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Abstract: Imitation learning advances robot capabilities by enabling the acqui-
sition of diverse behaviors from human demonstrations. However, large-scale
datasets used for policy training often introduce substantial variability in qual-
ity, which can negatively impact performance. As a result, automatically cu-
rating datasets by filtering low-quality samples to improve quality becomes es-
sential. Existing robotic curation approaches rely on costly manual annotations
and perform curation at a coarse granularity, such as the dataset or trajectory
level, failing to account for the quality of individual state-action pairs. To ad-
dress this, we introduce SCIZOR, the first self-supervised transition-level cura-
tion framework that requires no annotations and scales to large-scale datasets
to improve the performance of imitation learning policies and modern Vision-
Language-Action (VLA) models. SCIZOR targets two complementary sources of
low-quality data: suboptimal data, which hinders learning with undesirable ac-
tions, and redundant data, which dilutes training with repetitive patterns. SCI-
ZOR leverages a self-supervised task progress predictor for suboptimal data to
remove samples lacking task progression, and a deduplication module operating
on joint state-action representation for samples with redundant patterns. Empiri-
cally, we show that SCIZOR enables imitation learning policies and modern VLA
models to achieve higher performance with less data, yielding an average im-
provement of 15.4% across multiple benchmarks. More information is available
at: https://ut-austin-rpl.github.io/SCIZOR/
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1 Introduction

Imitation learning has shown promising signs in acquiring a wide range of motor behaviors by learn-
ing from expert demonstrations, a necessary step towards general-purpose robots. Recent advances
in Vision-Language-Action (VLA) models have highlighted the potential of large-scale imitation
learning, where massive datasets spanning diverse tasks and environments are used to train general-
ist policies. Such diverse, large-scale data collection inherently introduces variability in data quality
[1, 2, 3], including mistakes made by operators leading to suboptimal actions (e.g., dropping an
object), or redundancy in data leading to skewed distributions. Such a dataset can misguide models
into learning incorrect behaviors [1, 4] and hinder diversity [3], reducing the impact of rare but in-
formative actions. Therefore, effective data curation, the process of filtering data to improve the data
quality [5, 6], becomes critical for building robust and high-performing imitation learning policies.

Early efforts in robotic data curation have relied heavily on human annotations to label high- and
low-quality data [1], but these methods have largely been confined to small-scale datasets. As data
scales up, manual annotation becomes infeasible, making it important to automatically curate data,
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Figure 1: SCIZOR overview. Each trajectory from the original robotic datasets is simultaneously
passed through the suboptimal transitions removal module and the redundant transitions removal
module. Each module removes data, resulting in a curated dataset. A policy trained on the curated
dataset achieves a higher success rate.

an approach that has already shown promise in fields like computer vision (CV) and natural lan-
guage processing (NLP) [7, 8, 9, 10]. Specifically in robot learning, a key challenge in this process
to maximize data utilization is the need for curating at the finest granularity: we must evaluate the
quality of individual state-action pairs. For instance, a trajectory may include an initial failed grasp
attempt followed by a successful recovery, containing both suboptimal and valuable segments. Ef-
fective curation should isolate and remove only the uninformative or erroneous segments, like the
failed grasp, while preserving segments that provide useful learning signals. The different impact of
individual data points for learning has also been underscored in prior work, such as weighted behav-
ior cloning [4, 11, 12]. However, current large-scale imitation learning curation methods have yet
to address data quality at a fine-grained level. Existing approaches typically curate by reweighting
entire dataset domains [13, 5] or discarding entire trajectories [6, 14], overlooking the contribution
and quality of individual state-action pairs.

Effectively curating individual state-action pairs is challenging, especially in large-scale datasets,
as robot demonstrations typically lack dense reward annotations, making it difficult to assess the
quality of every interaction step. To address this, we develop a self-supervised approach for filtering
low-quality state-action pairs, offering a scalable solution for improving data quality in imitation
learning. Our work is motivated by two key observations: (1) suboptimal transitions, which con-
tain undesirable actions like collision, jittering, and other erroneous actions, can degrade policy
performance by reinforcing incorrect behaviors; and (2) redundant transitions, which repeat com-
mon patterns excessively, can dilute the learning signal by dominating other informative and diverse
samples.

We introduce SCIZOR, the first self-supervised, transition-level data curation method that scales
to the Open-X Embodiment Dataset [15] with more than one million trajectories for large-
scale models such as the Octo [13] vision-language-action (VLA) model of over 27M param-
eters. SCIZOR is a self-supervised data curation method that reduces dataset size by filtering out
suboptimal and redundant state-action pairs. First, to identify suboptimal data without access to
reward information, we train a self-supervised task progress predictor using temporal distance clas-
sification [16, 17, 18], and remove frames that do not demonstrate meaningful progress toward the
task goal. For instance, imagine a robot attempting to grasp an object and failing, then immediately
trying again and succeeding. The initial failed attempt produces little or even negative progress, so
it is discarded. The subsequent successful grasp, however, still advances the task and is retained.
Second, to remove redundant data, a key insight is that some segments may appear visually similar
while differing substantially in the executed actions, and vice versa. Therefore, both visual observa-
tions and their corresponding actions must be considered for effective deduplication. To this end, we
apply deduplication [7] using joint representations of state and action to identify and filter redundant
state-action pairs. We then filter out frames based on similarity scores to reduce repetition while
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preserving dataset diversity. In summary, the suboptimal frame filter targets harmful or noisy su-
pervision, while the redundancy filter removes overrepresented patterns. Together, the two deletion
strategies complement each other by targeting distinct modes of low-quality data.

In summary, our key contributions are as follows:

• We propose a unified framework for transition-level data curation that filters both suboptimal
and redundant state-action pairs in large-scale imitation learning datasets for imitation learning
policies and modern Vision-Language-Action models.

• We introduce a suboptimality detector based on self-supervised task progress estimation, and a
deduplication module that removes repetitive data to preserve data diversity.

• We empirically demonstrate that SCIZOR improves policy performance across diverse large-scale
imitation learning benchmarks, showing on average 15.4% improvement.

2 Related Work

Imitation Learning on Large-Scale Robot Datasets. Imitation learning has been a popular ap-
proach to learn robot policy from human demonstrations [19, 20, 1, 21] to scale up robot policy
generalization and enable diverse behaviors, there has recently been progress in large-scale multi-
task imitation learning [22, 23, 13, 24, 25, 26] trained on robot trajectory data of a wide variety
of tasks. This progress is driven not only by advances in policy architectures [22, 1, 27, 28], but
more importantly the collection of large-scale datasets in both real-world [29, 15, 30, 31] and simu-
lation [32, 33]. These datasets are often collected from multiple institutions using varied hardware
configurations and teleoperation systems [34, 35, 36, 37, 38, 39, 38], resulting in inconsistencies
in quality and redundancy across different datasets. Although robotics datasets have been scaled to
unprecedented sizes, the study of dataset quality and data curation methods remains preliminary.

Data Curation in Vision and Language Models. Data curation, which is the selection and fil-
tering of data for better training results, have been extensively studied in both computer vision and
language modeling to address the challenges posed by large-scale, heterogeneous datasets [8]. In
vision, LAION-5B [9] uses pretrained encoders like CLIP to assign data quality on the samples.
In language modeling, data mixture strategies like DoReMi [10] balance various data sources for
distribution robustness, while deduplication methods like SemDeDup [7] remove near-duplicates
using semantic embeddings. Data Filtering Networks [40] trains a neural network to distinguish in-
formative versus less-informative data, while Ask-LLM [41] uses instruction-tuned LLMs to assess
the quality of training examples directly. Meanwhile, Less-Is-More-RL [42] shows how pruning
suboptimal data can improve downstream policy performance in reinforcement learning settings.

Data Curation for Robotics. Data quality has been known to affect policy learning performance
for robotics [1, 43]. There have been studies in improving human demonstration quality, albeit in
small-scale tasks, by automatic ranking [2], or eliciting compatible behavior from humans during the
data collection process [44]. As progress in general-purpose, large-scale robot learning continues,
there has been growing interest in curating large-scale datasets for robot learning [13, 24, 5, 6, 14].
Octo [13] and OpenVLA [24] perform ad-hoc dataset-level curation by heuristically tuning a set of
weights for data mixtures, balancing the dataset composition; Remix [5] automates this dataset-level
curation with distributionally robust optimization. DemInf [6] performs trajectory-level curation
with mutual information as a trajectory quality estimator, and Demo-SCORE [14] also performs
trajectory-level curation, but has to rely on online rollout performance. DataMIL [45] select task
relevant trajectories from Open-X [15] datasets to boost performance on task-specific policies.

3 Self-Supervised Data Curation for Large-Scale Imitation Learning
We introduce our data curation framework, SCIZOR, which performs fine-grained filtering of low-
quality data in a self-supervised manner to improve imitation learning policy performance. We
begin by introducing key formulations and background, followed by two core components of our
method: (1) a self-supervised suboptimal transitions removal module; (2) a similarity-based state-
action deduplication module that filters redundant transitions.
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Figure 2: SCIZOR’s architecture. We apply two curation modules: (1) Suboptimal transition
removal, where we estimate chunk progress from its first and last frames and discard those below
a threshold; (2) State-action deduplication, where we encode all frames, cluster their features via
K-means, and remove frames whose intra-cluster cosine similarity exceeds a threshold.

3.1 Preliminaries and Formulations

We formulate a robot manipulation task as a Markov Decision Process M = (S,A,R,P, p0, γ)
representing the state space, action space, reward function, transition probability, initial state distri-
bution, and discount factor. Given the current state st ∈ S, the robot action at ∈ A is drawn from
the policy π (· | st). The objective of imitation learning is to learn a policy πR parameterized by θ
that maximizes the log-likelihood of actions a conditioned on the states s:

θ∗ = argmax
θ

E
(s,a)∼Dexpert

[log πθ(a | s)] (1)

where (s, a) are samples from the human demonstration dataset Dexpert. Our data curation objective
is to refine Dexpert by filtering out suboptimal or redundant samples to improve policy performance.

3.2 Suboptimal Transition Removal via Progress Estimation

Human demonstrations often contain both proficient and suboptimal segments in the same trajectory
with no explicit signals. Manually labeling suboptimal segments is labor-intensive and not scalable.
We propose a self-supervised approach to detect suboptimal behaviors based on the intuition that
progress toward task completion should increase steadily over time. As we don’t have ground-truth
progress labels, we use the ground truth time elapsed between two observations as a stand-in for
the task progress. We train a lightweight model to predict this progress from pairs of states. At test
time, if the predicted progress for a segment is unexpectedly lower than expected progress, it can
serve as a signal of suboptimality. This allows us to automatically identify and filter out segments
that deviate from making progress, without requiring any manual annotations.

Defining Suboptimality with Task Progress. Inspired by temporal distance classification in self-
supervised representation learning [16], we evaluate action quality by estimating the task progress
between two timesteps. If the predicted progress is significantly lower than the elapsed time, this
means the robot is behind schedule (i.e., progressing less than expected), meaning that the sub-
trajectory is suboptimal. Specifically, we define a progress function f : Si:i+T → Tp, which
inputs a sub-trajectory Si:i+T from timestep i to i+ T , and predicts the progress Tp made over the
sub-trajectory Si:i+T towards completion. Tp measures the temporal distance that the robot has
moved the task forward over the sub-trajectory Si:i+T , measured in seconds. We then compare this
predicted progress Tp to the actual elapsed time T . The suboptimality score for the sub-trajectory
Si:i+T is defined as Vi:i+T = T − Tp.
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Assigning Suboptimal Scores to Individual Samples. Our goal is to assign a suboptimality score
to each individual transition, enabling fine-grained data filtering. While our scores are initially
predicted at the sub-trajectory level, we want each transition’s score to include 3 factors: (1) Progress
predicted from each sub-trajectory that current transition belongs to, (2) Future suboptimality with
reducing impact over time, so that the current transition score accounts for suboptimal scenarios it
leads to, (3) The overall quality of the entire trajectory that the transition belongs to. This enables a
transition’s score to reflect both its local impact and the global quality of the whole trajectory.

Formally, from the previous section we have sub-trajectory scores V0:T , V1:1+T , . . . , VN :N+T . As-
suming equal contribution from each transition in a sub-trajectory, a score Vi:i+T is evenly dis-
tributed across its T constituent transitions, contributing 1

T Vi:i+T to each. The aggregated sample-
level score is computed as V̂i =

∑i
t=i−T

1
T Vt:t+T . To allow the current suboptimality score to also

account for future suboptimality with diminishing impact over time, we apply temporal discount-
ing: Vi =

∑T
t=i γ

t−iV̂t, γ ∈ [0, 1], where γ controls the rate at which future influences diminish.
Finally, to incorporate trajectory-level quality, we combine each transition’s score Vi with the mean
score across all N transitions in its trajectory, yielding the final curation score:

V final
i = α · Vi + (1− α) · 1

N

N∑
j=1

Vj ,

where α ∈ [0, 1] balances local and trajectory-wide quality.

Removing Suboptimal Samples. During policy training, we compute the suboptimality score for
every sample as described above. During data curation, we exclude transitions with suboptimality
scores above a certain threshold ϵs from the training process.

3.3 Similarity-Based State-Action Deduplication

Large-scale imitation learning datasets often include many visually and behaviorally similar se-
quences, for example, repeated demonstrations of the same skill in nearly identical contexts. Train-
ing directly on all such data can hinder policy generalization by overemphasizing common patterns
while underrepresenting rare but informative cases. To mitigate this, we introduce a similarity-based
deduplication method that filters out redundant data.

A key insight is that some segments may appear visually similar, yet differ in task intent or executed
actions. To avoid discarding meaningful variations, effective deduplication must consider both vi-
sual states and actions. To this end, we propose a similarity-based deduplication method that utilizes
joint representations of visual states and actions to identify and filter redundant state-action pairs.

Defining State-Action Duplicates. Prior work on semantic deduplication [7] has focused on curat-
ing large image datasets by removing semantically similar data pairs based solely on visual features.
However, such visual-only deduplication methods are not well-suited for sequential decision-making
tasks like imitation learning in robotics, where action dynamics play a crucial role. In this work, we
extend the idea of semantic deduplication to the imitation learning domain by incorporating both
visual states and action information. Specifically, we define state-action duplicates as state-action
chunks (Si:i+T , ai:i+T ) that are visually similar and lead to comparable actions, reflecting redundant
patterns that contribute little to learning diversity.

Generating State-Action Features. We first divide the dataset into non-overlapping sub-
trajectories, each consisting of a state-action sequence (Si:i+T , ai:i+T ), where each chunk spans
a fixed duration T . Given the variations in recording frequency across datasets, we uniformly sub-
sample N RGB images from each chunk for consistency. As raw visual data is high-dimensional
and not directly suitable for similarity computation, we employ the Cosmos video encoder [46],
a pre-trained model that encodes both temporal and semantic information from videos, to extract
a compact 1D video feature vector zv . We then concatenate the actions represented as delta end-
effector pose to the visual embedding to form a joint state-action feature zv+a.

Removing Duplicated Samples. We begin by performing K-means clustering to group semantically
similar state-action chunks. Within each cluster, we compute pairwise cosine distances among all
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chunks. For each chunk, its similarity score is defined as the minimum distance it has with any
other chunk in the same cluster. We identify as duplicates those chunks whose maximum similarity
exceeds a defined threshold, ϵd, as they are highly similar to at least one other sample in their cluster.
These chunks will be filtered out during policy training with a duplication mask.

4 Experiments
In our experiments, we aim to address the following questions: 1) How much does SCIZOR improve
imitation learning policy performance? 2) What advantage does SCIZOR’s fine-grained state-action
curation offer over trajectory- or dataset-level curation in prior work? 3) What design components
contribute most to SCIZOR? 4) What types of low-quality samples can SCIZOR identify and remove?
4.1 Experimental Setup
Datasets and Training Details. We evaluate our method on three robotic benchmarks for imitation
learning, chosen to represent a range of real-world scenarios: a large-scale crowdsourced dataset, a
dataset featuring varying levels of human expertise, and a human-in-the-loop dataset with mixed data
distributions. This selection enables us to evaluate SCIZOR’s effectiveness across various scenarios
and diverse data regimes. For full dataset details, see Appendix B.1.
• Open-X-Embodiment (OXE) [15]: A large-scale collection of over one million real-world

robotic trajectories. We use the Simpler environment [47] and benchmark on two tasks: Pick Can
and Move Near. We train the Octo model [13] with two random seeds and use the same “Magic
Soup” weighting. This setting evaluates SCIZOR’s scalability to large and diverse datasets.

• RoboMimic [1]: A dataset and benchmark containing human-collected trajectories of varying
proficiency. We use the simulated Multi-Human dataset for the Can and Square tasks to be con-
sistent with the baseline comparison. We train the BC policy provided in the benchmark with three
random seeds. This setting evaluates SCIZOR’s ability to curate demonstrations of mixed quality.

• Sirius-Fleet [48]: A real-world multi-task dataset comprising 1,500 policy rollouts with human
interventions. Our real-world evaluation spans four task sets comprising eight tasks. We train
the BC-Transformer policy used in the paper with three random seeds. This setting evaluates
SCIZOR’s ability to curate mixed data from both autonomous policies and human corrections.

Baselines. We benchmark SCIZOR against 3 baselines, each highlighting a different aspect of data
curation. We compare with Uniform to show the effectiveness of SCIZOR, with DemoInf and Re-
Mix to show that fine-grained curation offers advantages over coarser filtering strategies.

• Uniform: A baseline that uniformly deletes the same percentage of data as other methods to
control for dataset size. This comparison ensures that the improvement observed with SCIZOR is
attributed to which specific samples are removed, not simply to the reduced dataset size itself.

• DemoInf [6]: A trajectory-level method that estimates mutual information between states and
actions for each trajectory as a quality score and removes low-quality trajectories.

• Re-Mix [5]: A dataset-level method that learns data mixture weights for the “RT-X” variant of
the OXE datasets. To ensure consistency, we train the Octo-small model on OXERT-X for SCIZOR,
while directly adopting their learned weights for Re-Mix.

4.2 Experimental Results
RQ1: How much does SCIZOR improve imitation learning policy performance? Figure 3 sum-
marizes SCIZOR’s impact on policy success rates across all three benchmarks. Compared to training
on the full dataset, SCIZOR delivers absolute gains of 5.4% on RoboMimic, 8.1% on OXEMagic, and
32.9% on the Sirius-Fleet real-robot tasks. It also surpasses uniform curation by 16.1% on aver-
age, indicating that SCIZOR has a targeted selection of samples to be deleted. These improvements
demonstrate that SCIZOR’s data curation consistently filters out low-quality samples and improves
policy learning in both simulated and real-world robotic environments.

RQ2: What advantage does SCIZOR’s fine-grained state-action curation offer over trajectory-
or dataset-level curation in prior work? To validate the effectiveness of fine-grained curation
on state-action pairs, we compare SCIZOR with two baseline methods: a trajectory-level curation

6



0

20

40

60

80

S
uc

ce
ss

 R
at

e 
(%

)

56.9 55.1
65.1 62.3

RoboMimic

46.7
45.4

60.4

79.6
Sirius-Fleet

20.0 21.2
28.1

OXE Magic Soup

27.8
31.3

OXE RT-X

No Deletion Uniform DemInf Re-Mix Ours

Figure 3: Performance comparison across different datasets. We use the unified threshold for
SCIZOR and report success rates on 4 datasets. We found that SCIZOR achieves the strongest per-
formance and outperforms the baselines.

method, Deminf [6], and a dataset-level curation method, Re-Mix [10]. Deminf estimates the av-
erage contribution of a trajectory towards the mutual information between states and actions in the
entire dataset. Re-Mix treats each subset of data as a different “domain” and uses a distributionally
robust optimization technique to assign weights to sub-datasets. To ensure a fair comparison, we
apply SCIZOR to the same RT-X mixture setting used by Re-Mix. As shown in Figure 3 SCIZOR
outperforms Re-Mix by 3.5% on average. In the RoboMimic dataset, SCIZOR has not outperformed
DemInf, as the dataset is explicitly divided into three levels of trajectory quality, making trajectory-
level filtering particularly effective. In contrast, SCIZOR significantly outperforms DemInf by 19.2%
on the Sirius-Fleet dataset, where the mixed sources of policy and human actions result in uneven
data quality distribution. This suggests that fine-grained state-action curation may be beneficial in
datasets with complex and uneven quality distributions.

Table 1: Ablation studies: Performance comparison across three datasets (RoboMimic, Sirius-
Fleet, and OXE). Our approach consistently outperforms partial ablations, highlighting the impor-
tance of combining both components.

RoboMimic Sirius-Fleet OXEMagic

Suboptimal-Removal Only 60.9 ± 1.8 64.2 ± 2.6 25.3 ± 2.9
Deduplication Only 48.3 ± 0.8 63.3 ± 6.9 22.1 ± 0.9
SCIZOR (Ours) 62.3 ± 1.6 79.6 ± 1.4 28.1 ± 3.3

RQ3: What design components contribute most to SCIZOR? We first ablate suboptimal data
removal and deduplication in Table 1. We run experiments only removing suboptimal data or dupli-
cated data, and remove the same amount of data in each dataset as SCIZOR. We find both suboptimal
removal and deduplication individually lead to improvements over the baseline, but neither alone is
sufficient to match the full performance of SCIZOR. Suboptimal removal is generally more effective
than deduplication, but combining both components leads to the largest gains across all datasets.

Table 2: Variations of SCIZOR’s suboptimal data strategies: We evaluate different scoring strate-
gies for suboptimal data removal: (i) without mixture of transition and trajectory scores, (ii) without
temporal discounting, and (iii) the full proposed method (Ours). Results are reported across four
tasks, showing that the full version consistently outperforms the alternatives.

RoboMimic Can RoboMimic Square OXERT-1 Pick OXERT-1 Move

SCIZOR w/o mixture 81.3 ± 0.6 36.0 ± 1.4 21.8 ± 7.9 12.4 ± 4.6
SCIZOR w/o discount 79.6 ± 1.4 31.5 ± 5.5 20.7 ± 6.4 9.4 ± 1.4
SCIZOR (Ours) 87.3 ± 0.7 37.2 ± 2.5 30.9 ± 8.4 17.5 ± 1.0

We further investigate SCIZOR’s scoring strategy for suboptimal data classifier in Table 2 by ablat-
ing two key components: (i) the transition–trajectory score mixture and (ii) temporal discounting
discussed in Section 3.2. We train Octo on the OXE “RT-1” variant [22] with three seeds for faster
iteration. Omitting either component consistently degrades performance across all four tasks, high-
lighting their importance. Temporal discounting lets SCIZOR propagate evidence of suboptimality
backward in time, so that transitions leading to poorer future states can also be identified in addition
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to directly poor actions. The mixture of transition-level and trajectory-level scores balances these
fine-grained penalties with an overall assessment of each demonstration’s quality, making it easier
to filter out inherently low-quality data (for example, trajectories recorded by non-expert operators).
Together, these mechanisms yield the strongest gains in suboptimal data removal.
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Figure 4: Breakdown of suboptimal types
classified by SCIZOR. The three dominant
failure modes predicted by SCIZOR’s subop-
timal classifier are Laggy Motion, Manipula-
tion Failure, and Pause, showing SCIZOR re-
moves semantically meaningful transitions.

RQ4: What types of low-quality samples can
SCIZOR identify and curate? To qualitatively vi-
sualize the suboptimal data identified, we examine
the predicted low-quality data and investigate the
types of low-quality data they represent. From each
of the RoboMimic and Sirius-Fleet datasets, we
randomly select 100 demonstrations flagged with at
least one suboptimal segment. We then manually
visualize and classify every suboptimal segment
across these trials to generate the pie chart. Fig-
ure 4 illustrates the distribution of suboptimal tran-
sitions identified by SCIZOR. Manipulation Fail-
ure refers to errors during grasping—for example,
failed grasps, accidental drop of objects. Pause de-
notes transitions with no movement. Stuck at Col-
lision describes cases where the gripper or held ob-
ject collides, leading to a halt. Lagging captures
motion that proceeds noticeably below the normal
speed for the same context. This doesn’t contain motions that are intentionally slow, careful, and de-
liberate. Move Back and Forth indicates aimless motions that don’t contribute to task progress. False
Positive labels misclassified or ambiguous transitions. The most significant fractions are Laggy,
Manipulation Failure, and Stalled, indicating that the task-progress classifier identifies semantically
meaningful errors rather than spurious noise. Appendix B.6 visualizes representative examples.

5 Conclusion

We introduce SCIZOR, a self-supervised data curation method that filters suboptimal and redundant
state-action pairs to improve imitation learning performance. It combines a task progress predic-
tor to remove suboptimal frames with a similarity-based deduplication module to eliminate over-
represented patterns. By curating the dataset, SCIZOR consistently enhances policy performance
across diverse imitation learning benchmarks and outperforms other data curation approaches on
large datasets. Future work could explore more adaptive thresholding strategies to achieve optimal
deletion ratios and improve the representation of state-action pairs for better curation performance.

6 Limitation

While SCIZOR improves policy success in imitation learning, it has several limitations, which we
discuss in detail below:
Deduplication Representation: SCIZOR’s deduplication module currently concatenates action and
state features. While it performs well in our experiments, future work could explore more expressive
or learned representations [49, 50] that better integrate the action and state spaces.
Dependence on Demonstration Quality: SCIZOR assumes that most demonstrations within a tra-
jectory are of good quality, as we rely on self-supervised learning to learn from the majority of the
data. If poor-quality demonstrations dominate, the method may become less effective. Future work
could focus on better leveraging low-quality data by identifying and utilizing useful segments.
Linear Task Progress Assumption: SCIZOR assumes linear task progression without pausing or
repetitive behaviors. However, real-world tasks, like stirring food repeatedly or waiting for it to cook,
often involve such behaviors. Future work could adapt the method to better handle these behaviors,
e.g., longer history input, hierarchical progress modeling that can capture sub-tasks, multi-timescale
progress models that can capture both long-term progress and short-term progress, etc.
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[26] NVIDIA, J. Bjorck, F. Castañeda, N. Cherniadev, X. Da, R. Ding, L. J. Fan, Y. Fang, D. Fox,
F. Hu, S. Huang, J. Jang, Z. Jiang, J. Kautz, K. Kundalia, L. Lao, Z. Li, Z. Lin, K. Lin, G. Liu,
E. Llontop, L. Magne, A. Mandlekar, A. Narayan, S. Nasiriany, S. Reed, Y. L. Tan, G. Wang,
Z. Wang, J. Wang, Q. Wang, J. Xiang, Y. Xie, Y. Xu, Z. Xu, S. Ye, Z. Yu, A. Zhang, H. Zhang,
Y. Zhao, R. Zheng, and Y. Zhu. Gr00t n1: An open foundation model for generalist humanoid
robots, 2025. URL https://arxiv.org/abs/2503.14734.

[27] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models, 2020.

[28] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion, 2024.

[29] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets,
2021.

[30] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,
M. K. Srirama, L. Y. Chen, et al. Droid: A large-scale in-the-wild robot manipulation dataset,
2024.

10

https://arxiv.org/abs/1612.06699
https://arxiv.org/abs/2106.03911
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2503.14734


[31] AgiBot-World-Contributors, Q. Bu, J. Cai, L. Chen, X. Cui, Y. Ding, S. Feng, S. Gao, X. He,
X. Huang, S. Jiang, Y. Jiang, C. Jing, H. Li, J. Li, C. Liu, Y. Liu, Y. Lu, J. Luo, P. Luo, Y. Mu,
Y. Niu, Y. Pan, J. Pang, Y. Qiao, G. Ren, C. Ruan, J. Shan, Y. Shen, C. Shi, M. Shi, M. Shi,
C. Sima, J. Song, H. Wang, W. Wang, D. Wei, C. Xie, G. Xu, J. Yan, C. Yang, L. Yang,
S. Yang, M. Yao, J. Zeng, C. Zhang, Q. Zhang, B. Zhao, C. Zhao, J. Zhao, and J. Zhu. AgiBot
World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied
Systems. arXiv preprint arXiv:2503.06669, 2025.

[32] A. Mandlekar, S. Nasiriany, B. Wen, I. Akinola, Y. Narang, L. Fan, Y. Zhu, and D. Fox.
Mimicgen: A data generation system for scalable robot learning using human demonstrations.
In 7th Annual Conference on Robot Learning, 2023.

[33] S. Nasiriany, A. Maddukuri, L. Zhang, A. Parikh, A. Lo, A. Joshi, A. Mandlekar, and Y. Zhu.
Robocasa: Large-scale simulation of everyday tasks for generalist robots. arXiv preprint
arXiv:2406.02523, 2024.

[34] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch,
Q. Vuong, A. He, V. Myers, K. Fang, C. Finn, and S. Levine. Bridgedata v2: A dataset
for robot learning at scale, 2024. URL https://arxiv.org/abs/2308.12952.

[35] A. . Team, J. Aldaco, T. Armstrong, R. Baruch, J. Bingham, S. Chan, K. Draper, D. Dwibedi,
C. Finn, P. Florence, S. Goodrich, W. Gramlich, T. Hage, A. Herzog, J. Hoech, T. Nguyen,
I. Storz, B. Tabanpour, L. Takayama, J. Tompson, A. Wahid, T. Wahrburg, S. Xu,
S. Yaroshenko, K. Zakka, and T. Z. Zhao. Aloha 2: An enhanced low-cost hardware for
bimanual teleoperation, 2024.

[36] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870, 2024.

[37] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

[38] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[39] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik. Learning visuotactile skills with
two multifingered hands. arXiv preprint arXiv:2404.16823, 2024.

[40] A. Fang, A. M. Jose, A. Jain, L. Schmidt, A. Toshev, and V. Shankar. Data filtering networks,
2023. URL https://arxiv.org/abs/2309.17425.

[41] N. Sachdeva, B. Coleman, W.-C. Kang, J. Ni, L. Hong, E. H. Chi, J. Caverlee, J. McAuley, and
D. Z. Cheng. How to train data-efficient llms, 2024. URL https://arxiv.org/abs/2402.

09668.

[42] X. Li, H. Zou, and P. Liu. Limr: Less is more for rl scaling, 2025. URL https://arxiv.

org/abs/2502.11886.

[43] S. Belkhale, Y. Cui, and D. Sadigh. Data quality in imitation learning, 2023. URL https:

//arxiv.org/abs/2306.02437.

[44] K. Gandhi, S. Karamcheti, M. Liao, and D. Sadigh. Eliciting compatible demonstrations for
multi-human imitation learning. In Conference on Robot Learning, 2022. URL https://

api.semanticscholar.org/CorpusID:252918784.

[45] S. Dass, A. Khaddaj, L. Engstrom, A. Madry, A. Ilyas, and R. Martı́n-Martı́n. Datamil: Se-
lecting data for robot imitation learning with datamodels, 2025. URL https://arxiv.org/

abs/2505.09603.

11

https://arxiv.org/abs/2308.12952
https://arxiv.org/abs/2309.17425
https://arxiv.org/abs/2402.09668
https://arxiv.org/abs/2402.09668
https://arxiv.org/abs/2502.11886
https://arxiv.org/abs/2502.11886
https://arxiv.org/abs/2306.02437
https://arxiv.org/abs/2306.02437
https://api.semanticscholar.org/CorpusID:252918784
https://api.semanticscholar.org/CorpusID:252918784
https://arxiv.org/abs/2505.09603
https://arxiv.org/abs/2505.09603


[46] NVIDIA, N. Agarwal, A. Ali, M. Bala, Y. Balaji, E. Barker, T. Cai, P. Chattopadhyay, Y. Chen,
Y. Cui, Y. Ding, D. Dworakowski, J. Fan, M. Fenzi, F. Ferroni, S. Fidler, D. Fox, S. Ge,
Y. Ge, J. Gu, S. Gururani, E. He, J. Huang, J. Huffman, P. Jannaty, J. Jin, S. W. Kim, G. Klár,
G. Lam, S. Lan, L. Leal-Taixe, A. Li, Z. Li, C.-H. Lin, T.-Y. Lin, H. Ling, M.-Y. Liu, X. Liu,
A. Luo, Q. Ma, H. Mao, K. Mo, A. Mousavian, S. Nah, S. Niverty, D. Page, D. Paschalidou,
Z. Patel, L. Pavao, M. Ramezanali, F. Reda, X. Ren, V. R. N. Sabavat, E. Schmerling, S. Shi,
B. Stefaniak, S. Tang, L. Tchapmi, P. Tredak, W.-C. Tseng, J. Varghese, H. Wang, H. Wang,
H. Wang, T.-C. Wang, F. Wei, X. Wei, J. Z. Wu, J. Xu, W. Yang, L. Yen-Chen, X. Zeng,
Y. Zeng, J. Zhang, Q. Zhang, Y. Zhang, Q. Zhao, and A. Zolkowski. Cosmos world foundation
model platform for physical ai, 2025. URL https://arxiv.org/abs/2501.03575.

[47] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu, I. Lunawat, I. Sieh, S. Kir-
mani, S. Levine, J. Wu, C. Finn, H. Su, Q. Vuong, and T. Xiao. Evaluating real-world robot
manipulation policies in simulation. arXiv preprint arXiv:2405.05941, 2024.

[48] H. Liu, Y. Zhang, V. Betala, E. Zhang, J. Liu, C. Ding, and Y. Zhu. Multi-task interactive robot
fleet learning with visual world models, 2024. URL https://arxiv.org/abs/2410.22689.

[49] K. Pertsch, K. Stachowicz, B. Ichter, D. Driess, S. Nair, Q. Vuong, O. Mees, C. Finn, and
S. Levine. Fast: Efficient action tokenization for vision-language-action models. arXiv preprint
arXiv: 2501.09747, 2025.

[50] S. Li, Y. Gao, D. Sadigh, and S. Song. Unified video action model. arXiv preprint arXiv:
2503.00200, 2025.

[51] R. Shah, R. Martı́n-Martı́n, and Y. Zhu. Mutex: Learning unified policies from multimodal
task specifications. In 7th Annual Conference on Robot Learning, 2023. URL https://

openreview.net/forum?id=PwqiqaaEzJ.

[52] K. Pertsch. Rlds dataset modification, 2024. URL https://github.com/kpertsch/rlds_

dataset_mod. GitHub repository.

12

https://arxiv.org/abs/2501.03575
https://arxiv.org/abs/2410.22689
https://openreview.net/forum?id=PwqiqaaEzJ
https://openreview.net/forum?id=PwqiqaaEzJ
https://github.com/kpertsch/rlds_dataset_mod
https://github.com/kpertsch/rlds_dataset_mod


A Method details

46

48

50

52

54

56

58

60

62

64
Su

cc
es

s R
at

e 
(%

)

Policy Success Rate on Robomimic

16

18

20

22

24

26

28

30
Policy Success Rate on Open-X-Embodiment

0 5 10 15 20 25 30
Percentage of Data Curated in Dataset (%)

0 5 10 15 20 25 30
Percentage of Data Curated in Dataset (%)

Suboptimal Only Deduplication Only

Figure 5: The performance of the Suboptimal-Only method and the Deduplication-Only method
when deleting different percentages of data on the Robomimic and OXEMagic dataset.

A.1 Determining the Single Threshold Across Datasets

When curating data, we remove all samples with a score above either ϵs or ϵd. To generalize SCIZOR
to different datasets, we suggest to find a single threshold. We conduct a hyperparameter search on
two simulation datasets, RoboMimic and OXEMagic and find that ϵs = 0.58 and ϵd = 0.99 yield the
best performance on both datasets. This single threshold was then directly applied to the real-world
setting (Sirius-Fleet).

To find a unified threshold for both suboptimal-transition removal and similarity-based state–action
deduplication, we run SCIZOR with only one sub-method at a time on the RoboMimic and OXEMagic
datasets with deletion ratios of 10%, 20%, and 30%.
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Figure 6: Deletion ratio as a function of the chosen threshold for suboptimal-transition removal and
state–action deduplication on the Robomimic and OXEMagic datasets.
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Figure 5 shows that Suboptimal-Only achieves its highest success rate at 30% deletion on
RoboMimic and 10% deletion on OXE. Deduplication-Only performs best with 0% deletion on
RoboMimic and 20% deletion on OXE.

Next, we plot the deletion ratio as a function of the threshold in Figure 6. We observe that: A sub-
optimal threshold of 0.58 yields deletion rates of 29.5% on RoboMimic and 11.9% on OXE, closely
matching their respective optimal ratios. A deduplication threshold of 0.99 results in only 0.3%
deletion on RoboMimic—insufficient to harm performance—and 4.5% deletion on OXE, which
still provides a notable improvement, very close to deleting 20%.

Finally, we apply the unified threshold to all the datasets, and yield the deletion ratio list in Table 3.

Table 3: Deletion Ratio of all the datasets when unified threshold applied

RoboMimic Sirius-Fleet OXEMagic OXERT-X OXERT-1

Suboptimal-Only 29.3% 4.7% 11.9% 15.0% 9.2%
Deduplication-Only 0.3% 3.2% 4.5% 0.8% 0.5%
SCIZOR (Total) 29.6% 7.9% 15.8% 15.8% 9.7%

A.2 Task Progress Prediction Model Architecture.

Given a sub-trajectory Si,i+T , the model takes image observation at timesteps i and i+ T as inputs.
These observations are independently encoded using a frozen DINO-V2 model to obtain the visual
features, which provide robust and generalizable visual representations thanks to its self-supervised
pretraining on diverse natural images. We compute the difference between the two feature vectors to
obtain a delta feature vector, which emphasizes task-relevant changes and accelerates convergence
while discarding redundant static information and is concatenated with a CLS token. The feature
vector is then processed through a series of multi-layer self-attention transformer blocks. The output
CLS token is then fed into a classification head to produce the predicted progress bin.

A.3 Training the Task Progress Predictor

We divide each trajectory into five equal time bins. For each training example, we randomly select
one bin and sample a time interval ∆t uniformly within its bounds. The model takes as input the
frame at time t and the frame at t+∆t, and is trained to predict the index of the chosen time bin.

A.4 Fixed Time Duration

All experiments use a constant interval of 2s for progress prediction and state–action feature extrac-
tion. Since datasets differ in control frequency, this 2s window corresponds to a dataset-dependent
number of transitions per second.

A.5 Task Progress Predicting Details

Rather than regressing a real-valued progress estimate, we cast progress prediction as classification
over discrete temporal bins, which is empirically more robust [16]. We discretize the temporal gap
into B bins, where each bin is a time interval in seconds. To predict task progress for a sub-trajectory
Si,i+T , we train a task progress classifier to classify the bin corresponding to the time T between the
start and end states. Empirically, we set B = 5, sample each sub-trajectory as 2 seconds, and bins to
be [0, 0.5), [0.5, 1.0), [1.0, 2.0), [2.0, 5.0), and [5.0,+∞). For the weighted combination coefficient
between local suboptimality score and the mean score across all time steps, we simply choose 0.5.
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A.6 Removing Suboptimal Samples Details

Note that each sample preserves an observation history and an action sequence for algorithms that
are history-dependent (e.g., BC-Transformer) and that utilize action chunking. We do the chunking
before any removal to avoid temporal inconsistencies.

A.7 Deduplication Details

We use a chunk size of N=8 for deduplication, as it’s commonly supported by most of the video
encoder.

B Experimental Details

B.1 Dataset Details

RoboMimic [1] is a robotic imitation learning dataset and benchmark. It provides trajectories col-
lected by proficient human (PH) or mixed-proficient human (MH) demonstrators. The PH dataset
consists of 200 trajectories from a single experienced demonstrator, while the MH dataset includes
300 trajectories from six demonstrators — two “better”, two “okay”, and two “worse”. For our
experiment, we use the MH dataset for the “Can” and “Square” tasks.

Sirius-Fleet [48] uses a visual world model to predict sub-optimal behaviors during policy rollout
and requests human intervention when needed. The Sirius-Fleet dataset is collected over three
rounds by allowing the policy to roll out and incorporating human-corrected data for retraining. We
utilize the real-world Sirius-Fleet dataset, which adopts the Mutex settings [51] and includes 1,500
trajectories. Our real-world evaluation spans four task sets comprising eight tasks.

Open-X-Embodiment (OXE) [15] is a large-scale collection of over one million real-world robotic
trajectories. The dataset is multi-task and cross-embodiment, covering various action and observa-
tion spaces. We use the RLDS Dataset Modification [52] to unify the action space to 7 DoFs. We
employ three variations of the OXE dataset, each selecting different subsets of the original data and
applying different weightings: the “Magic Soup” mixture (OXEMagic) used in the Octo paper [13],
the “RT-X” mixture (OXERT-X) used in the Re-Mix paper [10], and the “RT-1” dataset (OXERT-1)
from the RT-1 paper [22].

B.2 Training and Evaluation Details

Policy Training Details

Table 4: Hyperparameter configurations and architectural details for the Robomimic, Sirius-fleet,
and OXE datasets used in our experiments.

RoboMimic Sirius-Fleet Real OXEMagic OXERT-X OXERT-1

Architecture BC BC-Transformer-GMM Octo Octo Octo
Learning Rate 1e-4 1e-4 3e-4 3e-4 3e-4
Weight Decay 0.1 0.1 0.1 0.1 0.1
Batch Size 16 16 2048 2048 256
Params 23M 35M 93M 93M 93M
Steps 300K 1M 300K 300K 200K
Action Chunk 1 10 4 4 4
Obs History 1 10 2 2 2
GPU 1 L40S 48GB 1 L40S 48GB 32 H100 80GB 32 H100 80GB 8 L40 48GB

We evaluate SCIZOR across various architectures and datasets to demonstrate its applicability to
different imitation learning algorithms. We intentionally leave all model architectures and hyper-
parameters unchanged from the public reference implementations of each dataset, demonstrating
that SCIZOR is plug-and-play. For the RoboMimic and Sirius-Fleet experiments, we train each
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model using three random seeds. For the larger OXE experiments, we train the Octo model using
two seeds.

For each setting, the same dataset is used throughout SCIZOR suboptimal classifier training, dedu-
plication, and subsequent policy training. For example, in the OXE setting, we first train SCIZOR’s
task progress predictor on the full OXE dataset and use it to identify suboptimal transitions within
that dataset. After filtering out low-quality segments, we apply de-duplication to the remaining data.
The final policy is then trained on this curated dataset. Our pipeline is entirely self-supervised,
requiring no explicit data quality labels for training.

On the RoboMimic dataset, we train a basic Behavior Cloning (BC) model with MLP layers [1] for
600 epochs. We evaluate every 20 epochs, select the top three checkpoints per random seed, and
report the mean success rate over 80 trials per task for each checkpoint, then average across seeds.

For the Sirius-Fleet real-robot experiments, we use a BC-Transformer model with a GMM head
[1, 4, 48], and train for 2000 epochs. Evaluation is performed at the 2000 epoch, and we report the
average success rate of the top three checkpoints for each seed. We run 10 trials per task per seed
for this setting.

We train the Octo-Small model on all three variations of the OXE dataset. For OXEMagic and
OXERT-X, training is performed for 300K steps with a batch size of 2048 using two seeds. For
OXERT-1, we train for 200K steps with a batch size of 256 using three seeds. Evaluation is conducted
in the SIMPLER simulation environment [47] on the “Pick Coke Can” and “Move Near” tasks. We
only evaluate on the Visual-Matching setting of SIMPLER, which means there won’t be lighting
or texture variation. For each seed, we identify the highest success rate among the last three saved
checkpoints, and then average these best performances across seeds. We evaluate 300 trials per
checkpoint on “Pick Coke Can” and 240 trials per checkpoint on “Move Near”.

Table 4 provides the detailed hyperparameter and model architectures used in our experiments.

B.3 Other Simpler Baselines

We further compare SCIZOR against two simple baselines. To show the necessity of progress es-
timation, we design a velocity filter: we compute the end-effector velocity as the L2 norm of the
delta end effector state and apply a moving-window filter to remove the slowest k% of transitions.
To evaluate whether zero-shot VLMs can serve as effective demonstration raters, we prompt GPT-
4.1-small to categorize each demonstration into three ranks and discard the lowest k%. Results
in Table 5 show that only SCIZOR improves over the No Curation baseline. The moving window
velocity filter catches only slow movements; once those are deleted, further pruning harms perfor-
mance. The VLM baseline helps on the “Can” task but hurts on “Square”, indicating its limited
spatial understanding for precise, fine-grained assembly.

Velocity Filter Zero-Shot VLM No Curation SCIZOR

Can (%) 75.7± 1.3 80.4± 4.0 79.0± 1.7 87.3± 0.7
Square (%) 30.1± 3.2 32.1± 2.4 34.8± 5.1 37.2± 2.5

Table 5: Comparison of methods on Robomimic.

B.4 Additional Research Questions

RQ5: What are the false negatives and false positives? We analyze the suboptimal cases that
were incorrectly classified by SCIZOR, labeled as false positive in Figure 4. Among the 5% of false
positive segments predicted in Sirius-Fleet, 3% occur near the end of the demonstrations. These
segments often include repeated padded frames, since the task has already been completed. The
remaining 2% are short segments right before a suboptimal pause, which would also be predicted as
suboptimal segments. To conduct a controlled error analysis, we created a human-annotated dataset
of robot failures from the Sirius-Fleet dataset. 13/25 of failures are successfully predicted. The false
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negatives can be categorized into two types: (1) The robot failed to grasp at first, but it recovered
quickly and didn’t cause a big progress lag. This is because our curation threshold focuses on
deleting the most detrimental suboptimality. (2) The self-supervised model failed to detect because
most of the data contains this failure.

RQ6: How well can SCIZOR preserve high quality data? We investigate whether SCIZOR re-
moves high-quality data during the curation process through the following analyses. 1) Keeping
Expert Demonstrations. We randomly picked 50 perfect expert demonstrations from 5 tasks from
Sirius-Fleet, each containing 10 demonstrations. Surprisingly,none of these demonstrations have
SCIZOR-predicted suboptimal segments, indicating that SCIZOR is actually considering them as
high-quality samples and won’t be curated. 2) Keeping Recovery Behaviors. We also checked the
grasping failures mentioned in the previous paragraph. Specifically, 54% of recovery behaviors
are fully maintained, and 31% are partially maintained. Only 15% are deleted, and the remaining
episodes directly start with the next rasping behavior. Most of the recovering behaviors are kept
because they contribute to task progress.

B.5 Evaluation Task Details for each Dataset

Table 6 presents the detailed descriptions and visualizations of the tasks used in our experimental
settings. These tasks span both simulated and real-world environments, covering a diverse range of
manipulation challenges.

Table 6: Task Name and Description for each setting.

Visualization Task Name and Description

Robomimic Can
The robot is required to place a coke can from a large bin into a smaller
target bin.

Robomimic Square
The robot is required to pick a square nut and place it on a rod. Substantially
more difficult than Pick Place Can due to the precision required.

SIMPLER Pick Coke Can
The robot is instructed to grasp the empty coke can on the table and lift it
up.

SIMPLER Move Near
The robot is instructed to move one object next to another object, while the
third object serves as a distractor.

continued on next page
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continued from previous page

Visualization Task Name and Description

Mutex Mug to Basket
The robot is instructed to pick up the blue mug and then place it in the
basket.

Mutex Bowl to Basket
The robot is instructed to pick up the red bowl and then place it in the
basket.

Mutex Mug to Oven Tray
The robot is instructed to pick up the blue mug and then place it on the
oven tray.

Mutex Bread to Plate
The robot is instructed to pick up the bread and then place it on the white
plate.

Mutex Mug to Plate
The robot is instructed to pick up the pink mug and then place it on the
white plate.

Mutex Bowl to Plate
The robot is instructed to pick up the bowl with hot dogs and then place it
on the white plate.

Mutex Book to Caddy
The robot is instructed to pick up the book and then place it in the back
compartment of the caddy.

continued on next page
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continued from previous page

Visualization Task Name and Description

Mutex Cup to Caddy
The robot is instructed to pick up the red cup and then place it in the front
compartment of the caddy.

B.6 Extra results and Visualization

Table 7, 8, 9 presents the detailed results of different methods on each task of the reported datasets.

Table 7: Success rates on Robomimic across different tasks and methods

Can Square
Suboptimal-Removal Only 84.0% 37.8%
Deduplication Only 74.3% 22.4%
Random Deletion 78.0% 32.2%
DemInf 88.9% 41.4%
SCIZOR (Ours) 84.0% 40.8%

Table 8: Success rates on Sirius-Fleet across different tasks and methods

Book→Caddy Cup→Caddy Bowl→Plate Mug→Plate

No Deletion 40.0% 65.0% 65.0% 35.0%
Suboptimal-Removal Only 65.0% 75.0% 70.0% 60.0%
Deduplication Only 45.0% 75.0% 80.0% 70.0%
Random Deletion 50.0% 65.0% 55.0% 30.0%
Deminf 66.7% 53.3% 60.0% 50.0%
SCIZOR (Ours) 66.7% 73.3% 93.3% 83.3%

Mug→Basket Bowl→Basket Mug→Tray Bread→Plate

No Deletion 35.0% 60.0% 35.0% 50.0%
Suboptimal-Removal Only 35.0% 90.0% 50.0% 60.0%
Deduplication Only 65.0% 70.0% 60.0% 60.0%
Random Deletion 25.0% 70.0% 30.0% 35.0%
Deminf 50.0% 76.7% 53.3% 63.3%
SCIZOR (Ours) 66.7% 96.7% 66.7% 90.0%

We also visualize the suboptimal scenarios identified by SCIZOR across both the Robomimic and
Sirius-Fleet datasets in Figure 7, 8. These visualizations highlight common suboptimal modes de-
tected by our method, offering insight into SCIZOR’s capabilities.

B.7 Findings during Evaluation

During evaluation of SCIZOR on the Sirius-Fleet dataset, we observed that several failure modes
present in the policy trained on the full dataset disappeared when using SCIZOR to curate the dataset.

For example, in the book-to-caddy task, the baseline policy often allowed the book to collide with
the caddy, whereas our policy reliably avoids any contact. Furthermore, our policy is noticeably
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Table 9: Success rates on OXE across different tasks, mixtures and methods

Pick Can Move Near
OXEMagic Mixture

No Deletion 27.0% 13.1%
Random Deletion 29.1% 12.1%
Suboptimal-Removal Only 33.7% 16.9%
Deduplication Only 31.8% 12.3%
SCIZOR (Ours) 39.5% 16.7%

OXERT-X Mixture
Remix 40.5% 15.0%
SCIZOR(Ours) 43.3% 19.2%

Stuck at Collision: The book held 
by the robot collided with the 
cabby, leading to a halt.

Manipulation Failure: The bowl 
held by the robot dropped 
accidently.

Manipulation Failure: The robot 
gripper failed to grasp the blue 
mug.

Slow Motion: The robot gripper 
moved towards the bowl at a 
slow pace.

Pause: The robot arm stopped at 
behind the cereal box for a long 
time.

Figure 7: Visualizations for suboptimal scenarios detected in Robomimic dataset

more reactive: when it does encounter a failure, the baseline tends to pause or oscillate in place, but
our policy quickly returns to its original trajectory and retries until the task is completed.
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Move Back and Forth: The robot 
arm moved aimlessly and didn’t 
contribute to the task progress.

Manipulation Failure: The robot 
gripper missed the can when 
trying to pick it up.

Manipulation Failure: The robot 
gripper knocked over the can 
when trying to pick it up.

Slow Motion: The robot gripper 
move towards the square rod 
slowly.

Stuck at Collision: The square rod 
held by the robot collided with 
the column when trying to insert.

Figure 8: Visualizations for suboptimal scenarios detected in Sirius-Fleet dataset
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