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Abstract

Multiobjective optimization (MOO) plays a critical role in various real-world
domains. A major challenge therein is generating K uniform Pareto-optimal
solutions that represent the entire Pareto front. To address the very challenge,
this study first introduces fill distance to evaluate the K design points, which
provides a quantitative metric for the representativeness of the design. However,
the direct specification of the optimal design that minimizes fill distance is almost
intractable considering the nested min−max−min optimization problem. We
further propose a surrogate to the fill distance, which is easier to optimize and
induce a rate-optimal design whose fill distance proves at most 4× the minimum
one. Rigorous derivation also shows that asymptotically this induced design will
converge to the uniform measure over the Pareto front. Extensive experiments
on synthetic and real-world benchmarks demonstrate that our proposed paradigm
efficiently produces high-quality, representative solutions and outperforms baseline
methods.

1 Introduction
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Figure 1: Covering of a Pareto
Front (PF). Eight uniformly dis-
tributed Pareto objectives are used
to cover the entire PF with a small
covering radius.

Multiobjective optimization (MOO) is frequently utilized to guide
the real-world decision-makings, such as in the field of material
sciences [20, 47, 5, 30], recommendation systems [29, 63, 32], and
industrial design [45, 52, 50, 58]. An MOO problem (MOP) involves
multiple conflicting objectives, which can be informally formulated
as:

min
x∈X

f(x) = (f1(x), . . . , fm(x)), (1)

where m is the number of objectives. Noted that Equation (1) is a
vector optimization problem and it does not admit a total ordering. To
address that, the concept of Pareto optimality is therefore introduced.
A solution is called Pareto optimal if no other x′ ∈ X can dominate
them. Domination occurs if fi(x′) ≤ fi(x) for all i in 1 to m, with
at least one strict inequality [38, 19]. The image f(x) of a Pareto
optimal solution is called a Pareto objective in this paper. The set of
all such optimal solutions is the Pareto set (PS), and their objectives constitute the Pareto front (PF).

Under mild conditions, a PS or PF forms a continuous (m-1)-dim manifold containing infinitely
many solutions [25]. For a general MOP, it is intractable to precisely depict the entire PS or PF with
a closed-form expression. Researchers thus turns to use a small number K of diverse Pareto optimal
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objectives to “represent” the entire PF. There is number of prior works focused on generating diverse
solutions (see Section 2), however they lacked formal definitions of representability and uniformity.
In this paper, we define representability as the covering radius of a size-K solution covering the
entire PF. An illustrative example is provided in Figure 1, where eight uniformly distributed covers
the entire PF with a small radius. In addition to representability, we describe uniformity through the
configuration of non-asymptotic Pareto objectives and asymptotic uniformity when the number of K
tends to infinity.

In this paper, we first introduce the fill distance (FD) as the minimal covering radius of the Pareto
objectives, measuring how well discrete solutions represent the true PF. A configuration with a small
covering radius is considered a good representation of the PF. Secondly, we find that optimizing
FD is challenging due to its nested min−max−min structure (Equation (4)). To address this, we
maximize the minimal (max−min) pairwise distances of Pareto objectives that bounds the minimal
covering radius up to a constant. Finally, we design a bi-level optimization framework based on
neural network approximation to efficiently solve this max−min problem.

Our method, called UMOD (Uniform Multi-Objective optimization based on Decomposition), is
an important extension of the decomposition-based MOO paradigm [59]. We conduct comparative
evaluations against methods on complex multiobjective problems with numerous local optimas and on
fairness classification problems with thousands of decision variables. Empirical results demonstrate
the effectiveness of our proposal. The contribution of this paper can be summarized as:

1. We introduce the fill distance for a set of Pareto objectives as a new uniformity metric in multiob-
jective optimization, establishing a framework for measuring uniformity in MOO. Additionally,
we reveal a surrogate objective function: maximizing the minimal pairwise distances of a size-K
solution set on the PF, yielding a design with a fill distance that bounds the minimal fill distance up
to a constant, regardless of the number (K) of solutions.

2. We propose constructing the maximizing minimal distance design as a bi-level optimization
problem and using neural networks to enhance efficiency. We provide optimization error bounds
for this problem and present a practical solution algorithm, UMOD.

3. Finally, we evaluate our approach against leading MOO methods, including evolutionary algorithms
and gradient-based algorithms, on both synthetic and real-world problems. UMOD surpasses
these methods in terms of uniformity and efficiency on popular metrics used in multiobjective
optimization.

Notations. In this paper, ρ(y(a),y(b)) represents the Euclidean distance between vectors y(a) and
y(b), with bold letters for vectors. Superscripts distinguish vectors, and subscripts (e.g., yi) indicate
vector elements. A PF is denoted by T . The objective space is Y = {y | f(x),x ∈ X}. ∆m is
the m-D preference simplex; ∆m = {y |

∑m
i=1 yi = 1, yi ≥ 0, i ∈ [m]}, where [m] = {1, . . . ,m}.

Black bold notations (e.g., Y) denote solution sets.

2 Related works

In this section, we review three lines of works to generate uniform or diverse Pareto objectives. We
focus our discussions on uniform/diverse Pareto objectives rather than Pareto solutions because our
goal is to produce uniform Pareto solutions in the objective space (Y), not the decision space (X ).

2.1 Methods to generate diverse Pareto objectives

Various MOO methods effectively generate diverse Pareto objectives, for both gradient-based and
evolution-computation (EC)-based frameworks. In the line of gradient-based methods, Pareto Mul-
tiTask Learning (PMTL) [33] produces Pareto objectives which are constrained in specific regions
(sectors); MOO with Stein Variational Gradient Descent (MOO-SVGD) models objective vectors
as particles, updating them through repulsive forces to maximize their separation; Exact Pareto
Optimization (EPO) [37] aligns solutions with user-specific preference vectors, fostering a diverse
distribution of Pareto objectives by utilizing varied preferences. For multiobjective evolutionary
algorithms (MOEAs), NSGA2 [14] introduces the crowding distance and Pareto rank to achieve a
diverse distribution of Pareto objectives; NSGA3 [13, 27] introduces a new diversity preservation
technique based on reference points; MOEA/D [59] and its variants generate diverse Pareto objec-
tives by leveraging the positional relationship between preference vectors and Pareto objectives;
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Hypervolume-based methods (e.g., SMS-MOEA [6]) maximize the set of solutions with the greatest
hypervolume to enhance diversity. A key distinction of the proposed UMOD method with the previ-
ously mentioned methods is that, for general MOPs, the distribution of the achieved Pareto objectives
remains unknown, whereas, important distribution characteristics of its achieved Pareto objectives
can be determined by UMOD.

2.2 Subset selection for multiobjective optimization

Another approach to generating a size-K diverse Pareto set is subset selection. This method first
generates numerous objectives on the PF, then selects K solutions to maximize hypervolume or
minimize IGD [23, 53, 9, 46]. Subset selection, a discrete optimization problem, is generally
inefficient to solve compared with continuous optimization problems. Recently, some approaches
employ greedy algorithms [9, 34, 28] to obtain approximate solutions, with naive greedy methods
typically providing a (1−1/e) guarantee. In contrast, our method addresses a continuous optimization
problem on the PF, using gradient-based techniques to solve the established optimization problem to
improve both accuracy and efficiency.

2.3 Preference adjustment methods in the decomposition-based MOO paradigm

Since the proposed method can be classified under the preference adjustment category, we also
discuss the relationship between the proposed UMOD and preference/weight2 adjustment meth-
ods. Preference adjustment stems from MOEA/D-AWA [41], where its strategy is to remove the
preference corresponding to the most crowded objective and add a preference corresponding to the
most sparse one. Subsequently, several preference adjustment methods have been introduced [36],
including DEA-GNG [35] and MOEA/D-SOM [22], which utilize neural gas networks to guide the
selection of preference vectors. Other approaches, such as W-MOEA/D [21], tw-MOEA/D [39],
paλ-MOEA/D [49], and MOEA/D-AWG [56], use mathematical models to shape the non-dominated
solutions and adjust preference vectors, achieving a diverse distribution of Pareto-optimal objectives.
The proposed method differs from other preference adjustment methods in two key ways: (1) it mod-
els the PF using a neural network, offering both accuracy and efficiency, and (2) it provides rigorous
theoretical analysis for selecting preference vectors that ensure uniformity and representativeness.

3 Pareto solutions with uniform designs

3.1 FD as an upper bound of IGD

We first define fill distance (FD) [11] of a set Y (Y = [y(1), . . . ,y(K)]) and establish its relationship
with the inverted generalized distance (IGD) indicator [54] of a set Y, a famous metric in MOO. FD
and IGD are defined as follows:

Definition 1 (FD & IGD).

FD(Y) = max
y∈T

min
y′∈Y

ρ(y,y′) = max
y∈T

dist(y,Y), IGD(Y) =
∫
T
min
y′∈Y

ρ(y,y′)dy, (2)

where ρ(·, ·) represents the Euclidean distance between two vectors. The term “miny′∈Y ρ(y,y′)”
represents the nearest distance from a point y on the PF to the reference set Y. Therefore, FD(Y) =
maxy∈T miny′∈Y ρ(y,y′) denotes the covering radius of Y, i.e., the largest radius within which at
least one solution in Y covers the entire PF. However, IGD(Y), which represents the average distance
from a point on the PF to the set Y, lacks the clear geometric interpretation that fill distance offers.
For MOO, the goal is to minimize a set of Pareto objectives, i.e., Y ⊂ T , by optimizing either the
FD or IGD indicator: minY⊂T FD(Y) or minY⊂T IGD(Y) to reach a diverse distribution. Let the
optimal sets be YFD and YIGD, respectively. The following theorem compares FD and IGD.

Theorem 2 (FD is an upper bound of IGD).

IGD(YIGD) ≤ IGD(YFD) ≤ FD(YFD) (3)

2In this paper, a preference vector or a weight vector denotes the same meaning.
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The first inequality holds by definition since YIGD minimizes IGD, while the second inequality holds
because, for a fixed configuration YFD, the average distance (IGD(YFD)) is always less than or
equal to the maximum distance (FD(YFD)). Theorem 2 establishes that the optimal configuration of
FD (YFD) provides an upper bound for the IGD value. However, to the best of our knowledge, the
optimal configuration of IGD does not offer a similar bound for FD. This distinction is one of the
reasons we focus on discussions on FD in this paper.

3.2 Max-packing design as a surrogate of FD design

The minimization of FD involves solving the following nested min−max−min problem:

dFD = min
Y⊂T

max
y∈T

min
y′∈Y

ρ(y,y′). (4)

A small dFD indicates that the optimal configuration YFD can well cover the entire PF with a relatively
low covering radius. However this triply nested structure is known difficult to be optimized [55, 40].
Thus, we plan to seek a surrogate max-packing problem,

dPack = max
Y⊂T

δ = max
Y⊂T

(
min

1≤i<j≤K
ρ(y(i),y(j))

)
, (5)

where δ represents the separation distance between two vectors. The optimal design YPack, which
solves the optimization problem (Equation (5)), is known as the best-packing design [8]. In this paper,
we show in Theorem 3 that YPack effectively optimizes FD when the decision space is a PF, as dFD
is bounded by YPack up to a constant factor, independent of size K.
Theorem 3 (Surrogate for minimal FD). Consider a connected, compact 3 PF T . The minimal fill
distance dFD between T and a size-K design YPack/YFD will then be bounded as:

1

4
dPack ≤ dFD ≤ FD(YPack) ≤ dPack, (6)

Furthermore, the fill distance between T and the optimal design dPack induced by YPack is upper
bounded by dPack, which is guaranteed to be upper bounded by 4dFD. YPack is thus considered a
quality, rate-optimal representative for the whole PF T .

The second inequality dFD ≤ dPack is proved by Auffray et al. [3], Pronzato [40], and we provide
a tighter lower bound dPack/4, utilizing the topological property of a PF. The complete proof of
Theorem 3 is left in Appendix A.1.

Furthermore, under an additional strict inequality condition dPackK < dPackK+1 on the PF, the max-
packing design YPack

K serves as a dPackK -covering of T , which is established by Theorem 4. The
subscript “K” specifically denotes the max-packing distance dPackK for a size-K design, similarly
used for YPack

K to represent a size-K design.

Theorem 4. Consider a connected, compact PF T with the property dPackK < dPackK+1, the max-packing
design YPack

K covers T with radius of at most dPackK .

This theorem suggests that YPack
K can represent T well since the maximal distance between any

vector y ∈ T and YPack
K is bounded by dPackK .

3.3 Characterizations of a max-packing design

This section discusses key properties of the max-packing design on a PF. For bi-objective problems,
YPack exhibits favorable properties when YPack ⊂ T , as formalized in Theorem 5. The proof is
provided in Appendix A.2.

Theorem 5 (Characterization of YPack for biobjective problems). Let YPack = [y(1), . . . ,y(K)] be
sorted by increasing first component, such that y(1)1 ≤ . . . ≤ y

(K)
1 . For a compact, connected T ,

YPack is characterized as follows:

1. Equal spacing: ρ(y(1),y(2)) = . . . = ρ(y(K−1),y(K)).

3A connected, compact set is also called a rectifiable set.
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2. Endpoint alignment: y(1) and y(K) are two endpoints (p(1),p(2)) of T , i.e., y(1) = p(1) =
[infy∈T y1, supy∈T y2] and y(K) = p(2) = [supy∈T y1, infy∈T y2].

Remark. According to Theorem 5, first, YPack, including both the starting and ending points, spans
the maximum range among all configurations, which is desirable. Second, equal pairwise distances
between Pareto objectives yields an intuitive interpretation of uniformity. Maximizing hypervolume
ensures the “equal spacing” property for bi-objective linear PFs [4][Theorem 4], while our design
only requires the PF to be compact and connected.

Besides this bi-objective results, we examine the asymptotic properties of YPack by Theorem 6.
Theorem 6 (Asymptotic uniformity [8](Theorem. 2.1)). As K → ∞, the set sequence {YPack

K }
weakly converge to a uniform distribution over a compact, connected T . Specifically, for any subset
B ⊂ T with measure-zero boundary, the proportion of points in YPack

K lying within B converges to
the proportion of T occupied by B:

lim
K→∞

#(YPack
K ∩ B)

#(YPack
K )

=
Vol(B)
Vol(T )

= P(y ∈ B | y ∈ T ), (7)

where # denotes the number of points in a set, and “Vol” denotes the volume of a set.

Theorem 6 shows that as the solution set size K grows, YPack
K approaches a uniform distribution.

Specifically, random variable Y Pack
K

d−→ Unif(T ), meaning Y Pack
K , the categorical distribution where

each y ∈ YPack
K has probability 1/K, converges in distribution to Unif(T ).

4 Efficient optimization of a size-K uniform set

The original max-packing problem (Equation (5)) maximizes the minimal pairwise distance among
Pareto objectives and can be reformulated as the following constrained optimization problem on the
PF:

max

(
min

1≤i<j≤K
ρ(y(i),y(j))

)
s.t. y(i),y(j) ∈ T . (8)

To constrain y(i),y(j) pairs as Pareto objectives, we solve decision variables of y(i)’s as the optimal
solution of the following modified Tchebycheff (mTche) aggregation function (Equation (9)),

y = h̃(λ) = arg min
y′∈Y

{
yi − zi
λi

}
:

[
0,

π

2

]m−1

7→ Rm, (9)

where z is a reference point (zi ≤ yi,∀y ∈ Y,∀i ∈ [m]). This substitution is equivalent when the
optimal solution of Equation (9) is unique, as for any Pareto objective y, there exists a preference
λ ∈ ∆m such that the optimal value of Equation (9) matches y. This argument is proved in
Appendix A.4.

Example 7. Specific formulations of h̃(λ) on famous MOPs include:

1. ZDT1: y1 = kλ1, y2 = k(1− λ1), where k = (2− λ1 −
√
−3λ2

1 + 4λ1)/2(λ1 − 1)
2.

2. ZDT2: y1 = kλ1, y2 = k(1− λ1), where k = (λ1 − 1 +
√
5λ2

1 − 2λ1 + 1)/2λ2
1.

3. DTLZ1: yi = 0.5λi, for i = 1, 2, 3.

The formulations and PFs of the three problems are provided in Appendix C.2. These examples
indicate that uniform Pareto objectives are only achievable when the true PF is affine to simplexes
(e.g., on DTLZ1 problem), where h̃(λ) is also affine. In most other cases, the non-linearity of h̃(λ)
prevents uniform Pareto objectives. Substituting Equation (9) into Equation (8) yields the following
bi-level optimization problems:

dPack = max
ϑϑϑ(1),...,ϑϑϑ(K)

min
1≤i<j≤K

ρ(y(i),y(j))

y(k) = arg min
y(k)∈Y

{
y
(k)
i − zi
λi(ϑϑϑ(k))

}
, i ∈ [m].

⇒


dPack = max

ϑϑϑ(1),...,ϑϑϑ(K)
min

1≤i<j≤K
ρ(h(ϑϑϑ(i)),h(ϑϑϑ(j)))

s.t. ϑϑϑ(k) ∈
[
0,

π

2

]m−1

.

(10)
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The function λ(ϑϑϑ) converts a “preference angle” from an angle space
[
0, π

2

]m−1
into a preference

vector. The conversion relationship is detailed in Appendix C.3. We use λ(ϑϑϑ) as decision variables
for easier optimization since λ(ϑϑϑ) is constrained in a box. In the right equation, the Pareto objective is
denoted as y = h(ϑϑϑ) = h̃(λ(ϑϑϑ)). Various bi-level optimization methods [48, 62] can be used to solve
problem (Equation (10)). For efficiency consideration, we propose to use a gradient-based approach.
Define δ = min(i,j) ρ(y

(i),y(j)), where (i∗, j∗) is the optimal pair from argmin(i,j) ρ(y
(i),y(j)).

After some simple algebraic calculations, ∂δ
∂ϑϑϑ can be calculated by the following two equations:

∂δ

∂ϑϑϑ(i∗)
=

∂h(ϑϑϑ(i∗))

∂ϑϑϑ(i∗)︸ ︷︷ ︸
B(n×m)

h(ϑϑϑ(i∗))− h(ϑϑϑ(j∗))

ρ(h(ϑϑϑ(i∗)),h(ϑϑϑ(j∗)))︸ ︷︷ ︸
A(1×m)

⊤

,
∂δ

∂ϑϑϑ(j∗)
= − ∂h(ϑϑϑ(j∗))

∂ϑϑϑ(j∗)︸ ︷︷ ︸
C(n×m)

h(ϑϑϑ(i∗))h(ϑϑϑ(j∗))

ρ(h(ϑϑϑ(i∗)),h(ϑϑϑ(j∗)))︸ ︷︷ ︸
A(m×1)

⊤

,

The remaining terms ∂δ
∂ϑϑϑ(k) , k ̸= i∗, j∗ are zero vectors. Calculating the gradient vector A is

straightforward by using basic algebra calculations. However, computing the gradient matrices
B or C is difficult because h(ϑϑϑ) is a black-box function, representing the optimal values of an
optimization problem. Estimating matrices B or C using finite difference is impractical, as it requires
solving Equation (9) for at least n×m times, which is highly time-consuming. To efficiently estimate
∂h
∂ϑϑϑ , we propose using a neural model hϕ to approximate h based on historical data (ϑϑϑ,h(ϑϑϑ)),
allowing us to estimate ∂h

∂ϑϑϑ via ∂hϕ

∂ϑϑϑ . Since a neural network is introduced, we analyze its induced
error in Theorem 8, with the full proof in Appendix A.3.
Theorem 8 (Optimization error ϵnn introduced by using a network). Let hϕ(ϑϑϑ) be an approximator
of h(ϑϑϑ) such that ||hϕ(ϑϑϑ)− h(ϑϑϑ)|| ≤ ϵ, for every ϑϑϑ ∈ [0, π

2 ]
m−1, as commonly assumed in bi-level

optimization, e.g., [18], Eq. (10). ϵnn is the difference between the maximum of the minimal distances
calculated using the approximate function hϕ and the true function h. Then, ϵnn is bounded by 2ϵ:

ϵnn =

∣∣∣∣ max
ϑϑϑ(1),...,ϑϑϑ(K)

min
1≤i<j≤K

ρ(hϕ(ϑϑϑ
(i)),hϕ(ϑϑϑ

(j)))− dPack
∣∣∣∣ ≤ 2ϵ.

Remark. The error ϵ, defined as ||hϕ(ϑϑϑ) − h(ϑϑϑ)|| ≤ ϵ, is influenced by the covering radius
R of the estimated solutions hϕ(ϑϑϑ

(1)), . . . ,hϕ(ϑϑϑ
(K)) and the fitting error ϵfit, where ϵfit =

maxk∈[K] ||hϕ(ϑϑϑ
(k))− h(ϑϑϑ(k))||. For any ϑϑϑ, the error satisfies ||hϕ(ϑϑϑ)− h(ϑϑϑ)|| ≤ L||ϑϑϑ− ϑϑϑ(i′)||+

ϵfit ≤ L ·R+ ϵfit, where L is the Lipschitz constant of function (hϕ(ϑϑϑ)− h(ϑϑϑ)), ϑϑϑ(i′) is the nearest
solution to ϑϑϑ among the estimated solutions, and R is the covering radius, which can be further
reduced by adding more training pairs. For overparameterized networks, ϵfit can be considered as
negligible.

Practical algorithms. Due to the space limit, the pseudo-codes for UMOD are provided in Al-
gorithm 1 and Algorithm 2 in Appendix C.1. Initially, we generate K approximately uniform
preferences using the Das-Dennis method [12]. Then either a multiobjective evolutionary algorithm
based on decomposition (MOEA/D) [59] or a gradient-based MOO with the mTche aggregation
function is employed for producing preference angle and Pareto objective pairs (ϑϑϑ,y). MOEA/D
is suitable for problems with many local optima, while gradient-based MOO is more efficient for
multiobjective multitask learning (MOMTL) problems. Based on (ϑϑϑ,y) pairs, a PF model hϕ(ϑϑϑ)
is fitted by optimizing the mean square estimation error. Finally, preference angles are updated
to maximize the minimal pairwise distances of Pareto objectives. These steps are repeated for N
iterations until convergence.

5 Experiments

The experiments compare UMOD with other methods on two types of MOPs: (1) those with many
local optimas which can be solved by MOEAs efficiently, and (2) multiobjective fairness classification
neural networks as decision variables. MOEAs and multiobjective fairness problems are executed
with 31/5 random seeds, separately. We employ seven indicators to assess performance of different
algorithms: (1) Hypervolume (↑) [24], (2) IGD (↓) [26], (3) Sparsity (↓) [57], (4) Spacing (↓) [44],
(5) Uniformity (↑), (6) Soft Uniformity (↑), and (7) Fill distance (↓). Indicators 1-2 focus on
convergence and diversity for multi-objective optimization (MOO), while indicators 3-7 evaluate
solution uniformity. See Appendix B.1 for more detailed expression for these indicators.
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Figure 3: Result comparison on ZDT1.

5.1 Comparison with MOEAs
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Figure 2: Result on RE37. (a): UMOD solu-
tions are more uniform. (b): A PF model can
be trained with a small number of solutions.

We demonstrate the effectiveness of our proposed method
across a diverse set of MOEA benchmark problems,
including the ZDT series4 [16], and DTLZ problems
1-6 [15]5, as well as various real-world problem in-
stances [50]. The real-world cases include: four-bar
truss design (RE21), reinforced concrete beam design
(RE22), disc brake design (RE33), rocket injector design
(RE37), car side impact design (RE41), and conceptual
marine design (RE42). Notably, RE41 and RE42 are com-
plex four-objective problems that involve extensive four-
dimensional objective spaces. The prefix “RE” denotes
real-world scenarios.

Table 1: Partial results for biobjective problems (full results are in Table 7).

Indicator DEA-GNG [35] LMPFE [51] Subset [9, 46] NSGA3 [13, 27] SMS-EMOA [6] MOEA/D [59] MOEA/D-AWA [41] UMOD

ZDT1

HV 1.03 (0.00) (6) 1.03 (0.00) (2) 1.02 (0.00) (7) 1.03 (0.00) (5) 1.04 (0.00) (1) 1.03 (0.00) (4) 1.03 (0.00) (3) 1.04 (0.00) (0)
IGD 5.68 (0.29) (7) 5.42 (0.21) (6) 5.21 (0.40) (1) 5.28 (0.00) (3) 5.22 (0.07) (2) 5.30 (0.00) (4) 5.42 (0.02) (5) 5.19 (0.00) (0)
Spacing 6.35 (1.74) (7) 2.44 (1.82) (2) 3.51 (0.47) (3) 5.90 (0.00) (5) 1.91 (0.46) (1) 5.92 (0.01) (6) 3.69 (0.04) (4) 0.12 (0.06) (0)
Sparsity 4.80 (0.19) (7) 4.55 (0.12) (4) 2.59 (0.18) (0) 4.60 (0.00) (5) 4.48 (0.01) (2) 4.61 (0.00) (6) 4.51 (0.01) (3) 4.39 (0.00) (1)
Uniform 1.33 (0.11) (6) 1.67 (0.32) (2) 0.89 (0.10) (7) 1.53 (0.00) (3) 1.85 (0.03) (1) 1.51 (0.00) (4) 1.51 (0.00) (5) 2.07 (0.01) (0)
SUniform 0.47 (0.12) (6) 0.68 (0.13) (2) 0.09 (0.09) (7) 0.49 (0.00) (4) 0.74 (0.01) (1) 0.48 (0.00) (5) 0.53 (0.00) (3) 0.77 (0.00) (0)
Fill Distance 1.60 (0.23) (6) 1.23 (0.09) (2) 2.00 (0.18) (7) 1.55 (0.00) (5) 1.16 (0.05) (1) 1.50 (0.00) (4) 1.43 (0.03) (3) 1.04 (0.01) (0)

RE21

HV 1.24 (0.00) (5) 1.23 (0.01) (7) 1.24 (0.00) (4) 1.24 (0.00) (2) 1.24 (0.00) (1) 1.24 (0.00) (6) 1.24 (0.00) (3) 1.24 (0.00) (0)
IGD 4.63 (0.28) (5) 4.61 (0.13) (4) 5.15 (0.01) (6) 4.44 (0.00) (3) 4.23 (0.02) (1) 5.40 (0.02) (7) 4.33 (0.04) (2) 4.12 (0.00) (0)
Spacing 6.63 (1.16) (6) 3.62 (0.93) (4) 1.38 (0.00) (1) 5.71 (0.01) (5) 3.19 (0.37) (2) 10.49 (0.04) (7) 3.47 (0.41) (3) 0.12 (0.05) (0)
Sparsity 3.10 (0.21) (6) 2.90 (0.10) (4) 1.74 (0.00) (0) 3.02 (0.00) (5) 2.82 (0.02) (2) 3.87 (0.02) (7) 2.84 (0.01) (3) 2.70 (0.00) (1)
Uniform 0.81 (0.12) (7) 0.95 (0.16) (5) 0.95 (0.00) (4) 1.16 (0.00) (2) 1.26 (0.05) (1) 0.93 (0.00) (6) 1.11 (0.03) (3) 1.62 (0.01) (0)
SUniform -0.03 (0.07) (5) 0.12 (0.08) (3) -0.17 (0.00) (7) 0.08 (0.00) (4) 0.20 (0.01) (1) -0.17 (0.00) (6) 0.13 (0.01) (2) 0.31 (0.00) (0)
Fill Distance 1.45 (0.20) (4) 1.21 (0.12) (3) 2.62 (0.01) (7) 1.47 (0.00) (5) 1.09 (0.04) (1) 2.11 (0.01) (6) 1.15 (0.02) (2) 0.83 (0.00) (0)

Rank

HV 5.14 4.14 5.57 3.86 0.57 3.86 3.57 1.29
IGD 5 4.86 4 2.43 2.29 4.43 4 1
Spacing 5.71 2.71 3.86 3.86 3 5.14 3.57 0.14
Sparsity 5.29 5.71 1.43 3.71 2.71 4.86 3.43 0.86
Uniform 5 3.86 6.43 3 1.71 4.29 3.57 0.14
SUniform 5.14 3.57 6.86 3.14 2 4 3.14 0.14
Fill Distance 5.43 3.57 5.57 3.43 2.29 3.57 3.29 0.86

Multiobjective testing problems often have many local Pareto optimal solutions, leading to compar-
isons primarily with MOEAs. These include: (1) MOEA/D [59], a decomposition-based approach;
(2) MOEA/D-AWA [41], integrating adaptive weight adjustment; (3) NSGA3 [13, 27], generating

4ZDT5 is a discrete optimization problem and is commonly excluded in MOEA studies.
5DTLZ 7 is excluded because our theoretical results only apply to compact and connected PFs, which DTLZ

7 does not satisfy. Results on DTLZ 5-6 are demonstrated in Appendix B.6.
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Figure 4: Results on RE21 and DTLZ2.
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Figure 5: Results on RE41 (full results are in Figure 8).
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Figure 6: Results on RE42 (full results are in Figure 9).

diverse Pareto objectives through crowding distance; (4) SMS-EMOA [6], maximizing hypervolume
for diverse solutions; (5) LMPFE [51], estimating the PF using multiple local models; (6) Subset
selection [9, 46], choosing a solution set by hypervolume maximization 6; and (7) DEA-GNG [35],
a preference adjustment method based on growing neural gas network. Methods (1)-(4) are classical
MOEA methods implemented by Pymoo [7], while methods (5)-(7) are more recent methods. Full
name of these methods are provided in Table 4.

Table 2: Partial results on three-objective problems (full results are in Table 8).

Indicator DEA-GNG [35] LMPFE [51] Subset [46] NSGA3 [13] SMS-EMOA [6] MOEA/D [59] MOEA/D-AWA [41] UMOD

DTLZ2

HV 1.01 (0.01) (7) 1.05 (0.00) (6) 1.08 (0.00) (1) 1.06 (0.00) (5) 1.08 (0.00) (0) 1.06 (0.00) (3) 1.06 (0.00) (4) 1.07 (0.00) (2)
IGD 12.52 (0.64) (2) 12.46 (0.09) (1) 15.14 (0.00) (6) 12.54 (0.00) (3) 15.45 (0.25) (7) 12.55 (0.00) (5) 12.55 (0.00) (4) 12.19 (0.04) (0)
Spacing 5.29 (1.72) (2) 2.64 (0.39) (1) 8.97 (0.00) (7) 5.45 (0.00) (3) 7.15 (0.51) (6) 5.45 (0.01) (4) 5.45 (0.01) (5) 0.52 (0.21) (0)
Sparsity 1.50 (0.13) (0) 2.18 (0.13) (2) 2.42 (0.00) (3) 2.43 (0.00) (4) 2.75 (0.14) (7) 2.43 (0.00) (6) 2.43 (0.00) (5) 1.61 (0.13) (1)
Uniform 1.58 (0.19) (5) 2.45 (0.13) (1) 0.96 (0.00) (7) 2.43 (0.00) (4) 1.51 (0.15) (6) 2.43 (0.00) (3) 2.43 (0.00) (2) 3.17 (0.09) (0)
SUniform 0.36 (0.23) (5) 0.97 (0.04) (1) -0.04 (0.00) (7) 0.95 (0.00) (4) 0.18 (0.07) (6) 0.95 (0.00) (2) 0.95 (0.00) (3) 1.18 (0.02) (0)
Fill Distance 3.20 (0.60) (5) 2.69 (0.10) (4) 3.54 (0.00) (7) 2.59 (0.00) (1) 3.42 (0.16) (6) 2.59 (0.00) (3) 2.59 (0.00) (2) 2.37 (0.08) (0)

Rank

HV 6.8 4.6 1.8 4.4 0.2 3.6 4.2 2.4
IGD 6 3 4.6 1.8 4.6 3.4 4 0.6
Spacing 4.4 2.8 5.6 3.6 4 3.4 3.6 0.6
Sparsity 1.4 3.6 1.6 4.6 4.8 5.6 4.6 1.8
Uniform 5.8 2 5.8 2.8 4 3.4 3.4 0.8
SUniform 6 2 5.8 3.4 4.4 3 3.2 0.2
Fill Distance 6.6 4.2 5.2 1 4.2 3.2 3.2 0.4

6Code: https://github.com/HisaoLabSUSTC/GAHSS.
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We present the results for biobjective problems in Figure 3 and Table 1 7. By directly minimizing
maximal pairwise distances, the uniform indicator (which corresponds to maximal pairwise distances,
see Appendix B.1, metric 5) is optimized effectively and ranks best among all methods. The fill
distance, a surrogate for maximal pairwise distance up to constant, also performs best among all
methods. This indicates that solutions found by UMOD cover the true PF with minimal covering
radius, which satisfies our main purpose. Figure 3 further confirms that the covering radius of UMOD
is significantly smaller than other methods. We also observe that the IGD indicator (Appendix B.1,
metric 2), representing the mean Euclidean distance between the true PF and the found size-K
solution set, is significantly improved. The significant improvement over IGD, a well-established
indicator of uniformity and convergence of Pareto solutions, suggests that our method finds high-
quality Pareto solutions and also implies an inherent theoretical connection between IGD and minimal
pairwise distance maximization, warranting further investigation.

We would like to mention another advantage of UMOD is it can handle PFs of varying scales, as
demonstrated in Figure 4(a)/(b). Unlike using fixed preference vectors, which can result in non-
uniform Pareto objectives, UMOD ensures uniformity in the objective space, remaining the uniformity
of the achieved distribution unaffected by the scale of a PF.

For three-objective problems, DTLZ1 owns a simplex-like PF, making DTLZ1 the only problem
where uniform preferences result in uniformly distributed Pareto objectives. For DTLZ2 problem with
a sphere-like PF, using uniform preferences on the simplex fails to produce uniform Pareto objectives
by MOEA/D. As shown in Figure 4(c), objectives solved by MOEA/D around the center of the PF
are sparse, while those around the margin are dense. In contrast, UMOD produces uniform Pareto
objectives on the PF. The minimal distances from one Pareto objective to the rest of the solutions,
sorted by index, are shown in Figure 4(d), indicating that only UMOD achieves the maximal minimal
pairwise distance. The results for the real-world RE37 problem are shown in Figure 2(a), indicating
MOEA/D produces inefficient duplicated solutions on the boundary of the PF. In contrast, UMOD
effectively reduces duplicated solutions by maximizing the minimal pairwise distance on the PF, as
duplicated solutions have a minimal pairwise distance of zero. A visualization of the learned PF is
shown in Figure 2(b), indicating that a PF model can be learned efficiently by using only a small
number of solutions. Most uniformity indicators, such as IGD, uniform distance, and FD outperforms
other methods significantly, indicating UMOD finds much more uniform and representative solutions.
The HV indicator of UMOD is the 3-rd best and comparable to SMS-EMOA, a method directly
optimizes the HV indicator.

Finally, we discuss the results for four-objective problems which are reported in Figures 8 and 9
and Table 9. A key advantage of UMOD over DEAGNG and LMPFE is its ability to discover a
broader PF (Figure 5) since it directly maximizing the minimal pairwise distance on the PF. Although
subset selection performs similarly to UMOD on the RE41 problem, it relies on a inefficient two-phase
optimization problem in the manner of electing a subset of problems from a much larger solution
set. Generating a large number of solutions for a four-objective problem is considered inefficient.
On RE41, UMOD significantly outperforms other methods in IGD, indicating UMOD find more
representative solutions. On RE42, UMOD achieves high rankings (the best or second best) in
uniformity indicators such as spacing, sparsity, uniform, and soft uniform. To close the discussion, we
would like to mention that due to a challenging PF region that all methods find difficult to detect, the
IGD indicators for UMOD, NSGA3, and SMS-EMOA are close and these three methods outperform
the other methods a lot.

5.2 Results on fairness classification

In this subsection, we compare our methods with baseline methods on multiobjective fairness
classification problems, specifically Adult [2] and Compass [1]. The decision variable is the neural
network parameter used to classify both accuracy and fairness. The first objective, data classification
accuracy, uses binary cross-entropy loss, while the second objective employs a hyperbolic tangent
relaxation of the difference of equality of opportunity (DEO) loss [42][Eq. 6]. Details of the data and
network architecture are provided in Table 6 in Appendix B.3.

7For a better illustration, the unit of IGD, Spacing, Sparsity, Uniform, SUniform, and Fill distance are scaled
by 0.01,0.01,0.01,0.1,0.1, and 0.1.
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Table 3: Statistical results on fairness classification problems. Results are averaged on five random
seeds. Results are presented in the the format of “(mean)/(std)/(rank)”.

Indicator EPO [37] PMGDA [60] Agg-LS [38] Agg-PBI [59] Agg-Tche [38] HVGrad [17] UMOD

Adult

HV 1.17 (0.00) (3) 1.13 (0.00) (4) 1.20 (0.00) (0) 1.03 (0.00) (5) 1.19 (0.00) (1) 0.88 (0.02) (6) 1.19 (0.00) (2)
Spacing 1.64 (0.14) (1) 67.52 (1.26) (6) 43.43 (0.77) (5) 4.75 (0.26) (4) 3.35 (0.33) (3) 1.60 (0.73) (0) 3.09 (0.21) (2)
Sparsity 2.79 (0.06) (2) 88.68 (2.76) (6) 52.47 (1.23) (5) 0.71 (0.13) (1) 4.33 (0.09) (4) 0.22 (0.06) (0) 4.27 (0.04) (3)
Uniform 1.44 (0.01) (3) 1.60 (0.03) (2) 0.91 (0.01) (4) 0.05 (0.02) (6) 1.78 (0.03) (1) 0.10 (0.04) (5) 1.80 (0.02) (0)
SUniform 0.58 (0.01) (3) 0.82 (0.02) (2) 0.56 (0.01) (4) -0.73 (0.01) (5) 0.91 (0.00) (1) -0.96 (0.08) (6) 0.91 (0.01) (0)

Compass

HV 1.05 (0.00) (0) 1.00 (0.00) (2) 1.00 (0.00) (1) 0.94 (0.01) (5) 1.00 (0.00) (3) 0.88 (0.01) (6) 0.99 (0.01) (4)
Spacing 4.14 (0.18) (0) 24.33 (0.56) (4) 43.68 (1.33) (6) 7.74 (0.56) (2) 27.72 (1.60) (5) 4.32 (1.40) (1) 11.23 (7.00) (3)
Sparsity 6.05 (0.06) (2) 20.94 (0.48) (4) 51.72 (6.87) (6) 1.87 (0.22) (0) 24.84 (1.85) (5) 2.22 (0.14) (1) 16.96 (2.33) (3)
Uniform 1.96 (0.02) (1) 1.85 (0.08) (3) 0.13 (0.00) (6) 0.24 (0.04) (5) 1.89 (0.02) (2) 0.94 (0.19) (4) 2.00 (1.22) (0)
SUniform 1.23 (0.01) (3) 1.29 (0.03) (2) -0.22 (0.00) (5) -0.46 (0.02) (6) 1.31 (0.01) (1) 0.17 (0.13) (4) 1.54 (1.13) (0)

This experiment validates our method’s applicability to large-scale machine learning tasks and its
robustness against stochastic gradients. Strong baselines include Exact Pareto Optimization (EPO)
[37], Preference-based MGDA (PMGDA) [60], Hypervolume-gradient (HVGrad) [17], and aggre-
gation function-based methods like linear scalarization (LS), Penalty-based Intersection (PBI), and
weighted Tchebycheff [38]. For the aggregation functions expressions, please refer to Appendix C.4.
These gradient-based methods are supported by a recent MOO library called LibMOON [61]. Full
name of these methods are provided in Table 4.
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Figure 7: Result on fairness classification.

The visualization of different methods on the
Adult problem is shown in Figure 7, and the
numerical results are in Table 3. UMOD
methods consistently find uniform Pareto ob-
jectives across the entire PF, recovering a
larger Pareto set compared to other methods.
The uniformity indicators outperform baseline
methods. For the Adult problem, the Tcheby-
cheff aggregation method is a strong competi-
tor because the PF scales of the two objectives
are similar. On the Compass problem, where
objectives vary in scale, UMOD finds more uniform solutions compared to the Tchebycheff aggrega-
tion function, which tends to produce sparse and duplicated solutions at the lower right of the PF.
The EPO method exhibits numerical instability issues in finding marginal solutions, leading to an
incomplete PF and lower uniformity indicator, as reported in [31]. In both tasks, HV-Grad, EPO, and
PBI aggregation methods identify only a small portion of the PF. Consequently, the spacing indicators
of HV-Grad and EPO are better than UMOD since these methods find a narrower PF.

6 Conclusions and further works

Conclusions. In this paper, we have proposed a new understanding of a longstanding problem in
MOO, generating K uniform Pareto objectives, through introducing fill distance as a metric for
the representativeness of the design. Moreover, we suggest an easy-to-optimize surrogate to the
fill distance to specify the rate-optimal space-filling design. We provide rigorous analysis of the
resulting objective design, and in particular, we show this design will asymptotically converge to
the uniform measure over Pareto front. With this new paradigm, we also empirically demonstrate
how the space-filling design we obtain can benefit downstream performance with both synthetic and
real-world MOO tasks. Overall, we believe that we pave a new way for (rate-)optimally configuring
the Pareto objectives.

Future works include applying UMOD to large-scale real-world multiobjective problems, such as
material design, vaccine design, and recommendation systems. The broader impacts of this work is
discussed in Appendix D.1.
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A Complete proofs of theoretical results

This section provides complete proofs for the theoretical results. We first provide the properties for
max-packing and space-filling designs in Appendices A.1 and A.2. Lastly, in Appendix A.3, we
prove for the bi-level optimization bound by using neural network as an approximation for the inner
loop optimization problem.

A.1 Upper and lower bounds for space filling design

In the following content, we proves for Theorem 3 in the main paper, i.e.,

1

4
dPack ≤ dFD ≤ FD(YPack) ≤ dPack,

Proof. Following the derivation to attain Equation (3) in Pronzato [40], we can prove dFD ≤ dPack

as well as the claim that the fill distance between T and the optimal design YPack induced by dPack

is upper bounded by dPack.

Next, we prove dFD ≥ 1
4d

Pack by contradiction. Consider YFD is the design that induces dFD, we
have that each point in YPack must be within a dFD-ball centered at a point in YFD, and the condition
dFD < 1

4d
Pack requires that a specific ball will only contain a single y(k) ∈ YPack otherwise YPack

will not be a dPack-packing.

Since dFD < 1
4d

Pack, for all k ∈ [K] the corresponding dFD-ball is completely contained in the
larger (dPack/2)-ball centered at y(k). However, we note T is connected, and thus there exists a
certain y ∈ T outside all the K (dPack/2)-balls; this certain point will not be covered by all the
dFD-ball centered at points in YFD as well. Finally, the existence of the certain point contradicts the
claim that YFD is a dFD-covering.

Lastly, we prove for Theorem 4 in the main paper by a contradiction.

Proof. Since dPackK+1 > dPackK , K is the maximal packing number under distance dPackK .

Assume YPack
K is not a dPackK -covering. Then there exists y(K+1) such that ρ(y(K+1),y(i)) < dPackK

for all i ∈ [K]. This contradicts the assumption, as YPack
K ∪ {y(K+1)} forms a dPackK -covering,

implying a packing number of K + 1 when K was maximal. Thus, YPack
K is a dPackK -covering.

A.2 Configuration of dPack for bi-objective problems

In the following, we prove Theorem 5 in the main paper. Before that, we prove for Lemma 9 to
describe a property of ρ(y(1),y(2)), the distance between y(1) and y(2) when y(1),y(2) ∈ T .

Lemma 9. For biobjective problem function g is strictly decreasing with respect to the first element
(y(1)1 ) of y(1) and strictly increasing with the first element (y(2)1 ) of y(2).

Proof. We consider a new vector ỹ(1) ∈ T such that ỹ(1)1 < y
(1)
1 . Since ỹ(1) ∈ T , y(1) and ỹ(1)

cannot dominate each other, implying ỹ
(1)
2 > y

(1)
2 . The distance between this new solution ỹ(1) and

y(2) is:
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ρ(ỹ(1),y(2)) =

√
(ỹ

(1)
1 − y

(2)
1 )2 + (ỹ

(1)
2 − y

(2)
2 )2

=

√
(y

(1)
1 − δ1 − y

(2)
1 )2 + (y

(1)
2 + δ2 − y

(2)
2 )2 (δ1, δ2 > 0)

=

√
(y

(1)
1 − y

(2)
1 )2 + δ21 − 2δ1(y

(1)
1 − y

(2)
1 ) + (y

(1)
2 − y

(2)
2 )2 + δ22 + 2δ2(y

(1)
2 − y

(2)
2 )

≥
√
(y

(1)
1 − y

(2)
1 )2 + (y

(1)
2 − y

(2)
2 )2 + C (C > 0)

> ρ(y(1),y(2)).
(11)

The previous equations show that ρ(y(1),y(2)) is strictly decreasing with respect to the first element
of y(1). Similarly, considering a new vector ỹ(2) ∈ T , ỹ(2)1 > y

(2)
1 (ỹ(2)2 < y

(2)
2 ), using the same

calculation method used in Equation (11), it is proved that ρ(y(1), ỹ(2)) > ρ(y(1),y(2)). This
indicates that ρ(y(1),y(2)) is strictly increasing with respect to the first element of y(2).

With this established Lemma, we are now geared up for the complete proof.

Proof. The proof consists of two parts.

Part 1 proves that the neighboring distances ρ(y(i),y(i+1)) are equal for all i ∈ [K − 1].

Part 2 proves that y(1) = p(1) and y(K) = p(2). p(1) and p(2) are the two endpoints of a PF.

Part 1. We prove ρ(y(1),y(2)) = . . . = ρ(y(K−1),y(K)) by contradiction. We denote d(i) the
distance between y(i) and y(i+1) and i′ and j′ are two indices such that{

d(i
′) > d(i

′+1), . . . , d(j
′),

d(i
′+1), . . . , d(j

′−1) > d(j
′).

(12)

Without loss of generality, assume i′ < j′. We now aim to derive a contradiction under the
condition given by Equation (12). The approach is to iteratively decrease the first element of
y(i′+1) by a small margin ε > 0, yielding ỹ(i′+1). By Lemma 9, this adjustment ensures that
ρ(y(i′), ỹ(i′+1)) < ρ(y(i′),y(i′+1)) while ρ(ỹ(i+1),y(i+2)) > ρ(y(i+1),y(i+2)). Specifically, for
each k such that i′ + 1 ≤ k ≤ j′ − 2, y(k) is updated to ỹ(k) according to the following rules:

ρ(y(i′),y(i′+1))− ε = ρ(ỹ(i′), ỹ(i′+1)),

ρ(y(k),y(k+1)) = ρ(ỹ(k), ỹ(k+1)), i′ + 1 ≤ k ≤ j′ − 2,

ρ(y(j′−1),y(j′)) + ϵ = ρ(ỹ(j′−1), ỹ(j′)).

(13)

When ε is sufficiently small, j̃′ = argmin{ρ(ỹ(i′), ỹ(i′+1)), . . . , ρ(ỹ(j′−1), ỹ(j′))} = j′, meaning
the minimal index before and after adjustment remains unchanged. However, the value of the adjusted
distance ρ(ỹ(j′), ỹ(j′+1)) is increased from ρ(y(j′),y(j′+1)) by ε, showing the original design is not
a max-packing design, leading to a contradiction. If conditions{

d(i
′) < d(i

′+1), . . . , d(j
′),

d(i
′+1), . . . , d(j

′−1) < d(j
′),

(14)

hold, a similar argument as above can be used to derive a contradiction. Since the selection of i′ and j′

is arbitrary, this implies that for any interval between i′ and j′, both Equation (12) and Equation (14)
cannot hold simultaneously. This leads to the following equality, which aligns with our intended
design goal:

ρ(y(1),y(2)) = . . . = ρ(y(K−1),y(K)). (15)

Remark. The key component of our proof is the validity of Lemma 9, which applies to a two-dim
PF only. This leads to a contradiction with both Equation (12) and Equation (14), forming the core of
our argument.
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Part 2. We prove y(1) = p(1) by contradiction. The proof for y(K) = p(2) follows
similarly. Assuming y(1) ̸= p(1), we replace y(1) with p(1), forming a new configuration
[ỹ(1)(p(1)),y(2), . . . ,y(K)]. Based on Part 1, where we showed equal neighboring distances between
vectors, the condition

ρ(ỹ(1),y(2)) > ρ(y(2),y(3)) = . . . = ρ(y(K−1),y(K))

holds.

Next, we replace y(2), . . . ,y(K−1) with ỹ(2), . . . , ỹ(K−1) on the PF, such that ỹ(i)1 = y
(i)
1 − ϵ(i), for

2 ≤ i ≤ K − 1, ensuring

ρ(ỹ(i), ỹ(i+1)) > ρ(y(i),y(i+1)), i ∈ [K − 1].

By Lemma 9, moving y(1) to ỹ(1) results in ρ(ỹ(1),y(2)) > ρ(y(1),y(2)). Iteratively shifting
y(2), . . . ,y(K−1) ensures ỹ(2)1 < y

(2)
1 and so on, until ỹ(K−1)

1 < y
(K−1)
1 , completing the process.

This leads to a contradiction, proving that y(1) = p(1) and y(K) = p(2).

A.3 Theoretical results for optimization bounds

In this part, we prove for Theorem 8, which bounds the optimization error caused by neural network
in the bi-level optimization problem (Equation (10)).

Proof. Consider the function ρ(·, ·), which measures the distance between two vectors. Given our
assumption, we derive the error between distances computed under h and hϕ. For any two points
y(i),y(j) in the image of h, the error in their distances compared to hϕ can be bounded as follows:

|ρ(y(i),y(j))− ρ(hϕ(ϑϑϑ
(i)),hϕ(ϑϑϑ

(j)))| = |∥y(i) − y(j)∥ − ∥hϕ(ϑϑϑ
(i))− hϕ(ϑϑϑ

(j))∥|
≤ ∥y(i) − hϕ(ϑϑϑ

(i)) + hϕ(ϑϑϑ
(j))− y(j)∥

≤ ∥y(i) − hϕ(ϑϑϑ
(i))∥+ ∥hϕ(ϑϑϑ

(j))− y(j)∥
≤ ϵ+ ϵ = 2ϵ.

(16)

This follows from the triangle inequality and the assumption |hϕ(ϑϑϑ)− h(ϑϑϑ)| ≤ ϵ.

Given this pairwise bound, the overall configuration of points is such that the minimization of
distances among points under hϕ will either match or exceed the minimization under h within the
bounds of 2ϵ:

min
1≤i<j≤K

ρ(hϕ(ϑϑϑ
(i)),hϕ(ϑϑϑ

(j))) ≤ min
1≤i<j≤K

ρ(y(i),y(j)) + 2ϵ. (17)

Considering the maximization of these minimum distances across all configurations ϑϑϑ(1), . . . ,ϑϑϑ(K),
we have: ∣∣∣∣ max

ϑϑϑ(1),...,ϑϑϑ(K)
min

1≤i<j≤K
ρ(hϕ(ϑϑϑ

(i)),hϕ(ϑϑϑ
(j)))− max

ϑϑϑ(1),...,ϑϑϑ(K)
min

1≤i<j≤K
ρ(y(i),y(j))

∣∣∣∣
≤ max

ϑϑϑ(1),...,ϑϑϑ(K)
2ϵ = 2ϵ.

(18)

Thus, the error in the optimal maximal minimal distance under the model transformation can be
bounded by 2ϵ, completing the proof.

A.4 Proof of the “equivalent conversion” argument

This argument is actually a direct corollary the following two lemmas.
Lemma 10 (Adapted from [10], Theorem 3.1). A solution x is weakly Pareto optimal iff there exists
a weight vector λ such that x is (one of) an optimal solution of the modified Tchebycheff function.
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Figure 8: Results on RE41.

Lemma 11 (Modified from [38], Theorem 2.6.2). If an aggregation function is decreasing w.r.t.
vector f(x) (i.e., gλ(f(x)) ≤ gλ(f(x

′)) when fi(x) ≤ fi(x
′),∀i ∈ [m] and at least one index j

fj(x) < fj(x
′), then one of the optimal solution x∗ of gλ(f(x)) is a weakly Pareto optimal solution

for the original MOP. In addition, if the optimality is unique, x∗ is Pareto optimal.

Based on the first Lemma, we know that for any weakly Pareto objective, there is a corresponding
preference vector that solving the modified Tchebycheff function can recover this vector. Furthermore,
since we assume the uniqueness of the optimality of the modified Tchebycheff function, thus according
to the second lemma, solving the modified Tchebycheff function only yields Pareto optimal solutions.
Combining these two arguments, we achieve that for any Pareto optimal objective, there exists a
preference vector such that solving the corresponding modified Tchebycheff function yield this Pareto
optimal vector.

B Experiment details

This section has four parts. In Appendix B.1, we explain the metrics used in the experiments in details.
In Appendix B.3, we list the necessary hyperparameters and license. In Appendix B.4, we visualize
the results on four-objective problems by projection. Lastly, Appendix B.5 list for all numerical
results for all experiments.

B.1 Metrics

To evaluate the uniformity and quality of these solutions, we use various performance indicators,
detailed and mathematically expressed below.

1. Hypervolume (HV) (↑) [24] both assesses convergence to a PF and solution diversity. Low
HV values suggest poor convergence to the PF, while comparisons are significant when HVs are
substantially high. The hypervolume indicator measures the dominated volume by at least one
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Figure 9: Results on RE42.

objective belongs to the set Y with a reference point r.

HVr = Vol({y|∃y′ ∈ Y,y′ ⪯ y ⪯ r}).

2. IGD [26] indicator of a set A with a reference set Z is defined as:

IGD(A) =
1

|Z|

|Z|∑
i=1

di,

where di represents the euclidean distance from zi to the nearest distance in the set of A.

3. Sparsity (↓) [57] is a measure calculated from the squared distances among solution vectors that
are sorted according to their non-dominance levels [14]. The mathematical definition is given by:

Sparsity =
1

N − 1

m∑
j=1

N−1∑
i=1

(
ỹ
(i)
j − ỹ

(i+1)
j

)2
,

where ỹ(i) are the objective vectors arranged in a non-dominated sorting order from the set
{y(1), . . . ,y(N)}. Here, m represents the number of objectives, and N is the number of solu-
tions. A lower Sparsity value indicates a more uniformly distributed set of solutions along the Pareto
front. Specifically, for a Pareto front with a two-dimensional linear shape, the sparsity indicator
reaches its minimum when the objectives are spaced equidistantly.

4. Spacing (↓) [44]: This metric assesses solution distribution uniformity by calculating the standard
deviation of d̃(i), the minimal distance between a solution y(i) and its nearest neighbor, where d(i) =
minj∈[m],j ̸=i ρ(y

(i),y(j)). A lower spacing indicator implies evenly spaced solutions, reflecting
uniform distribution. A spacing indicator of zero indicates that all Pareto objectives have equally
minimal neighborhood distances.
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Table 4: Full name table, which has three parts. The first part is related with evolutionary algorithms,
the second part is related with gradient-based methods, the third part is related to indicators, while
the last part is related to multiobjective optimization concepts.

Short Name Full name

DEA-GNG Decomposition based Evolutionary Algorithm guided by Growing Neural Gas
LMPFE Evolutionary algorithm with Local Model based Pareto Front Estimation
NSGA3 Nondominated Sorting Genetic Algorithm 3
SMS-EMOA S Metric Selection based Evolutionary Multiobjective Optimization Algorithm
MOEA/D MultiObjective Evolutionary Algorithm based on Decomposition
MOEA/D-AWA MOEA/D with Adaptive Weight Adjustment
UMOD Uniform Multiobjective Optimization based on Decomposition

MOO-SVGD MultiObjective Optimization Stein Variational Gradient Descent
EPO Exact Pareto Optimization
PMGDA Preference based Multiple Gradient Descent Algorithm
Agg-LS Aggregation function based on Linear Scalarization
Agg-PBI Aggregation function based on Penalty Based Intersection
Agg-Tche Aggregation function based Tchebycheff Scalarization

IGD Inverted General Distance
HV HyperVolume

MOO MultiObjective Optimization
MOP Multiobjective Optimization Problem

5. Uniformity (↑) and Soft Uniformity (↑) indicators, as introduced by [43], evaluate the distribution
of solutions. The Uniformity indicator, δUnif , is defined as the minimum distance between any two
solutions:

δUnif = min
1≤i<j≤K

ρ(y(i),y(j)).

Conversely, the Soft Uniformity indicator, δ̃Unif , incorporates a logarithmic sum exponential function
to average distances among solutions. It introduces a sensitivity parameter η (set to 20 in this study)
to highlight the overall distribution of distances:

δ̃Unif = −
2

ηK(K − 1)
log

∑
1≤i<j≤K

exp(η · ρ(y(i),y(j))).

B.2 Full name of multiobjective methods

To avoid confusion, we provide the full names of baseline MOO methods in Table 4. For SMS-MOEA
(MOEA using S-Metric Selection), “S-metric’ is another name for “hypervolume”.

B.3 Detailed hyperparameters and licences

Table 5 lists the hyperparameters for implementing MOPs solved by evolutionary algorithms. The
system used features an Intel Core i7-10700 CPU and a NVIDIA RTX 3080 GPU.

Our method is implemented in the MOEA/D framework using Pymoo [7], without modifying
the MOEA/D hyperparameters. The main difference is the use of a PF model (a fully-connected
neural network) to map preference angles to Pareto objectives and update preference vectors. The
hyperparameters for the PF model are listed in Table 5.

For fairness classification problems, we use an additional fully connected network to classify input
features into corresponding classes. The parameters of this network serve as the decision variables
(x) for a multiobjective problem. Details of the fairness classification problems are shown in Table 6.
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Table 6: Fairness classification problem details and network architectures. Act. is the short name for
activation.

Dataset Features Architecture Act. function # Params Samples Sensitivity

Adult 88 88-60-25-1 ReLU 6891 34188 Sex
Compass 20 20-60-25-1 ReLU 2811 4319 Sex

Table 5: Hyper-parameters used in UMOD-MOEA
Hyper-parameters Values Hyper-parameters Values

Crossover SBX (Simulated Binary Crossover) Mutation PM (Polynomial mutation)
SBX mating threshold 0.5 SBX offsprings 2
PM mutation probability 0.9 PFL optimizer SGD
PFL network (m-1)-128-128-128 → m PFL activation function ReLU
PFL Learning rate 1e-3 PFL training epoch 1000
Number of preferences (m = 2) 8 Number of preferences (m = 3) 21
Number of preferences (m = 4) 35 Preference initialization Das-Dennis [12]
Number of neighborhood in MOEA/D 3 Probability of mating 0.3
Number of experiments (MOEA) 31 Number of experiments (MOML) 5
Number of fitness value (2 obj) 40,000 Number of fitness value (3 obj) 126,000
Number of fitness value (4 obj) 350,000

(License) To close this subsection, we would like to mention that the license used for Adult follows
Creative Commons Attribution 4.0 International (CC BY 4.0) license and Compas is supported by
Database Contents License (DbCL) v1.0 license.

B.4 Visualization for four objective problems

This section presents the visualization results for four-objective problems (see Figures 8 and 9). Due
to the difficulty of visualizing four-dimensional space, we project the Pareto objectives into 3-D
spaces: (f1, f2, f3), (f1, f2, f4), (f1, f3, f4), and (f2, f3, f4), labeled P-1 to P-4 in Figures 8 and 9.

Despite losing some information in the projections, meaningful conclusions can still be drawn from
these figures:

1. DEAGNG and LMPFE can find partial parts of the true Pareto front. For the P1, P2, and P4
projections, DEAGNG typically finds only a small portion in the upper right of the 3-D Pareto front,
while LMPFE misses a small part of this region. In contrast, the proposed method captures a more
extensive span of the Pareto front, covering the largest area.

2. For a four-objective problem, MOEA/D finds many duplicate Pareto objectives on the PF boundary
by using fixed preference vectors. This highlights the importance of finding optimal preference
vectors to achieve a more uniform PF.

3. The proposed UMOD method finds more uniform Pareto objectives on the Pareto front compared
to NSGA3, SMS-EMOA, and the Subset selection method. This aligns with Table 9 in the main
paper, showing UMOD has a much lower IGD indicator than these three methods.

B.5 Full numerical results

We report the full numerical results for bi-objective, tri-objective, and four-objective problems in
Tables 7 to 9, respectively. Each experiment was conducted with 31 random seeds. For each data
point, X(Y )(C), X is the mean value, (Y ) is the standard deviation, and (C) is the rank among all
eight methods.

The hypervolume, Uniform, and Soft Uniform (SUniform) are preferred larger, while IGD, spacing,
sparsity, and fill distances are preferred smaller. The optimal result averaged across all seeds is
marked in bold. In the last row of each table, we calculate the mean rank of each indicator, with the
highest one in bold.

The tables show that, with a small solution budget, the uniformity indicators IGD, Spacing, Uni-
form, SUniform, and FD achieve the best results, outperforming previous methods significantly.
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SMS-EMOA achieves the highest HV value among all methods, but HV is only a rough mea-
sure of uniformity, validating that optimizing hypervolume alone does not ensure the best uniform
distribution.

These tables also validate the effectiveness of maximizing pairwise distances, a proper surrogate for
fill distance. This suggests that in practice, maximal packing distance can more tightly bound the
minimal fill distance. An interesting finding is that the IGD indicator, an important measure in MOO
serving as the average covering radius of the size-K optimized set, is optimized by maximizing the
pairwise distance. This interesting empirical finding is worthy of further investigation.

Table 7: Full results for biobjective problems, based on 31 random seeds, include the standard
deviation and rankings across all methods. The ranking values in the last row are averaged across
all problems.

Indicator DEA-GNG LMPFE Subset NSGA3 SMS-EMOA MOEA/D MOEA/D-AWA UMOD

ZDT1

HV 1.03 (0.00) (6) 1.03 (0.00) (2) 1.02 (0.00) (7) 1.03 (0.00) (5) 1.04 (0.00) (1) 1.03 (0.00) (4) 1.03 (0.00) (3) 1.04 (0.00) (0)
IGD 5.68 (0.29) (7) 5.42 (0.21) (6) 5.21 (0.40) (1) 5.28 (0.00) (3) 5.22 (0.07) (2) 5.30 (0.00) (4) 5.42 (0.02) (5) 5.19 (0.00) (0)
Spacing 6.35 (1.74) (7) 2.44 (1.82) (2) 3.51 (0.47) (3) 5.90 (0.00) (5) 1.91 (0.46) (1) 5.92 (0.01) (6) 3.69 (0.04) (4) 0.12 (0.06) (0)
Sparsity 4.80 (0.19) (7) 4.55 (0.12) (4) 2.59 (0.18) (0) 4.60 (0.00) (5) 4.48 (0.01) (2) 4.61 (0.00) (6) 4.51 (0.01) (3) 4.39 (0.00) (1)
Uniform 1.33 (0.11) (6) 1.67 (0.32) (2) 0.89 (0.10) (7) 1.53 (0.00) (3) 1.85 (0.03) (1) 1.51 (0.00) (4) 1.51 (0.00) (5) 2.07 (0.01) (0)
SUniform 0.47 (0.12) (6) 0.68 (0.13) (2) 0.09 (0.09) (7) 0.49 (0.00) (4) 0.74 (0.01) (1) 0.48 (0.00) (5) 0.53 (0.00) (3) 0.77 (0.00) (0)
Fill Distance 1.60 (0.23) (6) 1.23 (0.09) (2) 2.00 (0.18) (7) 1.55 (0.00) (5) 1.16 (0.05) (1) 1.50 (0.00) (4) 1.43 (0.03) (3) 1.04 (0.01) (0)

ZDT2

HV 0.71 (0.00) (5) 0.65 (0.07) (6) 0.63 (0.00) (7) 0.71 (0.00) (4) 0.71 (0.00) (0) 0.71 (0.00) (3) 0.71 (0.00) (2) 0.71 (0.00) (1)
IGD 5.43 (0.13) (4) 10.80 (6.71) (7) 6.69 (0.00) (6) 5.31 (0.00) (2) 5.84 (0.14) (5) 5.31 (0.00) (3) 5.29 (0.00) (1) 5.23 (0.01) (0)
Spacing 3.92 (1.97) (6) 2.11 (0.88) (1) 3.02 (0.00) (5) 3.01 (0.00) (4) 4.87 (0.53) (7) 3.01 (0.01) (3) 2.30 (0.03) (2) 0.25 (0.23) (0)
Sparsity 4.66 (0.09) (5) 8.87 (5.33) (7) 2.26 (0.00) (0) 4.54 (0.00) (3) 4.69 (0.06) (6) 4.54 (0.00) (4) 4.52 (0.00) (2) 4.45 (0.00) (1)
Uniform 1.41 (0.27) (5) 1.25 (0.64) (6) 0.85 (0.00) (7) 1.63 (0.00) (4) 1.71 (0.11) (2) 1.63 (0.00) (3) 1.83 (0.02) (1) 2.05 (0.06) (0)
SUniform 0.57 (0.10) (5) 0.16 (0.68) (6) -0.04 (0.00) (7) 0.68 (0.00) (3) 0.63 (0.02) (4) 0.68 (0.00) (2) 0.71 (0.00) (1) 0.78 (0.00) (0)
Fill Distance 1.36 (0.11) (4) 2.82 (1.88) (7) 2.39 (0.00) (6) 1.24 (0.00) (3) 1.63 (0.09) (5) 1.24 (0.00) (2) 1.23 (0.00) (1) 1.07 (0.03) (0)

ZDT3

HV 0.91 (0.00) (0) 0.90 (0.01) (2) 0.90 (0.00) (4) 0.89 (0.00) (7) 0.91 (0.02) (1) 0.90 (0.00) (3) 0.89 (0.02) (5) 0.89 (0.02) (6)
IGD 38.60 (0.25) (1) 38.78 (0.31) (2) 38.58 (0.00) (0) 39.45 (0.03) (5) 39.23 (2.25) (4) 39.09 (0.00) (3) 39.94 (2.08) (7) 39.83 (2.10) (6)
Spacing 6.60 (1.62) (4) 3.08 (1.42) (0) 12.38 (0.00) (7) 5.12 (2.21) (3) 7.85 (0.88) (5) 5.02 (0.00) (2) 8.07 (0.98) (6) 3.57 (1.66) (1)
Sparsity 3.83 (0.16) (5) 3.83 (0.12) (6) 7.27 (0.00) (7) 3.82 (0.21) (4) 3.59 (0.50) (1) 3.65 (0.00) (2) 3.70 (0.54) (3) 3.45 (0.40) (0)
Uniform 0.89 (0.50) (2) 1.42 (0.26) (0) 0.00 (0.00) (7) 0.69 (0.54) (4) 0.75 (0.07) (3) 0.66 (0.00) (5) 0.28 (0.29) (6) 1.20 (0.19) (1)
SUniform 0.06 (0.28) (3) 0.39 (0.10) (0) -0.91 (0.00) (7) 0.04 (0.33) (4) -0.12 (0.09) (5) 0.09 (0.00) (2) -0.32 (0.12) (6) 0.30 (0.04) (1)
Fill Distance 8.88 (0.02) (4) 8.87 (0.00) (0) 8.87 (0.00) (1) 8.88 (0.00) (3) 9.22 (0.71) (5) 8.88 (0.00) (2) 9.23 (0.71) (7) 9.22 (0.71) (6)

ZDT4

HV 0.75 (0.17) (7) 1.03 (0.01) (3) 1.02 (0.00) (6) 1.03 (0.00) (2) 1.04 (0.00) (0) 1.03 (0.00) (4) 1.03 (0.00) (5) 1.04 (0.00) (1)
IGD 38.29 (19.75) (7) 5.65 (0.19) (6) 5.49 (0.07) (5) 5.28 (0.00) (2) 5.19 (0.03) (0) 5.31 (0.01) (3) 5.45 (0.05) (4) 5.21 (0.01) (1)
Spacing 5.47 (2.97) (5) 4.69 (1.93) (4) 2.72 (0.22) (2) 5.91 (0.00) (6) 1.60 (0.58) (1) 5.93 (0.01) (7) 3.66 (0.03) (3) 0.22 (0.06) (0)
Sparsity 1.72 (1.93) (0) 4.71 (0.16) (7) 2.52 (0.00) (1) 4.60 (0.00) (5) 4.47 (0.01) (3) 4.62 (0.00) (6) 4.52 (0.02) (4) 4.39 (0.01) (2)
Uniform 0.41 (0.55) (7) 1.18 (0.46) (5) 1.06 (0.01) (6) 1.53 (0.00) (2) 1.90 (0.08) (1) 1.52 (0.00) (3) 1.50 (0.02) (4) 2.05 (0.01) (0)
SUniform -0.75 (0.64) (7) 0.45 (0.22) (5) 0.10 (0.01) (6) 0.49 (0.00) (3) 0.75 (0.02) (1) 0.49 (0.00) (4) 0.53 (0.00) (2) 0.77 (0.00) (0)
Fill Distance 8.54 (3.59) (7) 1.33 (0.09) (2) 2.03 (0.02) (6) 1.54 (0.00) (5) 1.10 (0.03) (1) 1.52 (0.02) (4) 1.45 (0.01) (3) 1.06 (0.01) (0)

ZDT6

HV 0.66 (0.00) (6) 0.66 (0.00) (3) 0.44 (0.00) (7) 0.66 (0.00) (2) 0.66 (0.00) (1) 0.66 (0.00) (4) 0.66 (0.00) (5) 0.66 (0.00) (0)
IGD 4.81 (0.60) (6) 4.25 (0.09) (3) 15.28 (0.00) (7) 4.19 (0.00) (1) 4.20 (0.03) (2) 4.32 (0.00) (4) 4.37 (0.00) (5) 4.18 (0.00) (0)
Spacing 5.04 (2.57) (7) 2.52 (0.99) (5) 2.12 (0.00) (3) 1.94 (0.00) (2) 1.30 (0.37) (1) 2.48 (0.00) (4) 3.50 (0.04) (6) 0.12 (0.01) (0)
Sparsity 3.24 (0.28) (7) 2.95 (0.06) (6) 1.83 (0.00) (0) 2.89 (0.00) (3) 2.88 (0.02) (2) 2.91 (0.00) (4) 2.95 (0.00) (5) 2.86 (0.00) (1)
Uniform 0.88 (0.21) (6) 1.23 (0.19) (4) 0.79 (0.00) (7) 1.32 (0.00) (2) 1.48 (0.05) (1) 1.23 (0.00) (3) 0.97 (0.01) (5) 1.67 (0.00) (0)
SUniform 0.06 (0.15) (6) 0.26 (0.06) (4) -0.29 (0.00) (7) 0.31 (0.00) (2) 0.33 (0.02) (1) 0.28 (0.00) (3) 0.22 (0.00) (5) 0.35 (0.00) (0)
Fill Distance 1.27 (0.30) (6) 1.05 (0.08) (5) 3.89 (0.00) (7) 0.92 (0.00) (1) 0.94 (0.05) (2) 0.97 (0.00) (3) 0.97 (0.00) (4) 0.81 (0.01) (0)

RE21

HV 1.24 (0.00) (5) 1.23 (0.01) (7) 1.24 (0.00) (4) 1.24 (0.00) (2) 1.24 (0.00) (1) 1.24 (0.00) (6) 1.24 (0.00) (3) 1.24 (0.00) (0)
IGD 4.63 (0.28) (5) 4.61 (0.13) (4) 5.15 (0.01) (6) 4.44 (0.00) (3) 4.23 (0.02) (1) 5.40 (0.02) (7) 4.33 (0.04) (2) 4.12 (0.00) (0)
Spacing 6.63 (1.16) (6) 3.62 (0.93) (4) 1.38 (0.00) (1) 5.71 (0.01) (5) 3.19 (0.37) (2) 10.49 (0.04) (7) 3.47 (0.41) (3) 0.12 (0.05) (0)
Sparsity 3.10 (0.21) (6) 2.90 (0.10) (4) 1.74 (0.00) (0) 3.02 (0.00) (5) 2.82 (0.02) (2) 3.87 (0.02) (7) 2.84 (0.01) (3) 2.70 (0.00) (1)
Uniform 0.81 (0.12) (7) 0.95 (0.16) (5) 0.95 (0.00) (4) 1.16 (0.00) (2) 1.26 (0.05) (1) 0.93 (0.00) (6) 1.11 (0.03) (3) 1.62 (0.01) (0)
SUniform -0.03 (0.07) (5) 0.12 (0.08) (3) -0.17 (0.00) (7) 0.08 (0.00) (4) 0.20 (0.01) (1) -0.17 (0.00) (6) 0.13 (0.01) (2) 0.31 (0.00) (0)
Fill Distance 1.45 (0.20) (4) 1.21 (0.12) (3) 2.62 (0.01) (7) 1.47 (0.00) (5) 1.09 (0.04) (1) 2.11 (0.01) (6) 1.15 (0.02) (2) 0.83 (0.00) (0)

RE22

HV 1.17 (0.00) (7) 1.18 (0.00) (6) 1.18 (0.00) (4) 1.18 (0.00) (5) 1.18 (0.00) (0) 1.18 (0.00) (3) 1.18 (0.00) (2) 1.18 (0.00) (1)
IGD 4.63 (0.40) (5) 4.93 (0.25) (7) 4.48 (0.00) (4) 4.35 (0.00) (1) 4.42 (0.04) (2) 4.92 (0.00) (6) 4.47 (0.02) (3) 4.25 (0.02) (0)
Spacing 2.78 (0.95) (2) 3.11 (1.00) (5) 6.57 (0.00) (6) 2.90 (0.00) (3) 3.08 (0.12) (4) 6.78 (0.01) (7) 2.25 (0.64) (1) 0.34 (0.02) (0)
Sparsity 3.01 (0.34) (5) 3.26 (0.22) (7) 2.84 (0.00) (2) 2.77 (0.00) (1) 2.90 (0.03) (3) 3.12 (0.00) (6) 2.93 (0.03) (4) 2.70 (0.01) (0)
Uniform 1.08 (0.16) (2) 0.96 (0.01) (5) 0.49 (0.00) (7) 1.06 (0.00) (3) 1.03 (0.01) (4) 0.83 (0.00) (6) 1.09 (0.16) (1) 1.56 (0.01) (0)
SUniform 0.08 (0.01) (4) 0.02 (0.05) (5) -0.12 (0.00) (7) 0.19 (0.00) (2) 0.20 (0.02) (1) -0.06 (0.00) (6) 0.14 (0.03) (3) 0.30 (0.01) (0)
Fill Distance 1.39 (0.32) (6) 1.54 (0.14) (7) 1.33 (0.00) (5) 1.06 (0.00) (2) 1.04 (0.06) (1) 1.33 (0.00) (4) 1.29 (0.00) (3) 0.90 (0.01) (0)

Rank

HV 5.14 4.14 5.57 3.86 0.57 3.86 3.57 1.29
IGD 5 4.86 4 2.43 2.29 4.43 4 1
Spacing 5.71 2.71 3.86 3.86 3 5.14 3.57 0.14
Sparsity 5.29 5.71 1.43 3.71 2.71 4.86 3.43 0.86
Uniform 5 3.86 6.43 3 1.71 4.29 3.57 0.14
SUniform 5.14 3.57 6.86 3.14 2 4 3.14 0.14
Fill Distance 5.43 3.57 5.57 3.43 2.29 3.57 3.29 0.86
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Table 8: Full numerical and ranking results on three-objective problems.

Indicator DEA-GNG LMPFE Subset NSGA3 SMS-EMOA MOEA/D MOEA/D-AWA UMOD

DTLZ1

HV 1.51 (0.11) (7) 1.69 (0.00) (2) 1.69 (0.00) (6) 1.69 (0.00) (4) 1.69 (0.00) (0) 1.69 (0.00) (3) 1.69 (0.00) (5) 1.69 (0.00) (1)
IGD 14.62 (3.52) (7) 4.91 (0.10) (4) 4.94 (0.00) (6) 4.85 (0.00) (0) 4.86 (0.05) (1) 4.86 (0.01) (2) 4.93 (0.09) (5) 4.87 (0.00) (3)
Spacing 3.12 (0.87) (7) 1.14 (0.10) (3) 1.94 (0.00) (6) 0.01 (0.00) (0) 1.43 (0.35) (4) 0.02 (0.00) (1) 1.77 (1.75) (5) 0.09 (0.02) (2)
Sparsity 0.30 (0.22) (0) 0.48 (0.02) (3) 0.36 (0.00) (1) 0.74 (0.00) (6) 0.41 (0.02) (2) 0.75 (0.00) (7) 0.73 (0.01) (4) 0.73 (0.00) (5)
Uniform 0.02 (0.03) (7) 1.05 (0.05) (3) 0.68 (0.00) (6) 1.41 (0.00) (1) 0.86 (0.14) (4) 1.41 (0.00) (0) 0.81 (0.60) (5) 1.39 (0.01) (2)
SUniform -1.99 (0.20) (7) -0.94 (0.01) (3) -0.99 (0.00) (6) -0.90 (0.00) (2) -0.95 (0.01) (5) -0.90 (0.00) (1) -0.95 (0.05) (4) -0.90 (0.00) (0)
Fill Distance 4.59 (0.64) (7) 1.03 (0.13) (6) 1.01 (0.00) (4) 0.77 (0.00) (0) 0.96 (0.05) (3) 0.77 (0.00) (1) 1.01 (0.28) (5) 0.78 (0.00) (2)

DTLZ2

HV 1.01 (0.01) (7) 1.05 (0.00) (6) 1.08 (0.00) (1) 1.06 (0.00) (5) 1.08 (0.00) (0) 1.06 (0.00) (3) 1.06 (0.00) (4) 1.07 (0.00) (2)
IGD 12.52 (0.64) (2) 12.46 (0.09) (1) 15.14 (0.00) (6) 12.54 (0.00) (3) 15.45 (0.25) (7) 12.55 (0.00) (5) 12.55 (0.00) (4) 12.19 (0.04) (0)
Spacing 5.29 (1.72) (2) 2.64 (0.39) (1) 8.97 (0.00) (7) 5.45 (0.00) (3) 7.15 (0.51) (6) 5.45 (0.01) (4) 5.45 (0.01) (5) 0.52 (0.21) (0)
Sparsity 1.50 (0.13) (0) 2.18 (0.13) (2) 2.42 (0.00) (3) 2.43 (0.00) (4) 2.75 (0.14) (7) 2.43 (0.00) (6) 2.43 (0.00) (5) 1.61 (0.13) (1)
Uniform 1.58 (0.19) (5) 2.45 (0.13) (1) 0.96 (0.00) (7) 2.43 (0.00) (4) 1.51 (0.15) (6) 2.43 (0.00) (3) 2.43 (0.00) (2) 3.17 (0.09) (0)
SUniform 0.36 (0.23) (5) 0.97 (0.04) (1) -0.04 (0.00) (7) 0.95 (0.00) (4) 0.18 (0.07) (6) 0.95 (0.00) (2) 0.95 (0.00) (3) 1.18 (0.02) (0)
Fill Distance 3.20 (0.60) (5) 2.69 (0.10) (4) 3.54 (0.00) (7) 2.59 (0.00) (1) 3.42 (0.16) (6) 2.59 (0.00) (3) 2.59 (0.00) (2) 2.37 (0.08) (0)

DTLZ3

HV 0.80 (0.20) (7) 1.02 (0.02) (6) 1.08 (0.00) (1) 1.06 (0.00) (4) 1.08 (0.00) (0) 1.06 (0.00) (2) 1.06 (0.00) (3) 1.06 (0.00) (5)
IGD 31.92 (16.92) (7) 14.80 (1.03) (4) 15.15 (0.00) (5) 12.55 (0.01) (1) 15.41 (0.43) (6) 12.56 (0.01) (2) 12.57 (0.01) (3) 12.31 (0.09) (0)
Spacing 13.23 (12.33) (6) 422.58 (557.38) (7) 8.98 (0.00) (5) 5.46 (0.01) (3) 7.49 (0.50) (4) 5.45 (0.01) (2) 5.34 (0.09) (1) 1.93 (1.43) (0)
Sparsity 5.86 (5.81) (6) 5433.68 (8409.98) (7) 2.42 (0.00) (1) 2.43 (0.01) (4) 2.70 (0.17) (5) 2.43 (0.00) (3) 2.43 (0.01) (2) 1.70 (0.09) (0)
Uniform 0.23 (0.28) (7) 1.20 (0.75) (5) 0.97 (0.00) (6) 2.44 (0.00) (1) 1.48 (0.24) (4) 2.44 (0.00) (3) 2.44 (0.00) (2) 2.72 (0.54) (0)
SUniform -1.27 (0.68) (7) 0.02 (0.57) (5) -0.04 (0.00) (6) 0.95 (0.00) (3) 0.17 (0.09) (4) 0.95 (0.00) (2) 0.96 (0.01) (1) 1.13 (0.12) (0)
Fill Distance 7.83 (2.94) (7) 3.84 (0.55) (6) 3.54 (0.00) (5) 2.59 (0.00) (1) 3.33 (0.23) (4) 2.59 (0.00) (3) 2.59 (0.00) (2) 2.39 (0.10) (0)

DTLZ4

HV 0.96 (0.12) (7) 1.06 (0.01) (6) 1.08 (0.00) (1) 1.06 (0.00) (4) 1.08 (0.00) (0) 1.06 (0.00) (3) 1.06 (0.00) (5) 1.07 (0.00) (2)
IGD 19.84 (15.30) (7) 12.78 (0.16) (4) 15.14 (0.00) (5) 12.54 (0.00) (1) 15.48 (0.30) (6) 12.55 (0.00) (2) 12.60 (0.10) (3) 12.19 (0.07) (0)
Spacing 5.44 (0.81) (3) 2.78 (0.34) (1) 8.97 (0.00) (7) 5.45 (0.00) (5) 7.67 (0.60) (6) 5.45 (0.00) (4) 5.36 (0.17) (2) 0.83 (0.54) (0)
Sparsity 1.55 (0.22) (0) 2.20 (0.18) (2) 2.42 (0.00) (3) 2.43 (0.00) (4) 2.81 (0.13) (7) 2.43 (0.00) (5) 2.45 (0.05) (6) 1.77 (0.11) (1)
Uniform 1.26 (0.64) (6) 2.55 (0.09) (1) 0.96 (0.00) (7) 2.43 (0.00) (2) 1.38 (0.16) (5) 2.43 (0.00) (4) 2.43 (0.00) (3) 3.07 (0.15) (0)
SUniform 0.06 (0.78) (6) 1.00 (0.06) (1) -0.04 (0.00) (7) 0.95 (0.00) (4) 0.15 (0.08) (5) 0.95 (0.00) (3) 0.97 (0.05) (2) 1.18 (0.02) (0)
Fill Distance 5.13 (4.21) (7) 2.83 (0.24) (4) 3.54 (0.00) (6) 2.59 (0.00) (1) 3.41 (0.23) (5) 2.59 (0.00) (3) 2.59 (0.00) (2) 2.41 (0.14) (0)

RE37

HV 0.98 (0.07) (6) 1.03 (0.02) (3) 1.10 (0.00) (0) 1.01 (0.01) (5) 1.07 (0.00) (1) 0.98 (0.00) (7) 1.02 (0.02) (4) 1.07 (0.01) (2)
IGD 17.20 (4.58) (7) 12.24 (0.82) (2) 12.17 (0.00) (1) 13.31 (0.27) (4) 12.86 (0.11) (3) 16.54 (0.05) (6) 14.15 (1.35) (5) 10.74 (0.20) (0)
Spacing 7.47 (2.16) (4) 5.69 (1.56) (2) 5.74 (0.01) (3) 11.92 (1.21) (7) 4.89 (1.90) (0) 8.30 (0.47) (6) 8.22 (0.95) (5) 5.25 (1.32) (1)
Sparsity 1.05 (0.50) (1) 1.52 (0.31) (4) 0.86 (0.01) (0) 1.74 (0.16) (5) 1.45 (0.10) (3) 3.08 (0.05) (7) 2.47 (0.40) (6) 1.39 (0.07) (2)
Uniform 0.23 (0.30) (4) 1.17 (0.56) (0) 0.59 (0.00) (3) 0.01 (0.02) (6) 0.99 (0.09) (1) 0.00 (0.00) (7) 0.04 (0.05) (5) 0.94 (0.53) (2)
SUniform -1.04 (0.38) (5) 0.08 (0.33) (0) -0.66 (0.00) (3) -0.94 (0.12) (4) -0.37 (0.04) (2) -1.55 (0.01) (7) -1.19 (0.28) (6) 0.07 (0.24) (1)
Fill Distance 5.33 (1.46) (7) 3.36 (0.93) (1) 4.56 (0.00) (4) 3.44 (0.34) (2) 3.73 (0.18) (3) 4.82 (0.04) (6) 4.80 (0.03) (5) 2.93 (0.32) (0)

Rank

HV 6.8 4.6 1.8 4.4 0.2 3.6 4.2 2.4
IGD 6 3 4.6 1.8 4.6 3.4 4 0.6
Spacing 4.4 2.8 5.6 3.6 4 3.4 3.6 0.6
Sparsity 1.4 3.6 1.6 4.6 4.8 5.6 4.6 1.8
Uniform 5.8 2 5.8 2.8 4 3.4 3.4 0.8
SUniform 6 2 5.8 3.4 4.4 3 3.2 0.2
Fill Distance 6.6 4.2 5.2 1 4.2 3.2 3.2 0.4

Table 9: Numerical results on four-objective problems.

Indicator DEA-GNG LMPFE Subset NSGA3 SMS-EMOA MOEA/D MOEA/D-AWA UMOD

RE41

HV 0.63 (0.16) (7) 1.07 (0.01) (3) 1.14 (0.00) (0) 1.08 (0.00) (2) 1.00 (0.00) (5) 1.00 (0.00) (6) 1.02 (0.00) (4) 1.11 (0.00) (1)
IGD 41.21 (12.46) (7) 17.56 (1.51) (2) 15.15 (0.06) (1) 19.47 (0.76) (3) 19.57 (1.34) (4) 24.95 (0.26) (6) 23.96 (0.67) (5) 14.36 (0.34) (0)
Spacing 4.75 (0.94) (1) 4.11 (0.74) (0) 7.45 (0.07) (2) 10.81 (0.36) (7) 9.67 (0.04) (5) 9.25 (0.04) (4) 9.86 (1.66) (6) 8.16 (0.49) (3)
Sparsity 0.40 (0.11) (0) 1.06 (0.09) (4) 0.75 (0.00) (1) 0.99 (0.03) (3) 1.28 (0.19) (5) 2.24 (0.06) (7) 2.03 (0.00) (6) 0.77 (0.01) (2)
Uniform 0.07 (0.07) (4) 2.04 (0.01) (0) 1.10 (0.02) (1) 0.01 (0.01) (5) 0.16 (0.08) (3) 0.00 (0.00) (7) 0.00 (0.00) (6) 0.54 (0.34) (2)
SUniform -1.79 (0.32) (5) 0.41 (0.03) (0) -0.24 (0.02) (1) -1.21 (0.04) (3) -1.31 (0.15) (4) -2.00 (0.02) (7) -1.88 (0.08) (6) -0.41 (0.17) (2)
Fill Distance 11.41 (0.12) (7) 5.74 (1.07) (5) 3.39 (0.00) (0) 5.27 (0.74) (3) 4.28 (0.52) (2) 5.71 (0.07) (4) 5.88 (0.02) (6) 4.15 (0.02) (1)

RE42

HV 0.55 (0.02) (3) 0.60 (0.01) (2) 0.61 (0.00) (1) 0.52 (0.02) (5) 0.55 (0.02) (4) 0.44 (0.00) (7) 0.51 (0.04) (6) 0.62 (0.01) (0)
IGD 28.16 (8.45) (6) 23.75 (3.02) (3) 25.33 (0.09) (4) 21.01 (2.74) (0) 22.33 (2.39) (1) 30.31 (0.70) (7) 26.16 (0.62) (5) 23.73 (1.05) (2)
Spacing 10.82 (5.18) (5) 8.51 (9.05) (3) 12.28 (0.06) (7) 11.81 (10.46) (6) 8.31 (1.18) (2) 6.52 (0.47) (0) 9.48 (1.32) (4) 8.01 (0.64) (1)
Sparsity 5.96 (7.42) (7) 2.43 (3.44) (4) 2.00 (0.01) (3) 3.86 (4.58) (6) 1.18 (0.28) (1) 3.45 (0.27) (5) 1.96 (0.51) (2) 0.77 (0.04) (0)
Uniform 0.03 (0.02) (4) 1.03 (0.34) (0) 0.00 (0.00) (6) 0.04 (0.03) (3) 0.05 (0.05) (2) 0.00 (0.00) (7) 0.00 (0.00) (5) 0.07 (0.05) (1)
SUniform -1.47 (0.12) (4) -0.61 (0.18) (0) -2.53 (0.00) (7) -1.45 (0.12) (3) -1.31 (0.18) (2) -2.28 (0.04) (6) -2.12 (0.16) (5) -1.25 (0.14) (1)
MaxGD 29.05 (8.88) (1) 35.21 (5.92) (5) 35.59 (0.01) (6) 28.04 (7.95) (0) 31.62 (2.71) (2) 34.41 (1.41) (3) 34.75 (2.23) (4) 37.36 (0.61) (7)
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Figure 10: Comparison of using different methods on DTLZ5.
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Figure 11: Comparison of using different methods on DTLZ6.

B.6 Results on DTLZ5 and DTLZ6

The PFs of DTLZ5 and DTLZ6 are identical, representing a degenerate 1-dimensional hyper-curve
within the three-objective space. The visualization results are shown in Figures 10 and 11 and
numerical results are shown in Table 10.

Table 10: Numerical results on DTLZ5 and DTLZ6 problems.
Spacing Sparsity HV Uniform Soft uniform IGD FD

UMOD 0.0073 0.0131 0.6995 0.0867 -0.0634 0.0294 0.085
MOEAD 0.0871 0.0645 0.6352 0 -0.1978 0.143 0.3002
AWA 0.0909 0.0312 0.6697 0 -0.1802 0.0712 0.1697
SMS-MOEA 0.0454 0.0147 0.7035 0.0783 -0.0753 0.0307 0.1099
NSGA3 0.0599 0.0289 0.6623 0.0005 -0.1417 0.0683 0.1802

UMOD 0.0125 0.0128 0.7011 0.0738 -0.0618 0.0285 0.0731
MOEAD 0.0843 0.0599 0.6352 0 -0.2032 0.143 0.3002
AWA 0.0908 0.0312 0.6697 0 -0.1694 0.0712 0.1697
SMS-MOEA 0.0426 0.0143 0.7036 0.072 -0.0752 0.0305 0.1099
NSGA3 0.0524 0.0415 0.6623 0 -0.1357 0.0931 0.2972

Table 10 highlights that UMOD significantly outperforms other methods in ensuring evenly dis-
tributed solutions. In the decomposition-based framework, for such degenerated problems, distinctive
preferences may correspond to the same Pareto objective. The reason behind generating duplicate
solutions is explained in Appendix C.5. And therefore, MOEA/D and MOEA/D-AWA tend to produce
duplicate solutions. NSGA3 is also found to produce duplicate solutions easily. SMS-MOEA avoids
duplicate solutions by maximizing the hypervolume. SMS-MOEA surpasses UMOD in hypervolume,
but UMOD considerably outperforms SMS-MOEA in IGD and FD, which are of interests in this
paper.
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C Method details

C.1 Practical algorithms

In this section, we present practical algorithms to solve the maximal packing problem in the Pareto
front (Equation (10)). We start by generating an initial uniform distribution of preference vectors.
Then, we use either multiobjective evolutionary algorithms (MOEAs) or gradient-based MOO to
solve for the preference angle and Pareto objective pairs. MOEAs are suitable for problems with
many local optima, while gradient-based MOO is efficient for neural network problems with millions
of decision variables. Next, we fit a Pareto front model to learn the expression of hϕ and re-determine
the preference angles by maximizing the pairwise distances. These two steps are iterated until
convergence.

Algorithm 1 Uniform Multiobjective Optimization (UMOD)

1: Input: Initial K uniform preferences {λ(1), . . . ,λ(K)} by Das-Dennis method [12]. Initial
solutions {x(1), . . . ,x(K)}.

2: for n = 1 to N do
3: Run MOEA/D with mTche aggregation function or gradient-based MOO using

{x(1), . . . ,x(K)} as initial solutions under preferences {λ(1), . . . ,λ(K)}.
4: Train a model hϕ to predict Pareto objectives by the preference angles using mean square

estimation with angle-objective pairs (ϑϑϑ(i),y(i)).
5: Update (ϑϑϑ(1), . . . ,ϑϑϑ(K)) by Algorithm 2.
6: Recalculate preference vectors, λ(1), . . . ,λ(K).
7: Update the initial solutions {x(1), . . . ,x(K)} by MOEA/D or gradient-based mTche using the

last generation of solutions as a warm start.
8: end for

Algorithm 2 Recalculate Preference Angles (ALG_Update)

1: Input: The initial configuration {ϑϑϑ(1), . . . ,ϑϑϑ(K)} and hϕ.
2: for i = 1 to Nopt do
3: Calculate the indexes for the minimal pairwise objectives:

(i∗, j∗) = arg min
1≤i<j≤K

hϕ(ϑϑϑ
(i),ϑϑϑ(j)).

4: Update the positions of (ϑϑϑ(i∗),ϑϑϑ(j∗)):

ϑϑϑ
(i∗) ← clip

ϑϑϑ
(i∗)

+ η
∂hϕ(ϑϑϑ(i∗))

∂ϑϑϑ(i∗)
)Aϕ, 0,

π

2


ϑϑϑ
(j∗) ← clip

ϑϑϑ
(j∗) − η

∂hϕ(ϑϑϑ(j∗))

∂ϑϑϑ(j∗)
Aϕ, 0,

π

2



, where Aϕ =
hϕ(ϑϑϑ

(i∗))−hϕ(ϑϑϑ
(j∗))

ρ(hϕ(ϑϑϑ(i∗)),hϕ(ϑϑϑ(j∗)))

⊤
.

5: end for
6: Output: The updated preference angles {ϑϑϑ(1), . . . ,ϑϑϑ(K)}.

C.2 Problem formulations

For completeness, ZDT1, ZDT2, and DTLZ1 problems are described as follows.
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ZDT1. 

f1(x) = x1,

f2(x) = g(x) · h(f1(x), g(x)),

g(x) = 1 +
9

n− 1

n∑
i=2

xi,

h(f1(x), g(x)) = 1−
√
f1(x)/g(x),

0 ≤ xi ≤ 1, i ∈ [n].

(19)

The PF of ZDT1 is f2 = 1−
√
f1, 0 ≤ f1 ≤ 1.

ZDT2. 

f1(x) = x1,

f2(x) = g(x) · h(f1(x), g(x)),

g(x) = 1 +
9

n− 1

n∑
i=2

xi,

h(f1(x), g(x)) = 1− f1(x)/g(x)
2
,

0 ≤ xi ≤ 1, i ∈ [n].

(20)

The PF of ZDT2 is f2 = 1− f2
1 , 0 ≤ f1 ≤ 1.

DTLZ1. 

f1(x) =
1

2
x1x2(1 + g(x)),

f2(x) =
1

2
x1(1− x2)(1 + g(x)),

f3(x) =
1

2
(1− x1)(1 + g(x)),

g(x) = 100((n− 2) +

n∑
i=3

(xi − 0.5)2 +

n∑
i=3

cos(20π(xi − 0.5))),

0 ≤ xi ≤ 1, i ∈ [n].

(21)

The PF of DTLZ1 is 0.5∆3 (3-dim simplex).

C.3 Conversion between a preference and a preference angle

The preference vector λ and preference angles ϑϑϑ are easily inter-convertible via the following
equations. This one-to-one, differentiable mapping allows conversion between ϑϑϑ and λ. While λ

belongs to the m-D simplex, ϑϑϑ lies within the box constraint [0, π
2 ]

m−1. For optimization purposes,
ϑϑϑ is more manageable because it can be easily projected onto [0, π

2 ]
m−1, whereas projecting λ onto

the m-D simplex is more complex.



ϑ1 = arg cos(
√
λ1),

ϑ2 = arg cos

( √
λ2

sinϑ1

)
,

ϑ3 = arg cos

( √
λ3

sinϑ1 sinϑ2

)
,

...

ϑm−1 = arg cos

( √
λm−1∏m−2

i=1 sinϑi

)
,



λ2 = sin2(ϑ1) cos
2(ϑ2),

λ3 = sin2(ϑ1) sin
2(ϑ2) cos

2(ϑ3),

...

λm =

m−1∏
i=1

sin2(ϑi).

(22)
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C.4 Baseline methods used in fairness classification problem

This subsection describes gradient-based methods used as baselines in the fairness classification
problem (Section 5.2). We introduce three aggregation functions:

1. Agg-LS (Linear Scalarization):

gLSλ (x) =

m∑
i=1

λifi(x).

2. Agg-Tche (Tchebycheff):

gTche
λ (x) = max

i∈[m]
{λi(fi(x)− zi)},

where z is a reference point (e.g., ideal point) which dominates the entire PF, i.e., z ⪯ y, for all
y ∈ T .

3. Agg-PBI (Penalty-Based Intersection):

gPBI
λ (x) = d1 + µd2 =

∥∥(z − f(x))⊤λ
∥∥

∥λ∥
+ µ ∥f(x)− (z − d1λ)∥ ,

where z is the same reference point as introduced. In gradient-based multiobjective optimization, the
solution x is updated by:

x← x− η
∂gλ(x)

∂x
,

where η is a small positive learning rate, and agg denotes PBI, LS, or Tche. We also would like
to briefly introduce the other three gradient based method, PMGDA (Preference-based Multiple
Gradient Descent Algorithm) [60], EPO (Exact Pareto optimization) [37], and HVGrad (Gradient-
based HV maximization method) [17]. PMGDA and EPO employ gradient-based techniques to
precisely identify Pareto solutions at the intersection points where the Pareto objectives converge
with the PF. In contrast, HVGrad leverages gradient ascent on the hypervolume to maximize the
hypervolume metric, thereby optimizing the overall dominance of the solution set.

C.5 Duplicated solutions issues caused by the mTche aggregation function

𝒇𝟏

𝒇𝟐

O

Pareto front

𝒚∗
𝝀(𝟏)

𝝀(𝟐)

Figure 12: Duplicated solutions generated by Agg-mTche. Different preference vectors λ(1) and λ(2)

correspond to the same optimal objective vector y∗.

In this section, we discuss when Tchebycheff aggregation methods yield duplicated Pareto objectives.
Appendix C.5 illustrates this, showing a preference vector λ(1) intersecting the PF at the optimal
solution y∗, where

y∗i
λi

= . . . =
y∗m
λm

. (23)

If the preference vector does not intersect the Pareto front (λ(2)), y∗ is the Pareto front endpoint with
the highest Tchebycheff value. In Appendix C.5, y∗ is the optimal value, so preferences λ(1) and
λ(2) correspond to the duplicated Pareto objective y∗.
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D Miscellanies

D.1 Broader impacts

By optimizing multiple conflicting objectives, these algorithms enhance decision-making in fields
such as healthcare, product design, and trustworthy machine learning. In product design, multiobjec-
tive optimization balances trade-offs between capacity and cost, facilitating the effective release of
products that represent the entire Pareto front. In trustworthy machine learning, the UMOD method
designs a series of classifiers that balance fairness and accuracy, improving our understanding of
different Pareto-optimal classifiers.

UMOD is a foundational algorithm, and its broader impact depends on its downstream applications.
We believe UMOD itself does not have a direct negative social impact.

D.2 Limitations

While we have illustrated UMOD’s success, we acknowledge some limitations. First, UMOD does
not address disconnected Pareto fronts such as DTLZ7, as Theorems 3 and 4 assume a connected
Pareto front to ensure uniform distribution. Second, we have not considered problems with discrete,
binary decision variables, or constrained MOPs, as our approach requires a continuous Pareto front.
Adapting UMOD to these complex MOO problems is our next goal. Finally, UMOD requires a neural
model to estimate the Pareto front shape. Although training and preference updating with neural
networks are efficient, this adds extra operations compared to traditional multiobjective algorithms,
which brings inconvenience.

29



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: We explicitly enumerate our contributions in the end of the introduction part.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We list the limitations in the last section (Section 6).

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions are included in theorems and the full proofs are provided in
Appendices A.1 to A.3 respectively.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experiment details in Appendix B.3.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The model implementation and the code are attached as supplementary ma-
terials, which include sufficient instructions to faithfully reproduce the main experimental
results and are scheduled to be open-sourced upon publication.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The details experiment settings are provided in Appendix B.3.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: All numerical results are averaged on 31 random seeds.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: Details are provided in Section 5 (Experiment settings).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes] .
Social impact is discussed in Appendix D.1.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper is not related to LLMs and image generators.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: Licenses are provided in Appendix B.3.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: The paper proposes a new model, and we choose the CC BY 4.0 license.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This paper is not related with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The proposed method is a fundamental algorithm and is not directly related to
human subjects.
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