
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPEAR: STRUCTURED PRUNING FOR SPIKING NEURAL
NETWORKS VIA SYNAPTIC OPERATION ESTIMATION
AND REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

While deep spiking neural networks (SNNs) demonstrate superior performance,
their deployment on resource-constrained neuromorphic hardware still remains
challenging. Network pruning offers a viable solution by reducing both parameters
and synaptic operations (SynOps) to facilitate the edge deployment of SNNs,
among which search-based pruning methods search for the SNNs structure after
pruning. However, existing search-based methods fail to directly use SynOps as the
constraint because it will dynamically change in the searching process, resulting
in the final searched network violating the expected SynOps target. In this paper,
we introduce a novel SNN pruning framework called SPEAR, which leverages
reinforcement learning (RL) technique to directly use SynOps as the searching
constraint. To avoid the violation of SynOps requirements, we first propose a
SynOps prediction mechanism called LRE to accurately predict the final SynOps
after search. Observing SynOps cannot be explicitly calculated and added to
constrain the action in RL, we propose a novel reward called TAR to stabilize the
searching. Extensive experiments show that our SPEAR framework can effectively
compress SNN under specific SynOps constraint.

1 INTRODUCTION

Recently, Spiking Neural Networks (SNNs) have attract many attention because of their high energy
efficiency and superior performance (Zhou et al., 2024; Luo et al., 2025; Su et al., 2024; Lei et al.,
2024; Qiu et al., 2024a). However, the limited resources of edge neuromorphic hardware (Bouvier
et al., 2019; Pei et al., 2019; Davies et al., 2018) hinder the deployment of deep SNNs. Structured
pruning technology can effectively compress SNN to reduce the network parameters and computation,
making it a viable solution for the deployment SNNs on edge neuromorphic devices.

Current SNN structured pruning methods can be categorized into design-based methods (Di Yu et al.,
2024; Chowdhury et al., 2021) and search-based methods (Li et al., 2024a;b). Design-based methods
prune the channel based on channel importance criteria. As these approaches need to manually
design the pruned network structure, the network architecture after pruning remains sub-optimal.
Search-based approaches utilize network architecture search technique to automatically search for
the optimal pruned network under a specific constraint. However, as one of the most important metric
for energy efficiency (Shi et al., 2024; Yan et al., 2024), existing methods fail to directly use synaptic
operations (SynOps) as the constraint in the searching process. As a result, the SynOps remains high
after compression by using existing pruning approaches (see Table. 1), making the deployment of
compressed model challenging.

It is a non-trivial task to use SynOps as the constraint for searching. First, different from the FLOPs
in artificial neural networks (ANNs), SynOps will significantly change after finetuning, which is
a standard operation in the pruning approaches. Fig. 1(a) shows the SynOps of pruned models
before and after finetuning. We observe SynOps exhibit irregular and significant variations after
the finetuning operation. Therefore, the searched network may violate or deviate far beyond the
constraints after finetuning. On the other hand, if we use SynOps after finetuning as the constraint,
the time-consuming training procedure will make the search unaffordable. Therefore, it is desirable

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7
SynOps 1e8

Case 1

Case 2

Case 3

Case 4

+55.57%

+29.36%

-20.76%

-11.95%

SynOps before finetuning
SynOps after finetuning

(a) SynOps vary before and after finetuning

0 1 2 3 4 5 6 7 8 9 ...
Layer Index

0

1

2

3

Sy
nO

ps

 F

LO
Ps

1e7

SynOps change irregularly

0
2
4
6
8

1e7

prune this layer FLOPs do not change

original FLOPs
pruned FLOPs
original SynOps
pruned SynOps

(b) Pruning effect layer-wise SynOps and FLOPs

Figure 1: Characteristics of SynOps in finetuning and pruning

to design a mechanism to accurately and efficiently estimate the SynOps after finetuning for effective
search.

Second, reinforcement learning has been proved as effective method to search for pruned network
structure. Current reinforcement learning based ANN pruning methods (He et al., 2018; Ganjdanesh
et al., 2024) utilize the property that FLOPs can be explicitly calculated based on the given formula.
So, they use FLOPs as the explicit constraint for the action at each step. For example, AMC (He et al.,
2018) uses remained FLOPs budget to limit the sparsity ratio when pruning each layer. However,
SNNs do not hold this property. SynOps in SNN is related to many factors, which cannot be directly
calculated based on the formula. As shown in Fig. 1(b), the SynOps of other layers will also change
when we prune one layer in SNN, which makes it challenging to calculate the remained SynOps
budget to limit the action when pruning. As a result, it is also desirable to incorporate SynOps
constraint implicitly at each action step for efficient searching.

To address the aforementioned issues, in this paper, we propose an SNN pruning framework called
SPEAR, which leverages reinforcement learning to automatically compress the network. To accurately
estimate post-finetuning SynOps, we first propose linear regression for SynOps Estimation (LRE)
strategy to predict the final SynOps based on pre-finetuning SynOps. Specifically, observing the
linear correlation between pre- and post-finetuning SynOps, we propose to use linear regression to
directly learn the relationship of SynOps at different stages, which provides effective and efficient
SynOps estimation.

To tackle the second problem (i.e., use SynOps budget to limit action), we further propose a novel
reward function called target-aware reward (TAR). Specifically, instead of using hard SynOps
constraint in the searching process, we seamlessly integrate SynOps penalty in our reward function
and penalize the reward when the current SynOps exceeds the target constraint. By converting hard
constraint to soft penalty, we can smoothly optimize our RL agent to meet the resource limitation.

Our contributions are summarized as follows:

• We propose the SPEAR structured pruning framework, which leverages reinforcement
learning to automatically compress SNNs.

• We reveal that SynOps will irregularly and significantly change after finetuning, and propose
LRE strategy to accurately predict the final SynOps by using linear regression.

• We design a novel reward function called TAR, which can smoothly optimize the RL agent
and enforce it to meet the resource constraint.

• Extensive experiments on various datasets demonstrate our SPEAR method can effectively
compress SNN.

2 RELATED WORK

Spiking Neural Networks. Recently, spiking neural networks have attracted attention because
of their superior performance and energy efficiency. Many network architectures (Sengupta et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2018; Hu et al., 2021; Fang et al., 2021; Yao et al., 2024; 2025; Qiu et al., 2024b; Yao et al., 2021;
2023) were proposed. For example, Fang et al. (2021) proposed SEW ResNet to overcome the
vanishing/exploding gradient problems of Spiking ResNet. In addition to the architecture design,
other approaches like design different neurons (Hao et al., 2023; Yao et al., 2022; Huang et al., 2024),
or improve training techniques (Guo et al., 2022; 2023; Deng et al., 2022; Zheng et al., 2021) were
also proposed to improve the SNN performance. However, these methods aim to either improve
SNNs performance or improve the training efficiency. In contrast, our SPEAR framework aims to
compress these SNN for efficient deployment, which is complementary to these approaches.

Neural Network Pruning. Neural network pruning has garnered growing attention for building
efficient deep learning systems by removing redundant parameters. ANN pruning (He & Xiao,
2024; Ghimire et al., 2022; Liu et al., 2021; Guo et al., 2020) has been well explored in recent
years. For example, AMC (He et al., 2018) uses reinforcement learning to automatically search the
compressed network structure. Ganjdanesh et al. (2024) proposed to use reinforcement learning
to dynamically learn the weights and architecture. Compared with ANN pruning approaches, our
SPEAR aims to compress SNNs, where the dynamically changed SynOps is the main metric for
efficiency measurement. So, we propose LRE and TAR to effectively estimate the final SynOps and
to integrate constraint into the searching process.

Recently, there are also SNN pruning approaches in the literature (Han et al., 2025; Chen et al.,
2021; 2022; Shi et al., 2024; Li et al., 2024a; Liu et al., 2017; Garg et al., 2019; Chen et al., 2023).
For example, Chowdhury et al. (2021) proposed to use principal component analysis on membrane
potential to determine the channel width. However, these SNN pruning approaches require manual
design of the network structure after pruning, which is sub-optimal. There are also searching-based
pruning approaches to automatically search the pruned network structure. Li et al. (2024b) proposed
to prune and regenerate convolutional kernels based on their activity levels. These methods cannot
effectively decrease the SynOps after compression as they do not directly use SynOps as the constraint
in the searching process. Although Shi et al. (2024) utilizes SynOps as the constraint for pruning
neurons and weights, this approach focuses on unstructured pruning, which is hardware unfriendly.
In contrast, our SPEAR focuses on structured pruning, which is hardware-friendly and can achieve
practical acceleration.

Neural Architecture Search for SNN. Neural Architecture Search (NAS) (Yan et al., 2024; Liu
et al., 2024) aims to automatically design and optimize SNN architectures through searching algo-
rithms. For example, SNASNet (Kim et al., 2022) uses temporal feedback connections for searching.
SpikeDHS (Che et al., 2022) adapts the Darts (Liu et al., 2018) to search for the surrogate gradient
function. AutoSNN (Na et al., 2022) takes both the accuracy and energy efficiency into account and
uses one-shot architecture search paradigm. However, these approaches focus on searching for the
operations or connections types. In contrast, our SPEAR framework aims to search the channel width
of each layer to compress an existing SNN, which is complementary to these methods.

3 PRELIMINARY

3.1 SYNAPTIC OPERATIONS

The primary metric for evaluating the energy consumption of neuromorphic chips is the average
energy required to transmit a single spike through a synapse (Furber, 2016). Therefore, the number of
synaptic operations is an important metric to measure the efficiency of a model. Following previous
work (Shi et al., 2024), we define the number of synaptic operations as follows:

SynOps =
∑
k

sk × ck, (1)

where SynOps denotes the total number of synaptic operations for one sample. sk and ck denote
the number of spikes fired by neuron k and the number of synaptic connections from neuron k,
respectively. As the SynOps for each sample can be different, so we define the average SynOps on
the dataset as follows:

Avg. SynOps =

∑N
j SynOpsj

N
, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Layer 𝑖 + 1

Layer 𝑖

Layer 𝑖 − 1

𝑎𝑖

SynOps

Estimation

State𝑖

Agent

Target-Aware

Reward

Accuracy, #params 𝑃𝑐

Estimated SynOps 𝑆𝑒𝑠

Implicitly

control

Target-Aware Reward:

Accuracy+ 𝐹 𝑆𝑒𝑠, 𝑆𝑡 + 𝐹(𝑃𝑐 , 𝑃𝑡)

Storage or Energy
Limitation on Edge

Target #params 𝑃𝑡,
Target SynOps 𝑆𝑡

Reward

Pruning Environment

(𝑖, 𝑐𝑖𝑛, …)

Prune

Finetune

Linear Regression
to obtain 𝑊,𝑏

SynOps Estimation:
𝑆𝑦𝑛𝑂𝑝𝑠𝑒𝑠 = W× SynOpsp𝑟𝑢𝑛 + b

SynOpsp𝑟𝑢𝑛

SynOpses

Pretrained Model

Figure 2: Overview of our SPEAR framework.

where SynOpsj means the SynOps of the j-th sample, and N denotes number of samples in the
dataset. For simplicity, the term SynOps mentioned in the following paper refers to the average
SynOps, unless otherwise specified.

4 METHODOLOGY

4.1 OVERVIEW

The overview of our Structured Pruning for SNNs via Synaptic Operation Estimation and Reinforce-
ment Learning (SPEAR) framework is shown in Figure 2. We aim train a reinforcement learning
agent based on environmental feedback to achieve optimal accuracy under given resource constraints.
To provide realistic state feedback, we utilize our proposed Linear Regression for SynOps Estimation
(LRE) to predict post-finetuning SynOps based on pre-finetuning SynOps. In the training process, we
also introduce the Target-Aware Reward (TAR) to effectively incorporate the SynOps constraint into
each action.

4.2 LINEAR REGRESSION FOR SYNOPS ESTIMATION

Motivation. As introduce in Sec.1, the SynOps of pruned models change significantly after finetuning.
If we directly use pre-finetuning SynOps as the constraint in the searching process, the final network
may violate the SynOps constraint after finetuning. Conversely, if we use post-finetuning SynOps as
the constraint, the time-consuming finetuning process will make the searching process intractable.
Therefore, we propose our linear regression SynOps estimation (LRE) strategy to predict the SynOps
after finetuning.

Linear Regression for SynOps Estimation. To precisely predict the final SynOps, we first visualize
the SynOps before and after finetuning to look for the relationship between them. Specifically,
we randomly generate the pruning ratio for each layer (i.e., pruning policy) and use the L1-norm
criterion(Li et al., 2017a) to prune the pre-trained SNN based on the generated policy. Then, we
calculate the SynOps before and after finetuning of these pruned networks and plot them in Fig. 3.
Surprisingly, we observe a linear correlation between the SynOps of pruned models and their fine-
tuned counterparts. This observation enables predictive modeling of post-finetuning SynOps through
simple linear regression.

Mathematically, the estimated SynOps after finetuning can be written as follows:

SynOpses = W · SynOpscur + b, (3)

where SynOpses and SynOpscur are the estimated SynOps after finetuning and the actual SynOps
before finetuning, respectively. W and b are the learnable parameters. We can sample a small number
of pruning policy and prune and finetune them to generate SynOps data. Then, we perform linear
regression to fit the SynOps before and after finetuning and obtain learned W and b. After learning
the LRE, we directly use the learned weight W and bias b to predict the post-finetuning SynOps as
Eq. (3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1e8 1e8

(b)ResNet18 on Tiny-ImageNet(a)VGG16 on Tiny-ImageNet
SynOps before finetuning

Sy
n

O
p

s
af

te
r

fi
n

et
u

n
in

g Pearson Correlation Coefficient Pearson Correlation Coefficient

Figure 3: Linear relationship of SynOps pre and post finetuning

4.3 TARGET-AWARE REWARD

Motivation. In existing reinforcement learning based pruning work (He et al., 2018; Ganjdanesh
et al., 2024), constraints on computation were explicitly imposed by bounding action ranges based on
the formulaically computed FLOPs of current layer, i.e., the computed FLOPs is used as a constraint
for the agent when take action. However, as introduced in Sec 1, SynOps of other layers will also
change when pruning a specific layer in SNN because of altered spiking activity patterns. This makes
it challenging to use SynOps for limiting actions of the agent.

Target-Aware Reward. To this end, we propose Target-Aware Reward (TAR) to implicitly bound the
pruning actions of agent by incorporating resource information into the reward during reinforcement
learning training. Mathematically, TAR can be written as follows:

Rs = Acc+ F (Ses, St),

where F (Ses, St) = −λ ·
[
max

(
Ses

St
− 1, 0

)]α
. (4)

Here, Ses, St denotes estimated and target SynOps respectively. Acc means the accuracy of pruned
model on validation dataset. The max(·, 0) operator creates unilateral penalty, ensuring punishment
only triggers when current SynOps exceeds the target. The exponential term [·]α with α > 1
establishes exponential penalty growth, where excessive SynOps incurs rapidly escalating costs. λ is
the coefficient to balance accuracy rewards and constraint enforcement intensity. We empirically set
α = 1.2 and λ = 1.

In addition to incorporating SynOps into the reward, we can also implicitly use number of parameters
or both SynOps and parameters into our TAR. Specifically, the reward using parameters as the
constraint can be written as follows:

Rp = Acc+ F (Pc, Pt), (5)

and the reward using both SynOps and parameters is:

Rsp = Acc+ F (Ses, St) + F (Pc, Pt). (6)

Pc, Pt denote current and target number of parameters respectively. By using either Eq. (5) or Eq. (6),
we can penalize either parameters or both SynOps and parameters in our searching algorithm to
achieve the target. For SynOps-dominated scenarios, we can use only Rs as our reward. On the other
hand, for parameter-dominated scenarios, we can use only Rp. More commonly and practically, Rsp

is used when both computation and storage resources are limited. By converting the hard constraint
to soft penalty in our reward function, we can gradually push the pruning policy close to the target,
which provides smoother optimization trajectories.

4.4 REINFORCEMENT LEARNING SEARCH

In our SPEAR, we use the TAR as the reward and employ deep deterministic policy gradient
(DDPG) (Lillicrap, 2015) to search the pruning policy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Our SPEAR framework
Input: Pretrained SNN Mpre; Validation dataset Dval; Reinforcement learning agent π; Total

episode num episode; Warmup episode warmup episode.

Linear Regression for SynOps Estimation
Randomly generate pruning policies, then prune and finetune Mpre to generate SynOps data for

LRE;
Use obtained SynOps data and Eq. (3) to learn SynOps estimator E , which can predict

post-finetuning SynOps;

Agent Training
Initialize episode = 1;
while episode ≤ num episode do

for i = 0 to L do
if episode ≤ warmup episode then

Sample action ai from truncated normal distribution;
else

Calculate pre-finetuning SynOps and estimate final SynOps based on estimator E ;
Obtain the state Statei for the i-th layer;
Predict action ai using agent π based on Statei;

Prune this layer based on ai;
Evaluate current pruned model on Dval and calculate reward using target-aware reward;
Push trajectory to replay buffer and update agent π;
episode = episode+ 1

Apply agent to prune model and finetune
Prune the model Mpre using agent π;
Fine tune the pruned model and generate compressed model Mcom.
Output: Compressed model Mcom

State Space. We first define the state for the agent. Specifically, when pruning the i-th layer, the state
Statei is described by following features:

Statei = (i, cin, cout, s, k, p, Ses, Pcur, Prest, ai−1). (7)
Here, i is the index of the layer. cin and cout are the number of input and output channels for the
i-th layer, respectively. s, k, and p are the stride, the kernel size, and the number of parameters of
this layer, where p = cout × cin × k × k. Ses is the remained SynOps, which is obtained by using
Eq. (3) in our LRE for better estimation. Pcur and Prest are the current number of parameters and the
remained parameters that can be removed in subsequent layers, respectively. ai−1 is the action taken
in the previous layer i − 1. All the features in the state are normalized to [0,1] by dividing by the
maximum value. This formulation provides a comprehensive description of the state of each layer,
capturing both its structural properties and dynamic behavior during the pruning.

Agent. We use DDPG for pruning on continuous space. For action space, we use a continuous action
space of [0, 1) as the pruning ratio for each layer. Specifically, for the i-th layer, our agent takes
Statei as the input and output action ai for this layer. During exploration, we employ a truncated
normal distribution with standard deviation of 0.5 for the action sampling. During exploitation, the
agent incorporates noise into its actions, sampled from a truncated normal distribution with an initial
standard deviation of 0.5. This standard deviation decays exponentially at a rate of 0.98 per episode.
Discount factor for reward is set to 1, and only the reward from last action is calculated through our
TAR, while the rest are set to 0. Algorithm 1 shows the process of our SPEAR framework.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Models. To verify the effectiveness of the proposed method, we carried out experiments
on both static datasets and neuromorphic datasets. For static datasets, we conduct experiments on CI-
FAR10, CIFAR100 (Krizhevsky et al., 2009), Tiny-ImageNet (Le & Yang, 2015) and ImageNet (Deng

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison between our SPEAR and baseline methods. “-” indicates results
are not reported in original paper. “∗” means our implementation.

Dataset Arch. Method SynOps(%) Param.(%) Top-1 Acc.(%)

CIFAR10
VGG16

NetworkSliming (Li et al., 2024a) 87.3 40.3 91.22
SCA-based (Li et al., 2024b) 67.8 28.4 91.67

SPEAR (Ours) 52.5 14.4 91.77

ResNet18
NetworkSliming (Li et al., 2024a) - 30.9 92.31

SCA-based (Li et al., 2024b) 88.0 40.6 92.48
SPEAR (Ours) 39.2 30.3 92.78

CIFAR100 VGG16

NetworkSliming (Li et al., 2024a) - 40.9 66.36
SCA-based (Li et al., 2024b) 82.6 42.5 66.88

SPEAR (Ours) 69.0 35.0 70.50
NetworkSliming (Li et al., 2024a) - 20.2 63.44

SCA-based (Li et al., 2024b) 77.9 23.5 65.53
SPEAR (Ours) 48.2 20.4 68.86

Tiny-ImageNet VGG16

SCA-based (Li et al., 2024b) - 43.2 49.36
SPEAR (Ours) 69.5 39.0 59.47

SCA-based (Li et al., 2024b) - 30.6 49.14
SPEAR (Ours) 37.8 23.3 56.62

ImageNet ResNet18
SCA-based∗ (Li et al., 2024b) 85.8 68.4 60.17

SPEAR (Ours) 84.6 65.1 60.69
SCA-based∗ (Li et al., 2024b) 76.1 40.7 59.44

SPEAR (Ours) 73.3 57.2 60.00

CIFAR10-DVS 5Conv+1FC SCA-based (Li et al., 2024b) 56.9 21.7 73.70
SPEAR (Ours) 39.3 17.1 80.05

et al., 2009). We copy the images 4 times along the timeline to obtain input for 4 time steps. On
static datasets, we adopt ResNet18 (He et al., 2016) and VGG16 (Simonyan & Zisserman, 2015) for
evaluation. For neuromorphic datasets, we use CIFAR10-DVS (Li et al., 2017b) for evaluation, in
which 8,000 samples are used as training set, and 2,000 samples are used as test set. For each sample,
we evenly split the original event stream data into 10 segments, integrating over each segment to
obtain input for 10 time steps. We use the same network as in (Li et al., 2024b) called 5Conv+1FC
for fair comparison.

Implementation details. We use SpikingJelly (Fang et al., 2023) to implement our SPEAR frame-
work. Specifically, we first compress the pre-trained SNN using our SPEAR approach. We use Rsp

in our TAR by default. Specifically, we use the ratio of SynOps and #parameters over those from
pre-trained model as the target. We adjust the target SynOps and #parameters to achieve similar
SynOps/#parameters as the baseline methods for fair comparison. For VGG16, we set the target ratio
ranging from 0.4 to 0.8 for SynOps and 0.2 to 0.4 for #parameters, respectively. For ResNet18, we set
the target ratio ranging from 0.4 to 0.8 for SynOps and 0.3 to 0.6 for #parameters, respectively. For
5Conv+1FC, we set the target ratio ranging from 0.4 to 0.8 for SynOps and 0.2 to 0.5 for #parameters,
respectively. After compression, we finetune the compressed SNN for 210 epochs in the same
configuration as training to recover from accuracy drop. More experimental details can be found in
the Appendix A.1.

5.2 EXPERIMENTAL RESULTS

Results on static datasets. We show the experimental results on static datasets in Table 1. We have
the following observations:

(1) Compared to other baseline methods, our method can achieve higher SynOps compression rates
because we directly use estimated post-finetuning SynOps as the constraint, which effectively avoid
the SynOps constraint violation after finetuning. For instance, we achieve 60.8% SynOps reduction
with higher accuracy on CIFAR10 when compressing ResNet18 compared to other approaches.

(2) Our SPEAR framework maintains higher accuracy at larger compression rates when compared to
other approaches. For example, we achieve 91.77% Top-1 accuracy using 14.4% #parameters and
52.5% SynOps, surpassing SCA-based (Li et al., 2024b) approach (91.67% accuracy with 67.8%
SynOps and 28.4% #parameters) and NetworkSliming (Li et al., 2024a) (91.22% accuracy with
87.3% SynOps and 40.3% #parameters) when compress VGG16 on CIFAR10.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(3) Our SPEAR framework also outperforms other baseline methods on various datasets when
compressing different network architectures, which further demonstrates the effectiveness of our
SPEAR. For instance, the compressed VGG16 using our SPEAR achieves 59.47% Top-1 accuracy
with 39.0% #parameters on Tiny-ImageNet, which is 10.11% higher than SCA-based (Li et al., 2024b)
(49.36% Top-1 accuracy) with similar number of parameters. Also, our SPEAR can outperform other
baseline methods on large-scale dataset ImageNet with less SynOps and parameters.

Results on neuromorphic datasets. In Table 1, we also report experimental results on neuromorphic
dataset CIFAR10-DVS. Our SPEAR framework outperforms the baseline method SCA-based by
a large margin under similar SynOps, which further demonstrate the effectiveness of our SPEAR
framework on neuromorphic datasets. Other observations are similar to static datasets. So we do not
provide further analysis here. In the Appendix A.2, additional experimental results are provided for
further reference.

5.3 ABLATION STUDIES

To validate the effectiveness of each component in SPEAR framework, we take compressing VGG16
on CIFAR10 as an example and conduct extensive ablation studies.

Table 2: Ablation study for SPEAR on CIFAR10.
Method SynOps

(%)
#Param.
(%)

Acc.
(%)

SPEAR 46.37 11.86 91.62
SPEAR (w/o LRE) 61.13 19.13 91.95
SPEAR (w/o TAR) 43.21 11.33 91.14

Table 3: Comparison with handcraft pruning policy.
Pruning policy Acc. (%) SynOps

(%)
#Param.
(%)

Handcrafted 91.64 63.9 33.9
Ours 92.49 62.5 33.1

Table 4: Sensitive analysis for hyper-parameter
in TAR[4].

λ α Acc.
(%)

#Params
(%)

SynOps
(%)

1.0 0.8 91.36 19.50 52.09
1.0 1.0 91.43 24.69 52.01
1.0 1.2 91.51 26.40 52.85
1.0 1.6 91.73 29.90 55.25
1.0 2.0 91.70 26.23 56.06
0.1 1.2 92.24 30.19 73.18
0.5 1.2 91.49 20.42 52.91
1.0 1.2 91.51 26.40 52.85
5.0 1.2 91.76 30.57 53.12

10.0 1.2 90.91 29.66 49.38

Effect of LRE. To demonstrate the effectiveness of LRE, we directly use the pre-finetuning SynOps
as the constraint and set the SynOps constraint as 50% for search. The result is denoted as “SPEAR
(w/o LRE)” in Table 2. We observe that the final pruned network exceeds 50% SynOps constrains
after fine-tuning, showing that it is important to estimate post-finetuning SynOps as the target in the
searching process.

Effect of TAR. To validate the effectiveness of TAR, we substitute our TAR with the reward in
RL-pruner(Wang & Kindratenko, 2024), which is a widely used reinforcement learning based
pruning approach, and the result is denoted as “SPEAR (w/o TAR)” in Table 2. We observe our
SPEAR surpasses this alternative method by 0.48% under similar SynOps, which demonstrates the
effectiveness of our TAR.

Comparison with handcrafted pruning policy. For handcrafted pruning method, we follow
AMC (He et al., 2018) to assign lower pruning rate to shallow layers and higher rate for deep layers.
As shown in Table 3, our SPEAR can outperforms handcrafted methods.

Sensitive analysis of TAR. We conduct experiments with various λ and α values, and the results are
reported in Table 4. Results show that our SPEAR is robust to different values of λ and α. Note λ
controls the penalty strength for SynOps violation. If it is set too low (e.g., 0.1), our SPEAR may can
not reduce SynOps significantly as the reward for accuracy outweighs the SynOps penalty. If it is set
too high (e.g., 10), our SPEAR may fail to fully explore the search space, resulting in a sub-optimal
performance.

Comparison between LRE and nonlinear SynOps estimator. We also compare our LRE with
nonlinear regression for SynOps estimation as shown in Fig. 4. For nonlinear estimator, we use a
two-layer MLP for SynOps estimation. MSE represents the root mean square error (smaller is better)
between the prediction and the actual SynOps, and R2 is the coefficient of determination (Rider,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

3 2 1 0 1
Normalized SynOps before finetuning

3

2

1

0

1
No

rm
al

ize
d

Sy
nO

ps
 a

fte
r f

in
et

un
in

g
LRE MSE: 0.0329
LRE R²: 0.9803
Nonlinear MSE: 0.0729
Nonlinear R²: 0.9564

LRE VS Nonlinear Estimator

LRE
Nonlinear Estimator

Figure 4: Comparison between linear regression
and nonlinear regression.

20 30 40 50 60 70 80 90
SynOps (%)

88.5

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

To
p-

1
Ac

c
(S

yn
Op

s)

SPEAR(SynOps constraint)
SPEAR(Params constraint)
SCA-based
NetworkSlimming

20 30 40 50 60 70 80
Params (%)

90.50

90.75

91.00

91.25

91.50

91.75

92.00

92.25

92.50

To
p-

1
Ac

c
(P

ar
am

s)

Figure 5: Results under different compression
ratios with different constrains.

1932) (higher is better). We observe that our linear LRE is better than nonlinear regression with
smaller root mean square error and higher R2.

Analysis on different target constraints. To demonstrate the generalization ability of our target-
aware reward, we also conduct the experiments when using Rs and Rp under different target ratios,
and the results are shown in Fig. 5. From Fig 5, we can surpass other baseline methods under different
compression ratios when using both SynOps and #parameter constraints, which demonstrate that our
SPEAR can generalize to different penalty types under different scenarios.

Table 5: Energy consumption and speedup comparison.
Model Acc.

(%)
#Add.
(M)

#Mult.
(M)

Energy
(mJ)

Latency
(%)

Speedup SynOps
(%)

#Param.
(%)

VGG16 (ANN) 93.36 626.4 626.4 2.88 - - - 100
VGG16 (SNN) 92.43 107.6 3.54 0.11 100 1× 100 100
Ours 92.49 68.1 3.1 0.07 59.9 1.67× 62.5 33.1

Energy consumption and speedup analysis of SPEAR. In Table 5, we follow (Horowitz, 2014;
Yan et al., 2024; Che et al., 2022; Yin et al., 2024) to report the energy consumption and latency
of different approaches on 45nm CMOS chip. We observe VGG16 (SNN) model can significantly
reduce the energy cost compared to its counterpart VGG16 (ANN). Moreover, our compressed model
can further reduce the energy cost compared to VGG16 (SNN) and also achieve 1.67× speedup, with
higher performance. The results demonstrate our SPEAR can achieve practical energy saving and
speedup.

Table 6: Algorithm Efficiency Comparison
Method Time (hours)
NetworkSliming 2.1
SCA-based 2.8
Ours 2.4

Efficiency analysis of SPEAR. To demonstrate the
efficiency of our SPEAR framework, we also report
the training time for compression as Table 6. Our
SPEAR only requires 2 hours to complete the search,
which shows the proposed method is efficient to com-
press pretrained SNNs for edge deployment.

6 CONCLUSION

In this paper, we proposed Structured Pruning for Spiking Neural Networks via Synaptic Operation
Estimation and Reinforcement Learning (SPEAR), which employs reinforcement learning algorithms
to automatically explore optimal network architectures under specific SynOps and parameter con-
straints. To the best of our knowledge, our SPEAR is the first SynOps-oriented structured pruning
framework. We reveal that SynOps will change irregularly and significantly after fine-tuning. There-
fore, we propose Linear Regression for SynOps Estimation (LRE) strategy to accurately predict
post-finetuning SynOps based on pre-finetuning SynOps. Additionally, we also propose a novel
Target-Aware Reward (TAR) function that adapt to search under various constraint scenarios, en-
abling implicit control on the action space of agent through reward. Experiments on various datasets
demonstrate the effectiveness of our SPEAR framework.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, Francois Rummens, Marina Reyboz,
Elisa Vianello, and Edith Beigne. Spiking neural networks hardware implementations and chal-
lenges: A survey. ACM Journal on Emerging Technologies in Computing Systems (JETC), 15(2):
1–35, 2019.

Kaiwei Che, Luziwei Leng, Kaixuan Zhang, Jianguo Zhang, Qinghu Meng, Jie Cheng, Qinghai Guo,
and Jianxing Liao. Differentiable hierarchical and surrogate gradient search for spiking neural
networks. Advances in Neural Information Processing Systems, 35:24975–24990, 2022.

Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking
neural networks through gradient rewiring. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 1713–1721. International
Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/236.
Main Track.

Yanqi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State tran-
sition of dendritic spines improves learning of sparse spiking neural networks. In International
Conference on Machine Learning, pp. 3701–3715. PMLR, 2022.

Yanqi Chen, Zhengyu Ma, Wei Fang, Xiawu Zheng, Zhaofei Yu, and Yonghong Tian. A unified
framework for soft threshold pruning. arXiv preprint arXiv:2302.13019, 2023.

Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. Spatio-temporal pruning and quantization
for low-latency spiking neural networks. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–9. IEEE, 2021.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. arXiv preprint arXiv:2202.11946, 2022.

Xin Du Di Yu, Linshan Jiang, Wentao Tong, and Shuiguang Deng. Ec-snn: splitting deep spiking
neural networks for edge devices. In Proceedings of the Thirty-ThirdInternational Joint Conference
on Artificial Intelligence (2024). https://api. semanticscholar. org/CorpusID, volume 271507864,
2024.

Wei Fang, Zhaofei Yu, Yanqing Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian.
Deep residual learning in spiking neural networks. In Neural Information Processing Systems,
2021.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.

Steve Furber. Large-scale neuromorphic computing systems. Journal of neural engineering, 13(5):
051001, 2016.

Alireza Ganjdanesh, Shangqian Gao, and Heng Huang. Jointly training and pruning cnns via learnable
agent guidance and alignment. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16058–16069, 2024.

Isha Garg, Priyadarshini Panda, and Kaushik Roy. A low effort approach to structured cnn design
using pca. IEEE Access, 8:1347–1360, 2019.

Deepak Ghimire, Dayoung Kil, and Seong-heum Kim. A survey on efficient convolutional neural
networks and hardware acceleration. Electronics, 11(6):945, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jinyang Guo, Weichen Zhang, Wanli Ouyang, and Dong Xu. Model compression using progressive
channel pruning. IEEE Transactions on Circuits and Systems for Video Technology, 31(3):1114–
1124, 2020.

Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe Ma. Im-
loss: information maximization loss for spiking neural networks. Advances in Neural Information
Processing Systems, 35:156–166, 2022.

Yufei Guo, Xiaode Liu, Yuanpei Chen, Liwen Zhang, Weihang Peng, Yuhan Zhang, Xuhui Huang,
and Zhe Ma. Rmp-loss: Regularizing membrane potential distribution for spiking neural networks.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17391–17401,
2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Bing Han, Feifei Zhao, Wenxuan Pan, and Yi Zeng. Adaptive sparse structure development with
pruning and regeneration for spiking neural networks. Information Sciences, 689:121481, 2025.

Zecheng Hao, Xinyu Shi, Zihan Huang, Tong Bu, Zhaofei Yu, and Tiejun Huang. A progressive
training framework for spiking neural networks with learnable multi-hierarchical model. In The
Twelfth International Conference on Learning Representations, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. pp. 770–778, 2016.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(5):2900–2919, 2024. doi:
10.1109/TPAMI.2023.3334614.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pp. 784–800, 2018.

Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it). In 2014 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14, 2014.
doi: 10.1109/ISSCC.2014.6757323.

Yang-Zhi Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. IEEE Transactions on
Neural Networks and Learning Systems, 34:5200–5205, 2021.

Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan, and
Bojun Cheng. Clif: Complementary leaky integrate-and-fire neuron for spiking neural networks.
arXiv preprint arXiv:2402.04663, 2024.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, and Priyadarshini Panda.
Neural architecture search for spiking neural networks. In European conference on computer
vision, pp. 36–56. Springer, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Zhenxin Lei, Man Yao, Jiakui Hu, Xinhao Luo, Yanye Lu, Bo Xu, and Guoqi Li. Spike2former:
Efficient spiking transformer for high-performance image segmentation. arXiv preprint
arXiv:2412.14587, 2024.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets, 2017a. URL https://arxiv.org/abs/1608.08710.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in neuroscience, 11:309, 2017b.

11

https://arxiv.org/abs/1608.08710

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yaxin Li, Xuanye Fang, Yuyuan Gao, Dongdong Zhou, Jiangrong Shen, Jian K Liu, Gang Pan, and
Qi Xu. Efficient structure slimming for spiking neural networks. IEEE Transactions on Artificial
Intelligence, 2024a.

Yaxin Li, Qi Xu, Jiangrong Shen, Hongming Xu, Long Chen, and Gang Pan. Towards efficient
deep spiking neural networks construction with spiking activity based pruning. arXiv preprint
arXiv:2406.01072, 2024b.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Qianhui Liu, Jiaqi Yan, Malu Zhang, Gang Pan, and Haizhou Li. Lite-snn: Designing lightweight
and efficient spiking neural network through spatial-temporal compressive network search and
joint optimization. arXiv preprint arXiv:2401.14652, 2024.

Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey
on evolutionary neural architecture search. IEEE transactions on neural networks and learning
systems, 34(2):550–570, 2021.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven
inference spiking neural network for high-performance and energy-efficient object detection. In
European Conference on Computer Vision, pp. 253–272. Springer, 2025.

Byunggook Na, Jisoo Mok, Seongsik Park, Dongjin Lee, Hyeokjun Choe, and Sungroh Yoon.
Autosnn: Towards energy-efficient spiking neural networks. In International Conference on
Machine Learning, pp. 16253–16269. PMLR, 2022.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Xuerui Qiu, Man Yao, Jieyuan Zhang, Yuhong Chou, Ning Qiao, Shibo Zhou, Bo Xu, and
Guoqi Li. Efficient 3d recognition with event-driven spike sparse convolution. arXiv preprint
arXiv:2412.07360, 2024a.

Xuerui Qiu, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-jian Deng, and Guoqi Li. Gated atten-
tion coding for training high-performance and efficient spiking neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 601–610, 2024b.

Paul R Rider. On the distribution of the correlation coefficient in small samples. Biometrika, 24(3/4):
382–403, 1932.

Abhronil Sengupta, Yuting Ye, Robert Y. Wang, Chiao Liu, and Kaushik Roy. Going deeper in
spiking neural networks: Vgg and residual architectures. Frontiers in Neuroscience, 13, 2018.

Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking neural
networks: An unstructured pruning framework. In The Twelfth International Conference on
Learning Representations, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. 2015.

Qiaoyi Su, Shijie Mei, Xingrun Xing, Man Yao, Jiajun Zhang, Bo Xu, and Guoqi Li. Snn-bert:
Training-efficient spiking neural networks for energy-efficient bert. Neural Networks, 180:106630,
2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Boyao Wang and Volodymyr Kindratenko. Rl-pruner: Structured pruning using reinforcement
learning for cnn compression and acceleration. arXiv preprint arXiv:2411.06463, 2024.

Jiaqi Yan, Qianhui Liu, Malu Zhang, Lang Feng, De Ma, Haizhou Li, and Gang Pan. Efficient spiking
neural network design via neural architecture search. Neural Networks, 173:106172, 2024.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.
Temporal-wise attention spiking neural networks for event streams classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 10221–10230, 2021.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi Li.
Attention spiking neural networks. IEEE transactions on pattern analysis and machine intelligence,
45(8):9393–9410, 2023.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. Advances in neural information processing systems, 36, 2024.

Man Yao, Xuerui Qiu, Tianxiang Hu, Jiakui Hu, Yuhong Chou, Keyu Tian, Jianxing Liao, Luzi-
wei Leng, Bo Xu, and Guoqi Li. Scaling spike-driven transformer with efficient spike firing
approximation training. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. Advances in Neural Information Processing Systems, 35:
32160–32171, 2022.

Ruokai Yin, Youngeun Kim, Yuhang Li, Abhishek Moitra, Nitin Satpute, Anna Hambitzer, and
Priyadarshini Panda. Workload-balanced pruning for sparse spiking neural networks. IEEE
Transactions on Emerging Topics in Computational Intelligence, 2024.

Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 11062–11070, 2021.

Chenlin Zhou, Han Zhang, Liutao Yu, Yumin Ye, Zhaokun Zhou, Liwei Huang, Zhengyu Ma,
Xiaopeng Fan, Huihui Zhou, and Yonghong Tian. Direct training high-performance deep spiking
neural networks: A review of theories and methods. arXiv preprint arXiv:2405.04289, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MORE IMPLEMENTATION DETAILS

Our experiments are based on Leaky Integrate-and-Fire (LIF) neurons with a hard reset mechanism.
We set the fire threshold as 1.0, and set membrane potential time constant as 2.0. No decay for input
currents is used. We use arctan function as the surrogate function. For pretrained model preparation,
we use the SGD optimizer with momentum of 0.9 for optimization. Weight decay is set as 5× 10−5.
We train 210 epochs to obtain the pretrained models. In the first 10 epochs, we employ linear warm-up
strategy. The following 200 epochs adopt cosine annealing schedule with 0.1 as max learning rate.
TET (Deng et al., 2022) is used as loss function. For static datasets, no data augmentation is applied,
while for neuromorphic datasets, random erasing is utilized. All experiments are conducted on an
NVIDIA A800 GPU.

Pruning strategy. After the agent predicts the pruning ratio for each layer, channels are pruned based
on the L1-norm criterion Li et al. (2017a), where channels with the smallest L1-norm of weights
are removed. This process is repeated in a layer-by-layer fashion, and the pruned network is then
finetuned to recover accuracy. We find using L1-norm criterion for channel selection is effective and
efficient. We will explain the pruning strategy in detail in our final version.

Efficient SynOps Calculation. As SynOps is a statistical measurement calculated over the dataset, it
is computationally prohibitive to iterate through the entire dataset for each evaluation in Eq. (3). To
address this challenge, we design an accelerated sampling strategy to use a small number of samples
to estimate dataset-level SynOps. Specifically, to evaluate the estimation error, we first define the
SynOps relative error as:

Error =
Sample SynOps − Dataset SynOps

Dataset SynOps
, (8)

where “Sample SynOps” and “Dataset SynOps” denote the average SynOps computed over sampled
subsets and the entire dataset, respectively. We iteratively sample more data from the dataset, and
compute the error in Eq. (8). When the error is smaller than a predefined value, we use the current
subset to learn the parameters in Eq. (3), which serves as reliable and computationally efficient proxy
for full-dataset computation. In our implementation, we empirically set the error tolerance as 1% and
find 500 samples are sufficient.

In our LRE strategy, we sample a small subset as the proxy of datasets SynOps. We iteratively sample
more data from the dataset until the error in Eq. (8) is smaller than a predefined value. Then, we use
the current subset to learn the parameters in Eq. (3), which serves as reliable and computationally
efficient proxy for full-dataset computation. In our implementation, we empirically set the error
tolerance as 1% and find 500 samples are sufficient.

A.2 MORE PERFORMANCE RESULTS

In this section, we present comparative experimental results under various configurations to validate
the effectiveness of our approach in Table 7. Additionally, we report the experimental outcomes
of ResNet18 on the CIFAR100 and Tiny-ImageNet dataset in Table 8. We further include the
performance and SynOps of both the pretrained model and the pretrained model undergoes the same
finetune process as the pruned model (finetuned model) in Table 9. We can see that the performance
and SynOps of the pretrained model and finetuned model are similar. Also, our SPEAR framework
can effectively reduce SynOps and parameters while preserving the model accuracy. Note that
SynOps will change after finetuning the pretrained model, which is widely recognized in SNN area.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Detailed performance comparison between our SPEAR and baseline methods. “-” indicates
results are not reported in original paper. ”∗” means our implementation.

Dataset Arch. Method SynOps(%) Param.(%) Top-1 Acc.(%)

CIFAR10

VGG16

NetworkSliming (Li et al., 2024a) 87.3 40.3 91.22
SCA-based (Li et al., 2024b) 67.8 28.4 91.67

SPEAR (Ours) 62.5 33.1 92.49
NetworkSliming (Li et al., 2024a) 87.3 14.3 91.16

SPEAR (Ours) 52.5 14.4 91.77
SCA-based (Li et al., 2024b) 63.0 9.3 90.26

SPEAR (Ours) 46.4 11.9 91.62

ResNet18

NetworkSliming (Li et al., 2024a) - 48.2 92.71
SPEAR (Ours) 71.5 50.1 93.99

SCA-based (Li et al., 2024b) 88.0 40.6 92.48
SPEAR (Ours) 56.6 35.9 93.71

NetworkSliming (Li et al., 2024a) - 30.9 92.31
SCA-based (Li et al., 2024b) 84.0 27.8 92.27

SPEAR (Ours) 39.2 30.3 92.78

CIFAR100 VGG16

NetworkSliming (Li et al., 2024a) - 40.9 66.36
SCA-based (Li et al., 2024b) 82.6 42.5 66.88

SPEAR (Ours) 69.0 35.0 70.50
NetworkSliming (Li et al., 2024a) - 20.2 63.44

SCA-based (Li et al., 2024b) 77.9 23.5 65.53
SPEAR (Ours) 48.2 20.4 68.86

Tiny-ImageNet VGG16

SCA-based (Li et al., 2024b) - 43.2 49.36
SPEAR (Ours) 69.5 39.0 59.47

SCA-based (Li et al., 2024b) - 30.6 49.14
SPEAR (Ours) 61.2 32.1 58.84
SPEAR (Ours) 37.8 23.3 56.62

CIFAR10-DVS 5Conv+1FC

SPEAR (Ours) 77.6 50.8 82.30
SPEAR (Ours) 47.2 40.0 81.80

SCA-based (Li et al., 2024b) 56.9 21.7 73.7
SPEAR (Ours) 39.3 17.1 80.05

SCA-based (Li et al., 2024b) 39.5 7.0 71.9
SPEAR (Ours) 33.0 11.4 79.75

Table 8: Performance of SPEAR for ResNet18 on CIFAR100 and Tiny-ImageNet.

Dataset Arch. Method SynOps(%) Param.(%) Top-1 Acc.(%)

CIFAR100 ResNet18
SPEAR (Ours) 81.2 50.1 75.08
SPEAR (Ours) 59.7 38.9 74.58
SPEAR (Ours) 42.3 33.7 73.25

Tiny-ImageNet ResNet18
SPEAR (Ours) 80.0 62.4 62.28
SPEAR (Ours) 64.3 50.1 61.30
SPEAR (Ours) 44.6 39.8 60.37

A.3 MORE ANALYSIS

Analysis on Pruning Policy. To investigate the detailed structures of pruned network, in Fig. 6, we
also visualize the searched pruning policy and the SynOps distribution across different layers. We
observe deeper layers often have higher pruning ratios, which indicates the deeper layers are less
sensitive to the pruning. Moreover, for SynOps target (Rs) pruning, the pruning ratio for shallow
layers are higher when compared to the parameter target (Rp) pruning. We hypothesize this is because
shallow layers consists of more SynOps compared to deeper layers. Therefore, it is beneficial to
prune shallow layers in this case. On the other hand, for parameter target pruning, the pruning ratio
is almost zero for shallow layers, which shows that the parameters may be more important in these
layers compared to deep layers. Furthermore, the pruning ratio obtained by Rsp for shallow layers
are between SynOps and parameter targets policies, which shows our SPEAR can effectively adjust
the pruning policy to meet both constraints in the searching process.

Comparison of Reinforcement Learning Algorithms. To evaluate the sensitivity of our method to
the choice of reinforcement learning algorithm, we additionally conducted experiments using the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Comparison of SPEAR with pretraining and finetuning baselines.

Dataset Arch. Method SynOps (×108) Param.(%) Top-1 Acc.(%)

CIFAR10 VGG16
SPEAR (Ours) 0.650 33.1 92.49

Finetune 0.935 100.0 92.50
Pretrain 1.04 100.0 92.43

CIFAR10 ResNet18
SPEAR (Ours) 1.61 50.1 93.99

Finetune 2.17 100.0 94.47
Pretrain 2.25 100.0 94.18

CIFAR100 VGG16
SPEAR (Ours) 0.86 35.0 70.50

Finetune 1.19 100.0 70.62
Pretrain 1.24 100.0 70.75

Tiny-ImageNet VGG16
SPEAR (Ours) 3.48 39.0 59.47

Finetune 4.80 100.0 59.98
Pretrain 5.00 100.0 60.50

Tiny-ImageNet ResNet18
SPEAR (Ours) 8.48 50.1 62.28

Finetune 10.3 100.0 63.17
Pretrain 10.6 100.0 63.10

ImageNet ResNet18
SPEAR (Ours) 8.58 65.1 60.69

Finetune 10.18 100.0 62.21
Pretrain 10.14 100.0 62.08

CIFAR10-DVS 5Conv+1FC
SPEAR (Ours) 0.463 50.8 82.30

Finetune 0.612 100.0 83.60
Pretrain 0.595 100.0 84.05

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer index

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ch
an

ne
l r

em
ai

n
ra

tio

Deep layers are less sensitive to the pruning
Rs promotes pruning of shallow layers

Rsp can balance the pruning of shallow and deep layers

0

1

2

3

4

Sy
nO

ps

1e7
searched policy by Rsp

searched policy by Rp

searched policy by Rs

SynOps of pretrained model
SynOps of pruned model by Rsp

SynOps of pruned model by Rp

SynOps of pruned model by Rs

Figure 6: The pruning policy and SynOps distribution of each layer under different targets given by
our reinforcement learning agent.

Soft Actor-Critic (SAC) algorithm Haarnoja et al. (2018), a widely adopted off-policy RL method in
continuous control tasks. The comparative results, summarized in Table 10, demonstrate that both
DDPG and SAC achieve comparable performance.

Table 10: Performance comparison of DDPG and SAC in SPEAR under different compression levels.
Method Top-1 Acc.(%) Param.(%) SynOps(%)

Pretrained 92.43 100.0 100.0
SAC 92.39 33.4 60.4

DDPG 92.49 33.1 62.5
SAC 91.69 17.2 49.5

DDPG 91.62 11.9 46.4

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Empirical validation of soft constraint adherence under various target compression ratios.
Target Type” denotes the resource metric being constrained (Synaptic Operations or Parameters).
Target Ratio” is the specified compression goal, Remain Ratio” is the actual ratio achieved by the
searched strategy.

Target Type Target Ratio (%) Remain Ratio (%) Top-1 Acc. (%)

SynOps

20 19.8 88.64
40 39.4 90.69
60 57.3 91.84
70 66.4 92.26

Params

20 19.6 91.67
30 28.4 92.21
40 35.2 92.37
50 44.6 92.46

Empirical Validation of Soft Constraint Satisfaction. While our formulation employs soft con-
straints to guide the architecture search, empirical evidence indicates that the resulting strategies
reliably satisfy the prescribed resource limits. As shown in Table 11, across a range of stringent
compression targets for both synaptic operations (SynOps) and model parameters, demonstrating
that the obtained strategies consistently meet the prescribed resource budgets with high fidelity, even
under stringent compression targets.

Robustness of SPEAR to Varying Timesteps. To address concerns regarding the influence of
timestep count on SynOps estimation, pruning strategy, and overall performance, we evaluate our
SPEAR method across different timesteps on CIFAR10 using a VGG-16 architecture. As shown in
Table 12, SPEAR consistently achieves competitive accuracy and SynOps reduction across timesteps
2, 4, and 6. We also validate the LRE under different time steps, and find that LRE is robust to
different timesteps (linear regression MSE: 0.0049 and coefficient of determination r2: 0.9859 for
timesteps 2, linear regression MSE: 0.0060 and r2: 0.9864 for timesteps 6).

Table 12: Robustness of SPEAR to varying timesteps on CIFAR10 with VGG-16.
Time
Step

Pretrained
Acc (%)

Pretrained
SynOps (×108)

Pruned
Acc (%)

Pruned
SynOps (%)

Pruned
Params (%)

2 89.70 0.43 89.75 67.0 31.3
4 92.43 1.04 92.49 62.5 33.1
6 92.41 1.39 92.54 71.2 30.0

Training Convergence under Target-Aware Reward. To evaluate the learning dynamics and stabil-
ity of the proposed Target-Aware Reward mechanism, we monitored the average reward throughout
training. Empirical results show that, when using TAR as the reward signal, the agent’s average
reward converge rapidly (around 200 steps) to a stable and optimal value as training progresses,
confirming the effectiveness of our TAR formulation and the stability of the learned policy. Training
curves illustrating this convergence behavior are included in Figure 7.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 150 300 450 600 750 900
Training Steps

0.2

0.4

0.6

0.8

R
ew

ar
d

Peak: 0.92

Training Reward Progression (Smoothed)

Raw Reward
Smoothed Reward

Gaussian smoothing applied (=5)

Figure 7: Training curves of average reward over episodes for the proposed Target-Aware Reward
mechanism.

18

	Introduction
	Related Work
	Preliminary
	Synaptic Operations

	Methodology
	Overview
	Linear Regression for SynOps Estimation
	Target-Aware Reward
	Reinforcement Learning Search

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Studies

	Conclusion
	Appendix
	More Implementation Details
	More Performance Results
	More Analysis

