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ABSTRACT

We present a novel framework to regularize Neural Radiance Field (NeRF) in a
few-shot setting with a geometry-aware consistency regularization. The proposed
approach leverages a rendered depth map at unobserved viewpoint to warp sparse
input images to the unobserved viewpoint and impose them as pseudo ground truths
to facilitate learning of NeRF. By encouraging such geometry-aware consistency
at a feature-level instead of using pixel-level reconstruction loss, we regularize
the NeRF at semantic and structural levels while allowing for modeling view-
dependent radiance to account for color variations across viewpoints. We also
propose an effective method to filter out erroneous warped solutions, along with
training strategies to stabilize training during optimization. We show that our model
achieves competitive results compared to state-of-the-art few-shot NeRF models.

1 INTRODUCTION

Recently, representing a 3D scene as a Neural Radiance Field (NeRF) Mildenhall et al. (2020) has
proven to be a powerful approach for novel view synthesis and 3D reconstruction Barron et al.
(2021); Jain et al. (2021); Chen et al. (2021). However, despite its impressive performance, NeRF
requires a large number of densely, well distributed calibrated images for optimization, which limits
its applicability. When limited to sparse observations, NeRF easily overfits to the input view images
and is unable to reconstruct correct geometry Zhang et al. (2020).

The task that directly addresses this problem, also called a few-shot NeRF, aims to optimize high-
fidelity neural radiance field in such sparse scenarios Jain et al. (2021); Kim et al. (2022); Niemeyer
et al. (2022), countering the underconstrained nature of said problem by introducing additional
priors. Specifically, previous works attempted to solve this by utilizing a semantic feature Jain et al.
(2021), entropy minimization Kim et al. (2022), SfM depth priors Deng et al. (2022) or normalizing
flow Niemeyer et al. (2022), but their necessity for handcrafted methods or inability to extract local
and fine structures limited their performance.

To alleviate these issues, we propose a novel regularization technique that enforces a geometric
consistency across different views with a depth-guided warping and a geometry-aware consistency
modeling. Based on these, we propose a novel framework, called Neural Radiance Fields with
Geometric Consistency (GeCoNeRF), for training neural radiance fields in a few-shot setting. Our
key insight is that we can leverage a depth rendered by NeRF to warp sparse input images to novel
viewpoints, and use them as pseudo ground truths to facilitate learning of fine details and high-
frequency features by NeRF. By encouraging images rendered at novel views to model warped
images with a consistency loss, we can successfully constrain both geometry and appearance to
boost fidelity of neural radiance fields even in highly under-constrained few-shot setting. Taking into
consideration non-Lambertian nature of given datasets, we propose a feature-level regularization
loss that captures contextual and structural information while allowing for modeling view-dependent
color differences. We also present a method to generate a consistency mask to prevent inconsistently
warped information from harming the network. Finally, we provide coarse-to-fine training strategies
for sampling and pose generation to stabilize optimization of the model.

We demonstrate the effectiveness of our method on synthetic and real datasets Mildenhall et al.
(2020); Jensen et al. (2014). Experimental results prove the effectiveness of the proposed model over
the latest methods for few-shot novel view synthesis.
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Figure 1: Illustration of our consistency modeling pipeline for few-shot NeRF. Given an image
Ii and estimated depth map Dj of j-th unobserved viewpoint, we warp the image Ii to that novel
viewpoint as Ii→j by establishing geometric correspondence between two viewpoints. Using the
warped image as a pseudo ground truth, we cause rendered image of unseen viewpoint, Ij , to be
consistent in structure with warped image, with occlusions taken into consideration.

2 RELATED WORK

Neural radiance fields. Among the most notable of approaches regarding the task of novel view
synthesis and 3D reconstruction is Neural Radiance Field (NeRF) Mildenhall et al. (2020), where
photo-realistic images are rendered by a simple MLP architecture. Sparked by its impressive
performance, a variety of follow-up studies based on its continuous neural volumetric representation
have been prompted, including dynamic and deformable scenes Park et al. (2021); Tretschk et al.
(2021); Pumarola et al. (2021); Attal et al. (2021), real-time rendering Yu et al. (2021a); Hedman et al.
(2021); Reiser et al. (2021); Müller et al. (2022), self-calibration Jeong et al. (2021) and generative
modeling Schwarz et al. (2020); Niemeyer & Geiger (2021); Xu et al. (2021); Deng et al. (2021).
Mip-NeRF Barron et al. (2021) eliminates aliasing artifacts by adopting cone tracing with a single
multi-scale MLP. In general, most of these works have difficulty in optimizing a single scene with a
few number of images.
Few-shot NeRF. One key limitation of NeRF is its necessity for large number of calibrated views
in optimizing neural radiance fields. Some recent works attempted to address this in the case where
only few observed views of the scene are available. PixelNeRFYu et al. (2021b) conditions a NeRF
on image inputs using local CNN features. This conditional model allows the network to learn scene
priors across multiple scenes. Stereo radiance fields Chibane et al. (2021) use local CNN features
from input views for scene geometry reasoning and MVSNeRF Chen et al. (2021) combines cost
volume with neural radiance field for improved performance. However, pre-training with multi-view
images of numerous scenes are essential for these methods for them to learn reconstruction priors.

Other works attempt different approach of optimizing NeRF from scratch in few-shot settings:
DSNeRF Deng et al. (2022) makes use of depth supervision to network to optimize a scene with
few images. Roessle et al. (2021) also utilizes sparse depth prior by extending into dense depth map
by depth completion module to guide network optimization. On the other hand, there are models
that tackle depth prior-free few-shot optimization: DietNeRF Jain et al. (2021) enforces semantic
consistency between rendered images from unseen view and seen images. RegNeRF Niemeyer et al.
(2022) regularizes the geometry and appearance of patches rendered from unobserved viewpoints.
InfoNeRF Kim et al. (2022) constrains the density’s entropy in each ray and ensures consistency
across rays in the neighborhood. While these methods constrain NeRF into learning more realistic
geometry, their regularizations are limited in that they require extensive dataset-specific fine-tuning
and that they only provide regularization at a global level in a generalized manner. Improving upon
above works, our method tackles prior-free few-shot optimization without using any depth priors,
achieving more local and scene-specific regularization with warping-based consistency modeling.
Self-supervised photometric consistency. In the field of multiview stereo depth estimation, con-
sistency modeling between stereo images and their warped images has been widely used for self-
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supervised training Godard et al. (2017); Garg et al. (2016); Zhou et al. (2017) In weakly supervised
or unsupervised settings Huang et al. (2021); Khot et al. (2019) where there is lack of ground truth
depth information, consistency modeling between images with geometry-based warping is used as
a supervisory signal Zhou et al. (2017); Huang et al. (2021); Khot et al. (2019) formulating depth
learning as a form of reconstruction task between viewpoints.

Recently, methods utilizing self-supervised photometric consistency have been introduced to NeRF:
concurrent works such as NeuralWarp Darmon et al. (2022), StructNeRF Chen et al. (2022) and
Geo-NeuS Fu et al. (2022) model photometric consistency between source images and their warped
counterparts from other source viewpoints to improve their reconstruction quality. However, these
methods only discuss dense view input scenarios where pose differences between source viewpoints
are small, and do not address their behavior in few-shot settings - where sharp performance drop
is expected due to scarcity of input viewpoints and increased difficulty in the warping procedure
owing to large viewpoint differences and heavy self-occlusions. RapNeRF Zhang et al. (2022) uses
geometry-based reprojection method to enhance view extrapolation performance, and Bortolon et al.
(2022) uses depth rendered by NeRF as correspondence information for view-morphing module to
synthesize images between input viewpoints. However, these methods do not take occlusions into
account, and their pixel-level photometric consistency modeling comes with downside of suppressing
view-dependent specular effects.

3 PRELIMINARIES

Neural Radiance Field (NeRF) Mildenhall et al. (2020) represents a scene as a continuous function
fθ represented by a neural network with parameters θ, where the points are sampled along rays,
represented by r, for evaluation by the neural network. Typically, the sampled coordinates x ∈ R3

and view direction d ∈ R2 are transformed by a positional encoding γ into Fourier features Tancik
et al. (2020) that facilitates learning of high-frequency details. The neural network fθ takes as input
the transformed coordinate γ(x) and viewing directions γ(d), and outputs a view-invariant density
value σ ∈ R and a view-dependent color value c ∈ R3 such that

{c, σ} = fθ(γ(x), γ(d)). (1)

With a ray parametrized as rp(t) = o + tdp from the camera center o through the pixel p along
direction dp, the color is rendered as follows:

C(rp) =

∫ tf

tn

T (t)σ(rp(t))c(rp(t),dp)dt,

where T (t) = exp

(
−
∫ t

tn

σ(rp(s))ds

)
,

(2)

where C(rp) is a predicted color value at the pixel p along the ray rp(t) from tn to tf , and T (t)
denotes an accumulated transmittance along the ray from tn to t . To optimize the networks fθ, the
observation loss Lobs enforces the rendered color values to be consistent with ground truth color
value C ′(r):

Lobs =
∑
rp∈R

∥C ′(rp)− C(rp)∥22, (3)

where R represents a batch of training rays.

4 METHODOLOGY

4.1 MOTIVATION AND OVERVIEW

Let us denote an image at i-th viewpoint as Ii. In a few-shot novel view synthesis, NeRF is given
only a few images {Ii} for i ∈ {1, ..., N} with small N , e.g., N = 3 or N = 5. The objective of
novel view synthesis is to train the mapping function fθ that can be used to recover an image Ij at
j-th unseen or novel viewpoint. As we described above, in the few-shot setting, given {Ii}, directly
optimizing fθ solely with the pixel-wise reconstruction loss Lobs is limited by its inability to model
view-dependent effects, and thus an additional regularization to encourage the network fθ to generate
consistent appearance and geometry is required.
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Figure 2: Illustration of the proposed framework. GeCoNeRF regularizes the networks with
consistency modeling. Consistency loss function LM

cons is applied between unobserved viewpoint
image and warped observed viewpoint image, while disparity regularization loss Lreg regularizes
depth at seen viewpoints.

To achieve this, we propose a novel regularization technique to enforce a geometric consistency
across different views with depth-guided warping and consistency modeling. We focus on the fact
that NeRF Mildenhall et al. (2020) inherently renders not only color image but depth image as well.
Combined with known viewpoint difference, the rendered depths can be used to define a geometric
correspondence relationship between two arbitrary views.

Specifically, we consider a depth image rendered by the NeRF model, Dj at unseen viewpoint
j. By formulating a warping function ψ(Ii;Dj , Ri→j) that warps an image Ii according to the
depth Dj and viewpoint difference Ri→j , we can encourage a consistency between warped image
Ii→j = ψ(Ii;Dj , Ri→j) and rendered image Ij at j-th unseen viewpoint, which in turn improves
the few-shot novel view synthesis performance. This framework can overcome the limitations of
previous few-shot setting approaches Mildenhall et al. (2020); Chen et al. (2021); Barron et al. (2021),
improving not only global geometry but also high-frequency details and appearance as well.

In the following, we first explain how input images can be warped to unseen viewpoints in our
framework. Then, we demonstrate how we impose consistency upon the pair of warped image and
rendered image for regularization, followed by explanation of occlusion handling method and several
training strategies that proved crucial for stabilization of NeRF optimization in few-shot scenario.

4.2 RENDERED DEPTH-GUIDED WARPING

To render an image at novel viewpoints, we first sample a random camera viewpoint, from which
corresponding ray vectors are generated in a patch-wise manner. As NeRF outputs density and color
values of sampled points along the novel rays, we use recovered density values to render a consistent
depth map. Following Mildenhall et al. (2020), we formulate per-ray depth values as weighted
composition of distances traveled from origin. Since ray rp corresponding to pixel p is parameterized
as rp(t) = o+ tdp, the depth rendering is defined similarly to the color rendering:

D(rp) =

∫ tf

tn

T (t)σ(rp(t))tdt, (4)

where D(rp) is a predicted depth along the ray rp. As described in Figure 1, we use the rendered
depth map Dj to warp input ground truth image Ii to j-th unseen viewpoint and acquire a warped
image Ii→j , which is defined as a process such that Ii→j = ψ(Ii;Dj , Ri→j). More specifically,
pixel location pj in target unseen viewpoint image is transformed to pj→i at source viewpoint image
by viewpoint difference Rj→i and camera intrinsic parameter K such that

pj→i ∼ KRj→iDj(pj)K
−1pj , (5)

where ∼ indicates approximate equality and the projected coordinate pj→i is a continuous value.
With a differentiable sampler, we extract color values of pj→i on Ii. More formally, the transforming
components process can be written as follows:

Ii→j(pj) = sampler(Ii; pj→i), (6)
where sampler(·) is a bilinear sampling operator Jaderberg et al. (2015).
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(a) GT patch (b) Rendered patch (c) Warped patch (d) Occlusion mask (e) Masked patch

Figure 3: Visualization of consistency modeling process. (a) ground truth patch, (b) rendered patch
at novel viewpoint, (c) warped patch, from input viewpoint to novel viewpoint, (d) occlusion mask
with threshold masking, and (e) final warped patch with occlusion masking at novel viewpoint.

Acceleration. Rendering full image with NeRF voluemtric rendering is computationally heavy and
extremely timetaking, requiring tens of seconds for a single iteration. To overcome the computational
bottleneck of full image rendering and warping, rays are sampled on a strided grid to make the patch
with stride s, which we have set as 2. After the rays undergo volumetric rendering, we upsample the
low-resolution depth map back to original resolution with bilinear interpolation. This full-resolution
depth map is used for the inverse warping. This way, detailed warped patches of full-resolution can
be generated with only a fraction of computational cost that would be required when rendering the
original sized ray batch.

4.3 CONSISTENCY MODELING

Given the rendered patch Ij at j-th viewpoint and the warped patch Ii→j with depthDj and viewpoint
difference Ri→j , we define the consistency between the two to encourage additional regularization
for globally consistent rendering. One viable option is to naïvely apply the pixel-wise image
reconstruction loss Lpix such that

Lpix = ∥Ii→j − Ij∥. (7)
However, we observe that this simple strategy is prone to cause failures in reflectant non-Lambertian
surfaces where appearance changes greatly regarding viewpoints Zhan et al. (2018). In addition,
geometry-related problems, such as self-occlusion and artifacts, prohibits naïve usage of pixel-wise
image reconstruction loss for regularization in unseen viewpoints.

Feature-level consistency modeling. To overcome these issues, we propose masked feature-level
regularization loss that encourages structural consistency while ignoring view-dependent radiance
effects, as illustrated in Figure 2.

Given an image I as an input, we use a convolutional network to extract multi-level feature maps
such that fϕ,l(I) ∈ RHl×Wl×Cl , with channel depth Cl for l-th layer. To measure feature-level
consistency between warped image Ii→j and rendered image Ij , we extract their features maps from
L layers and compute difference within each feature map pairs that are extracted from the same layer.

In accordance with the idea of using the warped image Ii→j as pseudo ground truths, we allow a
gradient backpropagation to pass only through the rendered image and block it for the warped image.
By applying the consistency loss at multiple levels of feature maps, we cause Ij to model after Ii→j

both on semantic and structural level.

Formally written, the consistency loss Lcons is defined as such that,

Lcons =

L∑
l=1

1

Cl

∥∥f lϕ(Ij→i)− f lϕ(Ij)
∥∥. (8)

For this loss function Lcons, we find l-1 distance function most suited for our task and utilize it to
measure consistency across feature difference maps. Empirically, we have discovered that VGG-19
network Simonyan & Zisserman (2014) yields best performance in modeling consistencies, likely
due to the absence of normalization layers Johnson et al. (2016) that scale down absolute values
of feature differences. Therefore, we employ VGG19 network as our feature extractor network fϕ
throughout all of our models.

It should be noted that our loss function differs from that of DietNeRF Jain et al. (2021) in that while
DietNeRF’s consistency loss is limited to regularizing the radiance field in a globally semantic level,
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our loss combined with warping module is also able to give the network highly rich information on a
local, structural level as well. In other words, contrary to DietNeRF giving only high-level feature
consistency, our method of using multiple levels of convolutional network for feature difference
calculation can be interpreted as enforcing a mixture of all levels, from high-level semantic consistency
to low-level structural consistency.
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Figure 4: Occlusion-aware mask generation.
Mask generation by comparing geometry between
novel view j and source view i, with Ii→j being
warped patch generated for view j. For (a) and (b),
warping does not occur correctly due to artifacts
and self-occlusion, respectively. Such pixels are
masked out by Ml, allowing only (c), with accurate
warping, as training signal for rendered image Ij .

Occlusion handling. In order to prevent im-
perfect and distorted warpings caused by erro-
neous geometry from influencing the model,
which degrade overall reconstruction quality,
we construct consistency mask Ml to let NeRF
ignore regions with geometric inconsistencies,
as demonstrated in Figure 3. Instead of apply-
ing mask to the images before inputting them
into feature extractor network, we apply resized
masks Ml directly to the feature maps, after us-
ing nearest-neighbor down-sampling to make
them match the dimensions of l-th layer out-
puts.

We generate M by measuring consistency be-
tween rendered depth values from target view-
point and source viewpoint such that

M(pj) =
[
∥Dj(pj)−Di(pj→i)∥ < τ

]
. (9)

where [·] is Iverson bracket, and pj→i refers to
the corresponding pixel in source viewpoint i for reprojected target pixel pj of j-th viewpoint. Here
we measure euclidean distance between depth points rendered from target and source viewpoints as
a criterion for a threshold masking. As illustrated in Figure 4, if distance between two points are
greater than given threshold value τ , we determine two rays as rendering depths of separate surfaces
and mask out the corresponding pixel in viewpoint Ij . The process takes place over every pixel in
viewpoint Ij to generate a mask M the same size as rendered pixels. Through this technique, we
filter out problematic solutions at feature level and regularize NeRF with only high-confidence image
features.

Based on this, the consistency loss Lcons is extended as such that

LM
cons =

L∑
l=1

1

Clml

∥∥Ml ⊙ (f lϕ(Ii→j)− f lϕ(Ij))
∥∥, (10)

where ml is the sum of non-zero values.
Edge-aware disparity regularization. Since our method is dependent upon the quality of depth
rendered by NeRF, we directly impose additional regularization on rendered depth to facilitate
optimization. We further encourage local depth smoothness on rendered scenes by imposing l-1
penalty on disparity gradient within randomly sampled patches of input views. In addition, inspired
by Godard et al. (2017), we take into account the fact that depth discontinuities in depth maps are
likely to be aligned to gradients of its color image, and introduce an edge-aware term with image
gradients ∂I to weight the disparity values. Specifically, following Godard et al. (2017), we regularize
for edge-aware depth smoothness such that

Lreg = |∂xD∗
i |e−|∂xIi| + |∂yD∗

i |e−|∂yIi|, (11)

where D∗
i = Di/Di is the mean-normalized inverse depth from Godard et al. (2017) to discourage

shrinking of the estimated depth.

4.4 TRAINING STRATEGY

In this section, we present novel training strategies to learn the model with the proposed losses.
Total losses. We optimize our model with a combined final loss of original NeRF’s pixel-wise
reconstruction loss Lobs and two types of regularization loss, LM

cons for unobserved view consistency
modeling and Lreg for disparity regularization.
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(a) GT (b) DietNeRF (c) InfoNeRF (d) RegNeRF (e) Ours (f) Ours (D)

Figure 5: Qualitative comparison on NeRF-Synthetic Mildenhall et al. (2020) show that in 3-view
setting, our method captures fine details more robustly (such as the wire in the mic scene) and
produces less artifacts (background in the materials scene) compared to previous methods. We show
GeCoNeRF’s results (e) with its rendered depth (f).

Progressive camera pose generation. Difficulty of of accurate warping increases the further target
view is from the source view, which means that sampling far camera poses straight from the beginning
of training may have negative effects on our model. Therefore, we first generate camera poses near
source views, then progressively further as training proceeds. We sample noise value uniformly
between an interval of [-β, +β] and add it to the original Euler rotation angles of input view poses,
with parameter β growing linearly from 3 to 9 degrees throughout the course of optimization. This
design choice can be intuitively understood as stabilizing locations near observed viewpoints at start
and propagating this regularization to further locations, where warping becomes progressingly more
difficult.
Positional encoding frequency annealing. We find that most of the artifacts occurring are high-
frequency occlusions that fill the space between scene and camera. This behaviour can be effectively
suppressed by constraining the order of fourier positional encoding Tancik et al. (2020) to low
dimensions. Due to this reason, we adopt coarse-to-fine frequency annealing strategy previously used
by Park et al. (2021) to regularize our optimization. This strategy forces our network to primarily
optimize from coarse, low-frequency details where self-occlusions and fine features are minimized,
easing the difficulty of warping process in the beginning stages of training. Following Park et al.
(2021), the annealing equation is α(t) = mt/K, with m as the number of encoding frequencies, t as
iteration step, and we set hyper-parameter K as 15k.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Baselines. We use mip-NeRF Barron et al. (2021) as our backbone. We give our comparisons to
the baseline and several state-of-the-art models for few-shot NeRF: InfoNeRF Kim et al. (2022),
DietNeRF Jain et al. (2021), and RegNeRF Niemeyer et al. (2022).
Datasets and metrics. We evaluate our model on NeRF-Synthetic Mildenhall et al. (2020) and
LLFF Mildenhall et al. (2019). NeRF-Synthetic is a realistically rendered 360◦ synthetic dataset
comprised of 8 scenes. We randomly sample 3 viewpoints out of 100 training images in each scene,
with 200 testing images for evaluation. We also conduct experiments on LLFF benchmark dataset,
which consists of real-life forward facing scenes. Following RegNeRF Niemeyer et al. (2022), we
apply standard settings by selecting test set evenly from list of every 8th image and selecting 3
reference views from remaining images. We quantify novel view synthesis quality using PSNR,
Structural Similarity Index Measure (SSIM) Wang et al. (2004), LPIPS perceptual metric Zhang
et al. (2018) and "average" error metric introduced in Barron et al. (2021) to report the mean value of
metrics for all scenes in each dataset.
Implementation details. Our main model is built on top of the JAX mip-NeRF codebase Barron
et al. (2021). We use Adam optimizer using an exponential learning rate decay. Our model is trained
for 60k iterations for 4 hours on two NVIDIA RTX3090Ti GPUs. We provide more implementation
details in supplementary materials.
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Table 1: Quantitative comparison on NeRF-Synthetic (Mildenhall et al., 2020) and
LLFF (Mildenhall et al., 2019) datasets.

Methods NeRF-Synthetic (Mildenhall et al., 2020) LLFF (Mildenhall et al., 2019)
PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Avg. ↓

NeRF (Mildenhall et al., 2020) 14.73 0.734 0.451 0.199 13.34 0.373 0.451 0.255
mip-NeRF (Barron et al., 2021) 17.71 0.798 0.745 0.178 14.62 0.351 0.495 0.246

DietNeRF (Jain et al., 2021) 16.06 0.793 0.306 0.151 14.94 0.370 0.496 0.232
InfoNeRF (Kim et al., 2022) 18.65 0.811 0.230 0.111 14.37 0.349 0.457 0.238

RegNeRF (Niemeyer et al., 2022) 18.01 0.842 0.747 0.167 19.08 0.587 0.336 0.146

GeCoNeRF (Ours) 19.23 0.866 0.723 0.148 18.55 0.578 0.340 0.150

(a) Ground-truth (b) mip-NeRF (c) mip-NeRF (D) (d) Ours (e) Ours (D)

Figure 6: Qualitative results on LLFF Mildenhall et al. (2019). Comparison with baseline mip-
NeRF shows that our model learns of coherent depth and geometry in extremely sparse 3-view setting.

5.2 COMPARISONS

Qualitative comparisons. Qualitative comparison results in Figure 5 and 6 demonstrate that
our model shows superior performance to baseline mip-NeRF Barron et al. (2021) and previous
state-of-the-art model, RegNeRF Niemeyer et al. (2022), in 3-view settings. We observe that our
warping-based consistency enables GeCoNeRF to capture fine details that mip-NeRF and RegNeRF
struggle to capture in same sparse view scenarios, as demonstrated with the mic scene. Our method
also displays higher stability in rendering smooth surfaces and reducing artifacts in background in
comparison to previous models, as shown in the results of the materials scene. We argue that these
results demonstrate how our method, through generation of warped pseudo ground truth patches, is
able to give the model local, scene-specific regularization that aids recovery of fine details, which
previous few-shot NeRF models with their global, generalized priors were unable to accomplish.
Quantitative comparisons. Comparisons in Table 1 shows our model’s competitive results in
LLFF dataset, whose PSNR results show large increase in comparison to mip-NeRF baseline and
competitive compared to RegNeRF. We see that our warping-based consistency modeling successfully
prevents overfitting and artifacts, which allows our model to perform better quantitatively.

5.3 ABLATION STUDY
Table 2: Ablation study.

Components PSNR↑ SSIM↑ LPIPS↓ Avg.↓
(a) Baseline 14.62 0.351 0.495 0.246
(b) (a) + Lcons 18.10 0.529 0.408 0.164
(c) (b) + M (O. mask) 18.24 0.535 0.379 0.159
(d) (c) + Progressive 18.46 0.552 0.349 0.151
(e) (d) + Lreg (Ours) 18.55 0.578 0.340 0.150

We validate our design choices by perform-
ing an ablation study on LLFF Mildenhall
et al. (2019) dataset. Quantitative and qualita-
tive results are given in Table 2 and Figure 7,
respectively.
Feature-level consistency loss. We ob-
serve that without the consistency loss Lcons, our model suffers both quantitative and qualitative
decrease in reconstruction fidelity, verified by incoherent geometry in image (a) of Figure 7. Absence
of unseen view consistency modeling destabilizes the model, resulting divergent behaviours such as
artifact generation in empty space.
Occlusion mask. We observe that addition of occlusion mask M improves overall appearance as
well as geometry, as shown in image (c) of Figure 7. Its absence results broken geometry throughout
the overall scene, as demonstrated in (b). Erroneous artifacts pertaining to projections from different
viewpoints were detected in multiple scenes, resulting lower quantitative values.
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(a) Baseline (b) (a) + Lcons (c) (b) + M (O. mask) (d) (c) + Progressive (e) (d) + Lreg (Ours)

Figure 7: Qualitative ablation. Our qualitative ablation results on Horns scene shows the contribution
of each module in performance of our model at 3-view scenario.

Progressive training strategies. In Table 3,
we justify our progressive training strategies
with additional experiments on NeRF-Synthetic
dataset, while in the main ablation we conduct
an ablation with progressive annealing only. For
pose generation, we sample pose angle from
large interval in the beginning, instead of slowly
growing the interval. For positional encoding,
we replace progressive annealing with naïve po-
sitional encoding used in NeRF. We observe that
their absence causes destabilization of the model
and degradation in appearance, respectively.

(a) Pixel-level (b) Feature-level 
Figure 8: Lpix vs. Lcons comparison.

Feature-level loss vs. pixel-level loss. In Table 4, we con-
duct a quantitative ablation comparisons between feature-
level consistency loss Lcons and pixel-level photometric con-
sistency loss Lpix, both with occlusion masking. As shown
in Figure 8, naïvely applying pixel-level loss for consistency
modeling leads to broken geometry. This phenomenon can
be attributed to Lpix being agnostic to view-dependent spec-
ular effects, which the network tries to model by altering or
erasing altogether non-Lambertian surfaces.

5.4 COMPARISON TO CONSISTENCY MODELING BETWEEN KNOWN VIEWS

(a) Between known views

(b) GeCoNeRF (Ours)  

Figure 9: Consistency between
known views vs. our method.

In order to compare GeCoNeRF with contemporary meth-
ods Darmon et al. (2022); Chen et al. (2022); Fu et al. (2022)
that model consistency between known views, we conduct an
experiment to observe how such consistency modeling performs
in few-shot NeRF setting. In our experiment, we replace our
consistency modeling with above setting, warping source im-
ages to other known views for consistency between the warped
image and ground truth (reference) image.

Its result, shown in (a) of Figure 9, displays divergent be-
haviours such as heavy artifact generation, while our method
(b) succeeds in recovering detailed geometry of the scene under
the same setting. As discussed in Section 2, we argue that
large view differences and scarcity of reference images make
it difficult for NeRF to refine geometry with consistency mod-
eling between known views. Our work’s novel contributions
allow consistency modeling to be adopted to few-shot NeRF to
facilitate stable training under such extreme conditions, distinguishing our work from above methods.

6 CONCLUSION

We present GeCo-NeRF, a novel few-shot NeRF regularization method. We regularize geometry
by modeling feature-level consistency at unobserved viewpoints between using the warped images,
regularizing NeRF for learning of robust geometry. Further techniques and training strategies we
propose prove to have stabilizing effect and facilitate optimization of our network. Our experimental
evaluation demonstrates our method’s competitiveness in regards to other state-of-the-art models.
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