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Abstract

Accurate day-ahead nominations of grid losses in electrical
distribution networks are important to reduce the societal cost
of these losses. We present a modification of the CatBoost
ensemble-based system for day-ahead grid loss prediction de-
tailed in Dalal et al. (2020), making four main changes. Base
models predict on the log-space of the target, to ensure non-
negative predictions. The model ensemble is changed to in-
clude different model types, for increased ensemble variance.
Feature engineering is applied to consumption and weather
forecasts, to improve base model performance. Finally, a non-
negative least squares-based stacking method that uses as
many available models as possible for each prediction is in-
troduced, to achieve an improved model selection that is ro-
bust to missing data. When deployed for over three months
in 2022, the resulting system reduced mean absolute error
by 10.7% compared to the system from Dalal et al. (2020),
a reduction from 5.05 to 4.51 MW. With no tuning of ma-
chine learning parameters, the system was also extended to
three new grids, where it achieved similar relative error as on
the old grids. Our system is robust and easily scalable, and
our proposed stacking method could provide improved per-
formance in applications outside grid loss.

Introduction
With the deregularization of modern energy markets, utility
companies have to nominate expected losses in their elec-
trical networks for the next day, such that they can buy the
required energy to cover the losses in the open market. This
nomination must be done by noon the day before, and is
called day-ahead grid loss nomination. In the Nordics, grid
losses are nominated to the energy market Nord Pool (Nor-
wegian Ministry of Petroleum and Energy 2022). Consider-
ing the high energy prices of the present time, it becomes
important to nominate losses with small error, in order to
reduce financial risk. While the physics behind grid losses
are understood and well-documented, the grid loss itself is
highly stochastic and varies with a range of factors, making
it difficult to predict precisely.

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Aneo AS nominates grid losses as a service for multiple
Norwegian utility companies. The forecasting methodology
used has developed from being manual and expert-reliant to
a fully automated machine learning system in recent years.

The current system uses historical loss data, consumption
forecasts and weather forecasts to forecast grid losses for
seven grids. Based on testing in a three month period in
2019, machine learning showed a reduction in mean abso-
lute percentage error (MAPE) by 40% compared to the old,
manual forecasting method detailed in Dalal et al. (2020).

Even though the machine learning system successfully
automated a manual process and reduced forecasting error
significantly, several shortcomings were identified after run-
ning the system in production for a few years. Most impor-
tantly, system performance during winter was found to be
poor, and the system sometimes produced negative forecast
values. Additionally, the employed ensemble of machine
learning models had few and very similar models. Further-
more, it comprised a simple way of combining the model
predictions to a final forecast.

In this paper, we describe a system that has been de-
ployed to mitigate the issues and shortcomings of Dalal et al.
(2020). The new system employs a diverse stacked ensem-
ble model using a non-negative least squares (NNLS) model
for combining base model predictions, robust with regards
to missing and erroneous data. This approach reduced the
MAE with 10.7% from 5.05 to 4.51 MW on data from
February 28th to June 10th 2022 while requiring no man-
ual hyperparameter-tuning. Although the described system
is tailored to forecast grid loss, many of its aspects are adapt-
able to other problems in time series forecasting. The stack-
ing algorithm is, because of its flexibility and regularization,
especially applicable for other problems where missing or
little data are issues.

Power Grids, Markets and Losses
The electrical power grid is a multi-level hybrid system,
containing multiple vertically integrated networks. Two of
the most notable networks are the transmission network and
the distribution network. The former transports high-voltage
electricity from power plants to electrical substations, while
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the latter transports lower voltage electricity from the sub-
stations directly to the customers (Amin and Stringer 2008).
The transmission networks are controlled by transmission
system operators (TSOs) which often are state-owned, like
the Norwegian Statnett SF, the Finnish Fingrid Oyj, and the
Swedish Svenska Kraftnät (ENTSO-E 2022). Similarly, the
distribution networks are controlled by distribution system
operators (DSOs), which often are smaller, local utility com-
panies. Examples from Norway are Tensio in Trøndelag,
Lnett in Rogaland, and Lede in Vestfold and Telemark.

Electrical energy is traded in a range of markets, both
physical and financial. In the physical markets, contracts for
delivery of physical power in a given period are traded. Elec-
tricity producers submit bids for delivering energy based on
how much they expect to produce, while industrial com-
panies and power suppliers submit bids for buying energy
based on how much they expect to use. The bulk of the
contracts are traded in the day-ahead market, where actors
must submit hour-by-hour bids for the next day before noon.
Based on these bids and the need to balance supply and de-
mand in the power grid, a price is determined for each hour
of the next day. This price is called the spot price. In the
Nordics, all day-ahead trading is performed on the Nord
Pool power exchange (Norwegian Ministry of Petroleum
and Energy 2022).

Since many factors in the power grid like renewable
energy production and electricity consumption are highly
stochastic, it is difficult to accurately predict both energy
production and demand. This leads to differences between
the day-ahead bids and the actual production and consump-
tion, which gives imbalances in the power grid. These im-
balances are settled by the TSO on behalf of the market
actors, and are priced based on the assets activated by the
TSO to achieve balance. This price is called the imbalance
price, and while it often is similar to the spot price, it is
far more stochastic. Accurate predictions of production and
consumption are therefore important for participants in the
market, in order to reduce financial risk (Dalal et al. 2020).

When electricity is transferred through the power grid,
some energy gets lost along the way, which is called grid
loss. Some of the loss is caused by physics, like ohmic
losses, transformation losses and corona losses. Such losses
are called technical losses. Technical losses due to resistance
are variable, and known to be proportional to the square
of power in the grid. Other technical losses are consid-
ered constant, like the transformation losses. In addition to
technical losses, electricity theft and consumption by con-
sumers without contracts to power suppliers are also consid-
ered grid losses. These are called non-technical losses, and
can be considered directly proportional to the power in the
grid (Sladojevic and Janjic 2019). Although it is known how
the mentioned losses can be modelled, it is very difficult
to precisely predict them. For example, how the electricity
travels through the grid changes stochastically all the time,
and predicting the power in the network is a difficult task in
itself (Dalal et al. 2020).

In the modern, de-regularized power markets, the grid loss
in a network has to be covered by the systems operator. In
practice, this means that DSOs participate in the day-ahead

market, where they submit bids for the power they expect
to lose in their grids hour-by-hour the next day. Thus, accu-
rate predictions of grid loss are of high importance to lower
financial risk for DSOs.

Related Work
A large amount of research is being done on losses in power
grids, due to its high societal cost. With the increased adap-
tation of smart grids across the world, the amount of data
available for researchers has also increased significantly.
This has lead to exciting and novel data-driven machine
learning methods being applied to problems like detection,
reduction and forecasting of grid loss, as well as the closely
related field of grid load forecasting.

Grid Loss Analysis, Detection and Reduction
Wang et al. (2021) presents an in-depth analysis of the tech-
nical losses in the power grid of the Hubei province in China,
finding loss sources and possible solutions for loss reduc-
tion. Detection of non-technical losses has seen a lot of work
recently, largely thanks to smart meters introduced in smart
grids. Bin-Halabi, Nouh, and Abouelela (2019) presents a
distributed hardware system for remote detection of elec-
tricity theft in smart grids. Li and Wang (2020) and Esmael
et al. (2021) present two different approaches for smart grid
theft detection using deep learning, verifying their results
on real data from South China and Brazil respectively. In
a more pragmatic approach for areas that are in the pro-
cess of adopting smart grids, Massaferro, Di Martino, and
Fernández (2022) outlines a multi-resolution convolutional
neural network approach that can incorporate both histori-
cal non-smart meter and smart meter data for detection of
non-technical losses.

Grid Loss Forecasting
The task of forecasting losses in the power grid has also
gotten some attention recently. Traditionally, most grid loss
forecasting used some second degree polynomial for mod-
elling of loss as a function of predicted power in the grid.
Like reported by Dalal et al. (2020), Aneo AS used the poly-
nomial in Equation 1, where L̂t+∆ and Ĉ2

t+∆ are predicted
grid loss and consumption, respectively, at time t + ∆, and
k and L0 are constants. Sahlin et al. (2017) and Sladojevic
and Janjic (2019) describe the more general formula given in
Equation 2, where Lt is grid loss at time t, Pt is the power in
the grid at time t, and b2, b1 and b0 are coefficients. This lat-
ter definition mirrors the understanding of grid loss as hav-
ing parts that are fixed and proportional to the power and its
square. The coefficients were typically found through linear
regression or some other optimization method.

L̂t+∆ = L0 + kĈ2
t+∆ (1)

Lt = b2P
2
t + b1Pt + b0 (2)

In recent publications, several different approaches have
been taken. Most works have concentrated on predictions for
transmission networks, but some papers also describe sys-
tems for distribution network loss forecasting. Sahlin et al.
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(2017) used a multiple linear regression model for day-
ahead nominations of transmission grid loss for price ar-
eas in Sweden. The model included features like wind gen-
eration forecasts, total generated power, total demand and
exchange flows with neighbouring price areas. The system
managed to reduce absolute error by 27.6% compared to the
existing system used by the Swedish TSO on backtesting.

Sulakov (2017) also describes a system for day-ahead
loss nominations for transmission networks, deployed on the
Bulgarian transmission network. This system implements
the loss model from Equation 2, but splits it up to consider
different loss sources in isolation. Distinct sets of coeffi-
cients are found for summer and winter, for corona losses
during humid and icing conditions, and finally the effect of
renewables generation from solar and wind. The different
loss contributions are calculated using different features like
grid load, power export, meteorological conditions and pre-
dicted renewables outputs, and summed up to find the final
loss.

Another paper based on the loss model in Equation 2 is
Sladojevic and Janjic (2019), which uses linear regression
and clustering to create separate coefficients for the sum-
mer, winter and transition seasons. The model was used for
backtesting on Serbian distribution network data, but there
were no mentions of the system being deployed.

In 2020, two papers using modern machine learning meth-
ods for grid loss forecasting were published. Dalal et al.
(2020), which the work presented in this paper directly
builds on, used an ensemble of CatBoost models to predict
day-ahead losses in three distribution grids in Trøndelag,
Norway. The CatBoost models were trained and validated
on 13 months of different features like weather, calendar,
predicted demand and previously measured grid loss. For
every hour, the model that performed the best one week ago
was selected to give its prediction. The paper reported test
results from three months of the CatBoost ensemble being
deployed, where a 41% reduction in mean absolute percent-
age error was achieved.

Finally, Tulensalo, Seppänen, and Ilin (2020) described a
system for intra-day nomination of grid losses in the Finnish
transmission network. This system used a single LSTM
model trained on 6 years of data, including features like
electricity market data, weather data, calendar data and pre-
viously calculated grid loss in the network. One year of data
was used for testing, where the LSTM model was shown
to outperform both the currently employed forecast model
from the Finnish TSO and the model proposed by Sahlin
et al. (2017), with 40% and 30% reductions in mean abso-
lute error, respectively.

Load Forecasting
An area closely related to the grid loss forecasting reviewed
so far, is short-term load forecasting (STLF) in power sys-
tems. As STLF is important to the crucial tasks of produc-
tion planning and balancing of power grids, it receives a
large focus from research communities all over the world.
Recent publications show a wide range of approaches to the
STLF problem, with most solutions using some sort of ma-
chine learning model or collections of these (Nassif et al.

2022). In a similar fashion to Dalal et al. (2020), Massaoudi
et al. (2021) applied an ensemble of GBDT models to STLF,
but used an MLP for stacking instead of selecting a single
model to use for the final prediction. Their Stacked XGB-
LGBM-MLP model outperformed several other state-of-the-
art STLF models, like a model combining fuzzy time se-
ries and convolutional neural networks, SARIMA and dif-
ferent LSTM models. Rafi et al. (2021) proposes a combined
CNN-LSTM network, which manages to outperform sim-
pler LSTM networks through better feature extraction. Fo-
cusing more on the automatic feature engineering aspect of
STLF, Zhang and Zhang (2020) uses the empirical wavelet
transform and IDBSCAN clustering to create better features
for multiple LSTM networks. Not all recent papers on STLF
use deep learning models however. An example is given in
Sharma et al. (2020), where a blind kalman filtering (BKF)
approach is proposed. The BKF alternates between estimat-
ing states and estimating the state matrices, thus learning the
state and observation matrices from data progressively. BKF
was shown to outperform an LSTM network, and also has
the benefit of being far more interpretable than a deep neu-
ral network.

Analysis of Existing System
The system described in Dalal et al. (2020) used an ensem-
ble of eight base models and a discrete model selection al-
gorithm for selecting the prediction to use as the final nom-
inated grid loss value. This system will be referred to as
the “1.0 system”. Seven of the base models in the 1.0 sys-
tem were trained CatBoost models, using unique subsets of
features like calendar information, weather forecasts, previ-
ously measured grid loss and grid load forecasts. The final
model was a persistence model, that just used the measured
grid loss value from the same time last week as its predic-
tion. Model selection was done by selecting the prediction
of the model that had the lowest prediction error over a 24
hour period seven days ago. In the deployed system, all ma-
chine learning models were trained before predicting every
day (Dalal et al. 2020).

We performed an analysis of the 1.0 system both numer-
ically and by visually inspecting the time series data. The
system in production at the time of analysis included some
changes to the system described in the original paper, mainly
an increase in the number of models from 8 to 19. The added
models were mostly CatBoost models using differing sub-
sets of the original features, as well as two Prophet mod-
els (Taylor and Letham 2018). Our analysis uncovered sev-
eral apparent flaws, which we list one by one in the follow-
ing subsections.

Impossible Predictions

On several occasions, the deployed 1.0 system had predicted
negative grid loss values. As energy cannot suddenly be cre-
ated in the grid, a negative grid loss is physically impossi-
ble. There were also cases where the system nominated Not
a Number (NaN) values. Both of these error types lead to
extra work for human operators and should be avoided.
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Model Variance
Although the model ensemble used in the system had 19 dif-
ferent models with differing input features, it was observed
that the variance between the models was relatively small.
Figure 1 illustrates this, showing actual model predictions
from the production system for two weeks in March 2021.
The use of almost exclusively CatBoost models may have
been a key contributor to the low variance.

14
Mar

2021

2815 16 17 18 19 20 21 22 23 24 25 26 27

15

20

25

30

35

M
W

Figure 1: All model predictions from the 1.0 system for the
loss series of a single grid for two weeks in March 2021.

Feature Engineering
Little emphasis was put on feature engineering in the origi-
nal paper, with models using different subsets of the features
load prediction, measured grid loss for the same hour both 5
days and a week before, temperature forecast for the hour to
be predicted, and calendar features.

We assume that model performance can improve by in-
cluding more historical values of the measured grid loss
than just the same time last week, as we knew the data to
be highly auto-correlated with the same hour every day, as
shown by the spikes at 144 hours, 168 hours, and so on in
the autocorrelation function plot in Figure 2. Data with less
than 144 hours of lag are not available, or of poor quality
(Dalal et al. 2020). Other transformations of measured val-
ues and possibly load forecasts could also improve perfor-
mance. Finally, we observed that the models often struggled
when there were rapid changes in temperature, which we
assumed could be addressed by adding new, engineered fea-
tures from the temperature forecast.

0 24 48 72 96 120 144 168 192 216 240 264 288 312
Hours
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Figure 2: Autocorrelation function (ACF) plot for grid loss
on grid 1. A simple one step differencing was performed to
make the data series approximately stationary.

Model Selection
We compared the implemented model selection algorithm
from the 1.0 system against the two extremes in discrete

model selection: random selection and “oracle selection”,
which always selects the model with the lowest error. Data
for grids 1-5 (Table 1) up until June 2020 was used for the
analysis. This testing showed that the implemented model
selection selects the best model 25.1% more often than ran-
dom selection, but this only reduces the mean absolute per-
centage error (MAPE) by 5.51% on average. Selecting the
prediction with the lowest error over each day, called ora-
cle selection, on the other hand provides a 56.68% decrease
in MAPE compared to random selection, and 54.11% re-
duction compared to the implemented algorithm. We also
observed that the model selection method is prone to over-
fitting, as it often selects the persistence model in the cases
when the measured data has a sudden change in pattern for
a day or two. This often results in large errors, even though
it is a strength of the system when data for a grid is shifted
significantly for a longer period. An example is shown in
Figure 3, which shows error for all models in the original
ensemble. The dotted black line is the prediction from the
model selection, while the dotted red line is the persistence
model. In the shaded area to the left, the persistence model
performs the best of all models, while it has the highest error
of all models in the shaded area to the right. The two areas
are a week apart, meaning the persistence model predictions
are selected as the final predictions in the right area, show-
cased by a solid red line. The discrete nature of the model
selection algorithm means the system is unable to use the
predictions of the other models, some of which have close
to zero error in the shaded area to the right.
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Figure 3: Example of bad overfitting from the original model
selection algorithm on data from grid 1 in February 2021.
The two shaded areas show the period used for model se-
lection (left) and the bad overfitting (right). The red line is
the persistence model, and the black line is the final system
prediction. The weak, solid lines are the rest of the models
in the original ensemble.

Since oracle selection is unachievable in practice, we pro-
pose that the implementation of a learning-based stacking
algorithm that can include predictions from many or all of
the base models in the ensemble should result in lower error
and less overfitting.

Updated System
Based on our analysis of the 1.0 system, we have created
an updated system implementing changes to address each of
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the four identified shortcomings. This updated system will
be referred to as the “2.0 system”. Like the 1.0 system, all
machine learning models were trained before predicting for
a whole day, every day. The following subsections list the
changes in the order of the shortcomings they address.

Forced Positivity
To alleviate the problem of impossible predictions in the
original project, we transformed the target values for our ma-
chine learning models using the natural logarithm, and made
the models train and predict on the log space. When trans-
forming the predictions back using the exponential function,
we ensure that negative predictions cannot occur. Training
on log space did not impact model error in our backtesting.

New Model Types
In order to address the problem of little model diversity, we
added models of five different model types, in addition to
the persistence and CatBoost models.

To ensure high model diversity, we selected model types
from completely different families of supervised machine
learning. In addition to the gradient boosting on decision
trees-based CatBoost, we chose the tree-based Random For-
est regression, instance-based k-Nearest Neighbors regres-
sion and linear model types linear, Ridge and Generalized
Linear regression. The Prophet models that had been added
to the old system were not used in our updated system.

New Features and Feature Engineering
To find good features for our models, we tested a large
range of raw and engineered features from different data
sources, including weather forecasts, calendar data, con-
sumption forecasts and earlier measured values. A testing
pipeline was created for rapid backtesting of model and fea-
ture combinations on historical data, which produced model
rankings and feature importance plots, to allow us to guide
our search. Different lags, transformations and time differ-
encing was applied to temperature, measured values and
consumption forecasts, which yielded useful feature sets that
clearly improved model performance compared to the base-
line features used in Dalal et al. (2020). As part of the fea-
ture testing we also tested the use of other weather forecasts
like solar radiation, wind speed and direction, and precip-
itation as features. These did not impact performance, and
were given very little weight by all tested model types. We
therefore did not pursue these further.

The combination of new feature sets and the newly imple-
mented model types increased the number of models in the
ensemble to 46, compared to the original 19. Figure 4 is a
plot of all model predictions for two weeks of data in March
2021, showing a large increase in ensemble variance over
the old model ensemble in Figure 1. During the time the 2.0
system was deployed, the mean sample standard deviation
of the ensemble predictions were 1.55MW and 2.08MW
for the 1.0 and 2.0 systems, respectively.

Stacking
In order to improve the model selection algorithm from
Dalal et al. (2020), we implemented a stacking model. Like
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Figure 4: All model predictions with the 2.0 ensemble.

the model selection algorithm, the stacking method had to
be robust in the face of missing base model predictions. A
pseudocode of the algorithm can be seen in Algorithm 1.
In the advent of missing model predictions for the test set,
the method will greedily use as many models as possible to
attain predictions without the use of imputation.

When deployed, the train set input to the algorithm con-
sists of previous base model test set predictions and mea-
sured grid loss values for the last year. The test set input
to the algorithm is the base model predictions for the next
day, which we want to combine to a list of final predic-
tions. Although more data is available for training, our test-
ing showed that performance was very similar between just
a year of data compared to all available data. To reduce the
amount of data that has to be fetched from the database, we
therefore elected to use only a year of data.

The learning model used for weighting the base model
predictions, called the superlearner, was NNLS with the
constraint that the fitted coefficients sum to one (Polley and
Van Der Laan 2010).

min
β

1

2
∥Xβ − y∥2,

s.t. β ⪰ 0, (3)

1Tβ = 1

This superlearner was shown to perform better than the
mean of the available models for each timestep, especially
at predicting the non-technical losses.

The stacking method has similar characteristics in its so-
lution as a fitted lasso model. They both have sparsely fitted
coefficients, where most are set exactly to zero. This stems
from the convex domain of the optimization, where the so-
lution has a high chance of occurring along the edges of the
domain. This results in an average 20− 30% non-zero fitted
model coefficients when all the models are available. An ex-
ample of this is shown in Figure 5, where the red line shows
the number of available models, and the dotted green line
shows the number of used models for three weeks of data in
May 2022. Furthermore, the forecast and the target for the
same period are presented. Here, one may note that perfor-
mance does not degrade when a small number of models are
available to the superlearner.

From the upper part of the plot in Figure 5 it can also
be seen that the 2.0 system often struggles with predicting
the extreme values when the target data is spiky. Making the
stacking better at capturing these data patterns would be an
important area for future work.
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Algorithm 1: Stacking Method
Input:
base model predictions for train set,
train set target,
base model predictions for test set

subsets ← all unique combinations of base models that
have made test set predictions at the same time step,
sorted by decreasing number of models
output ← empty dataframe with index equal to test set
timestamps
for subset in subsets do
timestamps ← timestamps of rows in test set predic-
tions where models in subset have predictions simulta-
neously
xtrain, ytrain ← previous test set predictions from only
the base models in subset and corresponding target val-
ues
xtest ← test set predictions from models in subset at
timestamps
while there are too few rows with no NaN-values in
xtrain or no models remain do

drop the predictions of the model with most NaN-
values, to get more non-NaN rows

end while
if no models remain then
output[timestamps] ← average of xtest at
timestamps

else
train a superlearner model on xtrain, ytrain
output[timestamps] ← superlearner predictions
based on xtest

end if
end for
return output

Experiments
Before deploying the 2.0 system to production, we per-
formed two experiments. First, we backtested on historical
grid loss data. This experiment also included an ablation
study, where the impact of both the updated model ensem-
ble and stacking algorithm were quantified in isolation. Fol-
lowing this, we conducted an “offline” experiment, where
the 2.0 system was allowed to run in a staging environment
alongside the 1.0 system for several months, to compare the
systems in a real-life setting.

Dataset and Practical Constraints
For our experiments, we collected a private dataset of grid
loss for seven grids across three price areas in Norway. Ta-
ble 1 shows the numbered grids, with their location, price
area and the start of their time series data. All grids have
two series that are to be predicted, both with a resolution
of one hour. The loss series is the technical losses in each
grid, while plikt is the non-technical losses. Figure 6 shows
a three-week period of the two series for one of the grids.
Note that data for grids 6 to 8 only became available after
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Figure 5: The bottom half shows the number of base models
available for making a final forecast. Furthermore, it shows
how many models had a non-zero coefficient in the fitted su-
perlearner. The upper part shows the forecast of the stacking
method along with the target.

our backtesting and offline experiments had been performed,
so these grids are just included in the production results in
the next section.

Grid # Location Price area Data start
1 Trøndelag NO3 2017-05-01
2 Trøndelag NO3 2017-05-01
3 Trøndelag NO3 2018-09-03
5 Rogaland NO2 2019-01-02
6 Trøndelag NO3 2017-05-01
7 Trøndelag NO3 2017-05-01
8 Trøndelag NO4 2017-05-01

Table 1: Grids with data available.
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Figure 6: Time-series plot showcasing missing loss and plikt
for a single grid. The upper (blue) line is the loss series,
while plikt is the lower (red) line.

There were certain practical constraints created by the
dataset. The first challenge is the late arrival of correct grid
loss measurements. Although measurements are available
the day after they happen, they are continually updated and
changed up until a week after the fact. Changes in this pe-
riod may be significant, which has led to a 6-day delay being
the minimum delay chosen for reading the measured values
in practice. The second challenge is that there are sometimes
issues with missing data, or incorrect data. The gap in both
time series in Figure 6 shows an example of missing data,
where about a day of measurements are missing. This can
severely impact a machine learning system at both training
and inference time, meaning automatic handling of missing
data and detection of incorrect data is essential.
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Backtesting and Ablation Study
A backtesting simulation study was performed on 14 months
of data from grids 1 to 5, in the period from June 2020 to Au-
gust 2021. Predictions were gathered from both the 1.0 and
2.0 systems, and MAE was calculated. To assess the impact
of the different parts of the 2.0 system, predictions were also
gathered for the 1.0 system with only our new base models
and only our stacking algorithm included. The results can
be seen in Table 2. As shown in the rightmost column, the
2.0 system managed an almost 20% decrease in MAE com-
pared to the 1.0 system. Looking at the different components
in isolation, we see that the increased diversity in our base
model ensemble provided a larger decrease in MAE on aver-
age than the inclusion of only stacking. We also see that our
stacking algorithm outperforms the existing model selection
algorithm regardless of base models.

Grid # Stacking Base Models 2.0 System
1 -0.07 -0.12 -0.17
2 -0.07 -0.04 -0.09
3 -0.09 -0.15 -0.22
5 -0.10 -0.13 -0.26

Avg -0.083 -0.11 -0.185

Table 2: Ablation study results for backtesting. The table
shows percent increase in MAE for new stacking only, new
base model ensemble only, and finally the full 2.0 system
compared to the 1.0 system.

Offline Experiment
To test the 2.0 system in a deployed environment, we de-
ployed the 2.0 system to a stage environment on October 28
2021, where it provided predictions for grids 1 to 5. The re-
sults of three months of run time until the 2.0 system was
taken into production on February 17 can be seen in Table
3. Half-way through the period, new models were added to
the 1.0 system in order to improve accuracy, increasing the
number of models from 19 to 22. Hence, for the results dur-
ing the period where the 2.0 system was in production, we
expected the improvement to be less than during the period
with offline testing.

Grid # 1 2 3 5
loss -21.7 -10.3 +0.2 -14.8
plikt -23.8 -17.9 -3.6 -17.4
sum -22.3 -10.9 -0.6 -14.0

Table 3: The percent relative difference in MAE of the stag-
ing environment compared to the 1.0 system in production
from October 28, 2021, to February 17, 2022. The row
”sum” represents the error of the combined loss and plikt
consumption.

Commercial Deployment and Comparison
From February 28 until June 10, 2022, the system from
Dalal et al. (2020) was run in an offline experiment while

our 2.0 system was in production. Over this period the 2.0
system had a reduced MAE of 10.7% for grids 1 to 5, com-
pared to the 1.0 system. The results on a per-grid basis are
presented in Table 4.

Grid # 1 2 3 5
loss -9.9 -3.2 -8.7 -11.6
plikt -2.4 -8.1 5.0 -6.6
sum -11.4 -5.3 -8.3 -11.4

Table 4: The percent relative difference in MAE of the 2.0
system in deployment compared to the 1.0 system from
February 28, 2022, until June 10. The row ”sum” represents
the decrease in MAE of the combined loss and plikt con-
sumption.

The results show that in the deployment period, the 2.0
system achieved a smaller improvement in MAE over the
1.0 system than what it did in the offline experiment and
backtesting. The decrease in reduction of MAE may result
from three factors. Firstly, There were less fluctuations in
temperature during this period. Hence, the trend of the time
series data was flatter and easier to forecast. Secondly, the
model ensemble of the 1.0 system had several new models
added during the staging period. The added models made
the two model ensembles more similar, potentially making
the expected performance gain for the 2.0 system closer to
the numbers presented in the “Stacking” column in Table
2. Lastly, there is a significant difference in the data pattern
between summer and winter periods. This is illustrated in
Figure 7, where later datapoints have a stronger noise signal.
The same data trends were also seen the two prior years.
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Figure 7: Showcase of different data pattern during the sum-
mer season on grid 1.

Comparing our NNLS-based stacking method to stack-
ing using the mean of the base model predictions, our stack-
ing had a 2.5% lower MAE for predicting the technical grid
losses and a 40% reduction in MAE for predicting the non-
technical losses during the time in production.

Right after deploying the 2.0 system to production, it was
extended to also nominate loss predictions for grids 6, 7 and
8. The extension only required minimal changes to config
files to ensure the new grid data was fetched from the cor-
rect sources, and no changes to the machine learning system
itself. As the 1.0 system was not extended to these grids, we
cannot compare deployed performance between the systems
for the newly added grids. Instead, we present the achieved
MAPE for the old grids with the 2.0 system in the period,
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and compare it to the MAPE for the newly added grids in Ta-
ble 5. MAPE is used as it measures relative error, and should
therefore provide better comparability between grids. From
Table 5 we see that most grids have similar MAPE ranging
from 9 to 15, while grids 3 and 8 are seemingly harder to pre-
dict, with MAPE just over 30. The similar results between
old and new grids show that our system is easily extended to
new grids, without any reduction in performance.

Grid # MAPE
1 14.5%
2 10.6%
3 31.1%
5 12.9%
6 9.53%
7 10.8%
8 32.7%

Table 5: Achieved MAPE on old and new grids between
February 28, 2022 and June 10. The error metric MAPE is
used instead of MAE since the former is scale-invariant.

Conclusion
We have created a robust stacked ensemble method for day-
ahead prediction of grid losses in distribution networks, that
addresses the major shortcomings of the system presented in
Dalal et al. (2020). Our 2.0 system achieved a MAE of 4.51
on four distribution grids in Trøndelag and Rogaland when
deployed during the spring of 2022, which was a 10.7% re-
duction compared to the existing 1.0 system. Application to
three new grids during the deployment period also showed
that the 2.0 system can be directly applied to new grids with-
out any modifications to the machine learning part of the
system, with comparable MAPE to existing grids.

Our system gets its increased performance from diverse
linear, instance-based, tree-based and gradient boosting-
based learning methods as base learners, with an NNLS
model as the superlearner in the stacked ensemble. The su-
perlearner uses the largest available array of models for each
prediction, making it robust with respect to missing model
predictions. Feature engineering is applied to features like
temperature and consumption forecasts to better incorpo-
rate the factors that affect grid loss, and the base learners
are made to predict on the log space to ensure non-negative
predictions.

The proposed system can be directly applied to new grids
anywhere, and could help in reducing the societal costs of
grid loss. Our stacking method can also be adapted to other
forecasting tasks than grid loss without any modifications,
and should provide good results and robust performance if
the problem contains missing values.
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