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ABSTRACT

Statistical divergences quantify the difference between probability distributions,
thereby allowing for multiple uses in machine-learning. However, a fundamental
challenge of these quantities is their estimation from empirical samples since the
underlying distributions of the data are usually unknown. In this work, we pro-
pose a divergence inspired by the Jensen-Shannon divergence which avoids the
estimation of the probability density functions. Our approach embeds the data in a
reproducing kernel Hilbert space (RKHS) where we associate data distributions
with uncentered covariance operators in this representation space. Therefore, we
name this measure the representation Jensen-Shannon divergence (RJSD). We
provide an estimator from empirical covariance matrices by explicitly mapping the
data to an RKHS using Fourier features. This estimator is flexible, scalable, differ-
entiable, and suitable for minibatch-based optimization problems. Additionally, we
provide an estimator based on kernel matrices without an explicit mapping to the
RKHS. We provide consistency convergence results for the proposed estimator as
well as connections with Shannon’s differential entropy. Moreover, we demonstrate
that this quantity is a lower bound on the Jensen-Shannon divergence, leading to a
variational approach to estimate it with theoretical guarantees. We leverage the pro-
posed divergence to train generative networks, where our method mitigates mode
collapse and encourages samples diversity. Additionally, RJSD surpasses other
state-of-the-art techniques in multiple two-sample testing problems, demonstrating
superior performance and reliability in discriminating between distributions.

1 INTRODUCTION

Divergences quantify the difference between probability distributions. In machine-learning, diver-
gences can be applied to a wide range of tasks, including generative modeling (generative adversarial
networks, variational auto-encoders), two-sample testing, anomaly detection, and distribution shift
detection. The family of f-divergences is among the most popular statistical divergences, including
the well-known Kullback-Leibler and Jensen-Shannon divergences. A fundamental challenge to using
divergences in practice is that the underlying distribution of data is unknown, and thus divergences
must be estimated from observations. Several divergence estimators have been proposed (Yang &
Barronl, [1999; |Sriperumbudur et al., 2012} |Krishnamurthy et al.| 2014;|Moon & Herol 2014} Singh &
Poczos, 20145 L1 & Turner, |2016; Noshad et al.l [2017;Moon et al.,[2018; Bu et al.l [2018; |Berrett &
Samworth| 2019; [Liang| 2019; |[Han et al., 2020; |Sreekumar & Goldfeld, 2022}, most of which fall
into four categories: plug-in, kernel density estimation, k-nearest neighbors, and neural estimators.

Kernel methods are another approach for measuring the interaction between probability distributions.
For example, the maximum mean discrepancy (MMD) (Gretton et al.,2012) is a divergence com-
puted as the distance between the mean embeddings (first-order moments) of the two probability
distributions in a reproducing kernel Hilbert space (RKHS). However, due to the underlying geometry,
MMD lacks a straightforward connection with classical information theory tools (Bach, [2022). On
the other hand, covariance operators (second-order moments) in RKHS have been used to propose
multiple information theoretic quantities, such as marginal, joint, and conditional entropy (Sanchez
Giraldo et al.,[2014), as well as mutual information (Yu et al., 2019), and total correlation (Yu et al.,
2021). However, strategies for estimating divergences within this framework have been less explored.

To fill this void, we propose a kernel-based information theoretic learning framework for divergence
estimation. We make the following contributions:
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* A novel divergence, the representation Jensen-Shannon divergence (RJSD), that avoids the estima-
tion of the underlying density functions by mapping the data to an RKHS where distributions can
be embedded using uncentered covariance operators acting in this representation space.

* An estimator from empirical covariance matrices that explicitly map data samples to an RKHS using
Fourier features. This estimator is flexible, scalable, differentiable, and suitable for minibatch-based
optimization problems. Additionally, an estimator based on kernel matrices without an explicit
mapping to the RKHS is provided. Consistency results and sample complexity bounds for the
proposed estimator are discussed.

* A connection between the kernel-based entropy and Shannon’s entropy, as well as the relationship
between RISD with the classical Jensen-Shannon divergence. Namely, RISD emerges as a lower
bound on the classical Jensen-Shannon divergence enabling the construction of a variational
estimator for the classical Jensen-Shannon divergence with statistical guarantees.

We use RJSD for training generative adversarial networks and show that it prevents mode collapse
and encourages diversity, leading to more accurate and heterogeneous results. We also apply RISD
for two-sample testing problems and show that it accurately detects differences between probability
distribution functions even for cases where other state-of-the-art measures fall short.

2 BACKGROUND

2.1 MEAN EMBEDDINGS AND COVARIANCE OPERATORS

Let (X, Bx) be a measurable space and x : X x X — Rx( be a positive definite kernel. There
exists a mapping ¢ : X — JH, where H is a reproducing kernel Hilbert space (RKHS), such that
k(z,2") = (¢p(x), ¢(x'))5¢. The kernel mean embedding (Smola et al.,[2007)) is a mapping p from
M (X) to H, where M (X) is the space of probability measures on X. The kernel mean embedding
is defined as follows:

e = Bxosld(X)] = [ 6(a)dP@), forP e e}, M

An important property of the mean embedding is that if Ex.p[x(X, X)] < oo, for any f € J, then
Ex~p[f(X)] = (f, pp)ac.

Another related mapping is the uncentered covariance operator (Baker,|[1973). In this case, P € M_li_
is mapped to an operator Cp : H — JH given by:

Cp = Exp[6(X) ® 6(X)] = /x b(x) ® ¢(z) dP(x), @

where ® is the tensor product. Similarly, for any f,g € H, Ex..p[f(X)g(X)] = (9, Cpf)3c. The
covariance operator is positive semi-definite and Hermitian (self- adjoint). Additionally, if the kernel
is bounded, the covariance operator is trace class (Sanchez Giraldo et al.,[2014; Bachl [2022). The
spectrum of the covariance operator is discrete and consists of non-negative eigenvalues \; with
> Ai < oo for which we can extend functions on R such as ¢ log(¢) and ¢* to covariance operators
via their spectrum Naoum & Gittan|(2004). For a sample X = {z;}}¥ | of size N, where z; € X,
drawn from PP, the empirical uncentered covariance operator is defined as:

N
Cx = > 0(w) @ ol:) 3)
i=1

2.2  KERNEL-BASED INFORMATION THEORY

We can define information theoretic quantities on the spectrum of normalized covariance operators
with unit trace. This observation was made by [Sanchez Giraldo et al.[| (2014) who proposed the
kernel-based entropy functional: S, (Cp) = 12 log [Tr(Cg)]. Tr(-) denotes the trace operator, C§
is defined based on the spectrum of Cp, and o > 0 is the entropy order. This quantity resembles
quantum Rényi entropy (Miiller-Lennert et al.,2013)) where the covariance operator plays the role of
a density matrix In the limit when o« — 1, So—1(Cp) = — Tr (Cp log Cp) becomes von Neumann
entropy of the covariance operator. This connection between covariance operators in RKHS and
information theory has been also discussed by |Bach|(2022).

'A density matrix is a matrix that describes the quantum state of a physical system
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Kernel-based entropy estimator: The kernel-based entropy estimator relies on the spectrum of the
empirical uncentered covariance operator in Eqn. |3} We focus on the case of normalized kernels where
k(z,z) = 1 for all z € X. We denote the Gram matrix Kx, consisting of all normalized pairwise
kernel evaluations of data points in the sample X, thatis (Kx);; = s(x;, ;) ford,j =1,...,N. It
can be shown that Cx and %KX have the same non-zero eigenvalues (Sanchez Giraldo et al.,[2014;
Bachl, 2022) yielding the kernel-based entropy estimator:

S(Kx)=—Tr(+Kxlog 2 Kx) = Z/\ log i, 4)

where \; represents the ¢th eigenvalue of %KX. The eigen-decomposition of Kx has O(NN?) time
complexity, which needs to be taken into consideration depending on the use case.

Covariance-based estimator: ~Alternatively, we can use an explicit mapping ¢, : X — H” to a
finite dimensional RKHS. We propose to use Fourier features to construct a mapping function to 3.
For X C R< and a shift-invariant kernel x(x,2’) = k(z — z’), the random Fourier features (RFF)
(Rahimi & Recht, 2007) is a method to create a smooth feature mapping ¢,,(z) : X — R so that
k(z —2') = (¢, (x), pu(x')). To generate an RFF mapping, we compute the Fourier transform of

the kernel, p(w) = 5 [ e=3%"8,5(8)ds, which yields a distribution on R? with density p(w). From

this distribution, we draw % i.i.d samples wy,...,wp/s € R?. Finally, the mapping is given by
bu(x) = /3 {cos(wle), sin(w{ x),- - - ,cos(wg/Q:c), sin(wg/Qw) )
Letting ®x = [gzﬁw (x1)7, o (x2), -+, Pu (acN)]T be the N x D matrix containing the mapped

samples, we can compute the empirical uncentered covariance matrix as Cx = %@} ® x. Finally,
we exploit the eigenvalues of the uncentered covariance matrix to compute the von Neumann entropy
of Cx as:

S(Cx)=—-Tr(CxlogCx) = Z)\ log A\;, 5)

where \; represents the ith eigenvalue of Cx. This eigendecomposition has O(D?) time complexity,
where D is independent of the sample size.

Both estimators of kernel-based entropy can be used in gradient based learning (Sanchez Giraldo &
Principel [2013; |Sriperumbudur & Szabdl [2015). The kernel-based entropy has been used as a building
block for other matrix-based measures, such as joint and conditional entropy, mutual information (Yu
et al.| 2019), total correlation (Yu et al., 2021}, and divergence (Hoyos Osorio et al.,[2022). Despite
the success of the aforementioned measures, their connection with the classical information theory
counterparts remains unclear.

For the case where X C R? and the distribution P has a corresponding probability density function p,
we can establish an explicit connection between the kernel-based entropy estimator and Shannon’s
differential entropy, H(p) = — fx p(z) log p(x)dx.

Definition 1. Let ¢ : DC — H be a mapping to a reproducing kernel Hilbert space (RKHS), and
k1 X x X — Rxq be a positive definite kernel, such that k(z,x") = (¢(x), p(z)) 3¢, and k(x, z) = 1
for all x € X. Then, the kernel density function induced by the mapping ¢ is defined as follows:

ﬁ($)=%<¢(x),0p¢(x)> - | R 4 [ Reapee. @

where h = [, (¢(x), Cpd(x)) dx is the normalizing constant.

Eqn. [6]can be interpreted as an instance of the Born rule which calculates the probability of finding a
state ¢(x) in a system described by the covariance operator Cp (Gonzalez et al.{[2022). Equivalently,
the right-most side can be seen as smoothing the density p with a kernel (-, )

Theorem 1. Let p(x) be the kernel density function induced by a mapping ¢ : X — X, then, the
cross entropy between p and p is:

H(p.f) = — /x p() log p(x)dz = S(Cp) + log(h). ™
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Proof: See Appendix [A.T]

From Theorem [T] we can see that the covariance operator entropy relates to a plug-in estimator of
Shannon’s differential entropy based on the Parzen density estimator. We can use well-known results
about the convergence of the Parzen-density estimator (Dmitriev & Tarasenko, |1974) to derive the
convergence of both kernel-based and covariance-based entropy estimators.

Theorem 2. let k(z,2') = exp (—yn ||z — 2'||?) be a Gaussian kernel with scale parameter ~yy =

%N 14 and let p(z) be any bounded probability density function on X, then S(Kx) converges to
H(p) as N — oo with probability one. Proof: See Appendix[A.2]

A similar result can be proved for empirical covariance operators generated through RFFs.

Theorem 3. Let ¢, : X — RP be a Fourier features mapping approximating the Gaussian kernel
with scale parameter 25 = %N V4 and let p(x) be any bounded probability density function on
X. Then, S(Cx) converges to H(p) as N — oo and D — oo with probability one. Proof: See

Appendix

3 REPRESENTATION JENSEN-SHANNON DIVERGENCE

For two probability measures P and Q on a measurable space (X, By ), the Jensen-Shannon diver-
gence (JSD) is defined as follows:

P+Q 1
D00 = H (T52) - 5 (H(P) + HQ). ®
where @ is the mixture of both distributions and H () is Shannon’s entropy. Properties of JSD,

such as boundedness, convexity, and symmetry have been extensively studied (Briét & Harremogs),
2009; [Sral [2021). The Quantum counterpart of the Jensen-Shannon divergence (QJSD) between
density matrices p and o is defined as D,5(p,0) = S (25%2) — 2 (S(p) + S(0)), where S(-) is von
Neumann’s entropy. QJSD is everywhere defined, bounded, symmetric, and positive if p # o (Sra,
2021)). Similar to the kernel-based entropy, we let the covariance operators play the role of the density

matrices to derive a measure of divergence that can be computed directly from data samples.

Definition 2. Let P and Q be two probability measures defined on a measurable space (X, Bx),
and let ¢ : X — H be a mapping to a reproducing kernel Hilbert space (RKHS) H, such that
(p(x), d(x))gc = 1 for all x € X. Then, the representation Jensen-Shannon divergence (RJSD)
between uncentered covariance operators Cp and Cy is defined as:

o) - 5100 + 5(Ca). ©

D (e o) =5 :

3.1 THEORETICAL PROPERTIES

RIJSD inherits most of the properties of classical and quantum Jensen-Shannon divergence. Non-
negativity: D?S(CP,C@) > 0. Positivity: D95(Cp, Cg) = 0 if and only if Cp = Cy. Symmetry:
D%4(Cp,Cy) = D%s(Cp, Co). Boundedness: D%(Cp, Cq) < log(2). Also, D% (Cp,Cg)? is a
metric on the cone of uncentered covariance matrices in any dimension (Virosztek, [2021]).

Below, we introduce key properties of RJSD and the connection with its classical counterpart.

Theorem 4. For all probability measures P and Q defined on X, and covariance operators Cp and
Cq with RKHS mapping ¢(-) under the conditions of Deﬁnition@ the following inequality holds:

D?S(C]P7CQ) < DJS(]R @) (10)

Proof: See Appendix [A.4]

Theorem 5. let P and Q be two probability measures defined on X, with probability density functions

p and q respectively. If there exists a mapping ¢* such that p(x) = hip (¢p*(x), Cpo*(x)) and

q(z) = % (¢*(x), Coo*(z)), then:
D,s(P,Q) = D%, (Cp, Cg). (11)
Proof: See Appendix [A.5]
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This theorem implies that the bound in Eqn. [10|is tight for optimal functions ¢ (x) that approximate
the true underlying distributions through Eqn. [6f Theorems [d]and 5]can be used to obtain a variational
estimator of Jensen-Shannon divergence (see Section ).

Finally, we show that RISD relates to MMD with kernel x2(-, -), where MMD is formally defined as
MMD, (P, Q) = [lue — pgllsc.

Theorem 6. For all probability measures P and Q defined on X, and covariance operators Cp and
Co with RKHS mapping ¢(x) such that (¢(z), p(z))5c =1 Va € X:

1
DSs(Cr, Cg) = g MMD,: (P, Q) (12)

Proof: See Appendix

The result of Theorem [6] should not be underestimated. Since MMD is a lower bound on the RISD,
any discrepancies between distributions that can be detected with MMD should be also detected with
RIJSD. That is RISD should be at least as good as MMD. Moreover, it also shows that RISD is well
defined for characteristic kernel, for which RJSD is non zero if P # Q.

3.2 ESTIMATING THE REPRESENTATION JENSEN-SHANNON DIVERGENCE

Given two sets of samples X = {xz} _,CXandY = {yz} —, C X with unknown distributions P
and QQ, we propose two estimators of RISD.

Kernel-based estimator: Here, we propose an estimator of RJSD from kernel matrices without an
explicit mapping to the RKHS.

Lemma 1. Let Z be the mixture of the samples of X and Y, that is, Z = {zi}ij\s;M where
z; =x;fori € {1,...,N}and z; = y;_n fori € {N +1,...,N + M}. Also, let Kz be the
kernel matrix consisting of all normalized pairwise kernel evaluations of the samples in Z, then

S (N+va + N+MC’y) = S(Kz). (Proof: See Appendix.

Since the spectrum of Kx and C'x have the same non-zero eigenvalues, likewise Ky and C'y, the
divergence can be directly computed from samples in the input space as:

D5o(X.Y) = 8 (Kz) — (5257 S(Kx) + 5257 S(Kv)) (13)

Leveraging the convergence results in Bach|(2022)[Proposition 7] of the empirical estimator S(Kx )
to S(Cp), we can show that D", (X,Y) converges to the population quantity D%(Cp, Cp) at arate

0 (\/L) ,assuming N = M. Details of this rate are given in Appendlx Additionally, a direct

consequence of Theoreml is that under the same assumptions of the theorem, D% (X,Y) converges
to D,s(P,Q) as N — oo with probability one.

Covariance-based estimator: We propose to use Fourier features to construct a mapping function
¢, + X = Hp to a finite-dimensional RKHS as explained in Section Let ®x € RVxP
and ®y € RM*PD be the matrices containing the mapped samples of each distribution. Then, the
empirical uncentered covariance matrices are computed as Cx = %@} Py andCvy = ﬁi’;@y.
Finally, the covariance-based RJSD estimator is defined as:

D7:(Cx,Cy) =S (NfMCX + N]X[MCY> - <N+M (Cx) + N+MS(CY)) (14)

Finally, we use Eqn. [5]to estimate the entropies of the covariance matrices. Notice, that the use of
the Fourier features is not solely to reduce computational burden by approximating the kernel-based
estimator. The Fourier features allow a parameterization of the representation space, for kernel-
learning. We can treat the Fourier features as learnable parameters within a neural network (Fourier
Feature network), optimizing them to maximize divergence and enhance its discriminatory power.
Consequently, the Fourier features approach offers a more versatile estimator that extends beyond
reducing computational cost.
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4 VARIATIONAL ESTIMATION OF CLASSICAL JENSEN-SHANNON DIVERGENCE

We exploit the lower bound in Theorem []to derive a variational method for estimating the classical
Jensen-Shannon divergence (JSD) given only samples from P and Q. Accordingly, we choose ® to
be the family of functions ¢, : X¢ — HP parameterized by w € Q. Here, we aim to optimize the
Fourier features to maximize the lower bound in Eqn. [ Notice that we can also use a neural network
f. with a Fourier features mapping ¢,, in the last layer, that is, ¢, o f., = ¢w(f.(z)). We call this
network a Fourier-features network (FFN). Finally, we can compute the divergence based on this
representation, leading to a neural estimator of classical JSD.

Definition 3. (Jensen-Shannon divergence variational estimator). Let ® = {¢,, o f.} ¢ be the set
of functions parameterized by a FFN. We define our JSD variational estimator as:
D,s(P,Q) = sug D% (Cp, Cy). (15)
we

This approach leverages the expressive power of deep networks and combines it with the capacity
of kernels to embed distributions in a RKHS. This formulation allows to model distributions with
complex structures and improve the convergence of the estimator by the universal approximation
properties of the neural networks (Wilson et al., 2016} [Liu et al., 2020). Algorithm|[I]in Appendix [B]
describes the proposed estimator.

5 EXPERIMENTS

5.1 VARIATIONAL JENSEN-SHANNON DIVERGENCE ESTIMATION

First, we evaluate the performance of our variational estimator of Jensen-Shannon divergence (JSD) in
a tractable toy experiment. Here, P ~ p(z;1,, s,) and Q ~ p(x;1,, s4) are two Cauchy distributions
with location parameters [, and I, and scale parameters s,, = s, = 1. We vary the location parameter
of Q over time to control the target divergence. We use a closed form of the JSD between Cauchy
distributions derived by Nielsen & Okamura|(2022) to determine the location parameter (see Appendix
[C1] for more details). Then, we apply Algorithm [I]to estimate JSD drawing N = 512 samples
from both distributions at every epoch. We compare the estimates of divergence against different
neural estimators. JSD corresponds to the mutual information between the mixture distribution and a
Bernoulli distribution indicating when a sample is drawn from P or Q. Therefore, we use mutual
information estimators to approach the JSD estimation, such as NWJ (Nguyen et al., 2010), infoNCE
(Oord et al., 2018)), CLUB (Cheng et al., 2020), MINE (Belghazi et al., [2018). We also employ
KNIFE (Pichler et al.;[2022) to estimate the entropy terms and compute JSD.

Fig. [[|shows the estimation results. All compared methods approximate JSD; however, some of them
struggle to adapt to distribution changes. These abrupt adjustments could lead to instabilities during
training. In contrast to the compared methods, the RJSD estimator accurately estimates divergence
with a lower variance, adjusting itself smoothly to changes in the distributions. Additionally, by
using Exponential Moving averages (EMA) of the covariance matrices, the estimation variance
decreases further yielding a smoother estimation. Finally, we compute RJSD for a fixed set of Fourier
features without any optimization (no gradients backpropagated), and we can observe that RJSD still
approximates the true divergence. This result agrees with theorem [5]suggesting that the computed
kernel implicitly approximates the underlying distributions of the data.

5.2 GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GANSs) are a family of models to generate images/audio. GANs
algorithms minimize the dissimilarity between the generated and the real data distributions (Farnia
& Ozdaglar, [2020). For example, the vanilla GAN algorithm (Goodfellow et al.,[2020) minimizes
the Jensen-Shannon divergence (JSD), whereas Wasserstein-GANs (Arjovsky et al.| 2017) and
MMD-GAN:Ss (Li et al.| | 2017) minimize their respective statistical distances.

GANSs, however, usually suffer from mode collapse failing to cover the multiple modes (classes)
of the real data (Choi & Han| 2022). This deficiency yields generative distributions with lower
entropy compared to the target distribution (Che et al.l |2016). One common approach to prevent
mode collapse is through entropy regularizers (Belghazi et al., [2018} |Dieng et al., 2019).
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Figure 1: Jensen-Shannon Divergence estimation for two set of samples following Cauchy distribu-
tions (N = 512). We compare the following estimators: NWJ (Nguyen et al.|[2010), infoNCE (Oord
et al., 2018)), CLUB (Cheng et al.} 2020), MINE (Belghazi et al.} 2018)), KNIFE (Pichler et al.| [2022),
RJISD, RJSD with EMA, RJSD for a fixed kernel. The black line is the closed-form JS divergence
between the Cauchy distributions. The parameters of the distributions are changed every 200 epochs
to increase the divergence.

Below, we propose a methodology for training GANSs using RJSD in the objective function. From
first principles, RJSD should work for reducing mode collapse without requiring auxiliary entropy
regularizers. The RISD-GAN is formulated as follows:

i DY (X, Y? 1
min max 7s(X, YY), (16)

where X are samples from the real data, and Y? are samples created by a generator Gy. Instead
of classifying real and fake samples, we use a Fourier-features network {¢., o fu} cq (FFN, see
Sectionfd) to learn a multidimensional representation in an RKHS where the divergence is maximized.
Subsequently, the generator {Glg } . attempts to minimize RISD. We follow a single-step alternating
gradient method (see Algorithm[3]in Appendix[B). We assess our GAN formulation in two well-known
mode-collapse experiments: eight Gaussians dataset and stacked MNIST.

5.2.1 SYNTHETIC EXPERIMENTS

We apply RJISD to train a GAN in a synthetic exper- Table 1: KL divergence between real and gen-
iment. The target distribution is a mixture of eight erated distributions on eightmodes dataset.
Gaussian distributions arranged in a circle. Fig. '

shows the real data and the samples generated by var- TSI A"e{,@i:sg;tg;‘l’_eé%me Hinge

ious learning functions to train GANs. As expected, 0.699 = 0.245 0981 +0.701  1.623 = 1.000

the standard (vanilla) GAN fails to generate samples

from all modes (Fig. 2(a)). The Hinge (Lim & Ye, Table 2: Number of modes and KL divergence
2017) and Wasserstein-GP GANs (Gulrajani et al., between real and generated distributions on
2017) successfully produce samples representing all  stacked MNIST.

eight modes, yet Figs. [2(b)|and exhibit gener-

ated samples with reduced variance/diversity (lower (MMO?S?) 0 KL
. . ax
entropy) within each mode: a phenomenon termed DCGAN (Radford ot al 2015} 99.0 340
: _ ALI (Dumoulin et al.[[2016) 16.0 5.40
intra class.collapse. As we observe, the generated ) (AR (NG SaT 2016} 15 s
samples fail to cover the entire support of each Gaus- ~ VEEGAN (Srivastava et al.|[2017) 150 2.95
. d 1 . ds th I WGAN-GP (Gulrajan: et al.[[2017) 959.0 0.72
sian mode clustering towards the center. In contrast  presGAN (Dieng et al112019) 999.6 + 0.4 0.11 £ 7.00—2
PacGAN (L et al.||2018) 1000.0 + 0 0.06 = 1.0e—2
to the compared meth(,)ds’ the samples generated by GiN i (Belghazi et al|[2018) 1000.0 £0 0.05 =+ 6.9¢—3
the RISD-GAN show improved mode coverage and  GAN + rep JSD 1000.0 £ 0 0.04 £ 1.26-3

higher diversity. This is visually noticeable in Fig.
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Figure 2: GANs with different loss functions to evaluate mode collapse in samples using rep

eight Gaussians dataset. RISD improves mode coverage and sample diversity. jgp.

[2(d)} Additionally, we perform the following quantitative analysis. We cluster the eight modes
generated by each method and estimate their mean and covariance matrices (see Fig. |1|in Appendix
[C21). Then, we calculate the Kullback-Leibler (KL) divergence between the real Gaussian modes
and their generated counterparts. Finally, we average the divergence among the eight modes. Table
[T highlights the superiority of RJSD in terms of KL divergence when contrasted with the baseline
methods. This empirical evidence supports the efficacy of RJSD to avoid mode collapse and to
generate samples matching the target distribution beyond visual comparability.

5.2.2 STACKED MNIST

We conduct a quantitative evaluation to assess the efficacy of RJSD in reducing mode collapse on
the stacked MNIST dataset. This dataset consists of three randomly sampled MNIST digits stacked
along different color channels. This procedure results in 1000 possible classes (modes) corresponding
to all combinations of the 10 digits. We use the standard DCGAN generator architecture (Radford
et al., |2015), and modify the discriminator architecture to include a Fourier-features mapping (see
implementation details in Appendix[C.2.2). We compare our method against a considerable number
of GAN algorithms using the same generator and following the same evaluation protocol. We utilize
a pre-trained classifier to quantify the number of distinct generated modes. Additionally, we calculate
the Kullback-Leibler (KL) divergence between the distribution of the generated modes and the
real mode distribution. Finally, we average the results over five runs. Table Q] shows the results,
and RJSD captures all modes and steadily generates samples from all classes achieving the lowest
KL-divergence compared to the baseline approaches. Although our algorithm is a standard GAN
that explicitly minimizes the Jensen-Shannon divergence, RISD does not require the incorporation of
entropy regularizers or mode-collapse prevention mechanisms beyond the learning function itself.

5.3 TWO SAMPLE TESTING

We evaluate the performance of RJISD for two-sample testing on different datasets and compare it
against different state-of-the-art (SOTA) methods. We perform the following tests: (a) RISD-FF:
Two-sample test based on RISD, optimizing the Fourier features. (b) RISD-RFF: Two-sample test
based on RJSD using random Fourier features, optimizing just the length-scale of the associated
Gaussian kernel. (¢c) RISD-D: Two-sample test based on RJISD using a deep Fourier-features network
as explained in section E] (see implementation details in Appendix. (d) RISD-K}t Two-sample
test based on the kernel RISD estimator, optimizing the length-scale of a Gaussian kernel. (e)
MMD-O: Two-sample test based on MMD, optimizing the length-scale of the Gaussian kernel (Liu
et al.;,2020). (f) MMD-D: Two-sample test based on MMD with a deep kernel (Liu et al., [2020). (g)
C2ST-L: a classifier two-sample test based on the output classification scores (Cheng & Cloninger,
2022). (h) C2ST-S: a classifier two-sample test based on the sign of the output classification scores
(Lopez-Paz & Oquab) 2016)).

We perform two-sample testing on two synthetic and two real-world datasets. Specifically, we perform
permutation tests and the testing procedure is detailed in Appendix

Blobs dataset (Liu et al., [2020): In this dataset, P and Q are mixtures of nine Gaussians with
the same modes. Each mode in IP is an isotropic Gaussian; however, the modes in Q have different

We did not perform this test for large size datasets due to computational restrictions
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Figure 4: Average test power. (a) Blobs data. (b) High dimensional Gaussian mixture (GM), fixed
d = 10. (c) High dimensional GM, fixed N + M = 4000 (d) Higgs data. Significance level a = 0.05.

Table 3: MNIST average test power (o = 0.05). Bold represents higher mean per column.

N+ M 200 300 400 500 600

RJSD-FF 0.374 £0.100 0.811+0.012  0.996+ 0.001  1.000 +0.000  1.000-0.000
RIJSD-RFF  0.184 +0.025 0.3204+0.029 0.436 £0.030  0.644 £0.037  0.800 £0.051
RJSD-D 0.352+0.084  0.898 £0.108  1.000 +£0.000 1.000+ 0.000 1.000+ 0.000
MMD-O 0.148+0.035 0.2214+0.042 0.283+0.042  0.3984+0.050  0.498+ 0.035
MMD-D 0.449+ 0.124  0.704+0.182 0.985+0.010  0.9994+ 0.003  1.000+ 0.000
C2ST-L 0254+ 0.126 0424+ 0.113  0.818+0.102 0.967+ 0.029 0.994+ 0.010
C2ST-S 0.181£0.112  0.364+ 0.104  0.759+0.121  0.9454+0.042 0.986+ 0.014

covariances. Here, we perform two-sample testing increasing the number of samples per blob
(N = 9 x samples per blob). Fig[i(a)|presents the results. We can clearly see that RISD-FF, RISD-D,
and JSD outperform all SOTA methods. We can conclude that even for a small number of samples
the RJSD-based methods exhibit high test power.

High-Dimensional Gaussian Mixtures (Liu et al.,[2020): In this dataset, P and QQ have the same
modes, and their covariances differ only on a single dimension. See |Liu et al.| (2020) for details.
We test both, changing the number of samples while keeping the dimension constant (d = 10) and
maintaining the number of samples (N = 4000) while modifying the dimensionality. Figs. A(b) and
M(c)|display the results. RISD-D and RISD-FF are the winners in most settings, although C2ST-L
performs better at higher dimensions.

Higgs dataset (Baldi et al., 2014): Following|Liu et al.|(2020) we perform two-sample testing on
the Higgs dataset (d = 4) as we increase the number of samples. Fig. 4(d)[shows the results. Once
again, RJSD-D and RJSD-FF outperform the baselines in almost all scenarios.

MNIST generative model: Here, we train RISD models to distinguish between the distribution P
of MNIST digits and the distribution Q of generated samples from a pretrained deep convolutional
generative adversarial network (DCGAN) (Radford et al.| [2015). Table [3|reports the average test
power for all methods as we increase the number of samples. RISD-D consistently outperforms the
compared methods, except with the lowest number of observations.

6 CONCLUSIONS

We introduce the representation Jensen-Shannon divergence (RJSD), a novel measure based on
embedding distributions in a feature space allowing the construction of non-parametric estimators
based on Fourier features. Notably, this estimator demonstrates scalability, differentiability, making
it suitable for diverse machine-learning problems. We demonstrate that RJSD provides a lower
bound on the classical Jensen-Shannon divergence leading to a variational estimator of high precision
compared to related approaches. We leverage this novel divergence to train generative networks,
and the empirical results show that RJISD effectively mitigates mode collapse yielding generative
models that produce more accurate and diverse results. Furthermore, when applied to two-sample
testing, RJISD surpasses other SOTA techniques demonstrating superior performance and reliability
to discriminate between distributions. These findings highlight the significant practical implications
of our divergence measure.
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