper open/close. We use three camera views as716

input.717

A.7 The PerAct2 Dataset718

For dual-arm manipulation tasks, we choose PerAct2 [28] as our task benchmark. We use five719

tasks in this benchmark: handover item, lift ball, put bottle in fridge, straighten rope, and sweep to720

dustpan. As in The Colosseum, we make this benchmark a 3D task benchmark. Each task has 100721

demonstrations. The action space is 22-dim, where 16-dim is for the dexterous hand joint values and722

6-dim is for the end-effector. For this dataset, we do not use the image foresight planning.723

A.8 The Real-World Rigid-Body Manipulation Dataset724

To further verify our conclusions in the real-world setting, we design 5 manipulation tasks in a725

single-arm manipulation setting, as shown in Figure 8. We collect 50 demonstrations for each task.726

The action space is 7-dim.727
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Figure 8: Real world manipulation tasks.
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B Reasoning Dataset Annotation728

B.1 Language Reasoning Dataset729

This dataset contains language-based planning results for the task that understands the scene and730

decomposes the task, as used in [72, 92, 104, 5]. We design a unified language planning format and731

structure applicable to all manipulation tasks with 8 different keys, including Task, Plan, Subtask,732

Subtask Reason, Move, Move Reason, Gripper Position, and Object Bounding Boxes. For exam-733

ple, for the task open the top drawer of the cabinet, the reasoning data should be:734

TASK: Open the top drawer of the cabinet. PLAN: 1. Approach the735

cabinet. 2. Locate the top drawer. 3. Locate and grasp the drawer736

handle. 4. Open the drawer. 5. Stop. VISIBLE OBJECTS: akita black bowl737

[100, 129, 133, 155], plate [17, 131, 56, 158], wooden cabinet [164,738

75, 224, 175] SUBTASK REASONING: The top drawer has been located; the739

robot now needs to position itself to grasp the handle. SUBTASK:740

Locate and grasp the drawer handle. MOVE REASONING: Moving left aligns741

the robot ’s end effector with the drawer handle. MOVE: move left742

GRIPPER POSITION: [167, 102, 166, 102, 165, 102, 164, 102, 162, 102,743

161, 102, 160, 102, 158, 102, 156, 102, 154, 102, 153, 102, 151, 102,744

149, 102, 147, 102, 145, 102, 143, 102]745

Similarly to EmbodiedCoT [95], we provide an overview of our data labeling pipeline in Figure 3. To746

obtain a comprehensive understanding of the scene, we first query the Prismatic-7B VLM [41], which747

outputs a detailed scene description. Next, we derive low-level motion primitives by analyzing the748

robot’s proprioceptive state across a 10-step prediction horizon, assuming a static camera viewpoint,749

and translating these movement traces into a set of pre-defined action templates (e.g., “move left”,750

“move up”). To construct the full reasoning trace, we use Gemini1.5 [74] to synthesize higher-level751

plans. Given the task instruction, scene description, and step-wise movements, Gemini1.5 generates a752

structured plan that includes a sequence of sub-tasks, as well as the specific sub-task relevant to each753

step. Additionally, it provides concise justifications for both the movement taken and the associated754

sub-task.755

However, during experiments, we observed that the quality of the generated reasoning, referred to756

as initial reasoning in Figure 3, was often suboptimal, exhibiting two major issues. First, there was757

inconsistency in the planning outputs: even for the same task, the language descriptions of sub-tasks758

varied significantly. This stems primarily from the inherent randomness in responses from large759

language models such as Gemini1.5. Second, we found a mismatch between the generated plans and760

the actual trajectories. This issue was particularly pronounced in complex, long-horizon tasks (e.g.,761

FurnitureBench [32]), where the provided inputs—task instruction, scene description, and step-wise762

movement primitives—were insufficient for the model to infer coherent and accurate planning steps.763

As a result, the low quality of the initial reasoning posed challenges for training the planning head, as764

the model struggled to learn meaningful mappings from observations to such plannings.765

To address these issues, we applied a filtering and refinement process to the initial reasoning.766

Specifically, for each task, Gemini or human experts selected and edited the task descriptions and767

high-level plans produced by Gemini to ensure consistency across episodes of the same task. Once768

a canonical task and plan were established, we prompted Gemini again to regenerate the step-wise769

reasoning under this fixed structure. This process yielded the final reasoning in Figure 3, which aligns770

better with the trajectories and provides more coherent supervision for training the planning head.771

In addition to the reasoning generated by Gemini, we also incorporate object bounding boxes and772

gripper positions into the final annotations. For real-world data, we adopt a labeling strategy similar773

to EmbodiedCoT [95], leveraging vision-language models to annotate object locations from visual774

inputs. For simulation data, we exploit the availability of camera intrinsics and extrinsics to project775

3D gripper positions into 2D image coordinates. Object bounding boxes can also be directly extracted776

using simulator-provided segmentation masks, enabling efficient and accurate annotation of the visual777

scene.778

Finally, we represent language planning in the following format:779

• Task: A concise natural language description of the goal the robot needs to achieve.780
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• Plan: A high-level sequence of steps to accomplish the task, typically numbered and781

described in imperative language.782

• Subtask: A mid-level action derived from the plan, typically one step at a time, to be783

executed next.784

• Subtask Reason: A rationale explaining why the current subtask is necessary or meaningful785

in context.786

• Move: A specific low-level movement command to guide the robot toward completing the787

subtask.788

• Move Reason: A justification of the chosen movement, often grounded in spatial alignment789

or task constraints.790

• Gripper Position: A list of 2D coordinates that define the intended trajectory or position of791

the robot’s gripper in image space. This often reflects the gripper’s pixel-level alignment792

with the target object.793

• Object Bounding Boxes: A list of objects currently detected in the scene, each annotated794

with a bounding box in pixel coordinates [x1, y1, x2, y2]795

B.2 Visual Reasoning Dataset796

This dataset will generate visual representations in the language format for task planning. Compared797

to pure language-based representations, these visual representations have better spatial semantic798

information and are more grounded in the input images, which are used in recent multi-modal learning799

works [61, 86]. In this work, we use three keys, including object bounding boxes, end-effector800

flow, and target object affordance as the visual planning representations.801

As shown in Figure 3, we use discrete location tokens on the input image to represent visual planning802

results. For an image with width W and height H , we evenly divide both the width and height into P803

segments each, thus we use P × P discrete bins to represent the visual pictures and each bin consists804

of (W/P )× (H/P ) pixels. We use a new location token <loc i> to represent the i-th bin token from805

top-left to bottom-right, and increase the tokenizer’s word vocabulary to add these bin tokens. For806

bounding boxes, we use the top-left and bottom-right bins to represent them. For end-effector flows,807

we use a sequence of bins to represent them. For affordances, we use a region of bins to represent the808

target regions. In this work, W = H = 224, and P = 32, i.e., each bin consists of 7× 7 pixels. For809

example, for the task Put the cream cheese box and the butter in the basket, the visual reasoning data810

should be:811

VISUAL OBJECT BBOXES: alphabet soup <loc_500 , loc_632 >, cream cheese <812

loc_353 , loc_452], tomato sauce <loc_461 , loc_624 >, ketchup <loc_341 ,813

loc_503 >, orange juice <loc_538 , loc_767 >, milk <loc_563 , loc_791 >,814

butter <loc_684 , loc_783 >, basket <loc_448 , loc_775 >. VISUAL EE FLOW:815

loc_387 , loc_387 , loc_387 , loc_419 , loc_419 , loc_419 , loc_419 , loc_419816

, loc_419 , loc_419 , loc_419 , loc_451 , loc_451 , loc_451 , loc_451 ,817

loc_451 >. VISUAL AFFORDANCE: loc_354 , loc_355 , loc_356 , loc_386 ,818

loc_387 , loc_388 , loc_418 , loc_419 , loc_420 >819

Specifically, given a manipulation task T consisting of N steps (i.e.1, 2, ..., N), we take the following820

steps to generate visual-based planning representations {Vbox
i ,Vflow

i ,Vafford
i }Ni=1:821

1. Object Bounding Boxes: We first get instance semantic maps S = {Si}Ni=1 ∈ RN×H×W822

from the simulation engine to compute binary masks for each object in each frame. Next, we823

sequentially apply cv2.morphologyEx() to reduce noise and reconnect fragmented regions,824

cv2.findContours() to detect object contours, and cv2.boundingRect() to compute the825

rectangular bounding box for each detected object. Finally, we annotate the location token of826

the top-left and bottom-right bins for each bounding box. The final bounding box visual an-827

notation for task T can be formulated as
{
Vbox
i

}N
i=1

, where Vbox
i =

{
(loctlj , loc

br
j )
}mi

j=1
.828

2. End-effector Flow: The end-effector flow visual annotation is obtained by directly labeling829

the location tokens corresponding to the gripper positions in the language-based planning830

representation. Formally, the end-effector flow annotation for task T can be formulated as831 {
Vflow
i

}N

i=1
, where Vflow

i = locgripperi .832

21



3. Object Affordance: The object affordance is represented as a heatmap centered on the833

target object to be fetched. We first identify the target object by detecting changes in834

all bounding boxes (e.g. shifts in location or variations in size). Next, we employ the835

pretrained SAM2 [68] model to infer a precise object mask within the target bounding836

box. Finally, we compute a Gaussian heatmap centered at the gripper position within837

the object mask to model the affordance. Location tokens corresponding to regions with838

affordance values exceeding a predefined threshold are then annotated in a top-left to839

bottom-right order. The final object affordance annotation for task T can be formulated as840 {
Vafford
i

}N

i=1
, where Vafford

i = {locj}ni
j=1.841

B.3 Image Foresight Reasoning842

Image Foresight (IF) reasoning dataset will imagine a future goal frame as the most general represen-843

tation for task planning. There is no special effort here to label the goal image. We just select the844

future image from the trajectory.845

Here we want to introduce more about the image generation head. In this work, we use an image846

generation head for planning based on [31]. It auto-regressively generates the image in a coarse-to-847

fine paradigm proposed by [76]. Given an input image, it iteratively quantizes the residual image848

following a coarse-to-fine resolution schedule {(hk, wk)}Kk=1. It also applies a technique called849

Bitwise Self-Correction (BSC) to mitigate the performance gap between training and testing caused850

by teacher-forcing training.851

Formally, inside each quantization iteration k, the tokenizer does the following steps:852

1. Calculate and Quantize Residual: It computes the difference between the original raw853

feature F and the reconstructed flipped feature from the previous iteration (F flip
k−1). This854

residual is then interpolated to the current resolution (hk, wk) and quantized following [90]855

to produce tokens at the current resolution Rk = quantize(down(F − F flip
k−1, (hk, wk))).856

2. Apply Random Flipping For BSC: A random flipping operation (Random_Flip(·)) is857

applied to the quantized residual Rk based on a probability p. This results in the flipped858

residual Rflip
k = Random_Flip(Rk, p).859

3. Reconstruct Flipped Feature: The algorithm reconstructs the cumulative flipped feature860

F flip
k up to the current iteration. It does this by interpolating all previously generated flipped861

residuals (Rflip
i for i from 1 to k) to the original image resolution (h,w) and sums them862

together: F flip
k =

∑k
i=1 up(R

flip
i , (h,w)).863

During inference, generation starts from a global conditioning signal, for example, the text embedding864

in a T2I generation setting. Notably, it generates all tokens of a resolution at once, distinguishing this865

method from the raster-scanning generation paradigm.866

We select [31] as our image generation head based on three primary advantages. Firstly, it surpasses867

the state-of-the-art diffusion-based models [15, 21, 63] in performance on academic benchmarks868

and in human preference evaluations. Secondly, [31] achieves lower inference latency compared869

to prevalent diffusion models, a critical requirement for embodied planning within the hierarchical870

VLA framework. Third, our experiments indicate that the training loss of [31] serves as a stronger871

predictor of the final quality of foresight image generation while necessitating fewer hyperparameter872

adjustments, such as the noise scheduling required by the diffusion models. In practice, when the873

loss drops below 0.1, it indicates that the training is complete.874
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C VLA-OS Model Details875

C.1 Action Head Details876

The action head for all VLA-OS models is in the same architecture, with only different numbers of877

layers. It is a block-wise causal attention transformer with the same number of layers as the LLM878

backbone, as introduced in Section 3.2. Let [KV1, · · · ,KVn] be the KV tokens from the LLM, [t] be879

the denoising timestep embedding token, [q] be the proprioceptive token, and [at, · · · , at+H−1] be880

the action token, sequentially. The tokens in each block can attend to itself and blocks before it, but881

cannot attend to blocks after it. The hyperparameters of the action head are shown in Table 4.882

Table 4: Hyperparameter of the action head transformer.
Layer Number Hidden Size Dropout Head Non-Linear Func

Action Head S 24 512 0.1 8 GELU
Action Head S 28 512 0.1 8 GELU
Action Head S 36 512 0.1 8 GELU
Action Head S 28 512 0.1 8 GELU

The low-level action head used for VLA-OS-H is also a transformer. It has a separate convolutional883

neural network (CNN) for encoding the input images, the visual planning images, and the image884

foresight image. For other parts, it keeps the same setting as the normal action head.885

C.2 Planning Head Details886

All three planning head transformers share the same network structure (the VAE encoder and decoder887

of the image foresight planning head are frozen). The planning head takes as input the keys and888

values from each layer of the LLM backbone. The hyperparameters of the planning head are shown889

in Table 5.890

Table 5: Hyperparameter of the planning head transformer.
Layer Number Hidden Size Dropout Head Non-Linear Func

Action Head S 24 512 0.1 8 GELU
Action Head S 28 512 0.1 8 GELU
Action Head S 36 512 0.1 8 GELU
Action Head S 28 512 0.1 8 GELU

C.3 Training Loss Details891

The action heads can be trained with either L1 behavior cloning loss, or the flow matching loss. L1892

loss is shown to be better than L2 MSE loss for VLA [43, 44]. The L1 loss is:893

LL1(θ) = Es,a∈D
∣∣πθ(s)− a

∣∣. (1)

The flow matching loss is:894

LFM = Eϵ∼N (0,I),t∼U(0,1),s,a∼D||πθ(xt, t|s)− ut||22, (2)

where xt = (1− t)ϵ+ ta and ut =
d
dtxt = a− ϵ.895

The planning head losses for the language planning head and the visual planning head are the standard896

next-token prediction loss. The loss for the image foresight planning head follows the original897

paper [31].898

C.4 Training Details of Hierarchical-VLAs899

The training process of Hierarchical-VLAs can have multiple choices, since they inherently incor-900

porate two models that are not connected by backward gradients. In this work, we aim to reuse901
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the trained model to the greatest extent possible to reduce the cost of repeated training. Thus, for902

Hierarchical-VLAs, we first borrow the trained VLMs backbone as well as the planning heads from903

Integrated-VLAs, and finetune them on the planning datasets to get the high-level models for the904

Hierarchical-VLAs. Later, for the low-level model, we extract the Keys and Values from the high-905

level LLM backbone and use them as the embedding of the input visual and language signals and send906

them to each layer of the low-level action head. For the planning outputs from the high-level planning907

heads, we use different models to encode them: we use a frozen Qwen-2.5 7B [89] model to encode908

the language planning outputs to get the sentence embeddings, a common Convolutional Neural909

Network (with 6-channel inputs of the current 3-channel image and a 3-channel visual planning910

results) to encode the visual planning outputs, and a common Convolutional Neural Network (with911

3-channel inputs of the goal image) to encode the image foresight planning outputs. The gradient of912

the low-level action head will not go backward through the high-level VLM backbone.913
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D Appendix D914

D.1 More Experiments for Comparisons Among Different Paradigms915

In this part, we perform the same experiments in Section 4.3 on more benchmarks, including916

FurnitureBench [32] (a long-horizon rigid body manipulation datasets), DexArt [3] (a dexterous917

manipulation benchmark), and PerAct2 [28] (a dual-arm manipulation benchmark) to verify the918

Finding 5. The FurnitureBench results are shown in Table 6, and more experiment results are shown919

in the website.920

Table 6: More experiments on FurnitureBench, DexArt, and PerAct2. Results are averaged among 20
evaluation episodes of 3 best checkpoints.

VLA-OS-A-S VLA-OS-I-S VLA-OS-H-S

FurnitureBench 0.11 0.14 (↑ 0.03) 0.14 (↑ 0.03)
DexArt 0.45 0.49 (↑ 0.04) 0.48 (↑ 0.03)
PerAct2 0.21 0.28 (↑ 0.07) 0.29 (↑ 0.08)

D.2 Separate Investigation of Task Planning and Policy Learning Parts921

It is imperative to discern whether task failures arise from the planning component or policy learning.922

In this part, we use LIBERO-LONG [51] for Integrated-VLA (only for task planning) and Hierarchical-923

VLA to separately evaluate the task planning part and policy learning part of the model for all924

three planning representations. For evaluation, we manually divide each long-horizon task into925

several sub-tasks, and forcibly reset the environment to the initial state of each subtask. Then926

we compute the average planning correctness I (0 or 1) of the planning outcomes and execution927

success rate S (0 or 1) from the action head across all subtask start points. Thus, for a given task928

trajectory, we can get Decomposition Score (DCS)= 1
T

∑T
t=1 I(pt) and Instruction Following929

Score (IFS)= 1
T

∑T
t=1 S(a

seq
t ), where T is the total sub-task number and pt and aseqt are the planning930

outcomes and actions generated at subtask t. Note for Hierarchical-VLA, we give the ground truth931

planning results when testing IFS. Results are shown in Table 7.932

Finding 8: Hierarchical-VLA performs better than Integrated-VLA in task planning.933

Finding 9: Visually grounded planning representations are easier for low-level policy to follow.934

D.3 Training Cost and Inference Speed935

We report the inference speed and training cost for different paradigms and planning representations.936

The training cost is calculated by multiplying the total training steps by the per-step time on LIBERO-937

LONG with 8× A100 NVIDIA GPUs. Results are shown in Figure 1 and 6b.938

Finding 10: The autoregressive property of the language-planning representation head is the principal939

cause of its higher training cost and slower inference speeds.940

D.4 Data and Model Scalability Experiments941

Table 7: Separate evaluation of task planning and
policy learning modules for different paradigms
and representations. Results are averaged from 20
episodes for each task in LIBERO-LONG.

L V IF

DCS IFS DCS IFS DCS IFS

VLA-OS-I-I 0.79 – 0.83 – 0.92 –
VLA-OS-H 0.81 0.84 0.86 0.93 0.94 0.90

In this part, we perform experiments for942

data and model scalability of different VLA943

paradigms. For data scalability, we use944

LIBERO-LONG [51], a dataset with 10 tasks945

with a total of 500 demonstrations. We use 10%,946

40%, 70%, and 100% of the data to train on947

three VLA paradigms with the model size S. For948

model scalability, we use LIBERO-90, a dataset949

with 90 tasks and 4,500 demonstrations, for the950

experiment with all training data. We choose951

Qwen-2.5 LLM backbone with parameters of 0.5B, 1.5B, 3B, and 7B for experiments. Results are952

shown in Figure 9.953
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(a) Data scalability experiments on LIBERO-LONG
with different planning paradigms with 0.5B LLM back-
bone. Success rates are calculated among 20 evaluation
episodes among the 3 best checkpoints.

(b) Model scalability experiments on LIBERO-90 of all
VLA paradigms. Success rates are calculated among
20 evaluation episodes among the 3 best checkpoints.
We select the best checkpoint before 100k steps.

Figure 9: Data and model scalability experiments across different VLA paradigms.

Finding 11: The performance of all VLA paradigms improves as the amount of action-labeled954

demonstration data increases, i.e., all VLA paradigms have the data scalability.955

Finding 12: For tasks trained from scratch with roughly 5,000 demonstrations, the LLM backbone956

should be limited to 0.5B parameters, or keeping the total model size under 1B parameters.957

D.5 Continual Learning Experiments of Different VLA Paradigms958

Continual learning for robot imitation learning [51, 24] measures the degree to which the VLA model959

forgets old tasks when continuously learning new tasks. In this part, we test the continual learning960

capacities of three paradigms and three representations on 10 tasks of LIBERO-LONG sequentially.961

We only use Sequential Finetuning (SEQL) as our lifelong learning algorithm. We use the original962

metrics from LIBERO [51], including forward transfer (FWT), negative backward transfer (NBT),963

and area under the success rate curve (AUC). Denote ci,j,e as the agent’s success rate on task j when964

it learned over i− 1 previous tasks and has just learned e epochs (e ∈ 0, 2, · · · , 20) on task i. Let965

ci,i be the best success rate over all evaluated epochs e for the current task i (i.e., ci,i = maxe ci,i,e).966

Then, we find the earliest epoch e∗i in which the agent achieves the best performance on task i (i.e.,967

e∗i = argmine ci,i,ei = ci, i), and assume for all e ≥ e∗i , ci,i,e = ci, i. Given a different task j ̸= i,968

we define ci,j = ci, j, e∗i . Then the three metrics are defined as follows:969

FWT =
∑

k∈[K]

FWTk

K
, FWTk =

1

11

∑
e∈{0...50}

ck,k,e,

NBT =
∑

k∈[K]

NBTk

K
, NBTk =

1

K − k

K∑
τ=k+1

(ck,k − cτ,k) ,

AUC =
∑

k∈[K]

AUCk

K
, AUCk =

1

K − k + 1

(
FWTk +

K∑
τ=k+1

cτ,k

)
.

(3)

Results are shown in Table 8 and Table 9.970

Finding 13: VLA paradigms with task planning (Integrated-VLA and Hierarchical-VLA), compared971

to the non-planning paradigm (ActionOnly-VLA), achieve higher forward transfer but incur faster972

forgetting.973

Finding 14: Visually grounded planning representations deliver superior forward transfer and exhibit974

slower forgetting relative to language-based planning representations.975
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Table 8: Continual learning results on LIBERO-
LONG of three different VLA paradigms. The
VLA-OS-I and VLA-OS-H are trained with three
planning representations together.

FWT(↑) NBT(↓) AUC(↑)

VLA-OS-A 0.71 0.32 0.25
VLA-OS-I 0.75 0.43 0.29
VLA-OS-H 0.80 0.45 0.32

Table 9: Continual learning results on LIBERO-
LONG of three different planning representa-
tions (Language (L), Visual (V), and Image Fore-
sight (IF)) on VLA-OS-I.

FWT(↑) NBT(↓) AUC(↑)

L 0.72 0.47 0.26
V 0.74 0.40 0.28
IF 0.75 0.39 0.27
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