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ABSTRACT

The credit assignment problem remains a fundamental challenge in multi-agent
reinforcement learning (MARL) due to the complex environment dynamics. In
this paper, we define A-Q influence to capture the state-dependent causal influ-
ence relationship between individual actions and individual action value functions
in an MARL problem. Then influence-based local value functions (ILVFs) are
constructed and shown to be equivalent to the global value function in terms of
policy gradient estimation. To efficiently attain the agent-wise A-Q influence, we
propose to infer A-Q influence according to state influence, which is learned by
a Gumbel-max attention mechanism. To evaluate the effectiveness of ILVF, we
integrate it into the MAPPO framework and propose the ILVF-P algorithm. Exten-
sive experiments on diverse MARL benchmarks reveal that ILVF-P consistently
surpasses strong baselines, underscoring its benefits in facilitating the training
efficiency.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has garnered increasing attention in recent years due
to its remarkable success in real-world applications such as traffic signal control [Wu et al.| (2020);
Agrahari et al.[(2024), autonomous vehicle coordinationKiran et al.|(2021); |Chen et al.|(2024) and
robotic control Wang et al.|(2023a); [Tang et al.|(2025). Nevertheless, existing approaches still suffer
from limited scalability because of the non-stationarity of the environment. More specifically, the
action of one agent always has influence on other agents, and the inter-agent causal influence changes
all the time.

As a fundamental paradigm in MARL, independent learning (e.g. IQL [Tan|(1993); Jiang & Lu
(2022} 2023) and IPPO De Witt et al| (2020)) exhibits advantages in scalability and competitive
performance in cooperative tasks. However, treating other agents as environmental components
introduces non-stationarity and makes convergence more difficult. To address this, the Centralized
Training with Decentralized Execution (CTDE) framework is widely adopted, which leverages
global information during training while executing based on local observations. Although CTDE
theoretically aligns policies via global value functions, practical implementation struggles to quantify
individual contributions to collective goals. This exacerbates the difficulty of credit assignment,
a critical challenge that intensifies with increasing system scale [Phan et al.| (2021)). While shared
reward settings have received increasing attention, the credit assignment problem in reward-sum
settings Jiang et al.|(2024); |Albrecht et al.|(2024)) remains significant and continues to face intractable
challenges.

The credit assignment problem arises from the difficulty of accurately evaluating each agent’s true
contribution to the overall objective. In this work, we define the A-Q influence to capture the state-
dependent influence relationship between individual actions and individual action-value functions.
Identifying the A-Q influence relationships among agents essentially constitutes a process of credit
assignment. Inspired by the philosophical notion of causal responsibility—an agent should be only
accountable for outcomes it causally influences, we construct an influence-based local value function
(ILVF) for each agent, by aggregating the state-value functions of those agents it has A-Q influence
on. We theoretically prove that each individual ILVF is equivalent to the global value function in
terms of policy gradient, therefore can be used to guide policy updates.



However, the A-Q influence relationships among agents are dynamic and difficult to obtain through
analytical methods. To overcome this challenge, we propose to infer it based on state influence, which
describes the influence relationship of each individual state on the value functions and actions of
other agents. A Gumbel attention mechanism is proposed to learn the state influence. Experimental
results demonstrate that inferring A-Q influence through the learned state influence is more effective
than learning A-Q influence directly.

Our main contributions are as follows. (i) We define a state-dependent local value function, termed
ILVE, for each agent based on the A-Q influence and prove the equivalence of the proposed ILVF and
the global value function in terms of policy gradient. (ii) We propose a Gumbel attention mechanism
to learn inter-agent state influence as part of the critic network training; (iii) Based on inter-agent state
influence, we infer A-Q influence and construct ILVF to guide policy optimization. (iv) By conducting
extensive numerical experiments, it is shown that the ILVF approach significantly facilitates policy
learning and cooperation among agents, especially when large-scale problems are encountered.

2 RELATED WORK

2.1 VALUE FUNCTION FACTORIZATION

Value Function Factorization (VFF) Rashid et al.| (2020b); [Zhou et al.|(2023); L1 et al.| (2024); [Su et al.
(2021)) under the CTDE framework [Foerster et al.| (2018) decomposes the global action-value function
into local utilities to enhance decentralized policy learning. While VDN |Sunehag et al.|(2017) enforces
linear decomposition with limited representational capacity, QMIX |Rashid et al.| (2020b) employs
state-conditioned nonlinear mixing networks to implement monotonic decomposition. Subsequent
innovations Rashid et al.|(2020a)); Son et al.| (2019); Phan et al.| (2021); |Li et al.| (2024) further expand
function representation through alternative factorization paradigms. These methods collectively
face critical structural constraints as the compounding approximation errors in value decomposition
severely degrade training signal propagation, particularly in large-scale systems. Several studies
Wang et al.[(2020); Zhang et al.| (2021); Zhou et al.| (2023)) extend value decomposition to policy-
based actor-critic frameworks, thereby enhancing training efficiency and improving credit assignment.
Nevertheless, the above-mentioned approaches still suffer from low scalability since they never
consider the underlying inter-agent coupling relationship.

2.2 LOCAL VALUE FUNCTIONS IN NETWORKED SYSTEMS

Indeed, structural properties of networked systems have been exploited in |Qu et al.|(2020); |[Zohar
et al. (2022); | Ma et al.| (2024); Jing et al.|(2024])) to construct local value functions, based on which
scalability and credit assignment issues are better addressed. |Qu et al.|(2020) adopts «-hop truncation
on the network to enhance scalability, but it relies on assumptions of state-transition and reward
independence. Ma et al.| (2024) relaxes the assumptions in|Qu et al.| (2020), yet the neighborhood is
defined solely by observation relations, which leads to biased gradients. [Jing et al.|(2024) derives local
value functions that are equivalent to global value function in policy gradients, thereby improving
optimality in sparse settings, but it struggles in dense coupled scenarios. All of these methods assume
that the system topology is static and known in advance. However, many real-world systems exhibit
dynamic and unknown topologies, making such methods unsuitable in practice.

2.3 CAUSAL INFERENCE IN MARL

While causal inference has been extensively explored in single-agent reinforcement learning (RL), its
application in multi-agent settings remains relatively underexplored \Grimbly et al.[(2021)). Existing
works predominantly focus on leveraging learned causal structures to enhance credit assignment
Seitzer et al.|(2021); Du et al.| (2024); Wang et al.| (2023b)) or generalization across environments
Mutti et al.|(2023bga)). [Seitzer et al.|(2021); Du et al. (2024) use conditional mutual information to
define causal influence, enabling agents to identify controllable components in the state transition
process. [Wang et al.| (2023b) further incorporates individual rewards into consideration and employs
Dynamic Bayesian Networks to infer the causal relationships, thereby facilitating interpretable credit
assignment through reward decomposition. These methods consider only the instantaneous influence
among variables and, therefore, fail to quantify the contribution of such influence to the overall
objective.



3 BACKGROUND

3.1 PRELIMINARIES

The considered Markov Decision Process is represented by a tuple < N, S, A, R, P,O,~ >, where
N = {1,...,n} denotes the set of n agents, s = (s1, ..., s,) € S represents the global environment
state, where s; denotes the individual state of each agent; a = (aq,...,a,) € A denotes the joint
action of all agents, formed by concatenating individual actions a; € A;, A; is a finite discrete action
space; P : Sx A — S represents the state transition function; R = 2?21 R;(s,a) : SxA — Risthe
global reward functio R, . is the individual reward for agenti € N; 0; : S — [] JEN?(s)U{3} S;
denotes the observation function for agent ¢, here N?(s) C A \ i is the neighbor set of agent i;
m(als) : & x A — [0, 1] represents the joint policy decomposed as 7(a|s) = [];_, mi(a;|o;), where
mi(ailo;) — [0, 1] is the individual policy based on local observations. The initial states are sampled
from a distribution p : S — [0, 1]; v € (0, 1) denotes the discount factor.

The individual state-value function for agent ¢ is defined as V] (s) =
E. [Z?:O YR (st at)|s? = s} . The individual action-value function and advantage function for
agent i are Q7 (s,a) = E, {ZtT:o YR, (st at)’50 =s,a" = a} and AT (s,a) = QT (s,a) — V" (s),
respectively. The global state-value function is defined as V™ (s) = >, V/"(s) and the
corresponding global action-value function and advantage function are Q™ (s,a) = >, Q7 (s, a)

and A7 (s,a) = Q™ (s,a) — V™(s), respectively. The problem of interest is to learn an optimal policy
m;(a;|o;) for each agent i € N, such that the following objective is maximized:

‘](9) = ESNP" [Vﬂ-(s)]v (M

where p™ is the state distribution.

In our formulation, although both the transition and reward functions depend on the global state and
joint actions, practical dependencies often reduce to state-specific and agent-level interactions. Mean-
while, the observation function captures how local perceptions and communication channels convey
individual state information. Together, these structured dependencies enable effective analysis and
learning of inter-agent influence, despite partial observability and complex environmental couplings.

3.2 ATTENTION MECHANISM AND GUMBEL-SOFTMAX TRICK

In this subsection, we introduce the attention mechanism and Gumbel-Softmax Trick, which provide
foundations for our MARL framework.

Attention Mechanism. The attention mechanism (AM), a cornerstone of deep learning J1 et al.
(2023), emulates human perceptual focus by dynamically allocating computational resources: high-
resolution local perception with low-resolution global awareness via weighted feature allocation.
This universal architecture mitigates irrelevant information interference and has been widely adopted
across Natural Language Processing (NLP), Computer Vision (CV), and speech recognition Hu et al.
(2023). A general form of the attention mechanism is formulated as:

Attention = f(g(x), ), 2

where g(z) represents the generation of attention, which corresponds to the process of attending
to the discriminative regions. f(g(x),z) means processing input x based on the attention g(x),
which is consistent with processing critical regions and obtaining information |Guo et al.[(2022). We
take self-attention Wang et al.| (2018)) and squeeze-and-excitation (SE) attention [Hu et al.[ (2018)
as examples. For self-attention, g(x) and f(g(z),x) can be written as g(x) = Softmax(QK) and
f(g(z),z) = g(x)V, where Q, K,V = Linear(z). For SE, g(x) and f(g(z), z) can be written as
g(x) = Sigmoid(MLP(GAP(x))) and f(g(z),x) = g(z)x.

Gumbel-Softmax Trick. The Gumbel-Softmax trick provides a differentiable surrogate for discrete
sampling, vital in latent variable modeling and reinforcement learning. It injects Gumbel noise

'Our method can naturally extend to scenarios without a predefined correspondence between agents and
reward functions.



gi = — log(— log u;), where u; is sampled from the uniform distribution U (0, 1), and approximates
arg max through temperature-controlled softmax:

- expl(logm + i) /7]
- , 3
> j—1exp[(logm; + g;) /7]

where 7 is a k-ary discrete distribution with 7; denoting the probability of category ¢. As 7 — 0,
Y = [th,- - . , k] converges to one-hot encoding while maintaining differentiability. This trick enables
gradient based optimization for discrete decisions in VAEs (2016), RL policies

, and graph sampling [Kipf & Welling| (2016). Recent extensions like adaptive annealing |Camp{
m and entropy constraints [Vahdat et al| (2018)) refine its exploration-exploitation

balance.

4 METHOD

In this section, we present our main methodology based on A-Q influence and the influence-based
local value function (ILVF).

4.1 A-Q INFLUENCE AND INFLUENCE-BASED LOCAL VALUE FUNCTIONS

Causal graph models (CGMs) have been extensively utilized in existing studies, e.g., (2024);
[Seitzer et al] (2021)), to characterize influence among agents’ states. These works primarily focus
on how one agent’s decision affects another’s state transition, without comprehensively evaluating
the contribution of these decisions to the overall task objective. In contrast, we define A-Q influence
as a measurement that comprehensively captures various forms of inter-agent coupling and reflects
whether an agent’s decision substantially contributes to the task performance, which is described in
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Figure 1: Causal Graphical Models (CGMs) in Cooperative Adaptive Cruise Control (CACC ). A
node corresponds to a random variable and a directed edge from z to y indicates that  has a causal
influence on y. It illustrates how inter-agent influence relationships vary across different states and
presents the corresponding CGM diagrams at each time step. The state of each vehicle includes
its position, speed, and headway, while the action corresponds to acceleration. The objective is to
achieve the desired headway and speed.

We now define the A-Q influence and the influence-based local value function.

Definition 1 (A-Q Influence). Given policy w and state s, if there exists a; € A; such that:

Q;T(S,Gj,aj\/\j)#@?(s, J?aN\j) “)

then agent j is considered to have A-Q influence on agent i under policy w and state s.

We draw inspiration from the principle of causal responsibility, which resonates with Hans Jonas’s
ethics of responsibility (Chockler & Halpern| (2004) and emphasizes that a moral subject should be
held accountable only for the results it causally influences. In the context of MARL, this implies that
a local value function can be constructed, which reflects the agent’s actual sphere of influence, rather
than attributing global outcomes indiscriminately.




Define N;(m,s) = {jlj € N,j satisfies @)}, which denotes the set of agents that exhibit A-Q
influence on agent i in state s, and N;"(m,s) := {j | i € N;(,s) forall j € N'} U {i}, which
denotes the set of agents whose individual action-value function is influenced by the action of agent ¢
in state s. In practice, it may be difficult to obtain the exact N, (r, ). Thus, we focus on learning a
more general set N} (r, s), which contains N;' (mr, s) as a subset, i.e., N;" (7, s) C N}(m,s) C N.

Definition 2 (Influence-Based Local Value Function). The sum of individual state-value functions of
agents in the set N!(m, s):

Vis)= > V[(s), (5)
jGNf(ﬂ'.,s)

is referred to as an influence-based local value function (ILVF) for agent 1.

When N!(m,s) = N, the ILVF V;7(s) becomes the global state-value function. When N (rr, s) =
Nj' (m, 8), it is called the minimal ILVF. Similarly, we can define the corresponding local action-value

function Q7 (s, a) and local advantage function A7 (s, a). The local value function constructed based
on A-Q influence not only facilitates credit assignment and embodies philosophical principles but
also enjoys the following theoretical guarantee.

Theorem 1. [Policy Gradient Equivalence] The gradient of the ILVF ‘A/Z-’T(s) in (@), with respect to
policy m;(a;|0;,0;) is equivalent to that of the global value function V™ (s).

The equivalence established in Theorem|[I] constitutes a key distinction from prior approaches [Du
et al.| (2024)); Seitzer et al.[(2021); |Wang et al.[|(2019) that capture inter-agent influence via intrinsic
rewards. The proof of Theorem|l|is postponed to Appendix A. A sparse local value functio not
only facilitates effective credit assignment but also improves sample efficiency significantly.

A straightforward approach to constructing local value functions is to directly learn the A-Q influence
between agents at each state while fitting the individual action-value functions with neural networks.
However, in the scenarios when the reward mainly depends on states with an explicit state-reward
formulation, the influence of actions on the reward is mediated by environment dynamics. As a
result, learning A-Q influence with neural networks is more sophisticated and entails higher sample
complexity than learning state influence, which is experimentally verified in ablation study
Therefore, we instead choose an alternative strategy—inferring A-Q influence via state influence.

4.2 INFERRING A-Q INFLUENCE

In Figure |1} the state s§ can directly affect rf“ under reward coupling, or indirectly influence the

future rewards of agent ¢ by affecting aﬁ“, and the state transitions of agent f. These three types of
influence collectively represent the impact of state s; on value functions V" (s) and Q7 (s, a), which
we define as S-V influence.

Definition 3 (S-V Influence). Given policy m(als) and state s, if there exists s} such that

Vi (85, san\j) # Vi (8}, san\j) or QF (85, san\j» @) # QT (8], Sar\j, @) for some a € A, then agent j
is said to have S-V influence on agent i under policy w and state s.

Let [z],ex denote a vector with components being the elements in X. Next we further define S-P
influence to describe the relationship between two agents where an individual state has a sufficiently
strong influence on another individual policy.

Definition 4 (S-P Influence). Given policy w(a | s) and state s, define

/

I (7, 5) = span{[m(ai | s) — mi(a; | SN\j’S;)]a€A7: , 85 € Sj}. (6)

If d&im(TT (m, 5)) = |A;j| — 1, then agent j is said to have S-P influence on agent i under policy T
and state s.

The dimension of the space H{ reflects the number of independent directions in which the policy
m,; can be altered by varying s;. According to Lemmain Appendix, the S-P influence of agent j

2A local value function is considered to be sparser when it aggregates fewer individual value functions, and
denser otherwise.



on agent ¢ implies that H{ has a maximum dimension. In this case, we are able to establish a clear
connection between state influence (S-P and S-V) and A-Q influence.

Let NY (m,s), N (7,s) C N denote the sets of agents exerting S-V and S-P influence on agent i
under state s and policy 7, respectively. Next, we propose a theorem to show how to infer the A-Q
influence based on the state influence. The proof is given in Appendix A.

Theorem 2. [A-Q Influence Elimination] Given policy ww(a | s) and state s, the agents in I;(7,s) =
{JINV\NY (m,s)) NN (m,5) # 0,5 € N} have no A-Q influence on the agent i.
Throughout this paper, we make the following assumption on S-P influence:

Assumption 1. Every agent has S-P influence on itself for any policy and state.

This assumption is valid since in most environments where an agent’s decision is strongly influenced
by its own state Seraj et al.|(2022); (Chu et al.| (2020); Lowe et al.| (2017); |Papoudakis et al. (2021)).
Let I;(m,s) = N'\ N} (n, s). Under Assumption we have I;(m,s) C I;(m,s) and N;(m,a) C
NY (7, s),ie.,if j ¢ NY(x,s), agent j does not have A-Q influence on agent i under state s. Thus,
we can determine sparse local value functions for the agents based on the S-V influences between the
agents.

4.3 LEARNING STATE INFLUENCE FOR AGENT COLLABORATION

In this subsection, we propose a Gumbel attention mechanism to learn state influence while training
individual state-value and action-value functions, and construct local advantage functions to guide
policy optimization. The training architecture is shown in Figure 2]
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Figure 2: The learning architecture with ILVFE. The blue, orange, and green boxes represent external
inputs, modules within the network, and intermediate computed variables, respectively. The Gumbel
attention mechanism is integrated into the critic network to learn the agent-wise A-Q influence
relationships, represented by the matrix W, which is then used to construct local advantage functions
to facilitate policy learning for individual agents.

4.3.1 GUMBEL ATTENTION MECHANISM FOR STATE INFLUENCE LEARNING

The Gumbel Attention Mechanism introduces Gumbel noise into the attention weights to induce
near-discrete representations, thereby enabling the identification of state influence relationships
among agents in a differentiable and learnable manner. The samples of the Gumbel distribution are
generated by the transformation g = — log(— log(u)),u ~ U(0, 1).



The state-value function V7 (s) and action-value function Q7 (s, a) are parameterized with neural
networks and represented by ng and Qgg (s, a), respectively:

n
av (5) = oy (winst, . winsn),  Qfals,a) = fye | D wlsial, )

j=1
where wi;, wi; € [0,1],Vi,5 € {1,...,n}, are attention weights, with w;(s) = [wi1, ... ,Win] T
and wf(s) = [wf),...,w? ] denoting the attention vectors for agent i. Let h; = fuu(s) =
[hi1y ...y hin) € R™ i = 1,...,nrepresent the output vector of the neural network for (+). To handle

heterogeneous action spaces, we pad each agent’s action representation to a unified dimension before
applying the weighting and aggregation. The calculation of the attention weights is as follows:

w;; = sigmoid(hy;) = (1 4+ e M) wy; = sigmoid(hij + gij), 8
where g;; represents a vector of Gumbel noise, ¢; = (8, oY, (bZQ] represents the parameter set
of the critic network of agent 7. The attention weights w;; and w, are used for aggregating state
information in the individual state-value and action-value functions, respectively. Thus, after learning,
h; is expected to encapsulate the information of S-V influences.

The method of state aggregation affects both value function fitting and attention weight learning.
Weighted summation of states helps to focus on relevant information for value estimation, improving
attention weight learning, but compressing state features and increasing approximation error. In
contrast, concatenating weighted states retains full state inputs and enhances value fitting, yet fails
to yield true attention coefficients due to entanglement with other network parameters. Introducing
Gumbel noise promotes discrete attention weights that better reflect inter-agent influence, though it
exacerbates value approximation error.

To balance these trade-offs, we apply noisy attention weights wfj in the action-value function network
to perform weighted summation over agent states, ensuring accurate learning of attention coefficients.
On the other hand, in the state-value function network, we concatenate states weighted by attention
weights w;; to retain the full state input and enhance value approximation accuracy. During policy
optimization, we employ Generalized Advantage Estimation (GAE) based on the state-value function
to estimate the advantage function. The loss function of the critic network is defined as:

T
L(¢i) =) [(Gi=Vi(s)) +(Gi — QF,(s",a")?] )

t=0

where GI = ZZ:t v*~trk denotes the discounted return for agent i at time ¢. After training each critic
network, the state-dependent attention weights with Gumbel noise wfj €10,1],Vi,j € {1,...,n},

are learned and collectively form the attention matrix W9(s), which captures the overall inter-agent
S-V influence.

4.3.2 STATE-SPECIFIC LOCAL ADVANTAGE FUNCTION

We use GAE Schulman et al.| (2015)) to estimate individual advantage functions AStA E(2)

6}y =l + V7 (s'T1) — V7 (s"). The influence-based local advantage function for agent i can be
calculated by:

, where

n
AT(stat) = by (s1) ASEON, (10)
j=1

where ;; denotes the (¢, j)-th entry of the influence matrix W, which is obtained by sampling from
a set of Bernoulli distributions whose parameters are given by the corresponding entries of W9. The
policy gradient of agent ¢ is obtained by:

v@,- J(ez) = ESNP(.\S,G)AIN‘NHS}@) |:v9, lOg ﬂ-i(ai|57 9)‘21?(3’ CL) ) (11)

according to the stochastic policy gradient theorem Sutton et al.| (1998)).
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Figure 3: Reward convergence comparison in various environments.

5 EXPERIMENTS

5.1 ENVIRONMENTS AND BASELINES

To validate the effectiveness of ILVF in improving credit assignment and sample efficiency under
reward sum settings, we integrate ILVF into the MAPPO framework, denoted by ILVF-P, and
conduct extensive experiments in classical multi-agent cooperation environments, including MPE
Encircle |/Agarwal et al.|(2019), Predator Capture Prey (PCP) |Sera;j et al.| (2022)), CACC |Chu et al.
(2020), and ATSC Chu et al.| (2020). In the comparisons with state-of-the-art MARL algorithms
such as MAPPO |Yu et al.| (2022), IPPO De Witt et al.| (2020), QMIX |Rashid et al.| (2020b), and
MADDPG Lowe et al.| (2017), we demonstrate the superior performance of the proposed ILVF
construction and learning method. Comprehensive implementation and configuration details of these
environments and baseline methods are provided in Appendix

5.2 COMPARISON RESULTS

The reward convergence curves of the proposed ILVF-P algorithm and the baseline algorithms in the
PCP, MPE Encircle, CACC, and ATSC environments are shown in Figure@ Across all experimental
scenarios, our method consistently outperforms the baselines. In the early stages of training, ILVF-P
achieves faster convergence, demonstrating the benefit of learning the state influence in accelerating
policy optimization. In the later stages, ILVF-P achieves global average rewards that are comparable
to or better than those of the baselines.

In the MPE Encircle environment, a comparison between Figure B3(a) and (b) reveals that as the
problem scales up, ILVF-P achieves faster convergence and better overall performance. This indicates
the scalability and effectiveness of the proposed method. As shown in Figure [[c), the results in the
PCP environment confirm the effectiveness of ILVF-P in heterogeneous multi-agent coordination tasks.
We attribute the observed performance gap, also illustrated in Figure [B(b), to the clipping mechanism
used in MAPPO to stabilize the training, which may introduce bias into the policy gradients. By
contrast, ILVF effectively mitigates this cumulative bias, leading to improved performance.

In the more complex CACC slow-down and ATSC large-grid scenarios, MADDPG and QMIX are
found to be highly inefficient and time-consuming. Therefore, we select MAPPO and IPPO-C as
baseline algorithms for comparison. MAPPO and IPPO-C can be viewed as two representative
extremes in local value function design: MAPPO corresponds to the case where the value function
is global, while IPPO-C corresponds to the case where it is fully individual. Positioning ILVF-P
between these two extremes allows us to examine whether ILVF provides benefits beyond global or
individual value functions.
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Figure 4: The heatmap of W in different state.

Next, we demonstrate how the influence matrix W evolves during the learning process, by focusing
on the CACC Slowdown scenario in different states within a single episode. As shown in Figure[d] at

1/5 of the episode, matrix W is relatively dense, as the episode progresses, the influence relationships
gradually become sparser. This can be explained as follows. In the early stage, none of the agents
reach their desired speed or headway, and the trailing vehicles are significantly influenced by the
leading ones, resulting in a W with an approximate lower-triangular structure. In the middle stage, as
inter-vehicle spacing is adjusted, each agent primarily influences only a few neighboring agents. In
the final stage, each agent reaches target speed and headway, the influence relationships diminish, and

W becomes nearly diagonal. In conclusion, the learned influence matrix well describes the dynamic
inter-agent influence, therefore significantly enhances the learning efficiency.

5.3 THE MOTIVATION FOR INFERRING A-Q INFLUENCE

We further conduct experiments to examine the rationale for learning state influence to inferring A-Q
influence. To this end, we design a baseline variant that integrates the Gumbel attention mechanism
into the action-value function network to learn the A-Q influence among agents directly. We refer
to this method as ILVF-P (no inferring), and its architecture is given in Figure [/|of Appendix C.
We compare ILVF-P (no-inference) with the original ILVF-P and MAPPO. The results indicate
that ILVF-P (no-inference) consistently underperforms both methods across multiple environments,
supporting the effectiveness of the proposed inference mechanism. Detailed results and analysis are
provided in Appendix C.

5.4 HYPER-PARAMETER ABLATION STUDY

To study the influence of key hyper-parameters on the performance of the ILVF-P algorithm, we
conduct a series of ablation studies in the MPE Encircle environment with 20 agents. Specifically, we
examine the impact of the initialization strategy of the attention weight matrix W, the discretization
method of the Gumbel-based attention output W9 (s), and the temperature parameter 7 in the Gumbel-
softmax function. Detailed experimental results and analysis are given in Appendix D. Overall, these
hyper-parameters exert limited influence on performance, demonstrating the robustness and reliability
of the proposed method.

6 CONCLUSION

To enhance credit assignment in reward sum settings, we proposed a novel influence-based local value
function (ILVF) grounded in A-Q influence, which preserves equivalence to the global value function
for policy gradients. A Gumbel-attention mechanism were introduced to learn inter-agent state
influence and then infer A-Q influence. Experimental results demonstrated that ILVF consistently
improves credit assignment and sample efficiency across various multi-agent environments. In the
future, we will consider more general settings such as shared reward, distributed learning, and limited
inter-agent communications.
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A PROOFS OF THEOREMS

A.1 PROOF OF THEOREMIII

Proof. In a partially observable Markov decision process (POMDP) under the CTDE paradigm, the
actor utilizes local observations while the critic has access to the global state. The policy gradient for
agent ¢ is given by:

Vo, J(0) = Egpr Z Vo, m(alo;)Q™ (s,a)

We decompose the global action-value function Q7 (s, a) into an influence-based action-value
Q7 (s,a) and a residual term representing the contributions from non-local agents:

QW(S,Q)ZQ?(S7G)+ Z Q;-r(&a),

JEN\N}

where Qf(s, a) captures the contributions of agent i and its local neighbors N!. Substituting this
into the policy gradient yields:

Vo, J(0) = Egpr ZV@?TG|00 Qr(s,a) + Z Q7 (s, a)

JEN\N}

To prove the theorem, it suffices to show that the residual term has zero contribution to the gradient:

(I)—ZVQTFQ ) Y. Qj(s,a)=0.

JEN\N}

Since the joint policy is factorized as w(alo) = [[,car 7o, (ak|ox), and Vo, only acts on mg,, we

obtain:
Vo.m(alo;0) = (Vo,mo,(ailoi)) [ mon(arlo).
keN\{i}
Let a = (a;,a—;), where a_; denotes the actions of all agents except ¢. Substituting into ®;, we
have:
Q; = Z Z inﬂ-ei(ai‘oi) H o), (ak|0/€) Z Q;(Sva)'
a; a—; keN\{i} JEN\N!

Rearranging the sums:

®=> Voo (alo) Yo Do | T moularlor)| @ (s.a).

a; JEN\N} a—i | keEN\{3}

Since each Q7 (s,a), for j € N\ N, is independent of agent i’s action a; (i.e., Qf(s,a) =
Q7 (s,a—;)), we can write:

®i =Y Vomg(ailor) Y Y |T]mo(axlor) | QF(s.a-)

a; JEN\N} a—i | k#i
= Z Vo, mo, (ai|o) Z V;r(s)
a; JEN\N!

where V(s) = >, [Hk# o, (ak|0k)} Q7 (s,a—;) is the state-value function of agent j under
state s.
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Since 3~ an A V[ (s) is independent of a; and 6;, we factor it out:

Gi={ > Vi) Vem(ailo).

JEN\N}

By the normalization property of the policy, we have » 7y, (ailo;) = 1. As aresult,

Z Vo, o, (a;lo;) = 0.

a;

Hence,

o,={ Y Vi(s)|-0=0
JEN\N}
This implies that

VGZ‘](Q) = Eswp" Z qu‘,ﬂ-(a‘o; O)QA:F(Sv a)
The proof is completed.

A.2 PROOF OF THEOREM[2]

Before proving Theorem 2] we give the following lemma.

Lemma 1. Given any policy (a|s), state s, it holds that dim(IT})) < | A;| — 1 for anyi,j € N.

Proof. Without loss of generality, let M > N = |A;|, and s7* = (sj1, ..., 5;m) € SJM be a vector

consisting of M states from S;. Define matrix

mi(aj1ls) — mi(ajilsang, s51) o milain|s) — milajnlsangs Sj1)
L= : :

mi(ajils) — milajilsangs sia) o milagnls) — milain|sangs Siar)

Then we have )
dim(II]) = max rank(L).
s* ESJM

Note that for any s;; with [ € {1, ..., M}, it holds that

N

[7ilajkls) = milaelsang, si)] = D milasls) = > milaslsay, )
k=1 a;€EA; a;EA;

implying that L is row stochastic. Therefore,

dim(I17)) = max rank(L) < |A;| — 1,

sg.* GSJM
which completes the proof.
Proof of Theorem Let s = (spn\j, 8j),J € ;. From Deﬁnition we have:
Viw(s):Viﬂ(SN\jaS;’)v Q?(Sva):er(sN\jvS;‘aa)'
Expanding the value function, it holds that:

Y mlals)QF(s,a) = Y m(als) QT (s,a),

a a

which is equivalent to:

Z [m(aj|s) —mj(a;]s)] Z m(an;|8)Q7 (s,a) = 0.

e AN\
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We denote ch\j m(ap; | $)QF (s,a) by QF (s, a;), which yields:

> lmilas | s) = mi(a; | )] QF (s,a;) = 0.
Note that different states s’ produce a set of such equations. According to the definition of S-P

influence and Lemma , there exists a vector s’ € SM such that the matrix L € RM* 51 in (T2)
has 1,4, as the only eigenvector associated with eigenvalue 0, and

Q7 (s,a;1)
L : —0. (16)
Q7 (s,a4,))

It follows that Q7 (s, a;) is constant over a;:
Qf(s,aj) = Viﬂ(s)vvaj € Aj.

Therefore, the action-value function Q7 (s, a) is independent of ;. ]

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENT DETAILS

MPE Encircle. Based on the formation control scenario in [Agarwal et al.| (2019), we design
the MPE Encircle environment by introducing fixed observation, transition, and reward coupling
structures among agents. In this environment, multiple agents must quickly bypass obstacles and
surround a target starting from their initial positions. Specifically, each agent is required to maintain
a fixed relative distance to the target and a specific relative position to its neighboring agents. Each
agent can observe the states of its neighboring agents as defined by an observation graph.

Since agents are modeled as point-mass particles without physical volume, the state transition of each
agent is solely determined by its own state and action. The observation and reward coupling structure
is illustrated in Fig.[5} Odd-numbered agents observe the states of their neighboring even-numbered
agents, but their rewards depend only on their own states and actions. In contrast, even-numbered
agents cannot observe other agents, but their rewards depend on the states of neighboring odd-
numbered agents. The reward function for each agent 7 is defined as:

ri=—=0.1(d; — 0.7)* =}, (17)
: 271\ 2
Tpi = Z lij — ? 5 (18)
JENF

where d; denotes the distance between agent i and the target landmark, A\* represents the set of
agents with reward coupling to agent ¢, and /;; denotes the angular difference between the relative
position vectors of agents ¢ and j with respect to the landmark.

Under this setup, if agents are trained using independent learning, they are able to learn to maintain
a fixed distance from the target. However, odd-numbered agents do not learn to maintain specific
relative positions with their neighbors since doing so does not bring them any additional rewards.
Even-numbered agents attempt to maintain such relative positions, but this effort is ineffective due to
their lack of access to neighbors’ states. While using a shared global reward could, in theory, lead
to globally optimal cooperative strategies, in practice, the credit assignment problem limits such
cooperation. Therefore, the MPE Encircle environment serves as a suitable testbed for studying the
effectiveness of local value functions.

Predator Capture Prey (PCP). We evaluate the effectiveness of the ILVF-P algorithm in solving
heterogeneous multi-agent cooperation problems using the Predator Capture Prey (PCP) environ-
ment|Seraj et al.| (2022). In this environment, perception agents and action agents must cooperate to
successfully capture the prey, and such cooperation relies on the communication topology among
agents.
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(a)

(b)

Figure 5: Agent Coupling Graph in MPE Encircle.

As illustrated in Fig.[6] agents 1-4 possess perception capabilities but lack the ability to physically
capture the prey, while agents 5-8 can execute capture actions but have no perception of the environ-
ment. Each perception agent has only local observation capability. Although the underlying state
transition coupling among agents theoretically forms a fully connected graph, the actual cooperation
pattern is constrained by the communication graph, leading to localized collaboration among agents.

perception agents

action agents

Figure 6: Observation Topology in PCP.

Cooperative Adaptive Cruise Control (CACC). In the CACC environment, vehicles in a platoon
aim to transition from arbitrary initial states to a target velocity and spacing while avoiding collisions.
Collisions between vehicles result in substantial penalties for all agents, implying that the influence
relationships among agents vary across different stages of training. Therefore, this environment is
used to investigate the applicability of our method in scenarios with dynamically changing coupling
relationships.

Adaptive Traffic Signal Control (ATSC). The ATSC environment simulates traffic signal coordina-
tion for maximizing network throughput and minimizing delay. It contains two scenarios: large-grid,
a synthetic grid with bi-directional lanes, and real-net, a realistic network built on Monaco’s road
topology and traffic flow data.

B.2 BASELINES

We select three classical CTDE-based algorithms—MAPPO, QMIX, and MADDPG—as baseline
methods, as they have demonstrated strong performance across a variety of multi-agent environments.
The comparison with MAPPO clearly highlights the improvements in sample efficiency and agent
cooperation achieved by ILVF. QMIX is included due to its value function factorization mechanism,
which also addresses the credit assignment problem under reward sum settings; this allows for a direct
comparison that emphasizes the unique advantages of ILVF in such scenarios. MADDPG is chosen
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for its effectiveness in partially observable tasks. These comprehensive baselines enables a thorough
evaluation of our proposed method’s performance and its innovations across diverse scenarios.

Since IPPO has shown effectiveness in SMAC De Witt et al.| (2020), we include a variant of IPPO
(IPPO-C) where global state is used to train individual value functions, and policies are updated
using individual advantages, which ensures a fair comparison with our CTDE-based method. The
hyper-parameters related to ILVF-P, MAPPO, IPPO, and the neural networks are summarized in
Table[1l

Table 1: PPO and Neural Network Hyper-parameters

PPO Hyper-parameter Value | NN Hyper-parameter Value
ppo_epoch 15 hidden_size 64
use_clipped_value_loss True layer_N 1
clip_param 0.2 use_RelLU True
entropy_coef 0.01 use_valuenorm True
use_gae True use_feature_normalization True
gamma 0.99 use_orthogonal True
gae_lambda 0.95 gain 0.01
use_huber_loss True 1r 8e-5
huber_delta 10.0 opti_eps le-5
eval_episodes 32

B.3 ILVF (NO INFERRING)

The main difference between ILVF (no inferring) and ILVF lies in the design of the critic network. In
ILVF (no inferring), critics are required to directly learn inter-agent A-Q influence from the action
inputs of individual action-value functions. Therefore, the critic network computes a weighted sum
of the action inputs using attention weights perturbed by Gumbel noise, which is then concatenated
with the global state to approximate the individual action-value function. For fair comparison, the
ILVF (no inferring) still learns individual state-value functions, which are used to construct local
value functions and guide policy updates. The architecture of the critic and actor networks with ILVF
(no inferring) is illustrated in Figure

The state-value function V" (s) and action-value function Q7 (s, a) are parameterized with neural
networks and represented by Vg and Q ( a), respectively:

V@}’(S) = f¢y(sl,...,sn), (19)
ae (s f¢>Q Z wizag | (20)
where w{(s) = [w,,...,w]]T are attention welghts with wf; € [0,1],Vi,j € {1,...,n}. Let
hi = fgn(s) = [hi1, ..., hin]) € R",i=1,... nrepresent the output vector of the neural network
fr (). The calculation of the attention weights is as follows:
wy; = sigmoid(hi; + gij), 21
where g;; represents a vector of Gumbel noise, ¢; = [ hooY, (bZQ] represents the parameter set of the
critic network of agent .
The loss function of the critic network is defined as:
T
L) =) [(GF = Vi (s)* + (Gi - QF,(s.a")*] (22)
t=0

where G = Zf . Y*~trl is the discounted return. After the training of each critic network, the
state- dependent attention welghts with Gumbel noise w . €[0,1],¥i,7 € {1,...,n} can be learned,

and then are column-wise stacked into a matrix W9(s ) which encapsulates the overall inter-agent
A-Q influence.
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Architecture of Critic and Actor Networks with ILVF (no inferring)

Critic Networks
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Figure 7: Architecture of critic and actor networks with ILVF (no inferring). The blue boxes represent
external inputs, the orange boxes denote modules within the network, and the green boxes indicate
intermediate computed variables. The Gumbel attention mechanism is integrated into the critic
network to learn the agent-wise A-Q influence relationships, represented by the matrix W, which is
then used to construct local advantage functions to facilitate policy learning for individual agents.

C THE MOTIVATION FOR INFERRING A-Q INFLUENCE

We further conduct experiments to examine the rationale for learning state influence and subsequently
inferring A-Q influence. To this end, we design a baseline variant that integrates the Gumbel attention
mechanism directly into the action-value function network to learn the A-Q influence among agents
directly. We refer to this method as ILVF-P (no inferring), and its architecture is illustrated in Figure[7]
of Appendix [B]

To ensure a fair comparison, we modify the training framework and network structure of ILVF-P
accordingly to derive a consistent setup for ILVF-P (no inferring). We compare ILVF-P (no inferring)
against the original ILVF-P and MAPPO algorithms, with the experimental results shown in Figure

From the results, it is evident that ILVF-P (no inferring) significantly underperforms both ILVF-P and
MAPPO across multiple environments. This suggests that constructing local advantage functions
based on the learned A-Q influence not only fails to enhance policy learning but also yields inferior
performance compared to global-value-function-based methods. This outcome implies that the
potential influence relationships encoded in the action-value functions are not effectively captured by
the learned attention weights.

We hypothesize that the underlying reasons for this result include: (a) inferring A-Q influence
from state influence leads to better sample efficiency; and (b) in most multi-agent tasks, the main
components of the reward function primarily depend on state variables, while action variables often
serve only as control costs or regularization terms. Therefore, the mapping between states and value
functions is relatively simpler and easier for neural networks to approximate, whereas the mapping
involving actions is more complex and imposes higher demands on model capacity and training
stability. While it is possible that ILVF-P (no inferring) could be viable with more sophisticated
network architectures, there is currently insufficient evidence supporting its practical applicability.

In summary, inferring A-Q influence from state influence via the Gumbel attention mechanism yields
superior performance and greater stability compared to directly learning A-Q influence, making it a
more favorable choice.
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(a) MPE Encircle (20 agents) (b) CACC Catch-up (c) CACC Slow-down
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Figure 8: Ablation studies of learning A-Q influence in different scenarios.

D ABLATION STUDY OF KEY HYPER-PARAMETERS IN THE ILVF
FRAMEWORK

To thoroughly investigate the impact of key tunable hyper-parameters on algorithm performance, we
design and conduct three groups of ablation experiments in the MPE Encircle (20 agents) environment.

Initialization of the W Matrix. We first analyze the effect of the initial values of the influence
matrix W. In our approach, inter-agent influence relations are dynamically learned during value
function training via the Gumbel attention mechanism. Since the policies are continuously updated
during training, the learned influence structure is inherently policy-dependent. Thus, different
initializations of W may affect policy evolution and, consequently, the final performance.

As shown in Figure[9fa), initializing W as the identity matrix leads to the best convergence speed
and final performance. In contrast, initializing W as a full-one matrix slows down convergence and
degrades final performance, highlighting the importance of proper credit assignment mechanisms.
Further observations suggest that in the MPE Encircle task, a sparser initial 1/ generally yields better
performance. This is likely due to the sparsity of inter-agent couplings in this environment. Therefore,
further performance improvements may be achieved by tailoring the initialization to the underlying
coupling structure. For simplicity and generality, we adopt random initialization as the default setting
in this paper.

Discretization Strategy of W9(s). Although the Gumbel attention mechanism outputs a quasi-
discrete weight matrix W9 (s), further discretization is necessary. We investigate two strategies: (1)
sampling from Bernoulli distributions parameterized by W9(s); (2) thresholding, where weights
below a threshold c are set to 0 and others to 1. The value of c controls the sparsity of the resulting
W.

Figure[9b) presents the performance under various discretization methods and thresholds. The results
show that using sampling or larger thresholds (e.g., ¢ = 0.5 or ¢ = 0.8) leads to comparable and
superior performance. Lower thresholds cause many weakly contributing local value functions to
be discarded, thereby reducing their participation in policy updates and potentially harming overall
performance. This supports our hypothesis that selectively removing low-contribution local value
functions can improve global performance, even though the idea may seem counterintuitive.

Temperature Parameter 7 in Gumbel Attention. We conduct ablation analysis on the temperature
parameter 7 of the Gumbel attention mechanism, which directly affects the distribution and sparsity
of W9(s). As shown in Figure Ekc), different values of 7 have limited impact on performance,
indicating that the algorithm is robust to this parameter.

Summary. In summary, while several key hyper-parameters in the ILVF framework do influence
performance, their effects are generally limited. This implies that the proposed method possesses
strong stability and generalization capabilities. The superior performance over baseline methods
primarily stems from two key innovations: the use of influence-aware local value functions for better
credit assignment and policy learning, and the rational design of A-Q influence modeling via state
influence inference.
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(a) Ablation: temperature parameter tau (b) Ablation: the way to initialize W(s) (c) Ablation: the way to generate W(s)
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Figure 9: Ablation studies of key hyper-parameters in the ILVF Framework.

E LLM USAGE STATEMENT

During the preparation of this manuscript, we employed large language models (LLMs) (OpenAl
GPT-4; DeepSeek) as auxiliary tools. The LLM was used to assist in tasks such as improving the
clarity of language, polishing grammar, and providing alternative phrasings. It was also occasionally
used to generate preliminary drafts of code snippets and to translate technical content. All scientific
results presented in this article are our original works, and any texts or codes suggested by the LLM
have been carefully reviewed and modified to ensure the accuracy.
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