Under review as a conference paper at ICLR 2026

ML2B: MULTI-LINGUAL ML BENCHMARK FOR AU-
TOML

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently demonstrated strong capabilities in
generating machine learning (ML) code, enabling end-to-end pipeline construc-
tion from natural language instructions. However, existing benchmarks for ML
code generation are mainly restricted to English, overlooking the global and mul-
tilingual nature of ML research and practice. To address this gap, we present
MLZ2B, the first benchmark for evaluating multilingual ML code generation. ML2B
consists of 30 Kaggle competitions translated into 13 natural languages, covering
tabular, text, and image data types, with structured metadata and validated human-
reviewed translations. For evaluation, we employ AIDE, an automated frame-
work for end-to-end assessment of data science pipelines, and provide insights
into cross-lingual model performance. Our results reveal substantial 15-45% per-
formance degradation on non-English tasks, highlighting critical challenges in
multilingual representation learning for code generation. The benchmark, eval-
uation framework, and comprehensive results are made available through our
GitHub repository to facilitate future research in multilingual ML code genera-
tion: https://github.com/AnonimusCoders/ml2b.

1 INTRODUCTION

Machine learning (ML) has become a fundamental component in a wide range of contemporary
tasks across various domains. Motivated by the necessity to relieve ML researchers from the time-
consuming task of baseline pipeline selection or to give a working solution for people out of ML,
AutoML frameworks have emerged to automate this process (Zoller & Huber, [2021)).

At the same time, large language models (LLMs) have demonstrated remarkable capabilities in
generating code for ML tasks, from data preprocessing to complex model architectures (Chen et al.,
20215 Roziere et al., 2023 |Li et al., [2023). This progress has spurred the creation of benchmarks
to evaluate ML code generation, including MLE-bench (Chan et al., |2025)), DA-Code (Huang et al.,
2024), and Weco-Kaggle (Jiang et al.l 2025), which leverage real-world Kaggle competitions to
assess model performance on end-to-end ML workflows.

Though these benchmarks are suitable for their prime task, all of them have a limitation of containing
data only in English. Jin et al.| (2024)), and |Raihan et al.|(2025)) have claimed that there is a large gap
between LLM performance on English and other languages, especially low-resource ones, and that
it is crucial to evaluate LLM performance on different natural languages.

This gap is especially concerning for ML code generation. First, ML research and practice is global,
with substantial activity in non-English-speaking regions. Second, ML code generation inherently
requires cross-lingual alignment: models must interpret problem descriptions in diverse languages
while producing executable code, typically in English. Current benchmarks can not measure this
ability.

We introduce ML?B (Multilingual Machine Learning Benchmark), the first benchmark for evaluat-
ing LLMs on generating complete ML pipelines from multilingual natural language descriptions.
ML?B extends real Kaggle competition tasks into 13 languages while preserving the realism and
complexity of full ML workflows.

Our contributions are fourfold:

Under review as a conference paper at ICLR 2026

1. Multilingual benchmark: A curated dataset of 30 Kaggle competitions (24 public, 6 pri-
vate), translated into 13 natural languages, creating 390 unique evaluation instances.

2. Diverse task coverage: Inclusion of tabular, text, and image modalities across 12 domains,
enabling systematic study of how task type interacts with cross-lingual ML code genera-
tion.

3. Structured metadata and leakage control: Human-reviewed task descriptions and stan-
dardized data cards ensure clarity and prevent information leakage, supporting reproducible
evaluation.

4. Comprehensive evaluation: Assessment of five LLMs across two execution frameworks
(AIDE with 3 agents, ML Master with 2 hybrids), revealing substantial 15-45% perfor-
mance degradation on non-English tasks and highlighting challenges in multilingual repre-
sentation learning for code generation.

2 RELATED WORK

2.1 DATASETS FOR ML CODE

Several datasets align natural language with code to support domain-specific generation tasks. Code-
SearchNet (Husain et al., 2019) provides large-scale text—code pairs, but it is general-purpose
rather than ML-focused. Domain-oriented corpora such as SciCode (Tian et al.l 2024) and
BioCoders (Tang et al.l 2024)) target scientific computing and bioinformatics respectively, but over-
look the broader scope of ML engineering.

A related dataset, Code4ML (Drozdova et al., [2023)), compiles Python notebooks and task annota-
tions from Kaggle competitions to form a foundation for ML-specific code generation. However,
it is limited to competitions collected up to 2021, its natural language task descriptions are auto-
matically scraped without human curation, and it lacks structured metadata such as modality and
domain labels that are critical for benchmarking. In contrast, ML?B expands upon this line of work
by curating multilingual task descriptions and structured metadata across 30 Kaggle competitions,
enabling fair evaluation of LLMs in multilingual ML pipeline generation.

2.2 ML CODE GENERATION AND PIPELINE BENCHMARKS

Recent benchmarks target ML code generation and workflow evaluation. DSCodeBench (Ouyang
et al., 2025) and DS-1000 (Lai et al., |2023) collect large numbers of tasks from GitHub and Stack-
Overflow but mainly assess snippet-level code. Full-pipeline benchmarks include DA-Code (Huang
et al., 2024), which uses open datasets, and Weco-Kaggle (Jiang et al.,|2025)) and MLE-bench (Chan
et al.| [2025)), which leverage Kaggle workflows. MLE-bench evaluates LLM agents on 75 Kaggle
competitions, with top systems achieving medal performance in 16.9% of cases. These benchmarks
advance pipeline evaluation, but remain restricted to English-only problem statements. ML?B closes
this gap by enabling multilingual pipeline benchmarking.

2.3 MULTILINGUAL CODE DATASETS

Multilingual datasets for code generation remain scarce. MCoNaLa (Wang et al.,[2022) consists of
intents for code generation, which are further rewritten by human annotators, and code snippets in
Python. RoCode (Cosma et al.| [2024) offers Romanian programming problems with Python/C++
solutions. MBPP-Translated (Li et al.,|2024) extends MBPP to five languages using machine trans-
lation. mHumanEval (Raihan et al.| [2025) supports 204 languages, with expert translation for 15,
across 25 programming languages. While these datasets highlight multilingual code generation,
none target ML pipelines. ML?B uniquely combines multilingual natural language prompts with
end-to-end ML workflows.

2.4 IMPACT OF PROMPT LANGUAGE

Several studies show LLM performance depends strongly on prompt language. Bang et al.[(2023));
Ahuja et al.|(2023)); Muennighoff et al.| (2023), and |[Raihan et al.| (2025) report substantial drops for

Under review as a conference paper at ICLR 2026

low-resource languages. Moumoula et al.|(2025) analyze 13 programming and 23 natural languages,
showing that non-Latin scripts further degrade performance. ML?B operationalizes these insights in
the ML domain, enabling systematic study of cross-lingual robustness in ML pipeline generation.

2.5 AUTOML FRAMEWORKS

A variety of AutoML systems have been developed, employing distinct methodological approaches
and yielding results of varying quality. A detailed discussion of these systems is provided in Ap-

pendix [A]

Although there is a novel approach in AutoML tasks which focuses on code optimization prob-
lems rather than traditional hyperparameter and pipeline optimization and does not face challenges
mentioned above. The AIDE framework (Jiang et al., 2025) exemplifies this approach, function-
ing as a LLM Agent for machine learning engineering which uses solution space tree search and
iterative refinement. It has been tested on 75 Kaggle competitions and has shown superior results
outperforming LightAutoML (Vakhrushev et al.,[2022) and OpenHands (Wang et al., 2025))

Nevertheless, this framework might not be so competitive if tested on competitions with no code
solutions publicly available. Consequently, we propose to rigorously evaluate the ML2B benchmark
within the AIDE framework to clarify its effectiveness under such closed-code conditions.

2.6 DATA LEAKAGE

In the context of data science and automated code analysis, data leakage is the issue when unintended
information gets into training data, which leads to the model’s accuracy overestimation during per-
formance evaluation |Apicella et al.| (2025); Yang et al.[(2022); |Sasse et al.| (2025). This error is
closely related to model overfitting, and as the result the model may perform poorly on real data.
The issue of data leakage is widespread and found in the code published in various sources (Kapoor,
& Narayanan, 2023). ML benchmarks are sensitive to this issue as well, since the data for evaluation
is sampled from the same distribution as the training data.

Another form of data leakage is the benchmark data leakage, which happens when benchmark data
is also present in the LLM training data (Matton et al. |2024). This issue is particularly impor-
tant, as the model may overperform in particular benchmark tasks. In the worst case scenario, this
may lead the affected benchmark competitions to be inconclusive. This issue has been solved in
LessLeak-Bench (Zhou et all 2025) software engineering benchmark, where the leaked samples
were removed from the evaluation data. ML?B introduces 6 private competitions as the solution
for potential benchmark data leakage, since the code for these competitions was not published on
Kaggle and cannot be present in LLM training data.

3 THE ML2B BENCHMARK

Unlike Chan et al.|(2025)), which relies on full descriptions sourced from the ”Overview” and ”Data”
tabs of competition webpages, ML?B provides structured metadata and task descriptions. We argue
that the succinct, structured format of competition data may prove more efficient for large language
models (LLMs) while retaining essential information for evaluation. Our benchmark contains rich
metadata, task descriptions, and multilingual expansions, enabling standardized evaluation of ML
code generation.

3.1 BENCHMARK TASK SELECTION

Datasets and preprocessing The ML?B benchmark builds on the Code4ML dataset (Drozdova
et al., [2023)), which comprises over 20,000 annotated Jupyter notebooks tied to ML competitions.
However, Code4ML primarily contains pre-2021 data and lacks consistent domain coverage. To
address this, we integrate its structure with Meta Kaggle Code (Plotts & Risdall 2023)), a large cor-
pus of publicly licensed competition notebooks published since 2022. We employ an LLM-based
inference pipeline to generate draft task descriptions for a large set of ML competitions, filtering out
student assignments and non-English materials (see Appendix [B). All LLM-generated task descrip-
tions undergo a manual review to ensure clarity and prevent inadvertent leakage of information that

Under review as a conference paper at ICLR 2026

Agent runtime

=

Docker Runtime

\ 4

Python

. Grader runtime —
environment | [

BenchPipeline

Task description
Prompt
generator
\ 4
Main loop > Training submission.py +— Results
data
DataSplitter L
"L, Validation
data

Figure 1: Structure of the ML2B benchmark

can give models an unfair advantage, such as dataset sizes or model parameters. This review do not
alter the semantics of the tasks but ensured fair and unbiased evaluation.

Domain coverage and selection Each competition in our benchmark has domain information
identifying its application area. Domain tags were extracted automatically via an LLM analysis
of the data card, description, and competition name. Overall, we cover 12 different domains (see

Appendix [C).

From the full pool of competitions, we select a benchmark subset of 24 tasks (see Appendix [D).
These tasks span diverse domains while ensuring practical feasibility and consistent evaluation.
They also provide publicly available code on Kaggle, allowing access to participants’ solutions. To
evaluate LLMs on unseen tasks, we include 6 additional competitions without publicly available
code. Their task descriptions are generated manually. Overall, ML?B currently includes 30 compe-
titions and is planned to be expanded in the future.

Data card standardization The data cards describing the data are manually added and reviewed
to prevent information leakage. Notably, nearly all Kaggle competition data descriptions include
details regarding submission format and test files. However, because test files do not contain target
labels, they are irrelevant for our setting, where the framework must produce executable code rather
than competition submissions. Therefore, such information is systematically removed. The ML?B
benchmark includes information on each task’s evaluation metric and its type, mapped according to
the scheme proposed by (Drozdova et al., [2023)).

3.2 METADATA AND STRUCTURE

The benchmark consists of 3 main components (Figure [I)), which include the main benchmark
pipeline BenchPipeline, Docker runtime and the submission code grader. BenchPipeline
is responsible for the task description generation and competition data preparation, Docker runtime
manages AutoML agent and grader execution, and the code grader evaluates a metric for the sub-
mission code.

3.2.1 MAIN BENCHMARK PIPELINE

Main benchmark pipeline is called in parallel from the main execution loop. During each evaluation
step, the pipeline generates the task description for the agent. Then the pipeline splits the data

Under review as a conference paper at ICLR 2026

Grader

Training data

Validation data j

Dataloader

Grader —>»{ Metric

il

4|—> Code loader
submission.py

Figure 2: Structure of the code grader

into training and evaluation sets using the competition DataSplitter and executes the agent
container with the training data. After the agent returns the submission code, BenchPipeline
calls the code grader container to evaluate the code.

3.2.2 DOCKER RUNTIME

Both the agent and code grader are executed inside of the Docker environment. The agent Docker
image is built from the common enviroments/runtime/ image, and both the agent and grader
containers are built from the same agents/. ../ agent image. This ensures that both the agent
and the grader utilize the same Python environment, and at the same time grading is performed in an
isolated environment without internet access. This prevents the potentially sensitive evaluation data
from leaking in an event of a misconfigured or a malicious script being submitted.

3.2.3 CoODE GRADER

Instead of the Kaggle-style submission format, which consists of a single submission file, the code
grader [2] reproduces the results by executing the submission code directly. Furthermore, the code
submitted by the agent must provide specific functions, which are then individually evaluated. Such
approach ensures that the submitted code is valid and can be reproduced in the controlled environ-
ment. In order to successfully load the submission code, the submission must not have top-level exe-
cutable code. In order to achieve this, the grader must analyze and recompile the code by performing
Abstract Syntax Tree (AST) transformation. Then, the recompiled submission code is executed ac-
cording to the section [3.3] and the data is loaded into memory by the competition DataLoader
class. Finally, the resulting submission data is evaluated using the corresponding competition grader
function.

3.3 SUBMISSION CODE FORMATS

The benchmark supports two submission formats: single-function submission format
MONO_PREDICT and modular submission format MODULAR_PREDICT. The first format includes
function train_and_predict, which takes the training dataset and prediction data and returns
the prediction result. MODULAR_PREDICT consists of three functions train, prepare_val
and predict, which sequentially train the model, prepare the prediction data and predict the
result. Figure [3| represents how the submission code is executed during grading. In case of
MODULAR-PREDICT format, the AutoML agent is prompted to train the model in the t rain func-
tion without the access to the prediction data, process the prediction features in the prepare_val
function and calculate the final prediction in the predict function given the previous outputs.
The purpose of such prediction format is to reduce the chance of preprocessing leakage 2.5] Pre-
processing leakage is the type of data leakage when both the training and test data are processed
together Yang et al.[(2022)); Apicella et al.|(2025)). The most common example is the data normaliza-
tion being trained on both the training and test features. MODULAR_PREDICT format restricts the
code flow in a way that the prediction data is introduced only in the second stage of the pipeline,
which makes the occurrence of preprocessing leakage less likely. Furthermore, such format allows

Under review as a conference paper at ICLR 2026

MONO_PREDICT MODULAR_PREDICT
Training data Prediction X Training data Prediction X
¥
train(data)

prepare_val(train, X_val)

¢_l

predict(train, prepare_val)

|

Prediction y Prediction y

train_and_predict(data, X_val)

Figure 3: Code flow diagram of benchmark submission formats

the code to be analyzed for data leakage using static code analysis(Yang et al.l 2022)), and additional
analysis of the intermediate function results can be performed.

3.4 MULTILINGUAL EXPANSION

Translating data To obtain a multi-lingual corpus, we have translated the domain, description,
and card fields into target languages (see Appendix [E). Other fields do not require translation since
they convey universally recognized entities. Following the findings of Jiao et al.| (2023)), we choose
GPT-40 over commercial translators such as Google Translate and DeepL.

After translation, datasets in other languages undergo manual review to identify artifacts such as
language confusion or incomplete translations. In instances where artifacts are detected, we request
GPT-40 to retranslate the text to relieve annotators from tasks outside their primary responsibilities.
In the relatively few cases requiring this intervention, the model consistently generates satisfactory
translations upon a second attempt. These cases are excluded from the translation quality evaluation,
as the main objective is to assess translations that appear nearly correct to non-native speakers but
sound unnatural to native speakers.

Validating translations Though GPT-4o is claimed to perform mostly correct translations, we
address annotators (see Appendix [F) who are native speakers of one of the target languages and who
also have some background in Computer Science and/or Information Technology to validate texts.

The choice of languages in the final version of our corpus was primarily determined by the availabil-
ity of annotators who agreed to participate in the validation process. Thus, the corpus includes Arab,
Belarus, Chinese, English, Russian, French, Italian, Japanese, Kazakh, Polish, Romanian, Spanish,
Turkish.

To obtain feedback, we have designed three separate google forms for each language for each trans-
lated field of the dataset. Thus, each translator has been assigned three forms with 31 questions
each, getting no monetary compensation. In each question there is a translated version in a target
language, original version in English and an assessment phrase, questioning whether the text sounds
native and conveys the same meaning. If one of the given answers is NO, the annotator is asked to
give their version of text. You can see example of one question in Appendix

We have decided to rely on a single assessment for each text, as our objective is not to generate an
idealized version of the description or the data. Rather, our aim is to obtain representative native
instructions that could reasonably be produced by any individual.

This assessment is conducted to observe the patterns of GPT-4 translation. |Jiao et al.| (2023) claim
GPT-4 generates more accurate and more diverse sentences with greater variety of words than com-
mercial Google Translator. Furthermore, Raunak et al.| (2023)) mark that GPT-family translations
from English to target language have tendency towards non-literalness, also translating idioms fig-

Under review as a conference paper at ICLR 2026

uratively. Thus, we have expected the abundance of translations conveying the same meaning but
lacking features that make the text sound native.

3.5 EVALUATION

To ensure fair comparison of model performance across different competitions, we employ a
percentile-based evaluation rather than reporting raw leaderboard metrics. Each model’s result is
expressed as its percentile rank on the Kaggle public leaderboard, with the 1st percentile indicating
top performance and the 100th percentile the weakest. This normalization addresses two issues:
(i) competitions use heterogeneous and non-comparable metrics (e.g., RMSE, log-loss, Fl-score),
and (ii) absolute leaderboard values vary with task design and data scale. Percentiles thus provide a
unified, competition-agnostic performance measure that preserves relative standing while mitigating
metric-specific biases.

4 EXPERIMENTS AND RESULTS

Our comprehensive analysis across multiple competitions reveals consistent failure patterns that can
be categorized as follows:

* Missing Training Execution: Absence of 1f __name__ == "_main__" blocks pre-
vented model training.

* Runtime Data Loading: Attempts to load external data within training functions, violating
competition constraints

* Model Stability: GPT-4-mini showed higher susceptibility to these errors compared to
GPT-OSS variants

* Inconsistent Preprocessing: Different feature engineering approaches between training
and validation sets

* Function Signature Modifications: Despite explicit instructions requiring exact function
signatures, agents frequently modified their format

* Global Dependencies: Agents consistently violated self-contained code requirements by
placing initialization outside function definitions

* Library and Environment Misalignment: Systematic use of deprecated API calls and
non-existent library functions, the use of non-existent environment library functions

Table 3] presents cross-lingual performance of generated ML code (see Appendix [I).

Some of these issues are systematic to particular LLMs, for instance Qwen2.5-coder removed the
Any keyword import and proceeded to use it later in the code. At the same time, some models like
GPT-0SS were less susceptible to these issues.

Cross-Lingual Performance Analysis Table [presents cross-linguistic results of ML code gen-
eration, revealing strong variation across languages, domains, and models. Several clear patterns
emerge.

First, English consistently yields lower percentiles. For example, both gpt-oss-120b and gemini-
2.5-flash rank near the top in English text and regression tasks, while their performance drops in
lower-resource languages such as Kazakh or Belarusian.

Second, model robustness differs sharply across domains. In image categorization, gpt-oss-120b
and gpt-4.1-mini achieve best-in-class results in multiple languages, demonstrating strong general-
ization. By contrast, tabular classification and regression reveal greater cross-lingual instability, with
ML-Master hybrids (gpt-4.1-mini + deepseek-r1, gpt-oss-120b + qwen3-coder-30b) outperforming
single models in several non-English languages.

Third, low-resource languages expose systemic weaknesses. Percentile scores for Kazakh, Belaru-
sian, and Romanian are notably higher (worse), with frequent generation of non-functional code
(denoted by “-). This highlights the limits of multilingual transfer for specialized ML tasks.

Under review as a conference paper at ICLR 2026

Models & Fill Rate
%)

1 (ml-master) (13%)

Figure 4: Overall comparison by metrics

Overall, the table underscores three key findings: (i) English remains the strongest anchor language,
(i) domain complexity interacts with cross-lingual performance, and (iii) hybrid architectures par-
tially mitigate low-resource limitations. These results suggest that true multilingual ML code gen-
eration remains uneven, requiring tailored model strategies for low-resource settings.

Figure] compares models across normalized metrics. gpt-oss-120b (aide) and gemini-2.5-flash
(aide) emerge as consistent top performers on measures such as AUC, categorization accuracy, and
coefficient of determination. In contrast, error-sensitive metrics (MAE, log-loss, MAP) reveal larger
disparities: gpt-4.1-mini + deepseek-r1 (ml-master) excels in calibration, while some models under-
perform sharply on MAP. These results suggest trade-offs between predictive accuracy and proba-
bilistic reliability across systems.

Metric- and Domain-Specific Performance Variability ~Figure[5|shows clear domain sensitivity.
Models converge on structured tasks like content moderation and data science but diverge signif-
icantly in complex domains such as insurance, finance, and urban planning. Hybrid models (e.g.,
gpt-o0ss-120b + qwen3-coder-30b) often dominate in these heterogeneous settings, while gemini-
2.5-flash performs strongly in healthcare and environmental science.

Together, the charts highlight that no single LLM is universally optimal: performance varies by
both metric type and application domain, underscoring the need for task-specific model selection in
multilingual ML code generation.

Table 1: Sample results of generated ML code validated on the Kaggle platform. For each model-
language pair, the median percentiles based on leaderboard rankings are presented. Lower percentile
values indicate better solution quality. The best results are highlighted in bold.

=
N s
2 2 = g& = E £ &g = =
= £ £ 2 5 £ %5 £ E F 8 2
[~ = o on —_— 2, N o= o 7] o —
15} L = = [} = < =) S =9 = st
Framework Model < 2R 0 R £ =S ¥ £ 2 &a e & &
AIDE! gpt-o0ss-120 58 62 66 56 47 56 45 64 68 59 78 32 44
gemini-2.5-flash 74 69 48 67 40 36 47 50 70 22 65 50 50
gpt-4.1-mini 68 8 73 59 67 87 53 50 71 70 55 69 56
ML- gpt-4.1-mini + 126 14 33 21 38 40 22 26 14 44 14 22 11
Master? deepseek-rl
gpt-0ss:120b + gqwen3- | 31 26 28 24 22 36 23 24 24 22 34 28 32
coder:30b

Under review as a conference paper at ICLR 2026

Models & Fill Rate
ide)

Figure 5: Overall comparison by domains

Data Leakage Assessment In order to assess the presence of data leakage in submission code,
static leakage analysis was performed using the leakage—analysis tool (Yang et al.| [2022).
This tool performs data flow analysis, detects variables containing training/test data, finds potential
relations between the variables and outputs lines of code causing potential data leakage. Similar
to the code grader submission loading stage, the code needs to be transformed to include the en-
trypoint in order for the tool to correctly detect the data inputs. Out of 554 submissions in the
MODULAR_PREDICT format, 61 (11%) contained potential data leakage according to the tool. By
performing further analysis, it was observed that in 8 submissions the data leakage was found in
train function, which does not operate on prediction data, and in 20 cases the leakage was de-
tected in trivial single-argument functions, which accepted the input data as the single argument.
The single-argument function case may be explained as a false-positive, since these functions op-
erated on a single data argument being either the training or prediction data. These functions were
used in the submission code for simple data preprocessing, and the data was passed sequentially,
which is shown in Appendix[J] This leaves the remaining 33 (5.9%) of submissions to have potential
data leakage. Overall, the actual data leakage may still be present in the modular submission code
if the agent performed model training in the later stages of the code, where both training and pre-
diction data is theoretically accessible. In order to improve the leakage assessment results, further
testing using the NBLyzer (Drobnjakovic et al., 2024) tool and manual code assessment should be
performed.

5 CONCLUSION

ML?B provides a multilingual, Kaggle-grounded benchmark that surfaces systematic weaknesses in
ML code generation when problem statements are non-English, even as the same systems perform
strongly in English under identical evaluation protocols. Normalized percentile results show English
as the anchor language across models and modalities, while low-resource languages suffer higher
failure rates and degraded ranks, particularly on tabular classification and regression, with image
categorization and text classification comparatively more stable. No single model is universally
dominant: aide-tuned single models (gpt-oss-120b, gemini-2.5-flash) lead in several English and
modality slices, whereas hybrid stacks (gpt-4.1-mini deepseek-r1, gpt-oss-120b qwen3-coder-30b)
partially reduce gaps on harder domains but do not eliminate cross-lingual disparities. The modu-
lar grading interface curbs preprocessing leakage by construction and, together with static analysis,
reveals remaining leakage risks in a non-trivial fraction of generations, motivating continued invest-
ment in secure agent interfaces and code auditing; six private tasks further reduce benchmark-data
leakage to LLM pretraining corpora. Future work should expand private-task coverage, deepen do-
main balance, and pursue multilingual alignment strategies (e.g., translation-aware planning, con-
strained tool use, language-invariant task abstractions) to improve reliability of end-to-end pipelines
in low-resource languages.

Under review as a conference paper at ICLR 2026

REFERENCES

Kabir Ahuja, Harshita Diddee, Rishav Hada, Millicent Ochieng, Krithika Ramesh, Prachi Jain, Ak-
shay Nambi, Tanuja Ganu, Sameer Segal, Mohamed Ahmed, Kalika Bali, and Sunayana Sitaram.
MEGA: Multilingual evaluation of generative Al. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023. URL https://openreview.net/forum?id=
JjmopGa JkEY.

Andrea Apicella, Francesco Isgrd, and Roberto Prevete. Don’t push the button! exploring data
leakage risks in machine learning and transfer learning. Artificial Intelligence Review, 58(11),
August 2025. ISSN 1573-7462. doi: 10.1007/s10462-025-11326-3. URL http://dx.doi.
org/10.1007/s10462-025-11326-3.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Love-
nia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multi-
task, multilingual, multimodal evaluation of ChatGPT on reasoning, hallucination, and interac-
tivity. In Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti, and
Adila Alfa Krisnadhi (eds.), Proceedings of the 13th International Joint Conference on Natural
Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 675-718, Nusa Dua, Bali, November
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.ijcnlp-main.45. URL
https://aclanthology.org/2023.1ijcnlp—-main.45/l

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Aleksander Madry, and Lilian Weng. MLE-
bench: Evaluating machine learning agents on machine learning engineering. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=6s5uXNWGIh.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Adrian Cosma, loan-Bogdan Iordache, and Paolo Rosso. RoCode: A dataset for measuring code in-
telligence from problem definitions in Romanian. In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint
International Conference on Computational Linguistics, Language Resources and Evaluation
(LREC-COLING 2024), pp. 14173-14185, Torino, Italia, May 2024. ELRA and ICCL. URL
https://aclanthology.org/2024.1lrec—-main.1236/.

Filip Drobnjakovié, Pavle Suboti¢, and Caterina Urban. Abstract interpretation-based data leakage
static analysis, 2024. URL https://arxiv.org/abs/2211.16073.

Anastasia Drozdova, Ekaterina Trofimova, Polina Guseva, Anna Scherbakova, and Andrey
Ustyuzhanin. Code4ml: a large-scale dataset of annotated machine learning code. PeerJ Com-
puter Science, 9:¢1230, 2023.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1-21, 2019.

Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank
Hutter. Efficient and robust automated machine learning. Advances in neural information pro-
cessing systems, 28, 2015.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
sushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. How good are gpt models
at machine translation? a comprehensive evaluation, 2023. URL https://arxiv.org/abs/
2302.09210.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu
Huang, Xiao Liu, Jun Zhao, and Kang Liu. DA-code: Agent data science code generation bench-
mark for large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),

10

https://openreview.net/forum?id=jmopGajkFY
https://openreview.net/forum?id=jmopGajkFY
http://dx.doi.org/10.1007/s10462-025-11326-3
http://dx.doi.org/10.1007/s10462-025-11326-3
https://aclanthology.org/2023.ijcnlp-main.45/
https://openreview.net/forum?id=6s5uXNWGIh
https://openreview.net/forum?id=6s5uXNWGIh
https://aclanthology.org/2024.lrec-main.1236/
https://arxiv.org/abs/2211.16073
https://arxiv.org/abs/2302.09210
https://arxiv.org/abs/2302.09210

Under review as a conference paper at ICLR 2026

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
13487-13521, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.748. URL https://aclanthology.org/2024.
emnlp-main.748/.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and
Yuxiang Wu. Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138,
2025.

Wenxiang Jiao, Wenxuan Wang, Jen tse Huang, Xing Wang, Shuming Shi, and Zhaopeng Tu. Is
chatgpt a good translator? yes with gpt-4 as the engine, 2023. URL https://arxiv.org/
abs/2301.08745.

Yiqiao Jin, Mohit Chandra, Gaurav Verma, Yibo Hu, Munmun De Choudhury, and Srijan Ku-
mar. Better to ask in english: Cross-lingual evaluation of large language models for health-
care queries. In Proceedings of the ACM Web Conference 2024, WWW °24, pp. 2627-2638,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400701719. doi:
10.1145/3589334.3645643. URL https://doi.org/10.1145/3589334.3645643.

Sayash Kapoor and Arvind Narayanan. Leakage and the reproducibility crisis in machine-learning-
based science. Patterns, 4(9):100804, 2023. ISSN 2666-3899. doi: https://doi.org/10.1016/
j-patter.2023.100804. URL https://www.sciencedirect.com/science/article/
P11/52666389923001599.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: a natural and reliable benchmark for data
science code generation. In Proceedings of the 40th International Conference on Machine Learn-
ing, ICML’23. IMLR.org, 2023.

Erin LeDell and Sebastien Poirier. H20 automl: Scalable automatic machine learning. In Proceed-
ings of the AutoML Workshop at ICML, volume 2020. ICML, 2020.

Mingda Li, Abhijit Mishra, and Utkarsh Mujumdar. Bridging the language gap: Enhancing multi-
lingual prompt-based code generation in 1lms via zero-shot cross-lingual transfer. arXiv preprint
arXiv:2408.09701, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=SleYHoCOLFX.

Alexandre Matton, Tom Sherborne, Dennis Aumiller, Elena Tommasone, Milad Alizadeh, Jingyi
He, Raymond Ma, Maxime Voisin, Ellen Gilsenan-McMahon, and Matthias Gallé. On leakage of
code generation evaluation datasets, 2024. URL https://arxiv.org/abs/2407.07565.

Micheline Bénédicte Moumoula, Abdoul Kader Kabore, Jacques Klein, and Tegawendé F Bis-
syande. Evaluating programming language confusion. arXiv preprint arXiv:2503.13620, 2025.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven
Le Scao, M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hailey Schoelkopf, Xiangru Tang,
Dragomir Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert
Webson, Edward Raff, and Colin Raffel. Crosslingual generalization through multitask fine-
tuning. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 15991-16111, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.891. URL https://aclanthology.org/2023.
acl-long.891/.

11

https://aclanthology.org/2024.emnlp-main.748/
https://aclanthology.org/2024.emnlp-main.748/
https://arxiv.org/abs/2301.08745
https://arxiv.org/abs/2301.08745
https://doi.org/10.1145/3589334.3645643
https://www.sciencedirect.com/science/article/pii/S2666389923001599
https://www.sciencedirect.com/science/article/pii/S2666389923001599
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://arxiv.org/abs/2407.07565
https://aclanthology.org/2023.acl-long.891/
https://aclanthology.org/2023.acl-long.891/

Under review as a conference paper at ICLR 2026

Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. Evaluation of a tree-
based pipeline optimization tool for automating data science. In Proceedings of the Genetic and
Evolutionary Computation Conference 2016, GECCO ’16, pp. 485-492, New York, NY, USA,
2016. Association for Computing Machinery. ISBN 9781450342063. doi: 10.1145/2908812.
2908918. URL https://doi.orqg/10.1145/2908812.2908918.

Shuyin Ouyang, Dong Huang, Jingwen Guo, Zeyu Sun, Qihao Zhu, and Jie M Zhang. Dscodebench:
A realistic benchmark for data science code generation. arXiv preprint arXiv:2505.15621, 2025.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search
via parameters sharing. In International conference on machine learning, pp. 4095-4104. PMLR,
2018.

Jim Plotts and Megan Risdal. Meta kaggle code, 2023. URL https://www.kaggle.com/ds/
3240808.

Nishat Raihan, Antonios Anastasopoulos, and Marcos Zampieri. mHumanEval - a multilingual
benchmark to evaluate large language models for code generation. In Luis Chiruzzo, Alan Ritter,
and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Americas Chap-
ter of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 11432—-11461, Albuquerque, New Mexico, April 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.570. URL
https://aclanthology.org/2025.naacl-1ong.570/.

Vikas Raunak, Arul Menezes, Matt Post, and Hany Hassan Awadalla. Do gpts produce less literal
translations?, 2023. URL https://arxiv.org/abs/2305.16806.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

L. Sasse, E. Nicolaisen-Sobesky, J. Dukart, S. B. Eickhoff, M. Go6tz, S. Hamdan, V. Komeyer,
A. Kulkarni, J. M. Lahnakoski, B. C. Love, F. Raimondo, and Kaustubh R. Patil. Overview of
leakage scenarios in supervised machine learning. Journal of Big Data, 12(1), May 2025. ISSN
2196-1115. doi: 10.1186/s40537-025-01193-8. URL http://dx.doi.org/10.1186/
s40537-025-01193-8.

Xiangru Tang, Bill Qian, Rick Gao, Jiakang Chen, Xinyun Chen, and Mark B Gerstein. Biocoder:
a benchmark for bioinformatics code generation with large language models. Bioinformatics, 40
(Supplement_1):1266-i276, 2024.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian
Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta,
and Hao Peng. Scicode: A research coding benchmark curated by scientists. arXiv preprint
arXiv:2407.13168, 2024.

Anton Vakhrushev, Alexander Ryzhkov, Maxim Savchenko, Dmitry Simakov, Rinchin Damdinov,
and Alexander Tuzhilin. Lightautoml: Automl solution for a large financial services ecosystem,
2022. URL https://arxiv.org/abs/2109.01528.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqgiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for ai software
developers as generalist agents, 2025. URL https://arxiv.org/abs/2407.16741l

Zhiruo Wang, Grace Cuenca, Shuyan Zhou, Frank F Xu, and Graham Neubig. Mconala: A bench-

mark for code generation from multiple natural languages. arXiv preprint arXiv:2203.08388,
2022.

12

https://doi.org/10.1145/2908812.2908918
https://www.kaggle.com/ds/3240808
https://www.kaggle.com/ds/3240808
https://aclanthology.org/2025.naacl-long.570/
https://arxiv.org/abs/2305.16806
http://dx.doi.org/10.1186/s40537-025-01193-8
http://dx.doi.org/10.1186/s40537-025-01193-8
https://arxiv.org/abs/2109.01528
https://arxiv.org/abs/2407.16741

Under review as a conference paper at ICLR 2026

Chenyang Yang, Rachel A Brower-Sinning, Grace A. Lewis, and Christian Késtner. Data leakage
in notebooks: Static detection and better processes, 2022. URL https://arxiv.org/abs/
2209.03345.

Xin Zhou, Martin Weyssow, Ratnadira Widyasari, Ting Zhang, Junda He, Yunbo Lyu, Jianming
Chang, Beiqi Zhang, Dan Huang, and David Lo. Lessleak-bench: A first investigation of data
leakage in llms across 83 software engineering benchmarks, 2025. URL https://arxiv.
org/abs/2502.06215.

Marc-André Zoller and Marco F. Huber. Benchmark and survey of automated machine learning
frameworks. J. Artif. Int. Res., 70:409-472, May 2021. ISSN 1076-9757. doi: 10.1613/jair.1.
11854. URL https://doi.org/10.1613/Jair.1.11854,

A AUTOML FRAMEWORKS DISCUSSION

There is a large scope of AutoML frameworks that apply different techniques and achieve vari-
able results. For instance, one of the most popular methods involves ML-pipeline and parameter
optimization via either Grid Search and Random Search (H20 AutoML (LeDell & Poirier, 2020))
or Bayesian (Auto-sklearn [Feurer et al.| (2015)) or genetic algorithms (TPOT (Olson et al., 2016))
methods.

One of the most advanced methods in AutoML is Neural Architecture Search (NAS) (Elsken et al.}
2019) that automatically designs neural network topologies. Frameworks such as DARTS (Liu
et al.,2019) and ENAS (Pham et al.,[2018) have shown significant promise in discovering novel, op-
timized architectures that often outperform manually designed models for specific tasks. It includes
three core components: the search space for potential architectures, the optimization methods for
discovering the best-performing architecture, and the model evaluation techniques. By automating
the neural architecture design process, NAS can generate more efficient and specialized models,
contributing to significant advancements in AutoML.

However, while NAS has achieved remarkable performance, it currently provides limited insights
into why certain architectures perform well or how similar architectures are across independent runs.
Furthemore, it requires enormous computational resources and accurate design of the search space
Liu et al.| (2019) that makes it challenging for the ML-research.

B LLM PIPELINE FOR DESCRIPTION CREATION

As stated in [3.1] 200 competitions have been processed with the use of LLM pipeline which is
depicted in detail in Figure[6] Subsequently, we use GPT-40 and Claude 3.5 Sonnet with one-shot
Chain-of-Thought prompting for generation and refinement, correspondingly. Empirical evaluation
on 100 sampled tasks from the original Code4ML corpus showed that the scoring-refinement loop
improves high-quality description rates from 80% to 96% (Figure[7} Algorithm|[I).

Algorithm 1 Scoring-Refinement Algorithm

Initial description zo, input code ¢, model M, prompts {Pscore,Prefine} Tt < o Initialize with
the given description iteration ¢ = 0,1,... score; < M(pscore || 2+) Evaluate description with
scoring prompt score; € {C,D} break Stop if score is satisfactory score; € {A,B} w41
M (Dregine || ¢|| z¢ || score;) Refine using code, description, and score

High-quality task descriptions are essential for evaluating the ability of LLMs to generate ML solu-
tions. To ensure clarity, neutrality, and implementation-agnostic phrasing, we apply a 3-point rating
scheme to assess task descriptions generated by our LLM pipeline. Two independent annotators
evaluate each task using the following rubric described in Table[2]

If annotators disagree by one point, we conservatively adopt the lower score. Disagreements be-
tween two annotators are resolved by involving a third, independent annotator to ensure impartiality
and reinforce the reliability of the annotation process. All descriptions rated 0 are flagged for full
rewriting. Annotators also provide comments to guide revisions. This protocol ensures that the final
benchmark includes high-quality, implementation-agnostic problem formulations.

13

https://arxiv.org/abs/2209.03345
https://arxiv.org/abs/2209.03345
https://arxiv.org/abs/2502.06215
https://arxiv.org/abs/2502.06215
https://doi.org/10.1613/jair.1.11854

Under review as a conference paper at ICLR 2026

Goal: Reverse Task Inference

- J

+ Input data: ML Code
|

Evaluation Criteria:

/ LLM Agent \ Appropriateness of
! P Task Description

SubGoal: SubGoal: SubGoal: o
: Code Analysis and Task Description Constrained Task AE LLM Agent
Information Extraction Structuring Description Formatting|| : | : i

The main task or problem the

A clear statement of the task's ||| NOTE that you task must not
code is trying to solve

objective include any information about

solution (data preprocessing,

del L
{ Key input data and its J { Detailed description of the J model name)

A concise explanation of the

characteristics input data o :' 4 B
i b——— LLMAgent +«—

Expected output or result desired output o result ‘Avoid ehraﬂses "use ensemblﬂe : }
models" or "neural networks", Lo
pretend that you've never seen || © Updated Task
the code and you don't know Lo Description

how to solve the task.

A : Refinement
Goal Decomposition

Figure 6: Code-Based problem statement generation framework. The scheme incorporates three
LLM agents. The first agent inputs the ML code to infer the task description from it through sequen-
tial subgoals. The second agent evaluates the quality of the inferred description based on predefined
scoring criteria. The third agent receives the ML code along with the score and updates the descrip-
tion if necessary.

- A score of A: Description is Inappropriate: description focuses on implementation details (contains
model name, information about data preprocessing) rather than the problem.

For example: Develop a combined prediction model using multiple approaches for a financial market
scenario. The task is to generate predictions based on features from a financial dataset linking with
embeddings and neural network techniques. The goal is to make accurate trading decisions based on
the predictions generated by combining different models.

Explanation: This example provides hints for writing code, such as the use of combined model and
neural network techniques. If descriptions suggests using multiple models always choose A score.

- A score of B: Description is Not Appropriate enough: the task is not described carefully, it would be
hard to be solved.

- A score of C: Description is Partially Appropriate: description lacks the information about task or data
used in the task.

Score the task description on a scale of A-D based on - A score of D: Description is Highly Appropriate: clearly articulates the problem the code is solving,
how well it captures the essence of the problem the includes essential information about inputs and expected outputs.
code is solving, without revealing implementation For example: Develop a prediction model for estimating the duration of New York taxi trips. Given
details. You need to evaluate the task carefully and various datasets containing weather conditions, route information, and geographic details, the objective
give a good grade only if the task really meets the is to predict the trip duration based on features such as city, county, distance, time, and weather
requirements. The task should not give any hints for conditions. The success of the model will be assessed based on its accuracy in predicting the trip
solutions, not even information about the types and durations for a given test dataset.
number of models to be used. YOU MUST RETURN ONLY Explanation: This example describes the problem and data well, but does not provide any hints about
NUMBER FROM A-D, AND NOTHING ELSE. which models to use or how many models to use.

A B

Figure 7: Task description evaluation prompt: (A) Scoring strategy component; (B) Assessment
criteria component. C/D means “high quality”, A/B needs refinement.

Under review as a conference paper at ICLR 2026

Table 2: Task description quality rubric

Score | Criteria

0 - Unus- | Vague or incorrect; contains implementa-

able tion hints. Must be rewritten.

1 - Needs | Mostly correct, but includes minor flaws.

Revision Requires edits for clarity or neutrality.

2 - Good Clear, accurate, and free of implementation
hints.

Translate text into {target_language}. Infinitive forms that stand apart, if any, should be
translated as the imperative mood: {text}

Figure 8: Example of the prompt used in translation experiments.

C DOMAIN EXTRACTION PROMPT

Figure [0]demonstrates the prompt that has been given to GPT-3.5-turbo model to derive domain tag
for each competition. The number of competitions in each domain is presented in Figure [T0}

D COMPETITION SELECTION CRITERIA

Table [3| gives details on selection criteria according to which competitions have been chosen.

Table 3: Task selection criteria for GenML2Bench

Criterion | Description

Dataset <15 GB to ensure feasibility under mem-
size ory/runtime limits.

Evaluation | Clear, interpretable standard or custom met-
metrics ric required.

Data re- | No external data, anonymous features, or
strictions leakage.

Resource Excludes GPU-optimized or kernel-
constraints | restricted tasks.

Competition| The dataset’s license doesn’t restrict its in-
license clusion in our benchmark.

E TRANSLATION PROMPT

Since some fields include imperatives (e.g., Develop a model, Create an agent), it has to be defined
explicitly in a prompt (Figure[8)) to use imperative mood, otherwise the model have translated english
imperatives, which have the same form as verbs not in imperative mood, mainly as infinitives:

F ANNOTATOR DETAILS

As mentioned in section [3.4] validation of the translation has been conducted with the help of
native speakers. They possess backgrounds in Computer Science and/or IT. Each translator has been
assigned three forms with 30 questions each, getting no monetary compensation.

15

Under review as a conference paper at ICLR 2026

You are given competition name, data card and description of Kaggle competition. You
need to identify the domain that the task belongs to in the given competition.

Competition name: Crime_Learn

Description: Develop a predictive model to estimate the rate of violent crimes per
population in a given area based on specific features. The input consists of two datasets, one
for training and one for testing, with the target variable being ’ViolentCrimesPerPop’.

Data card: In this competition you will use the sample US crime data for predicting
’ViolentCrimesPerPop’. train.csv — the training dataset.

Figure 9: Example of question block in Google Form for Romanian language

I=
54
o
U I I I
O e O w2 L@
5\0 & & & O S & & &6
@ LS @ «’0 (OQ &L
&S SANC TR SN e & &
> s & > & o £ & P
& SRR\ @ N
2 Q BY & e > &
e L & & & @
& (\@ <@ @ (\é\
¢ O S SO
& S J S
’0\ (\4 C (90 (\4
& e 2>
S
&
S
Domain

Figure 10: Distribution of competitions over domains

G VALIDATION RESULTS

Figure[TT]indicates that nearly two-thirds of responses within each language are both judged natural
and semantically equivalent, with Romanian and Kazakh exhibiting the lowest proportions among
the evaluated language. This pattern is consistent with evidence that GPT-based translation quality
degrades for low-resource languages, which typically have fewer native speakers and, thus, less

training data available (Hendy et al., [2023).

Figure [I2] (A) further shows that GPT systems predominantly produce natural translations without
semantic distortion, with only 1.3 % of all outputs rated neither natural nor semantically similar to
the source and with almost 4 % translations sounding natural but conveying other meaning. The
share of labeled “NO and YES” suggests that, while models preserve meaning, they often employ
more varied and less concise phrasings in the target language.

Figure [T2] (B-D) shows that the proportion of responses indicating that translations both preserve
meaning and sound natural is highest in the domain texts (85.6%). This outcome may be attributed
to the brevity of the source material, as the texts contained no more than three words. Shorter inputs
are generally easier to render accurately, which may explain why the models achieved stronger
performance in this setting.

16

Under review as a conference paper at ICLR 2026

— e —
8 = B = H E Answer
n = YES and YES
= YES and NO
= NO and YES
s NO and NO

— - .
° I
60 [|
s ol
50
€
340 7 76
o 70
30
20
10
0
© 0 000 o o et
O

ST ST < =
A SR P SR RN
82 3 = \a‘}'o QTN o Pe w

Languages

Figure 11: Distribution of response types within each language

13%

4.5% 3.8%
9.8%
26.5%
. 1.5
1.5% 15%

Answer
= YES and YES
m= YES and NO

72.0%
72.7% = NO and YES

=== NO and NO

85.6%

A B C D

Figure 12: Distribution of translation evaluation outcomes. (A) Overall distribution across all lan-
guages; (B—D) distributions for the evaluation of translations of domains (B), data cards (C), and
task descriptions (D), respectively.

17

Under review as a conference paper at ICLR 2026

H FORM EXAMPLE

In Fig[T3]there is an example of one question block in a form, which requires a native of Romaninan
validate the translation of competition description.

Translated version:

Dezvoltati un model predictiv pentru a anticipa probabilitatea mortalitdtii in spital pentru
pacienti. Seturile de date includ diverse caracteristici legate de pacienti la momentul in-
terndrii Tn spital. Obiectivul este de a prezice cu acuratete probabilitatea mortalitatii in spital
pentru fiecare pacient din setul de testare.

Original version:

Develop a predictive model to forecast the likelihood of hospital mortality for patients. The
datasets include various features related to the patients upon hospital admission. The objec-
tive is to predict the probability of hospital mortality for each patient in the test set accurately.
Does the translated text (1) sound native and (2) convey the same meaning as the orig-
inal text?

* YES and YES
e NO and YES
* YES and NO
* NO and NO

If there is at least one NO in the answer, please suggest your own version:

Figure 13: Example of question block in Google Form for Romanian language

I RESULTS

This appendix provides detailed benchmark results across different data types, domains, and evalu-
ation metrics. The results highlight the comparative performance of leading large language models
(LLMs) in diverse tasks. Tables[3] [6] and [7] summarize the top three models for each category.

J DATA LEAKAGE

Figure |14|shows data leakage assessment process.

Prediction X » predict(train, prepare_val)

Prediction X «- - - - - - - - - -

e —————>»

T 2

RN [
— - — > RIERIcECSS (I A prepare_val(train, X_val)
: 1 I —>
11
Training data |
features |
o) Co T
I \7
Prediction y
Training data ———>» train(data) R —

Figure 14: Code flow diagram of a false-positive data leakage

18

Under review as a conference paper at ICLR 2026

Table 4: Sample results of generated ML code validated on the Kaggle platform detailed by domains.
For each model-domain-language triple, the median percentiles based on leaderboard rankings are
presented. Lower percentile values indicate better solution quality. The best results are highlighted
in bold. The symbol ’-’ indicates that the model failed to successfully complete the task, resulting
in the generation of non-functional code.

g
© 2 =
. £ 3 £ & 3 2 5 % § &8 & & 5
Framework Model Domain Category < A O B =5 = ¥ £ K »n &K & =
AIDE! 41.8cmgpt- image Categorization | 1 23 1 1 1 1 1 18 1 1 48 1 48
0ss-120
tabular Classification | 69 69 70 68 47 60 32 69 70 70 79 23 100
tabular Regression 54 50 58 36 47 53 58 59 22 30 43 70 32
text Classification | 98 99 99 95 98 97 95 84 97 99 96 98 1
41.8cmgemini image Categorization | 55 100 32 67 1 47 1 49 1 55 48 5 1
2.5 flash
tabular Classification | 84 48 100 90 95 100 30 100 32 80 89 55 68
tabular Regression 72 69 30 16 8 19 72 23 8 10 33 34 o4
text Classification | 99 47 2 1 49 52 95 50 71 1 65 95 44
41.8cmgpt- image Categorization | 1 1 9% 56 67 98 1 37 95 49 1 1 56
4.1-mini
tabular Classification | 68 90 70 79 64 92 89 84 76 84 99 80 69
tabular Regression 47 39 76 40 47 54 21 32 21 76 33 40 56
text Classification | 88 97 95 81 72 99 53 50 95 1 59 98 49
ML- 31.8cmgpt- tabular Classification | 26 26 58 26 59 3 22 26 26 3 26 61 19
Master’ 4.1-mini +
deepseek-
rl
tabular Regression 3 3 3 3 3 77 3 3 3 4 3 3 3
text Classification | 100 - 44 18 52 - 49 46 - 67 - 18 -
31.8cmgpt- tabular Classification | 28 28 14 24 22 62 13 63 62 28 64 62 28
0ss:120b
+ qwen3-
coder:30b
tabular Regression 18 28 44 19 3 34 29 16 18 9 46 17 34
text Classification | 92 22 31 42 100 39 23 34 100 22 34 32 52

19

Under review as a conference paper at ICLR 2026

Table 5: Top models by data type.

Data Type | Rank 1 Score Rank 2 /Rank 3

Image gemini-2.5-flash (aide) 0.7313 gpt-0ss-120b (0.7151), gpt-4.1-mini (0.5572)
Tabular gpt-oss-120b+qwen3-30b (ml-master) 2673.24 gpt-o0ss-120b (2219.75), gemini-2.5-flash (1698.80)
Text gpt-o0ss-120b (aide) 0.9857 gpt-4.1-mini+deepseek-rl (0.9540), gemini-2.5-flash (0.93

Table 6: Top models by domain.

Domain Rank 1 Score Rank 2 / Rank 3

Content moderation | gpt-oss-120b 0.9857 gpt-4.1-mini (0.9763), gemini-2.5-flash (0.9682)
Crime prediction gemini-2.5-flash 380.99 gpt-4.1-mini (376.02), gpt-oss-120b (373.32)

Data science gpt-4.1-mini 0.9733 gemini-2.5-flash (0.9659), gpt-oss-120b (0.9482)
eCommerce gpt-4.1-mini+deepseek-r1 ~ 0.9304 gpt-4.1-mini (0.9288), gemini-2.5-flash (0.9272)
Education gpt-oss-120b+qwen3-30b 1291 gpt-4.1-mini (6.44), gpt-oss-120b (6.30)
Environmental sci. | gemini-2.5-flash 0.9281 gpt-0ss-120b (0.8779), gpt-4.1-mini (0.6603)
Finance gpt-oss-120b 7.32 gpt-4.1-mini (6.48), gemini-2.5-flash (4.56)
Healthcare/Medical | gemini-2.5-flash 1.85 gpt-4.1-mini (1.38), gpt-o0ss-120b (1.22)

Urban planning gpt-oss-120b+qwen3-30b 3994.47 gpt-4.1-mini+deepseek-rl (3513.81), gpt-oss-120b (3131.19)

Table 7: Top models by evaluation metric (normalized).

Metric Rank 1 Score Rank 2/ Rank 3

AUC gpt-4.1-mini+deepseek-r1 0.9076 gpt-0ss-120b (0.9047), gemini-2.5-flash (0.8963)

Accuracy | gemini-2.5-flash 0.8766 gpt-0ss-120b (0.8317), gpt-4.1-mini (0.7736)

F-score gpt-oss-120b 0.9595 gpt-4.1-mini+deepseek-r1 (0.9540), gpt-oss-120b+qwen3-30b (0.9502)
R? gpt-oss-120b 0.9285 gemini-2.5-flash (0.9281), gpt-4.1-mini (0.9279)

MAP gpt-4.1-mini 0.2255 gpt-0ss-120b (0.2197), gemini-2.5-flash (0.0000)

MAE gpt-4.1-mini+deepseek-rl 1.0000 gpt-oss-120b+qwen3-30b (0.5618), gpt-oss-120b (0.5508)

MSE gemini-2.5-flash 0.5728 gpt-4.1-mini (0.5538), gpt-4.1-mini+deepseek-rl (0.5252)

20

	Introduction
	Related work
	Datasets for ML Code
	ML Code Generation and Pipeline Benchmarks
	Multilingual Code Datasets
	Impact of Prompt Language
	AutoML Frameworks
	Data Leakage

	The ML²B benchmark
	Benchmark task selection
	Metadata and Structure
	Main Benchmark Pipeline
	Docker Runtime
	Code Grader

	Submission Code Formats
	Multilingual Expansion
	Evaluation

	Experiments and Results
	Conclusion
	AutoML Frameworks Discussion
	LLM Pipeline For Description Creation
	Domain Extraction Prompt
	Competition Selection Criteria
	Translation Prompt
	Annotator Details
	Validation Results
	Form Example
	Results
	Data Leakage

