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Abstract

The training process of large language mod-
els (LLMs) often involves varying degrees of
test data contamination (Yang et al., 2023b).
Although current LLMs are achieving increas-
ingly better performance on various bench-
marks, their performance in practical applica-
tions does not always match their benchmark
results. Leakage of benchmarks can prevent
the accurate assessment of LLMs’ true per-
formance. However, constructing new bench-
marks is costly, labor-intensive and still carries
the risk of leakage. Therefore, in this paper, we
ask the question “Can we reuse these leaked
benchmarks for LLM evaluation?” We pro-
pose Inference-Time Decontamination (ITD)
to address this issue by detecting and rewriting
leaked samples without altering their difficul-
ties. ITD can mitigate performance inflation
caused by memorizing leaked benchmarks. Our
proof-of-concept experiments demonstrate that
ITD reduces inflated accuracy by 22.9% on
GSMSK and 19.0% on MMLU. On MMLU,
using Inference-time Decontamination can lead
to a decrease in the results of Phi3 and Mistral
by 6.7% and 3.6% respectively. We hope that
ITD can provide more truthful evaluation re-
sults for large language models.

1 Introduction

The emergence of large language models (LLMs)
(Brown et al., 2020b; Touvron et al., 2023a; Zeng
et al., 2023; Yang et al., 2023a; Cai et al., 2024;
OpenAl, 2022; Taori et al., 2023; Chiang et al.,
2023; Sun et al., 2024; Anthropic, 2023) has made
the effectiveness of model capability evaluation cru-
cial. Not only does it assist in ranking models, but
it also helps in distinguishing valuable work and
effective strategies for model improvement. Cur-
rent LLMs are achieving increasingly better per-
formance on various benchmarks. However, their
performance in practical applications does not al-
ways match their benchmark results (Huang et al.,

Q: James decides to run 3 sprints 3 times a
week. He runs 60 meters each sprint. How
many total meters does he run a week?

QIeaked data

He sprints 3*3=9 times.
So he runs 9*60=540 meters.

@ He runs 540 meters.

Q: Sam plans to swim 3 laps, 3 days a week.
Each lap measures 60 meters. What is the total <«
distance Sam swims in a week?

@ He swims 360 meters.

Figure 1: Illustration of the function of Inference-Time
Decontamination, aiming to discern whether a model
passes the test by memorizing contaminated data. &
and means the LLM delibterately memorizes and
deos not memorize this case.
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He swims 3*3=9 laps in a week.
So she swims 9*60=540 meters.

2023). This suggests that the superior performance
of LLMs on benchmarks might be due to inten-
tional or inadvertent data contamination (Golchin
and Surdeanu, 2023b; Li and Flanigan, 2024; Yang
et al., 2023c). LLMs are potential cheaters.

The impact of potential data contamination on
model evaluation encourages researchers to estab-
lish new benchmarks for a more accurate assess-
ment of model performance (White et al., 2024;
Li et al., 2024; Zhang et al., 2024). However, any
benchmark faces risk of leakage once it is pub-
licly available. Many benchmarks are fully open,
leading to varying degrees of data leakage that af-
fect the authenticity and fairness of model evalua-
tions. As models are trained on increasingly large
datasets, it becomes likely that benchmark-related
data contaminates the training sets, causing LLMs
to inadvertently cheat. Additionally, creating new
benchmarks is both labor-intensive and costly, mak-



ing it a less favorable solution for addressing test
data contamination.

Can we reuse high quality leaked benchmarks
for LLM evaluation? As shown in Figure 1, when
a test sample is used for model training, there are
two possibilities: 1. The model may learn rele-
vant knowledge and skills, such as using chain-of-
thought reasoning. In such cases, even if we make
modifications to the question, the model can still
provide correct answers. 2. The model might sim-
ply memorize the correct answer and directly copy
them, rather than learn the skill. In this case, if
we alter the background of the questions, without
changing the essence of what is being tested (such
as a mathematical formula), the model may fail
to provide correct answers. For the first scenario,
the model has achieved generalization, and such
leaked data can no longer be used. For the second
scenario, there is a possibility that such leaked data
could be revived.

In this paper, we propose Inference-Time
Decontamination (ITD) to mitigate the inflation of
evaluation results caused by models simply mem-
orizing answers. ITD maximizes the value of ex-
isting high quality benchmarks avoids the substan-
tial cost of constructing new benchmarks. Specifi-
cally, we first use a detector to screen for potentially
leaked samples and then rewrite these samples, at-
tempting to mitigate the impact of memorizing an-
swers, without changing the sample’s difficulty.
For two types of tasks, we propose two rewrit-
ing methods. For knowledge-related benchmarks
like MMLU (Hendrycks et al., 2021), we keep the
knowledge points tested by the original sample un-
changed and rewrite the phrasing of the questions.
For math benchmarks related to model reasoning
abilities like GSM8K (Cobbe et al., 2021), we main-
tain the specific numbers and calculations involved
in the original data unchanged, but rewrite the back-
ground of the questions.

We conduct experiments on two fundamental
benchmarks, GSM8K and MMLU. To validate the
feasibility of Inference-Time Decontamination, we
first perform proof-of-concept experiments. We
intentionally leak half of the test data to train a
model, and then test it with Inference-Time De-
contamination (ITD). We find that after using ITD,
the model’s accuracy on GSM8K and MMLU de-
creased by 22.9% and 19.0%, respectively. We also
study the effectiveness of I'TD in real evaluation en-
vironments on popular large language models, Phi-
3 and Mistral. After the application of ITD, Phi-3

showed reductions of 5.3% on GSMS8K and 6.7%
on MMLU, while Mistral experienced smaller re-
ductions of 0.5% on GSMS8K and 3.6% on MMLU.
It indicates that the extent of adjustments by ITD
for the models is as expected, achieving the goal of
mitigating performance inflation caused by mem-
orizing benchmarks and providing more valuable
and reliable evaluation results. Our core contribu-
tions are:

1. We propose Inference-Time Decontamination
(ITD) to mitigate the inflation of evaluation
results caused by data contamination.

2. We conduct proof-of-concept experiments that
demonstrates ITD can effectively mitigate the
biased performance resulting from models
memorizing benchmarks.

3. We test ITD on two commonly used LLMs and
find that their performance on both MMLU and
GSMB8K decrease to varying degrees.

4. We release a rewritten GSM8K dataset and a
rewritten MMLU dataset sampled by categories
to facilitate future evaluation work 1.

2 Related Work

Contamination Detection Traditional contam-
ination detection methods directly calculate the
overlap between pre-training data and evaluation
datasets, including n-gram analysis (Touvron et al.,
2023b; OpenAl, 2023; Team et al., 2023; Bai et al.,
2023) and BM25 (Jiang et al., 2024) for index-
ing and matching. However, as pre-training data
grows exponentially, even simple n-gram statis-
tics become extremely resource-intensive. Yang
et al. (2023c); Gunasekar et al. (2023) find n-gram
detection unreliable due to unintentional contam-
ination risks. More importantly, training corpora
for mainstream LLMs are mostly inaccessible, so
recent research has turned to focus on: i)-exploiting
the distributional differences between the bench-
mark training set and the test set to evaluated (Xu
et al., 2024). ii)-Evaluate sample-level contami-
nation by providing text segments and black-box
access to the LLM (Shi et al., 2023). Other work
evaluates contamination through LLM-generated
content, limited by the LLM’s comprehension abil-
ities to instrurction (Deng et al., 2023; Golchin and
Surdeanu, 2023a). Some studies test if models can

'We will release our data and code at https://github.
com/.
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coherently continue a given sample part (Golchin
and Surdeanu, 2023b). Contamination detection re-
mains a critical concern that should be addressed in
benchmarks rather than affecting a fair assessment
of the model’s capabilities.

Decontamination Decontamination involves
avoiding or mitigating the negative effects of
contamination. Typically, decontamination applied
in the training phase, model developers using
various methods to remove these overlap between
pre-training data and evaluation data (OpenAl,
2023; Touvron et al., 2023b; Radford et al., 2019;
Brown et al., 2020a; Chowdhery et al., 2023).
Besides, new datasets can also be created to avoid
contamination The LatestEval (Li et al., 2024)
avoids model contamination by strictly adhering
to a temporal sequence, using texts published
within a recent time window to construct new
question-answer sets from the latest Wikipedia
data. However, this method is also transient;
once the new dataset is released, it is exposed to
leakage risks, necessitating constant updates and
making old benchmark results obsolete. Similarly,
Scale Al creates a new dataset, GSM1K (Zhang
et al., 2024), ensuring comparability on critical
metrics such as human solve rates, number of
solving steps, and answer magnitude. They
prevent data leakage by not releasing the dataset.
Livebench (White et al., 2024) also tries to limit
potential contamination by releasing new questions
monthly. However, these methods all require a
significant amount of additional overhead.

3 Method

3.1 Problem Formulation

In this paper, we focus on the inference-time de-
contamination problem. Given a language model
fo and an out-of-distribution evaluation dataset
E = {x;};c[m) with potential contamination, our
objective is to evaluate a model’s performance with-
out access to pre-training data. Define a contam-
ination indicator function ¢ : E — {0, 1}, where
c(z) = 1 if the sample x appears in model pre-
training, otherwise ¢(x) = 0. The function c is
unknown yet possible to approximate. Thus, our
work is to develop an contamination indicator ¢ to
adjust the evaluation dataset £’ and compute the
final evaluation result M:

M:M(fG(E/)¢é)a (D

where E’ is the adjusted evaluation dataset.

Benchmark
l Detection Q
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Figure 2: Overview of inference-time decontamination.

3.2 Inference-Time Decontamination

We show the overview of our framework in Fig-
ure 2, which consists three stages called Detection,
Rewrite and Assurance.

Detection First, we conduct contamination detec-
tion on each evaluation sample based on the LLM
to be evaluated. This allows the original dataset
to be splitted into two parts: uncontaminated and
potentially contaminated. Notably, according to
our task definition, the split should ideally be based
on whether the model’s response is entirely from
memorization. However, since memorized data is
a subset of seen data, we follow Shi et al. (2023) to
use the training data detection method MinKProb
to substitute ¢. The detecting method is an ap-
proximation of a contamination indicator function
c¢: E — {0,1}. Since memorized data is a sub-
set of pre-training data, the training data detection
method is an alternative of ¢.

The goal of MinKProb is to determine whether a
text X appears in the pre-training data of an LLM.
MinKProb obtains the probability P(z;) for each
token x; in the text X and selects the K tokens with
the lowest probabilities {z;,, z4,, . .., x;, } and cal-
culates the average of these probabilities:

K
MinKProb(X) = % > P(ziy), @
j=1

where P(z;,) is the probability of the j-th lowest



probability token z;;, with a threshold € to deter-
mine whether X appears as pre-training data.

Rewrite A suitable rewriting method involves
rewriting by skilled individuals, based on the origi-
nal questions according to some clear rules and
instructs, similar to the construction method of
GSM1k (Zhang et al., 2024). However, this ex-
pensive approach creates a new dataset rather than
sticking to the original one, which violates the prin-
ciple of revival. We propose an automated genera-
tion method to rewrite the potentially contaminated
parts identified in the detection stage while not
altering the level of challenge. We explore rewrit-
ing methods for two of the most typical and popu-
lar tasks: mathematical reasoning and knowledge-
based datasets.

For mathematical reasoning problems, such as
GSMBSK, we redesign problem scenarios based on
the original problem’s computational logic and an-
swer structure. This ensures that while maintaining
the difficulty and answers, the problems become
more diverse. For example, application contexts in
the original questions, such as eggs, can be changed
to candies, and the involved characters can be re-
placed with different roles. However, all numbers
involved and the mathematical steps in the answers
remain consistent. This approach ensures both the
consistency of the content being assessed and the
difficulty. The GSMI1k dataset states that their
problem-solving steps and distributions are similar
to those of GSMSK to ensure consistent difficulty,
and our verification shows that the step distribution
and numbers are completely identical.

For knowledge-based problems, such as MMLU,
we found that rewriting the questions requires a
vast knowledge base, and any change in the back-
ground requires verification of correctness. There-
fore, we choose to perform synonymous rewrites
of the questions and options without changing core
proper nouns and any numbers. We avoid using
uncommon words that could increase the difficulty
of understanding, thereby ensuring the consistency
of the knowledge points and difficulty.

The prompts used, examples of rewritten ques-
tions on both GSM8K and MMLU can be found at
the appendix B.

Assurance We re-detect the modified parts. This
is necessary because some models may have un-
dergone extensive in-domain training data, causing
the rewritten results to still be within the model’s
memory. Therefore, we iterate through the first de-

Dataset Llama2 Mistral Phi-3
GSM8K 0.56 0.32 0.47
MMLU 0.28 0.23 0.25

Table 1: Threshold value ¢ for different models on
GSMS8K and MMLU datasets.

tection step and the second rewriting step until the
rewritten content passes the detection or reaches
the maximum number of iterations. We also con-
ducted human evaluations to assure the quality of
the decontaminated data.

4 Experiment

4.1 Setup

Dataset We conducted experiments on two top
influential benchmarks corresponding to two types
of problem datasets: knowledge-based dataset,
MMLU (Hendrycks et al., 2021) and mathemat-
ical reasoning GSM8K (Cobbe et al., 2021). The
evaluation set for GSM8K and MMLU contains
1,319 and 14,042 data points, respectively. How-
ever, it should be noted that in our proof-of-concept
experiment, we trained Llama2 to achieve inten-
tional data leakage, resulting in a high contamina-
tion rate for the trained Llama-contaminated. This
led to significant costs during the rewrite stage of
ITD due to the API calls. Therefore, we randomly
sampled from the Llama2_contaminated training
data for MMLU according to the 17 official cate-
gories, with 50 samples randomly sampled from
each category, resulting in a total of 850 samples,
called MMLU*. For GSMS8K, we followed the
recommended prompt (8-shot) for evaluation as
suggested by Chain-of-thought (Wei et al., 2022).
For MMLU, we used the official prompt (5-shot)
provided by MMLU for model evaluation. Both
used a greedy generation strategy.

Model We conducted evaluations and studies on
three popular models: Llama2-7b-base (Touvron
et al., 2023b), Mistral-7b-base (Jiang et al., 2023),
and Phi-3-mini-128k-instruct (Abdin et al., 2024).

ITD-Detecting settings We use two detectors
in our experiments, MinKprob as mentioned in
section 3.2 and All which refers to a detector that
flags all inputs as leaked. In the implementation
of the detector MinKprob, we need to determine
two hyper-parameters: K and e. They are as-
sessed using the evolutionary metrics described



in section 3.2. By exhaustively searching for the
maximum difference in MinKprob before and after
rewriting, we determined K = 20. By exhaustively
searching for the highest classification accuracy on
the constructed seen and unseen sets, We deter-
mined € as shown in Table 1. The experimental
details can be found in the Appendix A.

When calculating the average probability, the
input setting used is 0-shot to avoid interference
from the official prompts provided by the evalu-
ation set or Chain-of-Thought (CoT) (Wei et al.,
2022). This is because these prompts are likely
to be leaked (included in other data released by
the benchmark), while the questions are not leaked.
Including these prompts could result in many ques-
tions being falsely identified as potentially contam-
ination, affecting the accuracy of the detector.

ITD-Rewriting settings We designed two dif-
ferent rewriting methods to address the two types
of evaluation sets. The generation model used is
GPT-4 ("gpt-4-0613") (OpenAl, 2023), with the
temperature set to 1, and two examples provided.
The examples are shown in the appendix. The max-
imum number of rewrites is 3 times. Except for the
first rewrite, each rewrite is based on the previous
rewrite result.

Since we will evaluate multiple models multiple
times, we constructed a cache dataset to reuse the
rewrite results, allowing us to select which round
to use as needed. This speeds up the evaluation
process, controls the randomness of rewrites, and
facilitates comparisons between models. We re-
leased these datasets, which include over 4,000
entries for GSM8K and more than 2,500 entries for
MMLU, to facilitate future evaluations and provide
samples for assessing rewrite quality.

Evaluation Metrics For the evaluation results
of both datasets, we used accuracy to measure the
model’s ability to provide correct answers, facilitat-
ing comparison between models. When analyzing
the metrics of the same model before and after
rewriting the test samples, we used rate of change
(ROC) to measure it:

Vi—=Viaa

ROC =
( Vi1

) x 100%. 3)

We use € to represent the threshold for the
MinKProb detect method. A sample’s MinKProb
exceeding e indicates that it is classified as contam-
inated data.

4.2 Proof-of-concept Experiment

We show the results of the proof-of-concept experi-
ments in Table 2. This experiment is conducted on
LLama2-contaminated, the model we obtain after
training based on Llama2-7b-base. The maximum
number of rewriting steps is 3.

The purpose of this training is to find a model
that meets the requirement of having both seen and
unseen data in a high-quality dataset, where we can
clearly and accurately distinguish between the two.
Currently, no contamination detection method can
achieve this. Therefore, we chose the base model
of Llama?2 and artificially exposed a part of the test
set data to it through training. Specifically, we di-
vide the pre-set seen and unseen sets according to
the average accuracy of Llama2-7b-base on the two
datasets, ensuring that each subset had the same
accuracy distribution as the original dataset, specif-
ically 0.126 on GSMS8K and 0.459 on MMLU. For
MMLU, we use the typical multiple-choice prompt
"<Question>\nA.<Choice_A>\nB.<Choice_B>
\nC.<Choice_C>\nD.<Choice_D>". For GSMS8K,
we use the chain-of-thought prompt "Question:
<question>\nAnswer: Let’s think step by
step.\n<answer>" (Liu et al., 2023). We then use
the seen set as training data and conducted train-
ing for 1 epoch relied on Fastchat (Zheng et al.,
2023). In particular, we utilize the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 2e-5. We traine Llama2 for 3 epochs
and other models for 2 epochs, with a batch size
of 8 and a warm-up ratio of 0.03. We conducte all
experiments with A100 GPUs.

The experimental results show that Llama2-
contaminated achieves significant improvements
on both MMLU and GSMS8K after being artifi-
cially exposed to the data. But after using ITD,
the model’s accuracy on GSM8K and MMLU de-
creased by 22.9% and 19.0%, respectively. This
proves the effectiveness of our proposed ITD. The
models indeed exhibit the phenomenon of artifi-
cially inflated evaluation scores by relying solely
on memorized leaked data. ITD successfully miti-
gates performance inflation caused by memorizing
benchmarks.

We also observe a slight improvement in the
model’s performance on the unseen set compared
to the original values. This indicates that in-domain
training does indeed help generalize some capa-
bilities,such as using chain-of-thought reasoning,
aiding the model in answering specific types of



Dataset  Detector Seen ITD ROC Unseen
Acc. Leaked Rate Acc. Leaked Rate Acc. Leaked Rate
MinKProb 40.1 62.7% 30.9 0.3% 229% 18.6 1.2%
GSM8K All 40.1 - 28.8 - 282% 18.6 -
MMLU* MinKProb 87.5 79.4% 70.9 21.2% 19.0% 53.6 29.8%
All 87.5 - 61.3 - 299% 53.6 -

Table 2: Results of the proof-of-concept experiment on GSM8K and MMLU. Tested models indeed exhibit the
phenomenon of artificially inflated evaluation scores by relying solely on memorized leaked data. ITD successfully
mitigates performance inflation caused by memorizing benchmarks. “All” refers to a detector that flags all inputs as
leaked. MMLUx denotes a sampled dataset instead of the whole MMLU dataset.

questions.

The experiments also compare the results under
two detection schemes. Using MinKProb as the
detector, we are able to detect 62.7% and 79.4%
of contamination in the seen set, with corrections
of 22.9% and 19.0% in the evaluation metrics af-
ter rewriting, respectively. However, in fact, this
part of the tested data belongs to the data we have
intentionally leaked. An excellent detector should
ideally detect 100% contamination, but clearly,
MinKprob only detected 62.7% and 82.1%, respec-
tively. This indicates that although this detection
method is feasible and one of the most popular solu-
tions, it still suffers from significant accuracy loss.
This demonstrates that there is still considerable
room for research in this area.

In contrast, using an extremely strict detection
scheme that can detect 100% contamination at the
sacrifice of increasing the overhead by approxi-
mately 300%, we achieve corrections of 28.2% and
29.9% in the metrics after rewriting, validating the
effectiveness of our setting in addressing questions
that models answer correctly solely based on mem-
orization.

Moreover, the second scheme of All detection
illustrates the upper limit of our rewriting setting
and suggests that there is still significant room for
improvement in the chosen detection scheme. How-
ever, in practical scenarios, we cannot know the dis-
tribution of the seen set in advance, and most eval-
uations are unlikely to have a 100% contamination
level. Due to the uncertainty of the data’s contam-
ination degree and the multiplied additional over-
head, we cannot simply use this extremely strict
detection scheme. A reliable detection method re-
mains necessary and effective.

Additionally, an interesting finding is that the
leaked rate of llama2-7b-base on the unseen

datasets differs between the two datasets: only
1% on GSMBK, but nearly 30% on MMLU. This
suggests that llama?2 is almost uncontaminated on
GSMBS8K, while there may be a certain degree of
contamination on MMLU.

4.3 Real Model Experiment

In this section, we evaluate the effectiveness of our
setting in a real evaluation environment by testing
Mistral-7b-base and Phi-3-mini-128k-instruct on
two datasets without any knowledge of the train-
ing data. The results are shown in Table 3. We
employ two types of detection methods: one us-
ing MinKprob and the other using an extremely
strict detection scheme that assumes all inputs are
leaked. We find that in most cases, with the use
of ITD, the model’s evaluation scores decreased,
indicating that the questions originally answered
correctly by relying on memorized benchmarks re-
turned to their normal level after the rewrite. In
comparison, Phi3-mini exhibits a higher level of
contamination and underwent greater modification.
However, as with our reasoning for conducting the
proof-of-concept experiment, we cannot be entirely
certain about the nature of the contamination with-
out having the exact training data for the model
to compare against. Therefore, it is impossible to
provide an accurate assessment of the additional
overhead and accuracy.

Nevertheless, given MinKProb’s high rate of
missed detections in the proof-of-concept experi-
ment, we are concerned about its accuracy in deter-
mining contamination, leading to the detection of
relatively low contamination rates, especially with
mistral only showing 0.1% on GSM8K. Accord-
ing to MinKprob’s results, mistral exhibits almost
no contamination on GSMS8K, thus there is very
little data rewriting, and the degree of correction



Dataset Model Detector Origin ITD ROC
Acc. Leaked Rate Acc. Leaked Rate

Phi3-mini MinKProb 79.8 52.8% 75.6 14.9% 5.3%

GSMSK . All 79.8 - 73.0 - 8.5%
Mistral-Tb MinKProb 41.7 0.1% 41.4 0% 0.5%

All 41.7 - 39.7 - 4.8%

Phi3-mini MinKProb 73.3 53.2% 68.4 15.9% 6.7%

MMLU* . All 73.3 - 61.8 - 15.7%
Mistral-7b MinKProb 76.8 53.4% 74.0 13.1% 3.6%

All 76.8 - 66.7 - 13.2%

Table 3: Results of real model experiment on GSM8K and MMLU datasets. In real evaluation scenarios, models
still exhibit the phenomenon of artificially inflating scores by relying solely on memorized leaked data. ITD can still
mitigate performance inflation caused by memorizing benchmarks. “All” refers to a detector that flags all inputs as
leaked. MMLU=* denotes a sampled dataset instead of the whole MMLU dataset.

is evidently low. In contrast, the second detec-
tion method , at the cost of significant additional
overhead, results in more substantial corrections,
providing us with a reference for the upper limit
of inference-decontamination and also validating
that our setting remains effective in a real-world
evaluation environment.

As discussed in Section 3.2, the presence of a
detector is meaningful for two reasons: first, it
reduces additional costs, especially as the num-
ber of rewrites increases and the contamination
level is not particularly high. Second, some mod-
els have undergone extensive in-domain training,
which might lead to situations where even rewritten
results are familiar to the model. We aim to use
detection to specifically identify these cases. With-
out detection, it would be impossible to distinguish
between mild and severe contamination, as both
would show little fluctuation.

*
Model GSMS8K MMLU
Origin Rewritten Origin Rewritten
Llama2-contaminated ~ 40.1 30.9 87.5 70.9
Llama2-7b-base 12.6 133 45.7 44.0

Table 4: Comparison of Accuracy Changes Be-
tween Llama2-contaminated and Llama2 on Identically
Rewritten Data.

4.4 Analysis

Quality Checks We conduct experiments to ver-
ify the consistency of difficulty before and after
rewriting. The results are shown in Table 4. For the
Llama2-contaminated inference-decontamination
on the MMLU and GSMS8K datasets, we generate

both original and rewritten versions of the data. We
evaluate these versions using Llama2-7b-base. As
discussed in Section 4.2, the contamination rate of
Llama2 on GSMSK is negligible, while MMLU
is partially contaminated. Thus, using rewritten
data for GSMS8K should result in minimal fluctu-
ation, whereas MMLU may show slightly more
variation. Llama2-base shows minimal variation
on the same rewritten data, indicating that the dif-
ficulty of questions before and after rewriting for
Llama-contaminated remains unchanged within the
margin of error.

Human Evaluation We also conduct human
evaluation on rewritten data. We carefully com-
pare the rewritten samples with the origin ones to
assure the stability of problem difficulty and an-
swer correctness. Two aspects are focused to check
the problem difficulty: whether the desciption is
simplified, and whether extra information is added.
We detect at most 11.76% samples in which the
rewritten phrases are more common and straight
forward in MMLU* and 8.03% in GSM8K, yet
containing no actual difficulty change. We also
assess the stability of answer correctness by ver-
ifying whether the answer changes as a result of
modifying the problem description. We only find
answer shift in 3.9% of GSM8K samples at any
step during rewriting. Notably, although the an-
swers for these questions changed, contrary to our
expectation of no numerical changes, the provided
reference answers remained correct.

Impact of Rewriting Iterations We analyze the
impact of different rewriting steps on the accuracy
and contamination rate for three models: Mistral,
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Figure 3: Impact of Different Rewriting Steps. A sin-
gle rewrite is sufficient to significantly mitigate the
model’s performance inflation. However, some rewrit-
ten data may still be classified as contaminated. Multiple
rewrites can further alleviate this issue.

Phi3, and Llama-contaminated. The results in Fig-
ure 3 show a noticeable drop in both accuracy and
contamination rate after the first rewriting step, in-
dicating the significant impact of this initial rewrite.
Data not passing the detector in the Assurance stage
underwent multiple rewrites. During these rounds,
both accuracy and contamination rate continued to
decrease and eventually leveled off, showing a con-
vergent trend. This suggests that while some data
remain contaminated after the first rewrite, subse-
quent rounds effectively reduce contamination and
stabilize accuracy. This analysis underscores the
necessity of multiple rewriting rounds and the As-
surance stage. The persistent decline and stabiliza-
tion in both metrics validate the iterative rewriting
process, highlighting its importance for achieving
cleaner and more reliable datasets.

Performance of Contaminated vs. Uncontami-
nated Data We analyze the performance of con-
taminated versus uncontaminated data with differ-
ent rewriting steps for Llama2-contaminated on the
GSMSK dataset, as shown in Figure 4. The fig-
ure reveals that Initially, contaminated data show
significantly higher accuracy than uncontaminated
data. However, with each rewriting step, the con-
tamination rate drops substantially, indicating that
many contaminated data points are corrected and re-
classified as uncontaminated. The rewritten data’s
accuracy eventually matches that of the uncontami-

Figure 4: Performance of Contaminated vs. Uncontami-
nated Data with Different Rewriting Steps for Llama2-
contaminated on GSM8K. For contaminated data, the
model shows fake high performance(51.3%). After sev-
eral rewrites , the data becomes uncontaminated, and
performance returns to normal(30.9%).

nated data, demonstrating the effectiveness of the
rewriting steps. Some data still flagged as contami-
nated after the first rewrite maintain high accuracy
but are reclassified as uncontaminated after multi-
ple rewrites, leading to a significant reduction in
contamination rate. This analysis confirms that it-
erative rewrites effectively transform contaminated
data into reliable, uncontaminated data, ensuring
dataset accuracy and integrity.

5 Conclusion

This paper explores eliciting truthful answers from
a language model by addressing the impact of data
contamination on model evaluations. We propose
an inference-time decontamination method involv-
ing detection and iterative rewriting of contami-
nated data, leading to more accurate model perfor-
mance assessments. Experiments on GSM8K and
MMLU benchmarks suggest that our method can
mitigate contamination effects, resulting in more
reliable evaluation results.

Our framework’s detection, rewrite, and assur-
ance stages allow for consistent and fair assess-
ments without needing entirely new datasets. The
reduction in contamination’s impact highlights the
promise of our approach in providing a realistic
view of model capabilities.

We believe this work lays a foundation for fu-
ture research in improving language model evalu-
ations. Further exploration of advanced detection
and rewriting techniques will continue to enhance
the reliability and fairness of these assessments.



Limitations

Limited evaluation criteria for Real Models:
The correction magnitude for real models is not
substantial. However, since the specific contamina-
tion relationship between a model and the bench-
mark is still unknown, it is impossible to provide
an effective evaluation without a reliable detecting
method.

Effectiveness in the Worst-case Scenarios: For
models that have intentionally trained on a large
amount of in-domain data to improve performance,
or even followed our revival steps for extensive
rewrites, our current two types of rewrite methods
have limited effectiveness. Nonetheless, due to the
detect stage in our setting, we can distinguish these
models from those with no contamination. We also
look forward to exploring more efficient rewrite
methods in the future.

Evaluation Biases The different contamination
levels across models lead to variations in the final
evaluation questions. Additionally, using model-
automated rewriting to reduce costs may introduce
biases. We discuss these issues here. Firstly, as
shown in our Quality Checks experiments, we en-
sure that each rewrite maintains consistent diffi-
culty and tests the same knowledge and skill points.
Secondly, the bias introduced by model generation
is relatively small compared to the false score in-
crease from models memorizing original questions.
This randomness affects all models. Furthermore,
we use cached rewritten datasets to reduce costs
and randomness, thereby increasing relative com-
parability between models.

However, the above points regarding the detect-
ing methods and rewriting methods are not inherent
limitations of our setting. They can be mitigated
by using better rewriting and detecting methods in
the future.
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A Experiment on Hyper Parameter

In the implementation of the detector, we need
to determine two hyperparameters: K and e.
The selection criterion for K is the difference in
MinKprob before and after rewriting, aiming for
sensitivity to the impact of rewriting. For ¢, Shi
originally required obtaining some seen and unseen
data corresponding to the model. However, this is
cumbersome and challenging to find seen and un-
seen data with a similar domain under the setting of
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Figure 5: Hyper Parameter Search Experimen about e
on GSMS8K.

any black-box model. Therefore, our approach is to
artificially construct a part of the seen set through
training and approximate an unseen set through
multiple rewrites. Specifically, we randomly sam-
ple from the test set and perform several rewrites.
Then, we uniformly divide the rewritten test set D
into seen and unseen sets. By training, we artifi-
cially expose the seen data. We then iterate over
the threshold € and perform binary classification
on each data point in the rewritten D to determine
whether it has been seen, selecting the threshold e
that yields the most accurate classification under a
uniform distribution based on accuracy.

Experiment on ¢ By exhaustively searching for
the highest classification accuracy on the con-
structed seen and unseen sets, We determined ¢
as shown in Figure 5,6.

Experiment on K By exhaustively searching for
the maximum difference in MinKprob before and
after rewriting, we determined K = 20 as shown
in Figure 7.
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B Rewrite details

B.1 Prompt

In this section, we describe the process used to
rephrase the stems of fill-in-the-blank math ques-
tions using GPT-4.

For knowledge-related benchmarks MMLU, we
keep the knowledge points tested by the original
sample unchanged and rewrite the phrasing of the
questions.

For math benchmarks related to model reasoning
abilities GSM8K, we maintain the specific num-
bers and calculations involved in the original data
unchanged, but rewrite the background of the ques-
tions.

The prompts used to guide the rephrasing pro-
cess are designed to maintain the integrity and dif-
ficulty of the original questions while introducing
diversity in the context and entities. The rephrasing
involves the following guidelines:

Mathematical Reasoning Problems

1. The rephrased questions should not be a di-
rect synonym replacement but can involve
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changing scenes and entities, such as replac-
ing “eggs” with “candies,” as long as the num-
bers, operational logic, and final answers re-
main unchanged.

The main goal is to retain the precision needed
for the correct fill-in response.

Ensure the semantics of the question stems
are consistent before and after the rewrite.

The revised version should not introduce bi-
ases or clues that could unfairly simplify the
question.

. The rephrased question should be clear, con-
cise, and maintain the original context and
complexity.

. The rewritten stem should facilitate a step-by-
step problem-solving process without affect-
ing the expected mathematical solution.

. Changes to names are allowed as long as they
do not confuse the identities of the characters
involved.

This structured prompt ensures clarity in the
rephrasing process and maintains the quality and
difficulty level of the math questions.

We show the prompt in Table 5.

Knowledge-based Problem

1. The revised questions should maintain the
original meaning and accuracy without any
bias or hinting at the correct answer.
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Origin question: A robe takes 2 bolts of blue fiber and half that
much white fiber. How many bolts in total does it take?
Rewritten question: A pizza recipe requires 2 cups of flour and
half that amount of water. How many cups of both ingredients
does it require altogether?

(a) Rewritten example for Mathematical Reasoning Problems

Origin question: Boiling and freezing occur when water is
subjected to

A:decreased temperatures B:decreased atmospheric pressure
C:increased temperatures D:increased atmospheric pressure
Rewritten question: Water boils and freezes under what
conditions?

A:Lowering of temperatures B:Decrease in the pressure of the
atmosphere C:Rising of temperatures D:Increasing the pressure
of the atmosphere

(b) Rewritten examples

Figure 8: Hyper Parameter Search Experimen about €
on GSMS8K.

2. Ensure that the difficulty of understanding and
solving the problem remains consistent before
and after rewriting.

3. Use diverse expressions to avoid repetition but
do not intentionally use uncommon words.

4. Do not alter mathematical expressions.

This structured prompt ensures clarity in the

rephrasing process and maintains the quality and

difficulty level of the knowledge-based questions.
We show the prompt in Table 6.

B.2 Written Examples

We randomly sampled some rewritten examples
of the two benchmarks. Examples of single-round
rewrites can be found in Figure 8. And examples of
multi-round rewrites can be found in the Table 7, 8.
More examples can be seen in the three-round
rewritten data on the entire dataset we released.



Your task involves revising the stems of fill-in-the-blank math questions. For added diversity, this rewrite is
not a direct synonym replacement; you can change scenes and entities—like replacing eggs with candies—as
long as the numbers, operational logic, and final answers remain unchanged, without altering the difficulty
level. The primary goal is to rephrase each question’s stem—the main question or statement—in a way that
retains the precision needed for the correct fill-in response. Ensure that the semantics of the question stems
are consistent before and after the rewrite. The revised version should not introduce biases or clues that could
unfairly simplify the question. It should be clear, concise, and maintain the original context and complexity.
Furthermore, the rewritten stem should facilitate a step-by-step problem-solving process without affecting the
expected mathematical solution, allowing changes to names as long as they do not confuse the identities of the
characters involved.

Here are two examples for better understanding. Follow them and answer in json format:

Input:

Original_Question_Stem:

"Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?"

Answer:

"Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 48+24 = < <48+24=72>>72 clips altogether
in April and May. ###H 72"

Output:

[

"Rephrased_Question_Stem": "In March, Marco gathered 48 seashells at the beach, and in April, he collected
half as many. How many seashells did Marco collect in total during March and April?",

"Rephrased_Answer": "Marco collected 48/2 = 24 seashells in May. Marco collected 48 + 24 = 72 seashells
altogether in April and May. #### 72",

}

J

Input:

Original_Question_Stem:

"Weng earns $12 an hour for babysitting. Yesterday, she just did 50 minutes of babysitting. How much did she
earn?"

Answer:

"Weng earns 12/60 = $«12/60=0.2»0.2 per minute. Working 50 minutes, she earned 0.2 x 50 = $«0.2*50=10»10.
#HH#H 10"

Output:

[

{

"Rephrased_Question_Stem": "Each day, Kevin’s bees produce 16 tablespoons of honey. He uses three
tablespoons to sweeten his morning tea and four to make energy bars for his hiking group. He sells the leftover
honey at the local co-op for $2 per tablespoon. How much money does Kevin earn daily from selling honey at
the co-op?",

"Rephrased_Answer": "Kevin sells 16 - 3 - 4 = «16-3-4=9»9 tablespoons of honey a day. He earns 9 * 2 =
$«9*2=18»18 every day at the local co-op. #### 18",

}

Start with this question and apply the instructions above:
Your Question Stem to Rephrase:

Table 5: The instruction for revising math question stems.
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Revise the multiple-choice question and options to keep the meaning and accuracy without any bias or hinting at
the correct answer.Ensure that the difficulty of understanding and solving the problem remains consistent before
and after rewriting. Use diverse expressions to avoid repetition.But do not intentionally use uncommon words to
avoid repetition and do not alter mathematical expressions. Follow the example and answer in JSON format:

Input:

Original_Question_Stem: "During what historical period did the Renaissance take place?"
Original_Options: "(A)The Late Middle Ages (B)The Classical Antiquity (C)The Enlightenment (D)The
Industrial Revolution"

Output:

[

{

"Rephrased_Question_and_Options": {

"question": "In which historical era did the Renaissance occur?",

"A": "The historic era just before the Renaissance",

"B": "The period marking the transition from the Middle Ages",

"C": "The historic era synonymous with the Age of Reason",

"D": "The time period characterized by rapid industrialization"

}

}

]

Input:

Original_Question_Stem: [[Original_Question_Stem]]
Original_Options: [[Original_Options]]

Output:

Table 6: The instruction for revising multiple-choice questions and options.
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Original Question:

"Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, mealworms
and vegetables to help keep them healthy. She gives the chickens their feed in three separate meals. In the
morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives her chickens another 25
cups of feed. How many cups of feed does she need to give her chickens in the final meal of the day if the size of
Wendi’s flock is 20 chickens?"

Original Answer:

"If each chicken eats 3 cups of feed per day, then for 20 chickens they would need 3#20=60 cups of feed per day.
If she feeds the flock 15 cups of feed in the morning, and 25 cups in the afternoon, then the final meal would
require 60-15-25=20 cups of chicken feed. #### 20"

Rephrased Question Stem (Step 1):

"Every day, Carla prepares 3 liters of homemade insect food, full of protein and vitamins, for her butterflies. She
divides the feed for her swarm of butterflies into three meals. In the morning, her butterfly population consumes
15 liters of the feed. In the afternoon, they consume another 25 liters. How many liters of insect food does Carla
need to prepare for the final meal if she has 20 butterflies?"

Rephrased Answer (Step 1):

"Each butterfly consumes 3 liters of feed daily, meaning for 20 butterflies Carla would need 3*20 = 60 liters of
feed in a day. If they consume 15 liters in the morning, and 25 liters in the afternoon, then the final meal requires
60-15-25 = 20 liters of insect food. #### 20"

Rephrased Question Stem (Step 2):

"At home, Julia bakes 3 chew sticks each day for her 20 parrots. She breaks down these sticks into three
increments throughout the day. In the morning alone, her parrots munch down on 15 of these sticks, and they
gnaw on another 25 in the middle of the day. How many chew sticks does Julia need to bake for the final session
of the day?"

Rephrased Answer (Step 2):

"Each parrot requires 3 chew sticks a day, so for her 20 parrots, Julia needs to bake 3*20 = 60 chew sticks every
day. If they consume 15 in the morning and 25 in the afternoon, then the final munching session would require
60-15-25 = 20 chew sticks. #### 20"

Rephrased Question Stem (Step 3):

"Simon has a habit of preparing 3 kilograms of bird food, filled with nutritious grains, for his parakeets every
day. To cater to their feeding habits, he splits the food into three meals. In the morning, his flock of parakeets
consumes 15 kilograms of bird food. Later in the afternoon, they consume another 25 kilograms. Given that he
has 20 parakeets, how many kilograms of bird food does Simon need to portion out for their final feed of the
day?"

Rephrased Answer (Step 3):

"Each parakeet consumes 3 kilograms of bird food daily, which means that Simon would need to prepare 3*20
= 60 kilograms of bird food in a day for 20 parakeets. If 15 kilograms are consumed in the morning, and 25
kilograms in the afternoon, then Simon will need to prepare an additional 60-15-25 = 20 kilograms of bird food
for the final meal. #### 20"

Table 7: Written examples for gsm8k.
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Original Question:
"A sixth-grade teacher is concerned because Kerry, a student in class, has been hostile to classmates. Which of
the following teacher strategies is most likely to encourage Kerry to be more cooperative with classmates?"

Original Options:

A: "Preventing Kerry from participating in play or recess activities as a consequence of hostile behavior"

B: "Having Kerry memorize rules of behavior and write examples of how they would apply in the classroom"
C: "Withholding attention or approval from Kerry in response to hostile behavior"

D: "Implementing social skills training to teach Kerry appropriate replacement behaviors for hostile behaviors"

Rephrased Question and Options (Step 1):

Question: "A student named Kerry in the sixth grade has been acting unfriendly towards peers. Which method
could the teacher possibly use to promote more amicable relationships among Kerry and her classmates?"

A: "Prohibit Kerry from joining in leisure or break-time activities as a repercussion for unfriendly conduct"

B: "Instruct Kerry to learn behavior norms by heart, and to pen down how they can be enforced within the
classroom"

C: "Deny Kerry attention or appreciation when hostile conduct is exhibited"

D: "Incorporate social abilities development to instruct Kerry on acceptable alternate behaviors to her antagonistic
actions"

Rephrased Question and Options (Step 2):

Question: "What strategy could a teacher employ to encourage Kerry, a sixth-grader, to cultivate better
relationships with her peers, given her recent hostile behavior?"

A: "Exclude Kerry from recreational breaks as punishment for her negative conduct"

B: "Request Kerry to internalize good behavioral practices and document their implementation in class"

C: "Avoid acknowledging or praising Kerry if she displays aggressive behavior"

D: "Use techniques promoting the development of interpersonal skills to address and modify Kerry’s non-
cooperative behavior"

Rephrased Question and Options (Step 3):

Question: "What approach could an educator utilize to motivate Kerry, a student in grade six, to improve her
associations with classmates, considering her lately antagonistic behavior?"

A: "Bar Kerry from leisure intervals as retribution for her adverse behavior"

B: "Ask Kerry to absorb constructive behavioral norms and record their enactment in the classroom"

C: "Overlook or restrain from complimenting Kerry if she exhibits hostility"

D: "Apply strategies fostering the enhancement of social abilities to handle and transform Kerry’s uncooperative
conduct"

Table 8: Written examples for MMLU:high school psychology.

17



	Introduction
	Related Work
	Method
	Problem Formulation
	Inference-Time Decontamination

	Experiment
	Setup
	Proof-of-concept Experiment
	Real Model Experiment
	Analysis

	Conclusion
	Experiment on Hyper Parameter
	Rewrite details
	Prompt
	Written Examples


