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ABSTRACT

We consider using machine learning to simulate time-dependent density functional
theory (TDDFT) to predict physical properties of molecules and materials beyond
their ground states. In particular, by simulating the electronic response of the
system under an external electromagnetic field, the optical absorption spectrum
can be calculated using real-time TDDFT (RT-TDDFT), which provides physical
information about the excited states and dipole strength function. However, RT-
TDDFT simulation requires the direct propagation of electronic wavefunctions of
all valence electrons for extended periods, making the process very time-consuming.
In this work, we model electron density as volumetric data and train neural networks
to map between coarse time steps. To make the model aware of the atomistic
environment, we incorporate 3D message passing into the model architecture.
Additionally, we use latent evolution to regularize the model towards learning the
underlying physics. Our method is termed TDDFTNet. To evaluate our approach,
we generate datasets using molecules from the MD17 dataset. Results show that
TDDFTNet can learn the time propagation of electron densities accurately and
efficiently.

1 INTRODUCTION

The ability to understand and predict the behavior of electrons in molecules and materials is crucial for
a wide spectrum of natural sciences such as physics, chemistry, materials, and biology. Fundamentally,
their interactions are governed by the principles of quantum mechanics, and their quantum states are
mathematically described by the many-body wavefunctions from the solutions of the Schrödinger
equation. However, their many-body nature poses a significant challenge to achieving the exact
many-body wavefunction solution for general molecular or materials system. Various first-principles
approaches have been developed in the past to tackle this challenge. For example, according to
density functional theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965), electron density
itself can completely determine the ground-state properties, making it a very powerful predictive
method for studying molecular and materials systems. Runge and Gross rigorously extended the
concept of DFT to time-dependent driven systems and established time-dependent density functional
theory (TDDFT) (Runge & Gross, 1984) for excited states. TDDFT, especially real-time TDDFT (RT-
TDDFT), provides a general framework for investigating linear and nonlinear electron dynamics of
molecules and materials with a plethora of applications in physics, chemistry, and biology (Marques
& Gross, 2004; Marques et al., 2006), e.g., biological chromophores (Marques et al., 2003), quantum
transport (Qian et al., 2006), and plasmonic catalysis (Seemala et al., 2019).

However, first-principles excited-state methods such as RT-TDDFT are highly computationally
intensive, with complexity ofO(N3 ·Nt) or higher, whereN represents the number of electrons in the
system and Nt denotes the number of time steps of RT-TDDFT calculation. The steep computational
requirement is due to their need to evolve the electron density jointly with the fictitious non-interacting
wavefunctions of all N electrons, as well as ensure the stability conditional on sufficiently fine space-
time discretizations, limiting the applicability of RT-TDDFT to small systems for a short time scale
and creating opportunities for machine learned surrogates to accelerate computation (Zhang et al.,
2023). However, despite the immense potential, this direction has been largely under-explored.
Here, we introduce neural TDDFT to model RT-TDDFT by directly evolving the electron density
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on a coarsened grid. Compared to conventional methods for RT-TDDFT built upon mathematical
models of quantum mechanics, the neural TDDFT framework achieves efficiency by avoiding explicit
evolution of the wavefunctions in addition to learning on a coarser temporal discretization.

We highlight several considerations and proposed solutions for the design of effective neural TDDFT
architectures and training frameworks, and employ these insights to propose TDDFTNet, the first
realization of neural TDDFT. First, neural TDDFT models must learn a representation which in-
tegrates both the electron density in the form of volumetric data with the molecule information
in the form of a geometric graph. TDDFTNet therefore takes the form of a hybrid convolutional-
message passing architecture. Second, in bypassing explicit modeling of the wavefunction, neural
TDDFT models are tasked with modeling the evolution of the density with incomplete information.
Therefore, generalization of neural TDDFT depends on its ability to implicitly capture the effect
of wavefunctions on the density. Thus, we take inspiration from quantum mechanics in designing
a physically-inspired regularization imposed on the read-out module for TDDFTNet. Third, we
leverage invariances of the Kohn-Sham equations with respect to rotations in order to improve the
data efficiency of neural TDDFT. Our experiments utilize TDDFT data generated over 4,000 CPU
hours with Octopus (Tancogne-Dejean et al., 2020). To lower the barrier of entry for future works
building on our insights, we will release our code and data upon publication.

2 REAL-TIME TIME-DEPENDENT DENSITY FUNCTIONAL THEORY

The physical behavior of electrons in atomistic systems is governed by the Schrödinger equation
in quantum mechanics, where the many-body electronic wavefunction ψ : R3N → C takes the 3N
coordinate values of all N electrons as input and describes the quantum state of all electrons. For the
sake of simplicity, we do not consider the spin degree of freedom here. However, the search space of
ψ grows exponentially with N . For example, if the 3D space is discretized into M grid points, the
number of possible wavefunctions is given by M3N .

On the other hand, the electron density offers a more efficient way to describe the electrons. The
electron density is directly related to the wavefunctions as

ρ(r) = N

∫
· · ·

∫
|ψ(r, r2, . . . , rN )|2dr2 . . . drN . (1)

In contrast to the 3N -dimensional wavefunction ψ, the electron density ρ(r) is a function of 3-
dimensional space, regardless of the number of electrons. As a result, the search space for electron
density does not increase drastically with more electrons. Fortunately, the Hohenberg-Kohn (HK)
theorem proves that electron density is sufficient to describe the ground state of the system, laying the
theoretical foundations of DFT (Hohenberg & Kohn, 1964; Kohn & Sham, 1965). The Runge-Gross
theorem further extends the HK theorem to the time evolution of electron density, and proves that
the physical properties of a many-body system subject to time-varying external potential vext(r, t)
can be uniquely determined given the time-varying density ρ(r, t), establishing the foundation of
TDDFT (Runge & Gross, 1984).

To obtain ρ(r, t), one can map the time-dependent many-body interacting system onto a fictitious time-
dependent non-interacting system that yields the same density ρ(r, t) and solve the corresponding
time-dependent Kohn-Sham (TDKS) equations, given by

i
∂ϕj(r, t)

∂t
=

(
−1

2
∇2 + vKS[ρ](r, t)

)
ϕj(r, t), (2)

where the Kohn-Sham potential vKS[ρ] is a functional of ρ, consisting of external, Hartree, and
exchange-correlation potentials as vKS(r, t) := vext(r, t) + vH(r, t) + vxc(r, t) (Marques et al.,
2006). Furthermore, ϕj is the time-dependent Kohn-Sham wavefunction for the j-th electron. The
corresponding electron density is given by

ρ(r, t) =

N∑
j=1

|ϕj(r, t)|2. (3)

While the mapping to the fictitious system makes the computation more practical, analytical solu-
tion of the time-dependent Kohn-Sham equations is intractable, and computational methods and
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codes (Marques & Gross, 2004; Marques et al., 2006; Tancogne-Dejean et al., 2020) have been devel-
oped for obtaining numerical approximations to ρ(r, t) to solve TDDFT, including linear response
TDDFT (Casida, 1995; Jamorski et al., 1996; Andrade et al., 2007) and RT-TDDFT (Castro et al.,
2004; Qian et al., 2006).

RT-TDDFT is of particular interest for studying both linear and nonlinear electron dynamics and
accessing excited state properties under external fields. However, the stability of numerical schemes
depends heavily on sufficiently fine space-time discretizations, resulting in excessive computations.
Furthermore, due to the presence of non-interacting electronic wavefunctions in the TDKS equation,
the electron density must be evolved jointly with the time-dependent wavefunctions, external potential,
and electronic Hamiltonian. Therefore, the computational cost associated with RT-TDDFT increases
dramatically with the increasing number of electrons and ions. One potential approach which has
thusfar not been explored is the development of machine-learned surrogates for TDDFT. Such a
surrogate could improve efficiency by learning to directly evolve the density on a coarser discretization,
bypassing explicit simulation of wavefunctions and constraints on grid spacing.

3 PROBLEM SETTING

Figure 1: Electron density ρ0 and density difference ∆ρt :=
ρt − ρ0 for ethanol (C2H6O). Here, t = 1 corresponds to
the first discrete timestep in the coarsened temporal grid T̃
following the impulse electric field. Brown, red, and light
red spheres represent carbon, oxygen, and hydrogen atoms.
The isosurface of ρ0 is indicated by blue. The isosurfaces
of ∆ρt are indicated by yellow and cyan for positive and
negative isovalues, corresponding to electron accumulation
and depletion, respectively.

For a given molecule, RT-TDDFT
aims to approximate ρ on the com-
putational grid G := R × T , where
R ⊂ R3 are a set of Nx × Ny × Nz

spatial collocation points, and T =
{0, t1, . . . , tT } are T equally-spaced
temporal collocation points. We de-
note the numerical approximation to
the density at time t ∈ T at all
spatial collocation points by ρt ∈
RNx×Ny×Nz which takes the form of
a three-dimensional volume, as shown
in fig. 1.

Typically, RT-TDDFT methods pro-
ceed by first computing the initial
non-interacting wavefunctions ϕ0,m
and density ρ0 by solving the DFT
Kohn-Sham equation of the system
in ground state at t = 0 with m ∈
{1, . . . , N}. Upon the excitation by
an external field such as an impulse
electric field at t = 0+, the wavefunc-
tions and density are evolved to {ϕt,m} and ρt by solving the TDKS equations iteratively. Further-
more, to ensure the stability and convergence of the numerical solutions, both the spacing of the
grid points inR and time step size tk+1 − tk must be sufficiently small, limiting the applicability of
RT-TDDFT to small systems for a short time scale.

Machine learned surrogate models for TDDFT have been largely unexplored despite their potential
to accelerate RT-TDDFT. Here we propose neural TDDFT as efficient alternatives to conventional
RT-TDDFT methods by learning to directly evolve ρ on a coarsened grid. Given the initial density
ρ0 and corresponding moleculeM(z,C), where z ∈ Zn and C ∈ Rn×3 are the atom types and
coordinates, respectively, we aim to learn a neural TDDFT model Φθ to compute the evolution of the
density as

Φθ (z,C, ρ0) = {ρ̂t}t∈T̃ \{0} , (4)

where T̃ ⊂ T is a coarsened time discretization of |T̃ | = T̃ time points such that T̃ ≪ T , and ρ̂t
denotes the prediction of ρt. Compared to conventional methods based on mathematical models of
quantum mechanics, Φθ achieves efficiency by avoiding explicit evolution of the wavefunction ϕ in
addition to the coarser temporal discretization.
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Figure 2: The proposed TDDFTNet framework. The Encoder and Propagator modules in TDDFTNet
shown on the right each contain U-Net and message passing layers to integrate the geometric
representation of the molecule M(z,C) with the volumetric features xt corresponding to the
electron density ρt. Additionally, each module includes physics-aware post-processing steps to
regularize model predictions towards physical consistency. The Encoder module first lifts the density
ρ0 to a latent feature map x0 whose squared norm is constrained such that ∥x0∥2 = ρ0 to align
the latent representation with eq. (3). The Propagator module evolves the density forward from
ρt 7→ ρt+1, and is physically constrained for density conservation, as well as to align with eq. (3)
via the density readout approximation. The volume-atom message passing submodule is visualized
in greater detail on the left and contains three stages of message passing to integrate geometric
information with the volumetric feature maps.

4 METHOD

4.1 LEARNING TIME EVOLUTION OF ELECTRON DENSITIES IN LATENT SPACE

Evolution of quantum systems happens in the space of the wavefunctions, where wavefunctions
propagate in time according to the TDKS equations within the TDDFT framework, and physical
observables such as the electron density can be computed from the wavefunction at different time
steps. Inspired by this physical process, we propose to learn the time evolution of electron densities
in latent space. For ease of notation, we use integer subscripts ρt to index the discretized time steps
on the coarsened temporal grid T̃ instead of physical time in the remainder of section 4. Given the
initial ground state electron density ρ0 ∈ RNx×Ny×Nz corresponding to a moleculeM(z,C), we
first use an encoder network fenc to lift it to a feature map x0 ∈ RH×Nx×Ny×Nz with H hidden
channels and the same spatial dimensions as

x0 = f enc (emb(z),C, ρ0) . (5)

Subsequently, at each time step, the feature map is updated using a propagator network as

dxt+1 = f prop (emb(z),C,dxt + τ emb(t),x0) , (6)

where dxt+1 = xt+1 − x0 and emb is an atom type embedding. Additionally, we augment the
feature map in eq. (6) with a time embedding such that the network is aware of the propagation time.
Specifically, τ emb encodes t to an H-dimensional feature vector via an MLP applied to a sinusoidal
positional embedding of t (Vaswani, 2017) which is added to each spatial location in xt. Additionally,
to aid the network in retaining information from the initial density, we feed the initial feature map
x0(r) to f prop at each time step. Finally, at each time step, we readout the predicted electron density
ρ̂t with a readout function f readout as

∆ρ̂t+1 = f readout(x0,dxt+1), (7)

where ∆ρ̂t+1 := ρ̂t − ρ0. We use the same network design for both f enc and f prop, which consists of
a message-passing layer (Gilmer et al., 2017) followed by a U-Net (Ronneberger et al., 2015). As
we will describe in details below, the message passing layer exchanges the processed information
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between the 3D feature map and the atoms, which captures the interactions between the electron
cloud and the nuclei. The U-Net processes the feature map with interleaved downsampling steps and
convolution layers to gradually extract global information, and then alternatively applies upsampling
and convolution layers to refine the local features, with skip-connections between these two stages
to preserve high frequency information. We use a U-Net with 3 downsampling and upsampling
blocks with an initial channel size of 64. Multi-resolution processing with the U-Net serves to capture
multi-scale interactions among electrons. f readout, which maps between the latent feature map and the
density, can either be a learnable neural network or a fixed function. In this work, we model f readout
with a physically-motivated fixed function which regularizes feature maps xt to follow the same
semantics as the wavefunction, detailed further in section 4.3. Our pipeline is visualized in fig. 2. In
our implementation, we use temporal bundling (Brandstetter et al., 2022b) with 2 time steps, meaning
that we predict the latent feature maps for 2 time steps together at each propagation step but use only
the second feature map as conditioning for the subsequent propagation.

4.2 VOLUME-ATOM GEOMETRIC MESSAGE PASSING

Atom types z and atom coordinates C directly determine the external potential for electrons, and
consequently determine the time evolution of the electron density. To incorporate the atomistic
environment information, we propose to use geometric message passing between the feature volume
and the atoms. Given a 3D point cloud representation of the moleculeM(z,C) where each node
corresponds to an atom and is assigned a 3D coordinate and feature vector, geometric message passing
is employed to compute messages from nodes to update the surrounding volumetric feature vectors
based on their relative position, as illustrated by fig. 2. To do so, we jointly consider the grid points
r ∈ R and atoms comprising the corresponding moleculeM as nodes in a heterogeneous graph. The
node features for grid point r is then given by the volumetric feature vector xt(r), while features
for the atomistic nodes are initialized dependent on their atom type z and neighboring volumetric
features, detailed below. Node features in the heterogeneous graph are then updated based on the
received messages from neighboring nodes.

To compute the messages, we employ distance-based geometric message passing as in Schütt et al.
(2017). To exchange information between volumetric features and atoms, we use three stages of
message passing on the heterogeneous graph. First, we compute the node features v(0)

i for atoms
based on their atom types z and gather information from the neighboring region in the volumetric
feature map xt based on the distance between each voxel-atom pair as

v
(0)
i = emb(zi) +

∑
rj∈N vol(Ci)

xt(rj)⊙ f (0)(d(1)ij ), (8)

where N vol(Ci) ⊂ R denotes the neighboring grid points relative to the coordinates of atom i
computed using a distance cutoff, f (0) is a learnable function which embeds the atom-grid distance
d
(1)
ij := ∥rj −Ci∥ into an H-dimensional feature vector, and ⊙ denotes channel-wise multiplication

between feature vectors. We use a cutoff of 3.5 in our implementation.

Second, we perform K rounds of message passing restricted to the atomistic graph, where the node
feature v

(k)
i for the i-th atom following the k-th message passing step for k > 0 is given by

m
(k)
i =

∑
j∈N atom(i)

v
(k−1)
i ⊙ f (k)(d(2)ij ) + v

(k−1)
ij , v

(k)
i = MLP(k)(m

(k)
i ). (9)

Here, N atom(i) denotes the indices j of the atom nodes within a distance cutoff of the i-th atom and
the atom-atom distance d(2)ij is given by d(2)ij := ∥Ci−Cj∥. We use K = 3 in our implementation. A
cutoff of 10 is typically used for atom graphs. For our systems, it pratically produces fully-connected
graphs. Finally, we distribute the final geometric features v(K)

j back to the volumetric feature map xt

as
xt(ri)← xt(ri) +

∑
Cj∈N vol(ri)

v
(K)
j ⊙ f (K+1)(d

(1)
ij ), (10)

where N vol(ri) denotes the atoms within a distance cutoff (=3.5) of the i-th gridpoint ri.
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4.3 PHYSICS-AWARE LATENT REPRESENTATION AND DENSITY READOUT

To regularize the learned latent evolution to align with the underlying physics, we constrain the initial
latent feature map and design a map from the latent feature xt to the predicted density ρ̂t motivated
by quantum mechanics. In particular, inspired by the relation between the wave function ϕ and
density ρ given in eq. (3), we constrain the square norm of the initial latent feature map at each grid
point r to be the same as the initial density as ∥x0(r)∥2 = ρ0(r) with density normalization, given
by

x0(r)←
x0(r)

∥x0(r)∥
√
ρ0(r). (11)

With a similar motivation in mind, we model the density readout at later steps as ρ̂t(r) = ∥xt(r)∥2 =
∥x0(r) + dxt(r)∥2. By doing so, we regularize the latent feature map xt to have similar semantics
as single-electron wavefunctions in DFT, where x0 corresponds to the ground state wavefunction and
dxt corresponds to the wavefunction difference. Importantly, this semantic similarity is kept implicit,
as our pipeline does not require supervision of xt using the ground truth wavefunctions.

As shown in fig. 1, the difference between the target density ρt and the initial density ρ0, denoted by
∆ρt := ρt − ρ0, is several orders of magnitude smaller than the initial density ρ0. Therefore, instead
of directly predicting ρt(r), we re-parameterize our prediction target as

∆ρt(r) ≈ ρ̂t(r)− ρ0(r) = ∥x0(r) + dxt(r)∥2 − ∥x0(r)∥2

= ∥dxt(r)∥2 + 2 ⟨x0(r),dxt(r)⟩ . (12)

However, due to the small scale of ∆ρt, directly using ∥x0(r) + dxt(r)∥2 − ∥x0(r)∥2 as the
predicted density difference will require dxt also to be very small compared to x0, in which case
adding dxt and x0 together might lead to unfavorable numerical issues in optimization. We use the
following approximation to avoid these problems:

∥dxt(r)∥2 + 2 ⟨x0(r),dxt(r)⟩ ≈ 2 ⟨x0(r),dxt(r)⟩ . (13)

In words, we readout the density by using the dot product between dxt and x0. By doing so, we can
conveniently control the scale of dxt with respect to x0 by scaling the prediction target ∆ρt since
now the target is linear in dxt. The approximation in eq. (13) is justified through the assumption
that the small magnitude of ∆ρt should correspond to a small magnitude of dxt due to the semantic
similarity of xt to the wave function. Specifically, we assume that the density ρt is continuous in the
wave function ϕt such that a small change in ρt implies a small change in ϕt. Additionally, since the
total electron density is conserved during time propagation, the total density difference at each time
step is zero. To enforce this constraint, we post-process the dxt as

dxt ← dxt −
∑

r ⟨x0(r),dxt(r)⟩∑
r ρ0(r)

x0, (14)

such that
∑

r ⟨x0(r),dxt(r)⟩ = 0, thereby ensuring that the total predicted electron density does
not change compared to ρ0.

4.4 LEVERAGING SYMMETRIES OF TDDFT

To improve the data efficiency of neural TDDFT, we leverage symmetries of the Schrödinger equation
during training to both augment and canonicalize input-target pairs. For augmentation, we utilize the
fact that rotations R ∈ SO(3) applied to the molecule geometry about the direction of the impulse
electric field lead to an equal rotation applied to the resulting trajectory. We additionally leverage
the equivariance of the resulting trajectories under equal rotations to both the input geometry and
the polarization direction of external impulse electric field. One of the main quantities of interest
in TDDFT simulations is the optical absorption spectrum. In order to compute the spectrum for a
general molecule, TDDFT calculations need to be performed multiple times under electric field pulse
with various polarizations. Specifically, the direction of the perturbation needs to be varied over the x,
y, and z axes in three independent simulations in order to obtain the total optical absorption spectrum.
Therefore, an effective neural TDDFT model should be able to handle all three directions seamlessly.
Please refer to appendix E for more details.
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5 RELATED WORK

Machine learning density functional theory: Recently, various deep learning techniques have
shown their power in accelerating DFT algorithms. One category of methods take geometric graph
networks (Yu et al., 2023; 2024; Gong et al., 2023; Schütt et al., 2019; Li et al., 2022; Unke et al.,
2021; Zhong et al., 2023) to predict the final Hamiltonian matrix after the self-consistent loop has
converged. These methods require a choice of a set of predefined orbitals in order to obtain the
corresponding Hamiltonian matrix, posing the problem of transferability between different orbital
sets. Another category of methods leverages deep learning models to predict accurate electron
densities (Jørgensen & Bhowmik, 2020; 2022; Cheng & Peng, 2024), thereby accelerating the DFT
algorithm. Jørgensen & Bhowmik (2020) learn representations that are independent of the electron
density mesh, a favorable property also pursued by more recent works (Fu et al., 2024; Kim & Ahn,
2024; Cheng & Peng, 2024). While these deep learning methods focus on accelerating the DFT
algorithm for ground-state systems, their application to the dynamic evolution of electronic states over
time remains largely under-explored. Therefore, it is highly desirable to develop machine learning
algorithms for accelerating RT-TDDFT.

Neural PDE solvers: Solving TDDFT can be naturally framed as solving a partial differential
equation (PDE). While machine-learned surrogate models have also been used to accelerate the
numerical solution of PDEs (Stachenfeld et al., 2021; Brunton & Kutz, 2023; Kovachki et al., 2023)
with applications in fields such as fluid dyanmics (Kochkov et al., 2021; Gupta & Brandstetter, 2023;
Lienen et al., 2023) and geophysics (Wu et al., 2022b; Feng et al., 2023; Wen et al., 2023), there has
been limited work on surrogates for TDDFT beyond functional learning (Yang & Whitfield, 2023) or
direct prediction of energy computed via TDDFT (Pronobis et al., 2018).

While many PDE surrogates rely on convolutional (Lippe et al., 2024; Zhang et al., 2024; Raonic et al.,
2024) and message passing architectures (Brandstetter et al., 2022b; Wu et al., 2022a; Toshev et al.,
2024), the integration of geometric information within convolutional surrogates has not been explored.
Although there has been work on encoding physical information into network architectures (Wang
et al., 2020) and loss functions (Li et al., 2021) including for the Schrödinger equation in one
spatial dimension (Raissi et al., 2019; Wang & Yan, 2021; Shah et al., 2022; Zeng et al., 2023) and
the time-independent DFT Kohn-Sham equation (Nagai et al., 2018; Zepeda-Núñez et al., 2021),
the development of deep models of the time-dependent Kohn-Sham equations within the TDDFT
framework has been limited. Symmetry priors have also played an important role in the development
of neural surrogates for PDEs in architecture design (Wang et al., 2021; 2022; 2023; Bonev et al., 2023;
Helwig et al., 2023), loss functions (Akhound-Sadegh et al., 2024), data augmentation (Brandstetter
et al., 2022a), and pre-training procedures (Mialon et al., 2023).

6 EXPERIMENTS

Datasets: We construct our RT-TDDFT datasets using molecular geometries from the MD17
dataset (Chmiela et al., 2017) which consists of thousands of three dimensional structures for
several organic molecules. We create datasets for the water, ethanol, and malondialdehyde molecules
considered in previous works (Schütt et al., 2019; Yu et al., 2023) by randomly sampling geometries
for each molecule from MD17 following a 1,600/200/200 train/valid/test split.

The time-dependent electron density is obtained using a first-principles TDDFT code, Octopus, for
each geometry subject to time-dependent electromagnetic fields (Tancogne-Dejean et al., 2020). An
impulse field was applied at t = 0+ with an effective kick strength to electronic wavefunctions by
0.01 Å−1, where Å denotes Angstroms. We adopt a time-dependent local density approximation of
the exchange-correlation energy functional in the Perdew-Zunger form (Perdew & Zunger, 1981) in
the RT-TDDFT simulation with Octopus to numerically solve the TDKS equation shown in eq. (2). A
uniform three-dimensional real-space mesh is used with a grid spacing of 0.18Å along each Cartesian
direction. The corresponding grid cutoff energy is 85.3 Rydberg units. The time integration was
performed with a time step of 2.3 × 10−3ℏ/eV for T =3,000 total steps from time t0 = 0ℏ/eV
to time tT = 6.9ℏ/eV, where ℏ and eV denote the reduced Planck’s constant and electron-Volts,
respectively. The electron density was saved at every 50th step for model training such that the neural
TDDFT models take a step size of 1.15 × 10−1ℏ/eV for trajectories {ρt}t∈T̃ , with T̃ = 60. We
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(a) Water (b) Malondialdehyde (c) Ethanol

Figure 3: Comparison of optical absorption spectra from the TDDFTNet prediction and the ground-
truth calculation.

(a) Water (b) Malondialdehyde (c) Ethanol

Figure 4: Comparison of predicted dipoles in the x direction with ground-truth values over time.
Predicted dipoles are computed from the predicted density as described in section 6, and are used in
determining excited energy levels of the molecule, a key quantity of interest. Dipoles in all directions
are shown in fig. 7.

center crop the volume around molecule, resulting in a spatial resolution of 48 along all 3 axes for
ethanol and malondialdehyde, and 40 for water.

RT-TDDFT simulations were run in parallel on a compute cluster with Intel Xeon 8352Y processors
each with 256GB RAM (@2.20GHz), with over 10,000 cores in total. The simulation time highly
depends on the complexity of the molecule. For water (H2O), ethanol (C2H6O), and malondialdehyde
(C3H4O2), a single trajectory took over 5, 15, and 20 minutes to generate, respectively. For each
molecular geometry, three trajectories were generated for the three different electric field polarizations
necessary for computing the total optical absorption spectrum, which effectively triples the size of the
dataset. Thus, across the 6,000 total simulations required for each molecule, the total CPU hours for
generating water, ethanol, and malondialdehyde was greater than 500, 1,500, and 2,000, respectively.

Multi-stage training: We use a curriculum training scheme where the number of prediction steps
increases during training (List et al., 2024). We divide our training into four stages of increasing
difficulty, each with a different number of prediction steps. In the first stage, the model predicts 8
time bundles each consisting of 2 time steps for a total of 16 time steps. In each subsequent stage,
the number of bundles is increased by 8, except for in the final stage, where the final number of
total predictions is capped at 60, which we find to be sufficient to closely capture the absorption
spectrum of the generated trajectories. We train TDDFTNet for 10 epochs for each stage for all three
molecules. The cosine annealing learning rate scheduler (Loshchilov & Hutter, 2016) is used within
each stage, where the learning rate starts at maximum and gradually decreases to 0 at the end of
each stage. At the beginning of each stage the learning rate is restarted at the maximum. We use a
maximum learning rate of 2× 10−4 and clip the gradient norm at 1. In addition, we employ gradient
checkpointing for the propagator network to reduce GPU memory usage.
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Figure 5: Dipole error and relative error by time step.

Loss: Our training objective is a mixture of a Scaled-L2 loss and a Scaled-dipole loss. The Scaled-L2

loss penalizes deviations from the ground truth density difference and is defined as

Scaled-L2

(
{∆ρ̂t}t∈[[1,T ]], {∆ρt}t∈[[1,T ]]

)
=

1

T

T∑
t

√∑
r (∆ρ̂t(r)−∆ρt(r))

2∑
r ∆ρt(r)

2
. (15)

The Scaled-dipole loss regularizes predictions to have correct dipole moments and is computed as

Scaled-dipole
(
{∆ρ̂t}t∈[[1,T ]], {∆ρt}t∈[[1,T ]]

)
=

1

T

T∑
t

∥ dipole(∆ρ̂t − ρt)∥
∥dipole(ρt)∥

, (16)

where
dipole(ρ) =

∑
r

ρ(r)r∆V ∈ R3, (17)

and ∆V represents the real space grid volume. The overall training objective L is then given by
L = Scaled-L2 + α · Scaled-dipole, (18)

where the dipole loss weight α is set to 0.1.

6.1 RESULTS

Results for TDDFTNet on the three molecules are shown in table 1, while the scaled L2 error for
density and dipoles at different rollout time steps is shown in fig. 5 and numerically in table 3 in the
appendix. In addition to the errors for dipole and density, we also report the overlap between the
predicted and the ground truth optical absorption spectra. The absorption spectrum is computed from
the Fourier transform of the dipole and is related to the excited energy levels of molecules. Specifically,

we compute the spectrum overlap as
⟨σpred, σgt⟩
∥σpred∥∥σgt∥

, where σpred and σgt denote the predicted and

ground truth optical absorption spectrum vectors, where each entry represents a frequency.

Samples of computed optical absorption spectra are shown in fig. 3, while their dipoles in the x
direction are shown in fig. 4. As the external electric field is along the x direction, the dipole in the x
direction covers the majority of the dipole response. The dipoles in the y and z directions are shown
in fig. 7 in the appendix. The absorption spectrum and dipoles of the water molecule closely match
the ground truth. Error for malondialdehyde is increased but TDDFTNet is still able to recover most
of the significant peaks in the spectrum. The error for the ethanol molecule is larger, potentially
because the absorption spectrum is dominated by high frequencies, and the fast varying components
in the dipoles may be more difficult for TDDFTNet to capture. Similarly, the dipoles for ethanol are
accurate up to a short time window. It is likely that finer temporal resolution could enhance the ability
of TDDFTNet to capture the higher frequencies necessary for more accurate modeling of ethanol
TDDFT. In appendix D, we analyze the runtime of TDDFTNet compared to a classical TDDFT solver
and find a large advantage which would not be substantially comprised by increasing the temporal
resolution. Finally, we observe decaying behavior in the predicted dipoles. This may be due to the
increased uncertainty from the model at long time predictions. On the other hand, this demonstrates
the stability of TDDFTNet over long rollouts, as predictions do not diverge.

Mixed dataset. To study the generalization ability to different types of molecules, we create a
mixed dataset composed of one third of the trajectories for each of the three molecules. Results
in appendix F suggest that TDDFTNet is suitable to be trained across different types of molecules.
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Table 1: Average evaluation metrics for water, malondialdehyde, and ethanol molecules.

Dipole Error (1× 10−2) ↓ Scaled-L2 Error (1× 10−2) ↓ Spectrum Overlap (%) ↑
Water 39.77 61.80 99.11
Malondialdehyde 58.76 72.55 99.34
Ethanol 75.21 81.07 98.78

Table 2: Average evaluation metrics for ablation studies on malondialdehyde molecules.

Dipole Error (1× 10−2) ↓ Scaled-L2 Error (1× 10−2) ↓ Spectrum Overlap (%) ↑
TDDFTNET 56.79 71.45 99.34
NO-MP 67.58 78.04 98.86
MP-U-NET 59.31 74.18 99.25
MP-U-NET-ONE-SHOT 62.41 77.51 99.15
MP-U-NET-AR 137.68 86.92 95.74

6.2 ABLATION STUDIES

We next perform an ablation study to evaluate the effectiveness of various components of TDDFTNet:

• NO-MP: removes message passing blocks.
• MP-U-NET: removes the physics-aware components, including the density normalization

on encoder’s output x0, as well as the physics-based density readout. The density differences
∆ρt are read out using a linear layer. The mean of the output is subtracted from each time
step to ensure the total density difference is zero at each time step.

• MP-U-NET-ONE-SHOT: same as MP-U-NET, additionally replaces latent evolution with
one-shot prediction, where a linear layer whose output channel is equal to the number of
prediction time steps is used to yield the output of all time steps using a single forward pass
of the model.

• MP-U-NET-AR: same as MP-U-NET, additionally replaces latent evolution with one-step-
ahead prediction. During training, the model learns to predict the density difference at the
next time step ∆ρt+1 from the density difference at current time step ∆ρt together with the
initial density ρ0. During evaluation, rollouts are produced autoregressively.

Numerical ablation study results on Malondialdehyde are presented in table 4. Results by time step
are presented in fig. 6 and numerically in table 4 in the appendix. The observed detriment of removing
message passing demonstrates the importance of capturing interactions between the electron cloud
and the nuclei. Furthermore, the integration of physics-aware components improves metrics across
the board, while latent evolution with a training curriculum proves to be a more effective training
strategy than one-shot or one-step prediction. We provide more details about autoregressive models
in appendix G and the effect of using U-Net in appendix H.

7 CONCLUSION

We study neural TDDFT and develop a method, known as TDDFTNet, that simulates and accelerates
TDDFT using machine learning. The architecture of TDDFTNet integrates geometric information
from the three-dimensional molecular graph in modeling the volumetric electron density by leveraging
a unified, heterogeneous graph representation of these entities. Physics-aware training of TDDFTNet
regularizes the model to maintain a greater degree of physical consistency. Results show that
TDDFTNet achieves promising performance with dramatic acceleration. Our framework can be
extended to crystalline materials and amorphous systems, with great potential for studying excited
state dynamics.
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(a) Dipole error (b) Scaled-L2 error

Figure 6: Ablation studies for TDDFTNet. Original curves (with shading) are smoothed using
exponential moving average for better visibility.

A OPEN DIRECTIONS

The introduction of deep learning into the realm of TDDFT has created many potential lines of work,
several of which we discuss here. Volumetric modeling in 3 spatial dimensions invites innovation
towards scalable solutions for more complex systems, including macromolecules, periodic structures,
and larger molecules, although generation of a machine learning-scale dataset for such systems will
require substantial computational resources. However, the existence of a large-scale mixed molecule
dataset would enable development of neural TDDFT frameworks that generalize over molecule type,
which we explore further in appendix F. Various applications of TDDFT may call for time-varying
external potentials or varying excitation types, in which case the development of representations
capturing the effect of the potential will be vital for faithful modeling. The extension of continuous
models of the electron density, as explored for static DFT by Jørgensen & Bhowmik (2020); Fu et al.
(2024); Cheng & Peng (2024); Kim & Ahn (2024), is also a promising direction.

B ETHICS AND REPRODUCIBILITY STATEMENT

Neural TDDFT has the potential to accelerate new discoveries in biology and material science. To
lower the barrier of entry for future works building on our insights, we will release our code and data
upon publication.

C RESULTS

We present numerical results for our main experiments in table 3, numerical results for ablation study
in table 4, and plots of predicted dipoles and their ground-truth on all x, y and z axes in fig. 7. Note
that the scale for the dipole values along the y-axis and z-axis are relatively smaller compared to
those along the x-axis.

Table 3: Dipole error and relative error by time step.

Dipole Error (1× 10−2) Scaled L2 Error (1× 10−2)
Time Step 1 10 20 30 40 50 60 1 10 20 30 40 50 60

Water 3.21 16.72 28.02 34.78 46.26 66.90 71.13 20.21 41.46 56.57 69.09 76.10 78.02 84.84
Malondialdehyde 2.61 25.34 40.13 64.17 75.02 79.13 79.07 17.64 54.40 70.30 77.26 86.05 89.08 92.61
Ethanol 2.48 47.47 82.73 85.63 89.86 96.25 99.78 14.70 61.43 81.91 90.16 95.89 97.67 99.24
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Table 4: Ablation study dipole error and relative error by time step.

Dipole Error (1× 10−2) Scaled L2 Error (1× 10−2)
Time Step 1 10 20 30 40 50 60 1 10 20 30 40 50 60

TDDFTNET 2.61 25.34 40.13 64.17 75.02 79.13 79.07 17.64 54.40 70.30 77.26 86.05 89.08 92.61
NO-MP 2.82 37.24 46.76 76.99 86.69 88.43 88.37 22.16 63.74 77.16 85.17 92.72 93.94 96.03
MP-U-NET 2.35 29.05 43.09 66.25 76.23 80.34 80.23 18.53 59.70 73.08 80.56 88.42 90.68 93.71
MP-U-NET-ONE-SHOT 2.46 30.40 42.84 70.64 81.15 84.88 85.20 18.82 62.71 77.61 85.19 92.24 93.14 95.47
MP-UNET-AR 3.62 49.00 90.89 227.35 232.54 237.05 227.95 25.21 77.38 91.94 94.50 103.48 98.91 101.91

D TIME COMPARISON

In table 5, we compare the runtime of TDDFTNet to the classical TDDFT method implemented in
Octopus on the ethanol dataset. Note that TDDFTNet was run with a batch size of 4 on a single A100
GPU. We find TDDFTNet offers a large speed up relative to the classical solver.

Table 5: Time comparison on the Ethanol dataset.

Method Time

Octopus >15 min.
TDDFTNet 1.78 sec.

E ROTATION EQUIVARIANCE AND DATA AUGMENTATION

To improve the data efficiency of neural TDDFT, we leverage symmetries of the Schrödinger equation
during training to both augment and canonicalize input-target pairs. For augmentation, we utilize
the fact that rotations R ∈ SO(3) applied to the molecule geometry about the direction of the
impulse electric field lead to an equal rotation applied to the resulting trajectory. Thus, for the
molecule-density pair

(
{ρt(r)}t∈T̂ ,M(z,C)

)
, the rotated pair

({
ρt(R

−1r)
}
t∈T̂ ,M(z,RC)

)
also corresponds to a solution of the Kohn-Sham equations. Therefore, during training, we apply
random rotation sampled from {I,R90◦ ,R180◦ ,R270◦} about the direction of the impulse electric
field to inputs and targets, effectively expanding the size of the training data by a factor of four.
Rotations by arbitrary angles can also be employed, with interpolation used to resolve inconsistencies
with the rotated density and the computational grid.

We additionally leverage the equivariance of the resulting trajectories under equal rotations to both
the input geometry and the polarization direction of external impulse electric field. One of the main
quantities of interest in TDDFT simulations is the optical absorption spectrum. In order to compute
the spectrum for a general molecule, TDDFT calculations need to be performed multiple times
under electric field pulse with various polarizations. Specifically, the direction of the perturbation
needs to be varied over the x, y, and z axes in three independent simulations in order to obtain
the total optical absorption spectrum. Therefore, an effective neural TDDFT model should be able
to handle all three directions seamlessly. One possibility could be to condition the model on the
direction, however, this would cost valuable model capacity. Instead, we optimally leverage the
mutual information between the data from the three polarizations by canonicalizing inputs and targets
such that the direction of the perturbation is invariant. Specifically, given a set of three density
trajectories {ρxt (r), ρ

y
t (r), ρ

z
t (r)}t∈T̂ corresponding to the moleculeM(z,C) excited by impulse

electric field from the x, y, and z direction, respectively, we apply the deterministic rotations Ry and
Rz to the molecule-density pairs as({

ρyt (R
−1
y r)

}
t∈T̂ ,M(z,RyC)

) ({
ρzt (R

−1
z r)

}
t∈T̂ ,M(z,RzC)

)
(19)

such that the polarization of the impulse electric field is the same as for the x-direction given by
(ρxt (r),M(z,C)). To compute the optical absorption spectrum, the inverse rotations are then applied
to the predicted trajectories as

{ρ̂yt (Ryr)}t∈T̂ \{0} {ρ̂zt (Rzr)}t∈T̂ \{0} (20)

to return them to their original orientation.
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(a) Water (b) Malondialdehyde (c) Ethanol

Figure 7: Comparison of predicted dipoles with ground-truth values over time along the x-axis,
y-axis, and z-axis.

F MIXED DATASET

The training set is composed of 534 molecules taken from each of the three datasets. The validation
and test sets are composed of 67 molecules taken from each of the three datasets. For each molecule,
we use data from all 3 electric field directions. We use a spatial resolution of 48 for all 3 molecules.

Samples of optical absorption spectrum are shown in fig. 8, and average metrics are shown in table 6.
The metrics for different molecules are averaged on their respective subsets, while the overall results
are evaluated on all three types of molecules and represents the average performance.

(a) Water (b) Malondialdehyde (c) Ethanol

Figure 8: Comparison of optical absorption spectra from the TDDFTNet prediction and the ground-
truth calculation using the model trained on the mixed dataset.
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Table 6: Average evaluation metrics of TDDFTNet on the mixed dataset.

Dipole Error (1× 10−2) ↓ Scaled-L2 Error (1× 10−2) ↓ Spectrum Overlap (%) ↑
Water 53.32 65.28 97.83
Malondialdehyde 69.55 80.66 98.69
Ethanol 84.55 88.79 97.66

Overall 69.14 78.24 98.06

(a) Dipole error (b) Scaled-L2 error

Figure 9: Ablation studies for autoregressive models. Original curves (with shading) are smoothed
using exponential moving average for better visibility.

G AUTOREGRESSIVE MODEL

In autoregressive prediction, the model is trained to predict the next steps based on the immediate
previous steps. We additionally condition the prediction on the initial density since it contains
important background information. Formally, we condition on [ρ0,∆ρt−h+1, . . . ,∆ρt] to predict
[∆ρt+1, . . . ,∆ρt+f ], where ρ0 is the initial density, h is the number of historical time steps, and f is
the number future time steps. We chose f = 2 and tested with h = 4 and h = 1.

The results are shown in fig. 9. A sample of optical absorption spectrum for the Malondialdehyde
molecule using h = 1 is shown in fig. 10. The results show that autoregressive prediction yields
significantly larger rollout errors compared to latent evolution or one-shot prediction (see fig. 6 in
main text). Besides error accumulation during rollout, one of the other reasons that autoregressive
prediction fails may be because the Markov assumption does not hold, as the electron density at one
time step cannot fully determine the quantum state.

Figure 10: Autoregressive model with h = 1 on Malondialdehyde
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H ABLATION ON U-NET

To study the effectiveness of multi-scale processing in the U-Net, we created an ablated U-Net
with only one downsampling / upsampling step with the number channels multiplied by 2 after
downsampling. More concretely, for the downsampling branch, we first apply a convolution block at
the highest resolution, then apply the downsampling, and apply another convolution block afterward.
The upsampling branch is similar. We also created a ResNet with exactly the same architecture as the
ablated U-Net by removing all downsampling / upsampling steps. The resulting U-Net and ResNet
have the same number of parameters (12M). We then train them on the mixed dataset using one-shot
prediction without message passing blocks.

The results are shown in table 7. Although ResNet results in slightly better Scaled-L2 error, U-Net
gives better dipole error. This suggests that multi-resolution processing is helpful in capturing global
context necessary for accurate modeling of dipoles. We also notice that ResNet uses 1.5x training
time and 1.3x GPU memory compared to U-Net. The computational and memory efficiency of U-Net
is important for processing 3D volumetric data. Overall, the ability to learn global properties and the
computational efficiency make U-Net suitable for learning TDDFT.

Table 7: Average evaluation metrics for U-Net and ResNet on mixed dataset.

Dipole Error (1× 10−2) ↓ Scaled-L2 Error (1× 10−2) ↓ Spectrum Overlap (%) ↑
U-NET-ONE-SHOT 79.07 83.77 95.74
RESNET-ONE-SHOT 80.05 83.38 95.36

I DATASET AND PREDICTION VISUALIZATION

We plot the input electron density of a sample Malondialdehyde molecules in fig. 11, and the electron
density rollout in fig. 12. The initial electron densitiy and the rollout of density differences and are
first cropped to the center 12 voxels along y−axis, and then summed along y−axis to produce a 2D
plot. The absolute errors are first computed for the entire volume and then cropped and summed in
the same way.

Figure 11: Initial electron density of malondialdehyde molecule.
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Figure 12: Rollout of electron density differences of malondialdehyde molecule.
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