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ABSTRACT

Large Vision-Language Models (LVLMs) have demonstrated promising perfor-
mance in chest X-ray (CXR) analysis. To enhance human-computer interac-
tion, several studies have incorporated radiologists’ eye gaze, typically through
heatmaps or textual prompts. However, these methods often overlook the sequen-
tial order of eye movements, which could provide valuable insights by highlight-
ing both the areas of interest and the order in which they are examined. In this
work, we propose a novel approach called RadEyeVideo that integrates radiol-
ogists’ eye-fixation data as a video sequence, capturing both the temporal and
spatial dynamics of their gaze. The video, featuring a red gaze point overlaid
on CXR images, emphasizes regions of focused attention during interpretation.
We evaluate this method in CXR report generation and disease diagnosis using
three general-domain, open-source LVLMs with a video input capabilities. When
prompted with eye-gaze videos, model performance improves by up to 25.4% on
Impression generation task and on average 7.9% for all tasks using scaled evalu-
ation metrics. Our approach enhanced open-domain LVLM models, when com-
bined with exemplar reports for in-context learning, outperform medical models
as well as those specifically trained for CXR report generation on the benchmark
dataset. This work highlights that domain expert’s knowledge (eye-gaze infor-
mation in this case), when effectively integrated with LVLMs, can significantly
enhance general-domain models’ capabilities in clinical tasks, pointing out a new
effective approach of utilising LVLMs in healthcare and beyond.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have emerged as promising solutions for automating tasks
in chest X-ray (CXR) analysis, including the generation of radiology reports, visual question answer-
ing, and error detection within medical reports (Bannur et al., 2024; Saab et al., 2024; Li et al., 2024;
Wu et al., 2023; 2024a). These models offer the potential to streamline clinical workflows, provid-
ing radiologists with fast, automated insights that enhance decision-making and overall diagnostic
efficiency.

However, despite these successes, the reliability of LVLMs in real-world clinical environments re-
mains a challenge. A key limitation is the variability and accuracy of the outputs generated by these
models (Xiao et al., 2024; AlSaad et al., 2024; Chen et al., 2024a; Wu et al., 2024b). A promis-
ing solution is to incorporate human expertise through human-computer interaction. Several studies
have shown that integrating human input with AI models can significantly improve both accuracy
and reliability, often exceeding the performance of radiologists and AI models when they work
independently (Calisto et al., 2022; Patel et al., 2019).

One effective way to incorporate human expertise is through the use of radiologists’ eye-tracking
data collected while reviewing images. Studies have demonstrated that integrating eye-gaze infor-
mation into AI models enhances diagnostic accuracy by providing insights into the areas radiologists
focus on during image interpretation (Wang et al., 2022; Ma et al., 2023; Ji et al., 2023; Zhao et al.,
2024b; Wang et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Recent work has expanded the use of radiologists’ eye-tracking data in LVLMs for multimodal
tasks like report generation and visual question answering (Kim et al., 2024a;b). These models
typically integrate eye-gaze information through either simplified static textual prompts or heatmaps.
However, these recent studies generally overlook the sequential order of eye movements, which
could provide valuable additional context. The sequence in which a radiologist scans an image
offers insight into how they prioritize different regions, potentially contributing to more nuanced
interpretations and improving performance on downstream tasks.

Chest X-ray

Eye Gaze from

a Radiologist

Ordered with duration
Fixation: X: 0.78, Y: 0.23, 

Fixation Time: 2.2 seconds
…

Heat Map

Fixation Text

RadEyeVideo

Medical LVLM 

Finetuned with Textual 

Fixation

Medical LVLM 

Finetuned with 

Heat Map

General Domain LVLM for 

Video w/o Finetuning

Findings: No 

pneumothorax. No 

pneumonia. The cardiac 

silhouette is enlarged.

For CXR Report 

Analysis

Impression: Enlarged 

cardiac silhouette.

Diagnosis: 

Cardiomegaly.

Figure 1: Comparison of the eye gaze prompting methods. Heat Map: Example of previous work
that used the static simplified representation of eye gaze information laid over the chest X-ray image.
Fixation Text: Example of previous work that implemented eye gaze information as textual prompt
in the order of duration. RadEyeVideo: Our prompting method implements a video to capture a
dynamic representation of eye gaze. To comply with the MIMIC-CXR data usage license, the CXR
images are replaced with Pictogram and text reports are paraphrased in this Figure.

To address this gap, we propose a novel prompting approach, RadEyeVideo, that integrates eye-
tracking data as a video, capturing both the temporal and spatial order of eye movements, also known
as scan paths. This richer representation preserves the dynamic process of how radiologists navigate
and prioritize different regions in an image. By incorporating this sequential flow, our approach
offers deeper insights into the decision-making process, highlighting both the areas of interest and
the order in which they are examined. Since radiologists often follow a structured approach during
interpretation, capturing this sequence provides critical context for the model’s understanding.

Figure 1 shows how our approach distinguishes itself from previous prompting methods for LVLMs
in CXR analysis. The heatmap serves as a simplified snapshot of gaze movements, which fails
to convey any information about their sequential order (Kim et al., 2024a). Although the textual
prompt can contain some sequential temporal information regarding fixations, existing methods do
not fully leverage this capability; instead, gaze data is typically organized by duration, limiting its
representation of sequential order (Kim et al., 2024b). Although the textual format has the potential
to convey a correct sequence, when ordered, it ultimately represents all spatial and temporal infor-
mation in plain text. The X and Y coordinates, represented in relative width and height, offer only
an indirect representation. In contrast, RadEyeVideo captures the dynamic nature of gaze patterns,
providing a more comprehensive understanding of radiologist behavior during image interpretation.

This work aims to advance human-centered AI research in AI-assisted diagnostics through innova-
tive integration of eye-tracking data. It establishes a generalizable prompting strategy with a video

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

that can be applied across various medical and non-medical fields. The contributions offer signif-
icant improvements in both the accuracy of report generation and diagnosis and the potential for
broader human-AI collaboration. This multimodal human-in-the-loop (HITL) approach aims to ad-
vance human-centered AI research in medical image computing by effectively combining artificial
and human intelligence. The proposed work will evaluate the impact of radiologists’ expertise or
perceptual cues in the form of eye gaze on model performance, aiming to enhance the accuracy and
clinical relevance of AI-driven solutions for various medical image analysis tasks. Our approach
offers several key contributions to the fields of AI-driven diagnostics and human-AI collaboration,
summarized as follows:

• RadEyeVideo - Dynamic Eye Gaze with Video for CXR Analysis: We propose a novel
method that integrates radiologists’ eye gaze as video sequences for CXR report generation
and diagnosis. This method leverages both spatial and temporal aspects of gaze patterns
to significantly improve the performance of general-domain LVLMs in CXR report gen-
eration and diagnosis, achieving 25.4% on Impression generation and on average 7.9%
performance boost on all tasks, outperforming task-specific medical models.

• Comprehensive Benchmark of Eye-Gaze Prompting Methods: Our study provides the
first comprehensive evaluation of multiple eye-gaze integration techniques, including static
heatmaps, fixation text, and dynamic video prompts. We demonstrate that RadEyeVideo
consistently delivers superior results in terms of diagnostic accuracy and clinical relevance,
setting a new standard for eye-gaze-based CXR analysis.

• MIMIC-Eye-Video: Eye-Gaze Video Dataset for Chest X-rays We present the MIMIC-
Eye-Video dataset, the first to capture radiologists’ eye-gaze as video during CXR interpre-
tation. Although direct release is restricted by MIMIC-CXR policies, we provide code in
the supplementary materials for researchers to recreate the dataset and advance medical AI
by integrating expert gaze with CXR analysis.

2 RADEYEVIDEO - DYNAMIC EYE GAZE VIDEO PROMPTING

We introduce RadEyeVideo, a dynamic eye-gaze video prompting technique, designed to incorpo-
rate radiologists’ eye-gaze patterns into LVLMs for chest X-ray report generation and diagnosis. The
key motivation behind this method is to enhance the interpretative capabilities of general-purpose
LVLMs by leveraging human perceptual cues, such as eye-tracking data. The rationale for incorpo-
rating both spatial and temporal aspects of radiologists’ gaze patterns is based on the understanding
that expert radiologists do not analyze medical images in a static manner; rather, they focus on
diagnostically relevant regions over time. Capturing these dynamics allows the model to gain in-
sights from the way experts interact with medical images, thus guiding it toward better diagnostic
decisions.

2.1 WHY EYE-GAZE DATA?

Radiologists demonstrate high proficiency in interpreting CXRs due to their ability to efficiently
scan the image and focus on areas that are clinically significant. Eye-tracking data captures these
visual search patterns and provides a rich source of information, reflecting the expert’s decision-
making process. RadEyeVideo translates these patterns into video-based prompts, which combine
spatial attention (where radiologists look) with temporal sequencing (how long and when they look
at certain regions), creating a multi-modal input that better aligns with clinical reasoning.

2.2 CONSTRUCTING THE GAZE-BASED VIDEO PROMPT

Let G = {g1, g2, . . . , gn} denote the sequence of gaze fixations for a CXR image, where each gaze
fixation gi = (xi, yi, ti) consists of the spatial coordinates (xi, yi) and fixation duration ti. The gaze
radius size was fixed to 5 pixels.

To ensure we focus on the most significant gaze patterns, we filter gaze fixations based on the
assumption that longer fixations are more diagnostically significant. We first calculate the average
fixation duration t̄ from the sequence. Then, we filter the gaze fixations to retain only those with a
duration greater than the average duration:
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G′ = {gi ∈ G | ti > t̄} where t̄ =
1

n

n∑
i=1

ti (1)

We then construct the video by representing each fixation gi over a series of frames, with the number
of frames Fi proportional to the duration ti:

Ftotal =
∑
gi∈G′

Fi =
∑
gi∈G′

(ti × 10) where Fi = ti × fps (2)

where fps is the frame rate, set to 10 frames per second.

Each frame vj in the video sequence V = {v1, v2, . . . , vFtotal} represents the CXR image with a red
dot at coordinates (xi, yi), indicating the radiologist’s gaze position. The duration of each fixation
controls the number of frames in which the gaze remains in a given position.

2.3 INPUT REPRESENTATION

The input to the LVLM consists of two components: a textual prompt T and the generated video
sequence V . The textual prompt specifies the task (e.g., "Write a findings report on the given chest
x-ray, including information about any abnormalities that you see."), while the video provides spatio-
temporal information about the radiologist’s eye movements.

To make the video suitable for LVLMs, which may require a fixed number of input frames (e.g., 16),
we employ a uniform sampling strategy. Instead of using all frames, we evenly sample k frames
from the total video sequence Ftotal. The index of each sampled frame is given by:

Vsampled = {vj | j = 1, 2, . . . , k} where vj =

⌊
j · Ftotal

k

⌋
for j = 1, 2, . . . , k (3)

where k is the number of frames to sample (typically 16), ensuring a balanced representation of the
gaze data.

This sampling process, combined with the weighted number of frames based on duration, effectively
captures important gaze patterns while reducing computational overhead. This approach maintains
the temporal distribution and sequential order of gaze fixations, ensuring that key insights are pre-
served.

2.4 VIDEO PROMPTING FOR REPORT GENERATION

In clinical practice, radiologists’ reports serve as crucial foundations for diagnostic and treatment
decisions. CXR reports typically comprise two main sections: “Findings" and “Impressions." The
“Findings" section meticulously details the radiologist’s observations from the images, requiring
keen observation skills and specialized knowledge. The “Impressions" section, on the other hand,
provides a concise summary of the “Findings", offering clinicians a quick yet accurate diagnostic
reference. In this case the report generation task can be split into two subtasks: Findings generation
and Impression generation. Mathematically speaking,

YF = fF (T, V,E) (4)

YI = fI(T, F, V,E) (5)

where: YF denotes the output of the Findings generation task, YI denotes the output of the Impres-
sion summarization task, T denotes the task instructions or prompts for each task, V represents the
sampled video prompts. To align AI-generated reports more closely with authentic clinical reporting
styles, we provide three exemplar reports, E, as in-context learning. In the Impression geneartion
task, F denotes the Findings from original reports, which serves as an additional input for the Im-
pression task.
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2.5 VIDEO PROMPTING FOR DIAGNOSIS

Diagnosis is a critical component of chest radiograph (CXR) interpretation, where radiologists syn-
thesize observed abnormalities to form a conclusive diagnostic assessment. This process demands
not only acute visual perception but also extensive clinical knowledge and reasoning skills. In our
study, we adapt our video-based eye-gaze prompting methodology to assist Large Vision-Language
Models (LVLMs) in generating more accurate and clinically relevant diagnoses. The diagnostic task
can be mathematically represented as:

YD = fD(T, V,E) (6)

where YD denotes the output of the diagnostic task.

2.6 PROMPTS

Figure 2 provides a comprehensive overview of the various textual prompts used to enhance report
generation and diagnosis for chest X-rays. The task prompt is a brief description of the task for
findings, impression, and diagnosis respectively. Exemplars is the prompt for in-context learning of
the CXR report writing style. For this, we provide three exemplar reports, only the text component.
For the evaluation without any gaze information, this task prompt together with the exemplars is
used, which will be called “NoEye" hereafter. Also, they serve as the base prompt for the eye
gaze prompts. As described in Figure 1, which outlines the visual prompt inputs, the integration
of textual prompts and raw images forms the “NoEye" and “Fixation Text" prompts. Similarly, the
textual prompts are combined with eye gaze heatmap images for the “Heat Map" prompt and with
eye gaze video sequences for the “RadEyeVideo" prompt.

Exemplars

The following are three 

exemplar chest x-ray 

reports, … 

a detailed analysis 

of the findings, 

impressions, and 

any identified 

abnormalities… 
understand the 

structure, 

terminology, and 

format used in 

professional 

radiology 

reporting… 
Exemplar Reports 1: … 

Exemplar Reports 2: …

Exemplar Reports 3:…

The chest 

x-ray image 

below is 

overlaid with 

red dots, 

...

The 

intensity of 

the red color 

indicates the 

duration of 

fixation, 

…

Heat Map

Exemplars

Task Prompt

… 

The coordinates (X, Y) 

represent the relative 

position on the image, 

and the fixation time 

indicates the duration 

of focus at each point. 

....

Eye Fixation Data:

Fixation: X: 0.78, Y: 

0.23, 

Fixation Time: 2.2 

seconds

…

Fixation Text

Exemplars

Task Prompt

The video 

below shows 

a dynamic 

representatio

n of the 

radiologist's 

eye fixation

... Red 

dots ... 

The video 

also shows 

the tracking 

sequence of 

the eye gaze

….

RadEyeVideo

Exemplars

Task Prompt

Task Prompt

Write a findings 

report on the given 

chest x-ray, including 

information about any 

abnormalities that 

you see. 

Findings:

Findings

Impression

Write an impression 

summarization of the 

given chest x-ray and 

findings report, 

...abnormalities...

Findings: FINDINGS.

Impression: 

Diagnosis

What are the possible 

differential diagnoses 

for this patient?

NoEye

Figure 2: Eye gaze textual prompts. Texts are highlighted in different colors to emphasize the
important aspect of each prompting method.

3 EXPERIMENT

3.1 EYE GAZE DATASET

For our study, we used the most commonly taken single-view chest X-ray, specifically the posterior-
anterior (PA) view, commonly referred to as the frontal view, from the MIMIC-Eye dataset (Hsieh
et al., 2023). This subset consists of a total of 2,298 CXR images that have been annotated with eye
gaze data to capture radiologists’ visual attention patterns while reviewing the images.
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Table 1: Summary of images and tokens for findings and impressions

Category Alpha Set Beta Set
Images w/ Diagnosis & Findings 2,206 92
Tokens (Findings) 69.9 ± 28.8 86.7 ± 35.1

Images w/ Diagnosis & Findings & Impressions 1,963 62
Tokens (Impressions) 20.5 ± 18.3 27.8 ± 22.6

Since the original reports and images originate from the MIMIC-CXR dataset, we examined the
overlap with its training and test splits (Johnson et al., 2019). Our analysis revealed an imbalanced
distribution within the MIMIC-Eye subset, with the validation and test split containing only 92
images. This limited sample size is insufficient for robust evaluation purposes. To address this
limitation, we chose to utilize both the training and test splits, which we will refer to as alpha and
beta set hereafter for clarity and simplicity, as our evaluation dataset while ensuring that we report
the results separately. This strategy enables us to trace any potential contamination issues that may
arise from including training images in the evaluation process.

In the following table (Table 1), we provide a summary of the dataset statistics, including the number
of images with findings, the average number of tokens in the findings and impressions sections, and
how these metrics differ between the alpha and beta splits. The token statistics were measured based
on the LLaVA-OneVision’s tokenizer (Li et al., 2024).

3.2 MODELS

Table 2: Model descriptions. Training features are abbreviated as follows: Findings (F), Impression
(I), and Diagnosis (D). Models in bold are trained with the MIMIC-CXR dataset.

Model Name Size Backbone LLM
Report Trained Supported Modalities

F I D Image Text Video

CXRMate(Nicolson et al., 2023) 0.1B - ! ! % ! % %

CheXagent(Chen et al., 2024b) 8B Mistral 7B ! ! ! ! ! %

CXR-LLaVA(Lee et al., 2023) 8B LLaMA2 7B ! % ! ! ! %

LLaVA-Med(Li et al., 2024) 8B Mistral 7B - - - ! ! %

LongVA(Zhang et al., 2024) 8B Qwen2 7B - - - ! ! !

VideoLLaMA2(Cheng et al., 2024) 8B Mistral 7B - - - ! ! !

LLaVA-OneVision(Li et al., 2024) 8B Qwen2 7B - - - ! ! !

In this study, we selected a range of models to investigate various prompting methods for integrating
eye gaze information into the CXR report generation process. Specifically, we focused on LongVA,
VideoLLaMA2, and LLaVA-OneVision, which are the latest LVLMs that can handle videos (Zhang
et al., 2024; Cheng et al., 2024; Li et al., 2024).

For baseline comparisons, we included CXR LVLMs such as CXR-LLaVA and CheXagent (Lee
et al., 2023; Chen et al., 2024b). Both of these models have been trained with the entire MIMIC-
CXR training split which is about 200,000 CXR images and reports for diverse tasks, including
report generation.

Additionally, LLaVA-Med based on Mistral is used as a general medical LVLM (Li et al., 2024; Liu
et al., 2023). It has not been trained on the MIMIC-CXR dataset, but it has been trained on medical
images and captions derived from biomedical articles, specifically from PubMed.

Lastly, we included CXRMate, which represents the state-of-the-art CXR report generation model
which accepts only images as the input (Nicolson et al., 2023). Notably, all models, except CXR-
Mate, are built upon a 7B backbone large language model, highlighting the varying capacities and
training methodologies across the selected models.
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3.3 EVALUATION

In addition to using eye-tracking data as video sequences, we explore other methods of integrating
eye-gaze information into LVLMs for CXR report analysis, including heatmaps and textual prompts.
We systematically evaluate these methods to determine which most effectively enhances report gen-
eration, focusing on accuracy, completeness, and clinical relevance.

In implementing heatmaps, we overlay red dots on the CXR images to visualize spatial patterns of
eye gaze information. These dots indicate the areas of focus, with darker dots representing longer
gaze durations, thereby incorporating a temporal dimension to the data. For our textual prompt ap-
proach, we maintain the original sequence of gaze information rather than organizing it by duration.
This approach still has a limitation, indirect representation of the spatial representation. The relative
position of the gaze in the text has to be used to infer the gaze point on the image, and LVLMs
capability of doing this remains unexplored. Similar to the video prompting method, we filter the
gaze data to retain only those fixations that exceed the average duration, ensuring that our analyses
focus on significant eye-gaze interactions.

3.3.1 EVALUATION HYPERPARAMETERS

For evaluation, we implemented a zero-shot approach for both sections, a batch size of 1, and a
temperature parameter of 0. A temperature of 0 was chosen to minimize the randomness in the
generated text produced by the model. The maximum length of the model’s responses for each task
was determined based on the mean token length of the ground truth response: 96 for the findings
section and 32 for the impression section. For the diagnosis, we wanted the model to generate a list
of possible diagnosis, so the maximum length was set as 192. This setup ensured consistent and
efficient experimentation across both tasks.

3.3.2 EVALUATION METRIC

We evaluated the generated reports using a combination of general lexical metrics and radiology-
specific metrics. For general assessment, we employed ROUGE and BERTScore (Lin, 2004; Zhang
et al., 2019). In terms of radiology-specific evaluation, we utilized CheXbert (micro F1 for top 5
abnormalities), RadGraph, and RaTEScore (Smit et al., 2020; Jain et al., 2021; Zhao et al., 2024a).
For the diagnosis, as the task focuses on the generation of possible diagnosis, rather than focusing
on the top 5 abnormalities, we used CheXbert micro classification F1 for all abnormalities as the
metric (Smit et al., 2020).

To compare the performance of our models with respect to both general lexical and radiology-
specific metrics, we introduce a scaling based on CheXagent, a medical LVLM that is trained for
both report generation and diagnosis and known to perform the best among the LVLMs for these
two tasks (Chen et al., 2024b). This scaling ensures that all metrics are directly comparable and
highlights relative improvements (or declines) across models, regardless of the absolute values.

Let Sm,i represent the raw score for metric m on model i, and let Sm,CheXagent represent the score of
the LLaVA-Med for the same metric m. The scaled score Ŝm,i for each model i on metric m and
the average of the scaled scores across all metrics M for the the overall performance score, Ŝi, are
then calculated as follows:

Ŝm,i =
Sm,i

Sm,CheXagent
× 100, Ŝi =

1

|M |
∑
m∈M

Ŝm,i (7)

This average score provides a holistic measure of model performance on the dataset, combining
general lexical metrics and radiology-specific metrics into a single representative score. This ap-
proach enables straightforward comparison across models and highlights the effectiveness of our
novel video prompting in improving performance.

7
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Table 3: Eye gaze evaluation results. All scores are averages of scaled metrics based on CheXagent.
NoEye prompting scores are reported with model names. Alpha - the original MIMIC-CXR training
split; Beta - the validation and test splits. Bold - best scores (excluding scores from MIMIC-CXR
trained models); parentheses - performance improvements. *CXRMate does not support textual
prompts for in-context learning; thus, its default performance is reported.

Methods
Findings Impression Diagnosis

Overall
Alpha Beta Alpha Beta Alpha Beta

CXRMate* 513.7 377.5 74.0 66.3 - - -
CheXagent 100.0 100.0 100.0 100.0 100.0 100.0 100.0
CXR-LLaVA 369.0 257.9 70.4 67.2 118.2 142.4 170.8
LLaVA-Med 236.7 215.9 51.8 55.1 117.7 142.8 136.7

LongVA 213.2 205.2 49.2 53.8 155.6 188.0 144.2
w/ Heat Map 216.4 193.2 53.0 57.2 153.9 200.2 145.7
w/ Text 232.5 197.6 56.5 56.5 162.5 209.8 152.6
w/ RadEyeVideo (Ours) 237.3 220.9 52.3 53.9 159.7 211.8 156.0

(+24.1) (+15.7) (+3.1) (+0.1) (+4.1) (+23.8) (+11.8)

VideoLLaMA2 226.5 203.4 59.1 75.5 163.5 207.2 155.9
w/ Heat Map 238.3 199.8 69.1 80.8 155.6 210.1 159.0
w/ Text 251.1 210.3 66.6 80.2 165.9 208.1 163.7
w/ RadEyeVideo (Ours) 244.1 205.7 70.0 80.9 150.6 188.0 156.5

(+17.6) (+2.3) (+10.9) (+5.4) (-12.9) (-19.2) (+0.6)

LLaVA-OneVision 254.2 231.5 53.4 56.4 170.0 219.3 164.1
w/ Heat Map 234.4 203.3 71.5 79.6 172.7 223.7 164.2
w/ Text 230.1 208.4 68.6 77.7 153.4 180.8 153.2
w/ RadEyeVideo (Ours) 259.6 235.3 70.4 81.8 178.3 226.1 175.3

(+5.4) (+3.8) (+17.0) (+25.4) (+8.3) (+6.8) (+11.2)

4 RESULTS AND DISCUSSION

The evaluation results in Table 3 offer a comprehensive overview of performance across two sec-
tions: Findings and Impression, evaluated for both the alpha and beta splits. Overall, general domain
models when eye gaze information is provided regardless of the method consistently outperform the
NoEye prompting method, achieving higher average scores except for the LLaVA-OneVision model
with the fixation text prompting.

RadEyeVideo Prompting as the Optimal Method
Our proposed method, RadEyeVideo, emerges as the most robust and effective method. Across all
three general domain models—LongVA, VideoLLaMA2, and LLaVA-OneVision—video prompt-
ing consistently outperforms the NoEye method, demonstrating reliable performance improvements.
The only exception is VideoLLaMA2 for the diagnosis task where RadEyeVideo only showed a de-
crease in performance. While heat map increased 1.6% and fixation text increased 1.8% on average,
our RadEyeVideo increased 7.9% on average. Specifically, LongVA, VideoLLaMA2, and LLaVA-
OneVision improve their average performance by 11.8%, 0.6%, and 11.2%, respectively. Remark-
ably, the LLaVA-OneVision model with RadEyeVideo surpasses both CheXagent and CXR-LLaVA
models, which were specifically trained on the MIMIC-CXR dataset for report generation and di-
agnosis. This finding underscores the potential of video-based eye-gaze prompting to bridge the
performance gap between general-purpose models and task-specific models in the medical imaging
domain.

Limitations of Heatmap and Fixation Text Prompts
While RadEyeVideo shows strong results, both heatmap prompting and fixation text prompt
methods do not always improve performance. While fixation text prompts show mixed results-
VideoLLaMA2 always gaining performance, heatmap-based prompting universally underperforms
when compared to the baseline across all models for the generation of the Findings section. The
LLaVA-OneVision model suffers from a performance drop in both splits when using heatmaps.
Also, the LongVA model shows a consistent drop in performance when utilizing heatmaps for the
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beta split and the VideoLLaMA2 model suffers a similar degradation. These two models also show
a decrease in diagnosis performance for the alpha split.

The poor performance of heatmaps is likely due to their failure to capture the sequential and temporal
dynamics of eye-gaze, which are essential for understanding medical analysis in chest X-rays. This
supports our hypothesis that the temporal order of a radiologist’s gaze is critical for enhancing
contextual awareness and clinical relevance.

Fixation text prompts, although they preserve the temporal sequence of eye-gaze, suffer from other
limitations. By attempting to encode both spatial and temporal information in a text format, these
prompts often become overly lengthy and complex, particularly when the model is asked to generate
a longer response, the Findings and Diagnosis. As a result, LongVA and LLaVA-OneVision both
performed worse in the Findings section, and LLaVA-OneVision performed worse in Diagnosis.

Findings: A stable 

enlarged heart with 

mild pulmonary 

vascular congestion 

without edema. 

Opacity on the left 

lower lobe a sign of

pneumonia. No 

pneumothorax or 

pleural effusion.

Impression: Possible 

lower lobe 

pneumonia

RadEyeVideoGround Truth NoEye
Findings: …There is 

no focal consolidation 

concerning for 

pneumonia, and there 

is no pleural effusion

or pneumothorax …

Impression: enlarged 

heart with mild 

pulmonary congestion, 

some fluid in the lungs 

not causing edema.

Findings:…Mild pulmonary 

vascular congestion. There 

are no focal consolidations 

concerning for pneumonia, 

and no pleural effusion or 

pneumothorax …

Impression: possible 

left lower lobe 

pneumonia. No 

pneumothorax or pleural 

effusion.

Diagnosis: 

Pneumonia

Diagnosis: 

Pulmonary Edema, 

Heart Failure

Diagnosis: pneumonia, 

pulmonary embolism, or 

heart failure-related 

pulmonary edema

Figure 3: Sample response from LLaVA-OneVision. Green - correct statements about the CXR;
Red - incorrect statements. To comply with the MIMIC-CXR data usage license, the CXR image is
substituted with a Wikimedia image depicting the same disease, and the text report is paraphrased.

Singificant Improvement on the Impression Section
The Impression section showed the most significant performance boost, particularly with video
prompting. This is likely due to the added context from the Findings section, which allowed the
models to make more informed and accurate predictions. Among all models, LLaVA-OneVision
demonstrated the largest improvement, with video prompting leading to a 17.0% performance in-
crease on the alpha split and an impressive 25.4% gain on the beta split. These results suggest that
video-based prompting, which preserves both spatial and temporal aspects of eye-gaze information,
offers richer guidance to the model, leading to more precise and contextually aware outputs. Figure
3 exemplifies this improvement in the Impression section, showing a significant change in the gen-
erated text, correctly finding pneumonia. While the Findings section showed slight improvements
with more medical concepts correctly stated, errors like the misdiagnosis of pneumonia remain, in-
dicating room for further improvement. Figure 3 also shows that Diagnosis is also improved with
RadEyeVideo as the model correctly predicted pneumonia.

Moreover, both VideoLLaMA2 and LLaVA-OneVision not only outperformed medical models such
as LLaVA-Med and CXR-LLaVA, but they also surpassed the performance of the state-of-the-art
model CXRMate in the Impression section for the test split. This is remarkable, given that CXRMate
was specifically designed for chest X-ray report generation and represents the current benchmark in
the field.

4.1 ABLATION STUDY

The ablation study was conducted to further validate the design of RadEyeVideo, focusing on three
critical factors: frame numbers, gaze point sampling, and in-context learning.

Frame Numbers Figure 4 highlights the impact of varying the number of frames on model perfor-
mance. Our findings indicate that utilizing 16 frames achieves the highest average score of 161.8%.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Increasing the frames to 32 results in a slight decline of 2.9%, while 64 and 128 frames lead to
further decreases of 9.2% and 12.6%, respectively. This trend indicates that longer video sequences
may hinder LVLM performance due to increased input complexity, reinforcing our decision to use
16 frames.

Gaze Point Filtering The second aspect examined was the impact of gaze point filtering by duration,
as detailed in Section 2. Figure 4 shows that significant gaze point sampling has a minimal effect
on model performance. Specifically, LongVA and LLaVA-OneVision improved by 1.4% and 1.7%,
respectively, while VideoLLaMA2 experienced a slight decline of 1.7%. Since two of the three
models benefited from this filtering, we chose to implement significant gaze filtering.

Figure 4: Results for the ablation study of the experiment
design. Left: frame numbers, middle: significant gaze filter-
ing, right: exemplar reports in-Context learning.

In-Context Learning with Exem-
plar Reports Lastly, we examined
the effect of in-context learning on
various models. Models that have
been trained for the task, such as
CheXagent and CXR-LLaVA, expe-
rienced significant declines in per-
formance, with average losses of -
130.6% and -40.5%, indicating that
these models are not robust to in-
context learning and may have been
overfit to the task. Other models
like LLaVA-OneVision, LongVA,
VideoLLaMA2, and LLaVA-Med
showed varying improvements of
35.4%, 50.3%, 65.7%, and 81.9%,
respectively. This ablation study
suggests that models not trained
on MIMIC-CXR data benefit more
from in-context learning.

5 CONCLUSION AND FUTURE WORK

In this work, we introduced RadEyeVideo, a novel video prompting approach, into general domain
LVLMs, enhancing their performance in chest X-ray report generation and diagnosis. Our approach
effectively captures the spatial and temporal dynamics of eye gaze, outperforming existing eye-gaze
prompting techniques and even the task specific medical LVLMs. This method demonstrates sig-
nificant potential for bridging the gap between general-purpose and task-specific models in medical
imaging. Future work will explore extending video-based prompting to tasks like visual question
answering and anatomical structure detection. Additionally, applying this method to other medi-
cal imaging areas, such as CT and MRI scans, holds promise for improving accuracy and clinical
relevance across various domains in healthcare.

LIMITATION

This study’s evaluation was limited by the small dataset size, due to the difficulty of obtaining
radiologists’ eye-tracking data. Furthermore, the MIMIC-CXR dataset may not fully capture the
diversity of real-world medical imaging. Future work should focus on larger and more diverse
datasets to better assess the method’s generalizability across different imaging modalities.

ETHICAL STATEMENT

This research adhered to the data usage agreements of the MIMIC-EYE dataset and maintained strict
compliance with privacy regulations.

REPRODUCIBILITY STATEMENT

All models and datasets in this study are publicly available. We included our code to process the
datasets in the supplementary material.
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A APPENDIX

A.1 COMPUTATIONAL EFFICIENCY OF RADEYEVIDEO

The incorporation of eye gaze data as video, rather than as a heatmap, results in only a marginal
increase in GPU memory usage—approximately 2GB, rising from 20,076MB (eye gaze heatmap)
to 21,954MB (eye gaze video) when using the LLaVA-OneVision model. This corresponds to a
modest 10% increase in GPU memory consumption.

Notably, this increase is minimal when compared to the significantly higher computational de-
mands of training specialized medical LVLMs, which often require at least double the computa-
tional resources. The efficiency of our approach underscores its practicality for deployment, even in
resource-constrained environments, while achieving enhanced diagnostic performance.

A.2 RESPONSE EXAMPLES

We demonstrate two examples of the generated response of the LLaVA-OneVision for all te prompt-
ing methods that we explored in our study: pneumonia 5 and fracture 6. In both examples, inclusion
of eye gaze in any formats, the model was able to produce some medically accurate response. How-
ever, the heat map and fixation text prompting generated wrong information. Our RadEyeVideo
prompting had the best Findings and Impression, and even a correct diagnosis for the pneumonia
case.

Findings: A stable 

enlarged heart with 

mild pulmonary 

vascular congestion 

without edema. Opacity 

on the left lower lobe a 

sign of pneumonia. No 

pneumothorax or 

pleural effusion.

Impression: Possible 

lower lobe pneumonia

Ground Truth

Diagnosis: Pneumonia

NoEye

Findings: …There is 

no focal consolidation 

concerning for 

pneumonia, and there 

is no pleural effusion

or pneumothorax …

Impression: enlarged 

heart with mild 

pulmonary congestion, 

some fluid in the lungs 

not causing edema.

Diagnosis: 

Pulmonary Edema, 

Heart Failure

RadEyeVideo

Findings:…Mild 

pulmonary vascular 

congestion. There are 

no focal consolidations 

concerning for 

pneumonia, and no 

pleural effusion or 

pneumothorax …

Impression: 

possible left lower 

lobe pneumonia. 

No pneumothorax 

or pleural effusion.

Diagnosis: pneumonia, 

pulmonary embolism, 

or heart failure-related 

pulmonary edema

Fixation Text

Findings: Hear size 

normal, no 

cardiomegaly, edema, 

no fractures, no 

pneumothorax or 

pleural effusion.

Impression: 

left lower lobe 

consolidation. Right 

lung clear. No 

pleural effusion or 

pneumothorax

Diagnosis: pulmonary 

edema, cardiomegaly, 

right heart failure

HeatMap

Findings: Hear size 

normal, no 

cardiomegaly, no 

pneumothorax. no focal 

consolidations 

concerning for 

pneumonia. mild 

pulmonary vascular 

congestion

Impression: 

left lower lobe 

consolidation. Right 

lung clear. No 

pleural effusion or 

pneumothorax

Diagnosis: pneumonia, 

pulmonary edema, or 

pulmonary embolism

Figure 5: Pneumonia response by LLaVA-OneVision for all prompting methods. Green shows the
correct statement about the CXR, and the red shows the incorrect statement. To comply with the
MIMIC-CXR data usage license, the CXR image is replaced with an image from Wikimedia with
the same disease and the text report is paraphrased in this Figure.

A.3 EVALUATION METRICS EXPLANATION

ROUGE Lin (2004) ROUGE is a widely used lexical similarity metric primarily based on recall
of the token matches. For this study, we use ROUGE-L, which measures the longest common
subsequence and an F-score to offer a more comprehensive performance assessment.

BERTScore Zhang et al. (2019) BERTScore goes beyond exact token matching by comparing the
similarity between tokens in candidate and reference sentences using contextual embeddings of the
BERT model, offering a more nuanced evaluation of text similarity.
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Findings: Low lung 

volumes. Normal heart 

size. No consolidation, 

effusion, pneumothorax. 

Possible atelectasis. 

Nondisplaced fractures 

of the right ribs.

Ground Truth

Diagnosis: Fracture, 

Atelectasis.

Impression: 

nondisplaced rib 

fractures. Possible 

atelectasis. No 

pneumonia.

NoEye

Findings: Normal 

heart size. No focal 

consolidations for 

pneumonia. No 

cardiomegaly or 

pulmonary edema.

Impression: low 

lung volumes with 

an elevated right 

hemidiaphragm, 

possible atelectasis

or consolidation

Diagnosis: chronic 

pulmonary conditions, 

pneumonia

RadEyeVideo

Findings:hilar and 

mediastinal contours 

unremarkable. Mild 

pulmonary vascular 

congestion. No focal 

consolidations for 

pneumonia. no pleural 

effusion or 

pneumothorax.

Impression: 

Minimal atelectasis 

present. 

Nondisplaced 

fractures of the right 

ribs.

Diagnosis: 

hypertension, heart 

failure

Fixation Text

Findings: Normal heart 

size. No evidence of 

cardiomegaly or 

pulmonary edema. The 

lungs are clear. The 

ribs and clavicles 

appear symmetrical 

without fractures or 

deformities.

Impression: 

Presence of 

interposed colon 

between diaphragm 

and liver suggests 

possible bowel 

obstruction.

Diagnosis: pulmonary 

edema, cardiac disease

HeatMap

Findings: hilar and 

mediastinal contours 

are unremarkable. Mild 

pulmonary vascular 

congestion is noted.

Impression: 

minimal atelectasis 

in the left 

retrocardiac region, 

no other significant 

abnormalities 

detected

Diagnosis: pneumonia, 

cardiomegaly, aortic 

tortuosity

Figure 6: Fracture response by LLaVA-OneVision for all prompting methods. Green shows the
correct statement about the CXR, and the red shows the incorrect statement. To comply with the
MIMIC-CXR data usage license, the CXR image is replaced with an image from Wikimedia with
the same disease and the text report is paraphrased in this Figure.

CheXbert Smit et al. (2020) The CheXbert model is a BERT model which has been trained on
large-scale chest radiograph data to extract abnormalities. We used micro-F1 score for our study:
top-5 for the report generation, and all abnormalities for disease diagnosis.

RadGraph Jain et al. (2021) RadGraph extracts clinical entities (such as anatomy and observations)
and their relationships from radiology reports, organizing them into graph structures. The RadGraph
F1 score calculates entity and relation overlap separately, averaging the results. Entity matches are
based on identical text spans and types, while relation matches require agreement in both endpoint
entities and relation types.

RaTEScore Zhao et al. (2024a) RaTEScore (Radiological Report Text Evaluation) is the latest
metric employed in our study, specifically designed to assess the quality of generated medical re-
ports. It evaluates the correct identification of key medical entities, including diagnostic outcomes
and anatomical references, using a NER model. RaTEScore is robust at handling complex medical
synonyms and is sensitive to negation, making it more aligned with human judgments compared to
other metrics.

A.4 REPORT GENERATION PERFORMANCE

We report the performance of report generation in detail with the raw values for each metric.
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Table 4: Report generation performance with ROUGE (ROUGE-L). All scores are raw scores re-
ported. NoEye prompting scores are reported with the model name. *CXRMate does not support
textual prompts for in-context learning, so its vanilla performance is reported instead.

Methods
Findings Impression

Overall
Alpha Beta Alpha Beta

CXRMate*(Nicolson et al., 2023) 0.304 0.256 0.370 0.229 0.290
CheXagent(Chen et al., 2024b) 0.081 0.083 0.531 0.381 0.269
CXR-LLaVA(Lee et al., 2023) 0.220 0.184 0.355 0.198 0.239
LLaVA-Med(Li et al., 2024) 0.206 0.199 0.131 0.123 0.165

LongVA(Zhang et al., 2024) 0.185 0.177 0.117 0.115 0.148
w/ Heat Map 0.181 0.181 0.172 0.146 0.170
w/ Text 0.196 0.192 0.213 0.149 0.188
w/ RadEyeVideo (Ours) 0.192 0.182 0.165 0.135 0.168

VideoLLaMA2(Cheng et al., 2024) 0.179 0.168 0.101 0.119 0.142
w/ Heat Map 0.205 0.182 0.237 0.194 0.204
w/ Text 0.200 0.180 0.189 0.176 0.186
w/ RadEyeVideo (Ours) 0.216 0.197 0.251 0.188 0.213

LLaVA-OneVision(Li et al., 2024) 0.189 0.185 0.134 0.121 0.157
w/ Heat Map 0.190 0.180 0.306 0.245 0.230
w/ Text 0.186 0.184 0.276 0.221 0.217
w/ RadEyeVideo (Ours) 0.192 0.181 0.296 0.252 0.230

Table 5: Report generation performance with BERTScore. All scores are raw scores reported.
NoEye prompting scores are reported with the model name. *CXRMate does not support textual
prompts for in-context learning, so its vanilla performance is reported instead.

Methods
Findings Impression

Overall
Alpha Beta Alpha Beta

CXRMate*(Nicolson et al., 2023) 0.888 0.874 0.896 0.876 0.884
CheXagent(Chen et al., 2024b) 0.848 0.845 0.922 0.897 0.878
CXR-LLaVA(Lee et al., 2023) 0.873 0.862 0.897 0.868 0.875
LLaVA-Med(Li et al., 2024) 0.865 0.862 0.855 0.852 0.858

LongVA(Zhang et al., 2024) 0.865 0.860 0.853 0.849 0.857
w/ Heat Map 0.860 0.858 0.857 0.853 0.857
w/ Text 0.865 0.859 0.864 0.854 0.860
w/ RadEyeVideo (Ours) 0.865 0.859 0.855 0.850 0.857

VideoLLaMA2(Cheng et al., 2024) 0.858 0.853 0.849 0.853 0.853
w/ Heat Map 0.862 0.855 0.872 0.866 0.864
w/ Text 0.861 0.854 0.865 0.863 0.861
w/ RadEyeVideo (Ours) 0.864 0.857 0.875 0.865 0.865

LLaVA-OneVision(Li et al., 2024) 0.862 0.857 0.854 0.849 0.856
w/ Heat Map 0.863 0.857 0.881 0.869 0.868
w/ Text 0.864 0.858 0.877 0.866 0.866
w/ RadEyeVideo (Ours) 0.864 0.858 0.881 0.872 0.869

A.5 DIAGNOSIS PERFORMANCE

We report the performance of disease diagnosis in detail with the raw values for each abnormalities.
The abnormalities covered in CheXbert are as follows: no finding, enlarged cardiomediastinum, car-
diomegaly, Lung Lesion, Lung opacity, edema, consolidation, pneumonia, atelectasis, pneumotho-
rax, pleural effusion, pleural other, fracture, support devices.
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Table 6: Report generation performance with CheXbert (micro F1 for top 5 abnormalities). All
scores are raw scores reported. NoEye prompting scores are reported with the model name. *CXR-
Mate does not support textual prompts for in-context learning, so its vanilla performance is reported
instead.

Methods
Findings Impression

Overall
Alpha Beta Alpha Beta

CXRMate*(Nicolson et al., 2023) 0.556 0.537 0.465 0.389 0.487
CheXagent(Chen et al., 2024b) 0.059 0.085 0.680 0.561 0.346
CXR-LLaVA(Lee et al., 2023) 0.401 0.372 0.479 0.431 0.421
LLaVA-Med(Li et al., 2024) 0.142 0.197 0.416 0.306 0.265

LongVA(Zhang et al., 2024) 0.096 0.180 0.389 0.322 0.246
w/ Heat Map 0.087 0.097 0.333 0.289 0.202
w/ Text 0.091 0.087 0.370 0.282 0.207
w/ RadEyeVideo (Ours) 0.112 0.198 0.328 0.247 0.221

VideoLLaMA2(Cheng et al., 2024) 0.138 0.183 0.616 0.675 0.403
w/ Heat Map 0.128 0.157 0.665 0.667 0.404
w/ Text 0.145 0.193 0.664 0.680 0.420
w/ RadEyeVideo (Ours) 0.139 0.174 0.673 0.676 0.416

LLaVA-OneVision(Li et al., 2024) 0.206 0.240 0.462 0.358 0.317
w/ Heat Map 0.104 0.138 0.598 0.550 0.347
w/ Text 0.145 0.182 0.574 0.585 0.371
w/ RadEyeVideo (Ours) 0.170 0.278 0.592 0.567 0.402

Table 7: Report generation performance with RadGraph. All scores are raw scores reported. NoEye
prompting scores are reported with the model name. *CXRMate does not support textual prompts
for in-context learning, so its vanilla performance is reported instead.

Methods
Findings Impression

Overall
Alpha Beta Alpha Beta

CXRMate*(Nicolson et al., 2023) 0.244 0.186 0.269 0.140 0.210
CheXagent(Chen et al., 2024b) 0.025 0.027 0.468 0.345 0.216
CXR-LLaVA(Lee et al., 2023) 0.161 0.106 0.296 0.148 0.178
LLaVA-Med(Li et al., 2024) 0.117 0.102 0.115 0.118 0.113

LongVA(Zhang et al., 2024) 0.109 0.098 0.089 0.090 0.097
w/ Heat Map 0.121 0.107 0.122 0.111 0.115
w/ Text 0.132 0.112 0.134 0.104 0.121
w/ RadEyeVideo (Ours) 0.131 0.112 0.117 0.091 0.113

VideoLLaMA2(Cheng et al., 2024) 0.111 0.097 0.126 0.175 0.127
w/ Heat Map 0.122 0.096 0.166 0.188 0.143
w/ Text 0.132 0.100 0.164 0.188 0.146
w/ RadEyeVideo (Ours) 0.121 0.094 0.167 0.184 0.142

LLaVA-OneVision(Li et al., 2024) 0.113 0.113 0.108 0.104 0.110
w/ Heat Map 0.132 0.110 0.203 0.195 0.160
w/ Text 0.111 0.100 0.186 0.170 0.142
w/ RadEyeVideo (Ours) 0.133 0.106 0.191 0.205 0.159
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Table 8: Report generation performance with RaTEScore. All scores are raw scores reported. NoEye
prompting scores are reported with the model name. *CXRMate does not support textual prompts
for in-context learning, so its vanilla performance is reported instead.

Methods
Findings Impression

Overall
Alpha Beta Alpha Beta

CXRMate*(Nicolson et al., 2023) 0.579 0.513 0.512 0.374 0.495
CheXagent(Chen et al., 2024b) 0.354 0.339 0.663 0.589 0.486
CXR-LLaVA(Lee et al., 2023) 0.506 0.444 0.361 0.396 0.427
LLaVA-Med(Li et al., 2024) 0.421 0.421 0.371 0.350 0.391

LongVA(Zhang et al., 2024) 0.479 0.447 0.367 0.357 0.413
w/ Heat Map 0.448 0.445 0.428 0.406 0.432
w/ Text 0.478 0.452 0.436 0.399 0.441
w/ RadEyeVideo (Ours) 0.466 0.454 0.426 0.406 0.438

VideoLLaMA2(Cheng et al., 2024) 0.470 0.466 0.444 0.471 0.463
w/ Heat Map 0.468 0.456 0.485 0.490 0.475
w/ Text 0.469 0.453 0.470 0.488 0.470
w/ RadEyeVideo (Ours) 0.460 0.447 0.487 0.499 0.473

LLaVA-OneVision(Li et al., 2024) 0.470 0.441 0.386 0.363 0.415
w/ Heat Map 0.470 0.428 0.484 0.485 0.467
w/ Text 0.461 0.443 0.474 0.472 0.463
w/ RadEyeVideo (Ours) 0.493 0.457 0.483 0.503 0.484

Table 9: Alpha Split Diagnosis performance with CheXbert (F1 score for all abnormalities). All
scores are raw scores reported. NoEye prompting scores are reported with the model name.

Methods No Finding Enlarged
Cardiomediastinum Cardiomegaly Lung Lesion Lung Opacity Edema Consolidation

CheXagent(Chen et al., 2024b) 0.000 0.000 0.000 0.000 0.025 0.338 0.131
CXR-LLaVA(Lee et al., 2023) 0.000 0.000 0.000 0.000 0.012 0.209 0.000
LLaVA-Med(Li et al., 2024) 0.000 0.000 0.000 0.000 0.000 0.209 0.000

LongVA(Zhang et al., 2024) 0.000 0.000 0.214 0.000 0.340 0.208 0.000
w/ Heat Map 0.000 0.000 0.216 0.000 0.349 0.209 0.057
w/ Text 0.000 0.036 0.214 0.000 0.346 0.209 0.040
w/ RadEyeVideo (Ours) 0.000 0.000 0.215 0.000 0.346 0.208 0.050

VideoLLaMA2(Cheng et al., 2024) 0.000 0.000 0.217 0.000 0.352 0.209 0.031
w/ Heat Map 0.000 0.031 0.202 0.000 0.329 0.205 0.057
w/ Text 0.000 0.000 0.214 0.000 0.329 0.193 0.058
w/ RadEyeVideo (Ours) 0.000 0.000 0.191 0.000 0.317 0.193 0.059

LLaVA-OneVision(Li et al., 2024) 0.000 0.000 0.217 0.000 0.338 0.207 0.032
w/ Heat Map 0.000 0.000 0.212 0.000 0.338 0.204 0.072
w/ Text 0.000 0.000 0.219 0.000 0.295 0.209 0.045
w/ RadEyeVideo (Ours) 0.000 0.000 0.213 0.000 0.350 0.209 0.059

Methods Pneumonia Atelectasis Pneumothorax Pleural Effusion Pleural Other Fracture Support Devices

CheXagent(Chen et al., 2024b) 0.190 0.000 0.000 0.000 0.000 0.000 0.000
CXR-LLaVA(Lee et al., 2023) 0.196 0.000 0.000 0.006 0.000 0.000 0.000
LLaVA-Med(Li et al., 2024) 0.195 0.000 0.000 0.000 0.000 0.000 0.000

LongVA(Zhang et al., 2024) 0.197 0.000 0.000 0.052 0.000 0.000 0.043
w/ Heat Map 0.195 0.000 0.000 0.032 0.000 0.000 0.012
w/ Text 0.198 0.000 0.000 0.227 0.000 0.000 0.000
w/ RadEyeVideo (Ours) 0.196 0.000 0.000 0.141 0.000 0.000 0.011

VideoLLaMA2(Cheng et al., 2024) 0.196 0.070 0.037 0.197 0.000 0.000 0.183
w/ Heat Map 0.195 0.113 0.038 0.249 0.000 0.000 0.107
w/ Text 0.195 0.199 0.043 0.258 0.000 0.000 0.161
w/ RadEyeVideo (Ours) 0.195 0.007 0.032 0.256 0.000 0.000 0.103

LLaVA-OneVision(Li et al., 2024) 0.199 0.128 0.000 0.089 0.000 0.000 0.077
w/ Heat Map 0.195 0.085 0.038 0.043 0.000 0.000 0.077
w/ Text 0.195 0.085 0.038 0.043 0.000 0.000 0.077
w/ RadEyeVideo (Ours) 0.197 0.109 0.025 0.119 0.000 0.000 0.189
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Table 10: Beta Split Diagnosis performance with CheXbert (F1 score for all abnormalities). All
scores are raw scores reported. NoEye prompting scores are reported with the model name.

Methods No Finding Enlarged
Cardiomediastinum Cardiomegaly Lung Lesion Lung Opacity Edema Consolidation

CheXagent(Chen et al., 2024b) 0.000 0.000 0.000 0.000 0.125 0.400 0.000
CXR-LLaVA(Lee et al., 2023) 0.000 0.000 0.000 0.000 0.000 0.427 0.000
LLaVA-Med(Li et al., 2024) 0.000 0.000 0.000 0.000 0.000 0.427 0.000

LongVA(Zhang et al., 2024) 0.000 0.000 0.327 0.000 0.432 0.427 0.000
w/ Heat Map 0.000 0.000 0.386 0.000 0.496 0.427 0.081
w/ Text 0.000 0.000 0.382 0.000 0.496 0.435 0.000
w/ RadEyeVideo (Ours) 0.000 0.000 0.393 0.000 0.504 0.435 0.133

VideoLLaMA2(Cheng et al., 2024) 0.000 0.000 0.386 0.000 0.500 0.414 0.000
w/ Heat Map 0.000 0.125 0.333 0.000 0.495 0.467 0.112
w/ Text 0.000 0.000 0.369 0.000 0.472 0.424 0.106
w/ RadEyeVideo (Ours) 0.000 0.000 0.377 0.000 0.490 0.346 0.067

LLaVA-OneVision(Li et al., 2024) 0.000 0.000 0.386 0.000 0.451 0.427 0.000
w/ Heat Map 0.000 0.000 0.393 0.000 0.477 0.414 0.000
w/ Text 0.000 0.000 0.386 0.000 0.232 0.427 0.000
w/ RadEyeVideo (Ours) 0.000 0.000 0.384 0.000 0.492 0.427 0.000

Methods Pneumonia Atelectasis Pneumothorax Pleural Effusion Pleural Other Fracture Support Devices

CheXagent(Chen et al., 2024b) 0.200 0.000 0.000 0.000 0.000 0.000 0.000
CXR-LLaVA(Lee et al., 2023) 0.196 0.000 0.000 0.000 0.000 0.000 0.000
LLaVA-Med(Li et al., 2024) 0.196 0.000 0.000 0.000 0.000 0.000 0.000

LongVA(Zhang et al., 2024) 0.206 0.000 0.000 0.077 0.000 0.000 0.000
w/ Heat Map 0.198 0.000 0.000 0.000 0.000 0.000 0.000
w/ Text 0.200 0.000 0.000 0.292 0.000 0.000 0.000
w/ RadEyeVideo (Ours) 0.206 0.000 0.000 0.114 0.000 0.000 0.000

VideoLLaMA2(Cheng et al., 2024) 0.198 0.000 0.000 0.305 0.000 0.000 0.259
w/ Heat Map 0.196 0.077 0.087 0.389 0.000 0.000 0.146
w/ Text 0.196 0.158 0.056 0.389 0.000 0.000 0.263
w/ RadEyeVideo (Ours) 0.196 0.000 0.056 0.389 0.000 0.000 0.174

LLaVA-OneVision(Li et al., 2024) 0.188 0.207 0.000 0.138 0.000 0.000 0.370
w/ Heat Map 0.217 0.000 0.000 0.154 0.000 0.000 0.077
w/ Text 0.118 0.077 0.000 0.000 0.000 0.000 0.091
w/ RadEyeVideo (Ours) 0.188 0.182 0.000 0.111 0.000 0.000 0.245

18


	Introduction
	RadEyeVideo - Dynamic Eye Gaze Video Prompting
	Why Eye-Gaze Data?
	Constructing the Gaze-Based Video Prompt
	Input Representation
	Video Prompting for Report Generation
	Video Prompting for Diagnosis
	Prompts

	Experiment
	Eye Gaze Dataset
	Models
	Evaluation
	Evaluation Hyperparameters
	Evaluation Metric


	Results and Discussion
	Ablation Study

	Conclusion and Future Work
	Appendix
	Computational Efficiency of RadEyeVideo
	Response Examples
	Evaluation Metrics Explanation
	Report Generation Performance
	Diagnosis Performance


