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ABSTRACT

In the pursuit of Artificial General Intelligence (AGI), the development of Intelli-
gent Transportation Systems (ITS) represents a critical milestone. While current
research is largely focused on ego-centric autonomous systems, this approach is
limited by the constraints of on-board sensors and local decision-making, leading
to potential risks and accidents. Addressing these challenges, this paper introduces
an innovative LLM-powered consensus framework for ITS. By leveraging an im-
proved Raft algorithm and incorporating Large Language Models, we facilitate
dynamic grouping, inter-vehicle information sharing, and global planning. This
decentralized system enhances flexibility, resilience, and the ability to achieve
global optimality, resulting in improved traffic flow and reduced collisions. The
experimental results validate the effectiveness of our approach in creating a safer
and more efficient intelligent transportation ecosystem.

1 INTRODUCTION

On our way to Artificial General Intelligence (AGI), intelligent transportation systems (ITS) is the
intermediate barrier to be solved. Autonomous driving vehicles are the integration of environmental
perception, reasonable planning, social interaction, etc. It is the epitome of what a general AI should
be able to master. Currently, most research focus on the ego-only autonomous driving system,
with hundreds of sensors collecting data and and helping make decisions. Despite the multitude
of proposed solutions from Uber, Tesla, Waymo and Baidu Somerville et al. (2018); Tesla (2021);
Gibbs (2017); Sun et al. (2020); Baidu (2021), the perceptual scope remains constrained to line-of-
sight limitations, primarily attributed to the inherent drawbacks of on-board sensors. Furthermore,
the functionality of devices within a vehicle predominantly contributes to localized decision-making
processes. In simpler terms, neighboring vehicles may lack awareness of specific decisions made by
a particular vehicle. Moreover, the susceptibility of sensors to failures introduces a significant risk
factor, potentially resulting in casualties. This becomes particularly dangerous in ITS, where human
lives are at stake. The potential conflicts arising from disparate local decisions or erroneous sensor
readings among different vehicles can escalate into accidents. A painful illustration of this is evident
in a tragic incident involving a Tesla car, wherein a sensor failure failed to detect a sizable truck and
trailer crossing the highway, causing the vehicle to accelerate uncontrollably under the truck Yadron
& Tynan (2016).

To address the aforementioned issues, there has been an introduction of Vehicle-to-Vehicle (V2V)
networks, or a broader scope referred to as Vehicle-to-Everything (V2X) networks. These networks
leverage communication infrastructures, such as cellular networks, to facilitate the exchange of in-
formation among vehicles and various infrastructural elements Chen et al. (2017); Torrent-Moreno
et al. (2009); Cheng et al. (2017). Presently, numerous Internet of Things (IoT)-related systems uti-
lize centralized architectures, exemplified by systems like autonomous vehicle communication and
household appliance control. These systems necessitate connected nodes to communicate data with
central controllers. However, the centralized architecture encounters challenges related to reliability
and performance Sun et al. (2019). A prevalent issue with centralized systems is the susceptibility to
a single point of failure (SPOF), wherein the overall system’s performance is significantly dependent
on the stability of the central node. In the context of addressing the challenges posed by central-
ized systems and facilitating Vehicle-to-Vehicle (V2V) communication for environmental sensing
in autonomous driving, a promising alternative is the utilization of distributed consensus networks.
This approach offers a decentralized, resilient, and trustworthy framework, effectively mitigating
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Figure 1: Overview of our proposed LLM-powered consensus system. The system consists of three
parts, dynamic grouping, inter-vehicle consensus and LLM planning. All vehicles are divided into
several groups with a dynamic grouping algorithm according to the vehicles’ physical location. In
the stage of group consensus, we realize information sharing based on Raft algorithm. With all the
useful data from every vehicle in the group, LLM can plan globally for each group member.

the limitations associated with centralized systems and catering to the requirements of large-scale,
less reliable communication scenarios.

Currently there are already some work focusing on distributed consensus network among ITS. Li
et al. (2022) and Feng et al. (2023) leverage traditional consensus algorithm in a network, achieving
data sharing among vehicles. They also implement their work on hardware. However, they only
care about data security and transfer efficiency. In this paper, we go one step further. With the de-
velopment of Large Language Models (LLM), more and more LLM-based planning algorithms for
autonomous driving are emerging. These algorithms are more flexible and have stronger generaliza-
tion ability because of the broad knowledge from LLM.

Therefore, we propose an LLM-powered consensus for intelligent transportation system, leveraging
an improved Raft algorithm Ongaro & Ousterhout (2014). As illustrated in Figure1, the system
consists of three parts, dynamic grouping, group consensus and LLM planning. Considering that
vehicles are flowing on the road, there is no need to let two cars far apart plan routes together.
Thus we divide all vehicles into several groups with a dynamic grouping algorithm according to the
vehicles’ physical location (see section 3.3), which makes the system more flexible and have the
ability to handle various situations. In the stage of group consensus, we realize information sharing
based on Raft algorithm Ongaro & Ousterhout (2014), and we also draw on Li et al. (2022) and
Feng et al. (2023)’s strengths to enhance the stability of our system. With all the useful data from
every vehicle in the group, LLM can make decisions for each group member.

As the experimental results show in section 4, our system can achieve global optimality. Currently
most autonomous vehicles are only planning the optimal route for themselves, but we know that
greedy can only reach the local optimum. That is why traffic congestion will occur. While in our
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system, all vehicles in the same group will share the information, and make decisions from the global
view. Therefore, our system can achieve better traffic flow in the intelligent transportation system.

The main contributions of this paper are as follows:

• We propose an LLM-powered consensus for intelligent transportation system. Based on the
hardware realization, we go one step further, utilizing Large Language Models to flexibly
make decisions.

• We achieve global optimality in our system, resulting in better traffic flow in the intelligent
transportation system. The experiments show that there are fewer collisions and less traffic
congestion with our system.

The remainder of this paper is organized as follows: Section 2 investigates a literature review of
consensus in autonomous systems and the use of LLM in autonomous driving planning. In section
3, we elaborate on the architecture of our system, with particular emphasis on its consensus design
and the incorporation of dynamic group algorithm. Section 4 presents a detailed experimental study,
meticulously designed to benchmark and validate the performance of our system. Finally, Section 5
synthesizes the key contributions of this study and casts a spotlight on potential directions for future
research, as well as its broader implications for society at large.

2 RELATED WORK

2.1 CONSENSUS PROBLEM

Consensus refers to the fundamental problem of achieving agreement among distributed processes
or nodes in a network, even in the presence of failures or malicious actors Lamport (2019b). It plays
a pivotal role in various domains, including distributed systems, blockchain technology, and fault-
tolerant computing. Achieving consensus is crucial for ensuring data consistency and reliability in
distributed systems. The Paxos consensus algorithm Lamport (2019a) and the Practical Byzantine
Fault Tolerance (PBFT) algorithm Castro et al. (1999) are significant contributions to the field,
addressing the consensus problem in practical, fault-tolerant settings. These concepts and algorithms
have had a profound impact on the design and implementation of distributed systems, ensuring that
they function reliably and consistently in complex, decentralized environments.

Consensus algorithms have garnered significant attention within autonomous systems and a variety
of domains such as intelligent transportation systems (ITS), Cooperative Adaptive Cruise Control
(CACC), Connected Autonomous Vehicles (CAV), Vehicular Ad-hoc Networks (VANET), and self-
driving cars Wang et al. (2018). Extensive research has been conducted on foundational consensus
approaches that primarily deal with maintaining optimal spacing between vehicles in platoons Jia
et al. (2016). These approaches, which operate under various traffic dynamic models Helbing (2002),
necessitate the exchange of parameters between neighboring vehicles to depict their interaction on
the road and to ensure both a stable platoon formation and enhanced traffic flow. Based on known
vehicle speed, acceleration, and inter-vehicle distances, necessary adjustments are made accord-
ingly Ren (2006); Dao et al. (2008); Fernandes & Nunes (2012); Jia & Ngoduy (2016).

To enhance road efficiency, researchers have proposed advanced consensus strategies such as multi-
platoon coordination ]Li et al. (2019) and other generalized formations Porfiri et al. (2007). While
these methods lead to convergence and stability in inter-vehicle spacing when incorporating traffic
dynamics, their limited capacity for handling complex vehicle maneuvers restricts their broader
usage.

Concurrently, the application of blockchain-based consensus mechanisms has emerged for fostering
more comprehensive information exchange within vehicle-to-vehicle (V2V) networks Kang et al.
(2019a). Numerous studies have focused on proof-based consensus methods. For instance, Kang
et al. (2019b), as detailed in their work, employed distributed smart contracts based on proof-of-
work (PoW) and proof-of-storage consensus. These enable data auditing and verification by in-
centivizing PoW nodes to collect and authenticate local metadata in exchange for vehicle coins, a
specific cryptocurrency, which can be utilized for enhancing computational resources. Similarly,
proof-of-storage nodes contribute storage capacity for the same rewards and subsequent upgrades.
In Yang et al. (2019), the paper introduced a hybrid consensus mechanism combining PoW and
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proof-of-stake (PoS), followed by a trust management system for assessing data credibility through
a Bayesian inference model. However, these methods are computationally intensive due to the com-
petitive mining nature of the participating nodes.

2.2 LLM-BASED AUTONOMOUS DRIVING PLANING

Significant advancements have been made by large language models (LLMs) in demonstrating open-
world cognitive and reasoning skills Radford et al. (2018; 2019); Brohan et al.; Luo et al. (2018);
Achiam et al. (2023). These skills have the potential to clarify the decision-making mechanisms
in autonomous driving, thereby substantially bolstering the reliability of the systems and the trust
users place in them Deo et al. (2021); Kim et al. (2019); Atakishiyev et al. (2021); Jia et al. (2023);
Luo et al. (2018). Regarding the application of LLMs, the field can be divided into two primary
approaches: the fine-tuning of pre-trained models and the practice of prompt engineering.

In the realm of fine-tuning pretrained models for application, Liu et al. (2023) introduced MTD-
GPT, which effectively converts multi-task decision-making challenges into sequence modeling is-
sues. By training on a composite dataset involving multiple tasks, it effectively handles diverse
decision-making scenarios at unregulated intersections. While this method surpasses the perfor-
mance of traditional single-task reinforcement learning models, its application scope is largely con-
fined to scenarios at unsignaled crossings, which may not fully capture the intricacies of real-world
situations. Chen et al. (2023) proposed the concept of Driving with LLMs, where an architecture
was developed to integrate vector-based inputs into LLMs through a two-phase pretraining and ad-
justment process. However, due to the constraints of vectorized input representations, the approach
was exclusively evaluated in a simulated environment. Xu et al. (2023) presented DriveGPT4, a
multimodal LLM based on the Valley framework Luo et al. (2023), and they curated a dataset for
visual instruction tuning to enhance interpretability in autonomous driving. In addition to predict-
ing fundamental control commands for vehicles, DriveGPT4 provides real-time explanations for its
actions. While it shows superior performance in various question-answering tasks, the planning
experiments conducted were relatively straightforward.

From the viewpoint of prompt engineering, various approaches have attempted to harness the deep
reasoning capabilities of LLMs through the creation of intelligent prompts. Wen et al. (2023a)
developed a framework named DiLu, which treats LLMs as agents for closed-loop driving missions.
This approach incorporates a memory module to capture experiences, thus enhancing the reasoning
and reflective abilities of LLMs. DiLu demonstrates remarkable generalization when contrasted with
state-of-the-art reinforcement learning-based methods. Nonetheless, its reasoning and reflection
involve numerous cycles of question-and-answer, leading to a notable increase in inference time. In
a similar vein, Cui et al. (2023) and Cui et al. (2024) integrated LLMs’ language and reasoning skills
into self-driving cars with approaches such as Receive Reason and React and Drive as You Speak.
In addition to memory and reflection, these methods incorporate raw sensor data from cameras,
GNSS, lidar, and radar. Nonetheless, they still grapple with the challenge of slow inference speed.
Moreover, Keysan et al. (2023) introduced SurrealDriver, which structures the memory module into
short-term memory, long-term guidelines, and safety criteria. The study also conducted interviews
with 24 drivers, utilizing their detailed driving behavior descriptions as chain-of-thought prompts to
create a ’coach agent’ module.

3 METHOD

3.1 AUTONOMOUS AGENTS BY LLM

The advent of Large Language Models (LLMs) has opened new frontiers in the field of autonomous
driving, bringing closer the vision of vehicles that not only navigate and respond to their environment
with high precision but also understand and interpret complex scenarios in a human-like manner.
This section delves into the role of LLMs as autonomous agents in driving systems, highlighting
their potential to revolutionize the way vehicles make decisions, plan routes, and interact with both
their passengers and surroundings.

Our code is based on the LimSim environment Wen et al. (2023b), with the addition of LLM as
the ultimate decision-making terminal. We assign specific NPC roles to each vehicle and through
fine-tuning, conduct multiple rounds of agent verification for each vehicle. LLM serves not only
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as the core of decision-making but also enhances the adaptability and granularity of the simulation.
By integrating LLM, the simulator is capable of considering a range of dynamic variables from
psychological attributes and adherence to social norms to sudden incidents. We leverage the pow-
erful capabilities of LLM to describe the driving state in natural language, thereby improving the
transparency and interpretability of the decision-making process. Employing Large Language Mod-
els (LLM) as drivers simulates the complexity and diversity of human driving behavior. Through
high-fidelity simulation environments and precise vehicle dynamics, it enhances the evaluation and
refinement of autonomous driving algorithms. By adopting large language models as autonomous
agents, the framework offers significant improvements and high adaptability in simulating the com-
plexity and diversity of human driving behavior. This method not only enhances the fidelity and
analytical rigor of autonomous driving simulations but also pushes the boundaries of our ability to
replicate real-world driving scenarios. The innovativeness and effectiveness of LLM as autonomous
agents in enhancing the realism and interactivity of simulators.

3.2 GROUP CONSENSUS

This section details the methodology for achieving information consensus within crowded urban
driving scenarios. Drawing on the Raft protocol Ongaro & Ousterhout (2014), we demonstrate how
driving situations are integrated with computer systems. Initially, our primary objective mirrors that
of enabling a collection of machines to function as a cohesive unit, capable of withstanding failures
among its constituents. We classify these machines into a collective that includes diverse vehicle
types. The method of categorizing these groups will not be discussed at this stage. Within this
group, each vehicle is considered a node, with three possible states corresponding to the three states
in the Raft algorithm: follower, leader, and candidate. Their roles align with those defined in the Raft
protocol. In the absence of a leader within the group, vehicles engage in a dialogue to elect a new
leader, facilitating the selection of vehicle roles. The election aims to achieve a quasi-centralized
control within the group. The election process follows the principles of the Raft algorithm, whereby
each vehicle is assigned a random number. Vehicles then compare these numbers: the one with a
smaller number becomes a follower, and this comparison process continues until all vehicles are
followers except for the leader.

Upon selecting a leader, it is crucial to maintain communication among vehicles. This involves
keeping a heartbeat signal active. If a vehicle fails to send a heartbeat to the leader within a specified
timeframe, it is considered offline and is removed from the current group to join another. Likewise,
the leader must send heartbeat signals. If it fails to do so in time, it is considered offline, prompting a
re-election. In this case, every follower automatically becomes a candidate, and the selection process
is repeated.

After completing these election tasks, we can ensure that the information within the group are al-
ways synchronized, and a leader is present at any given moment. Next, we need to assign tasks to
the leader. The premise is that continuous communication within the group is mandatory; other-
wise, vehicles will be removed from the group. Since communication within the group is ensured,
followers can send their location information to the leader, including essential data such as position,
speed, acceleration, vehicle length, and width. Thus, the leader obtains information about all vehi-
cles in the group. The leader then compiles this information, including their own, into a package
and sends it to the LLM, or Large Language Model. The model analyzes the received information
and makes comprehensive judgments, subsequently providing action decisions for each vehicle, in-
cluding acceleration and turning information. These decisions are also sent to the leader. It’s worth
noting that we assume the decision-making process, including reading and sending information, is
instantaneous, meaning the environmental time is considered stationary at that moment. Similarly
to the Raft algorithm, if the leader goes offline at any point, a log system is employed to ensure that
every node, or vehicle, can access the latest decision information.

Once the leader receives the decision information, they distribute it according to the ID of each
vehicle within the group, ensuring every vehicle receives the instructions for their next actions. This
process completes a full cycle of consensus communication.
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Figure 2: Overview of Dynamic Group algorithm. If a vehicle is alone, it forms its own group; upon
encountering other vehicles, it integrates with them. When groups meet, vehicles can merge groups,
with the smaller group integrating into the larger one, eventually forming a larger group. If vehicles
separate, they can also detach from the group.

3.3 DYNAMIC GROUP

We’ve explained how to perform Raft consensus operations within a group to synchronize vehicle
information. However, grouping all vehicles in an environment into a single group would lead to
centralization, imposing an unsustainable operational burden. Therefore, it’s necessary to divide ve-
hicles into groups to achieve a decentralized approach. But how do we categorize these groups? We
considered various methods, including static grouping based on the environment, random grouping
by assigning vehicles to random groups, and dynamic grouping where each vehicle communicates
with others within a certain distance. A vehicle joins a group if it’s not already in one or if the new
group is larger; if there are no nearby vehicles, it forms a group on its own. Ultimately, we opted for
dynamic grouping due to several reasons.

Our experiments showed that static grouping faced significant inter-group communication issues,
with delays and inconvenience when vehicles moved across groups, increasing the communication
load within groups. Random grouping yielded average communication outcomes with certain ran-
dom errors and exceptional cases. Therefore, dynamic grouping was chosen.

In dynamic grouping, vehicles must constantly communicate externally. If a vehicle is alone, it
forms its own group; upon encountering other vehicles, it integrates with them. When groups meet,
vehicles can merge groups, with the smaller group integrating into the larger one, eventually forming
a larger group. If vehicles separate, they can also detach from the group.

This approach allows for dynamic grouping, followed by Raft consensus operations within each
group to synchronize vehicle information. The LLM then returns decision-making for each group
separately, achieving synchronization of information for all vehicles within the environment.

In summary, the operation of the entire system, as illustrated in Figure 2, employs dynamic group-
ing to categorize vehicles into several groups. Within this system, vehicles automatically merge into
or detach from groups, ensuring that adjacent vehicles are within the same group. Within a group,
vehicles automatically elect a leader. The leader collects information sent by each vehicle and then
forwards this data to the LLM. The LLM makes decisions based on this information, and the leader
disseminates the returned decisions back to each vehicle, maintaining information synchronization
within each group member. If a leader goes offline, a new election commences to ensure continuous
synchronization of information within the group. This process allows the LLM to make compre-
hensive and efficient decision simulations by always maintaining up-to-date and synchronized data
across the groups.
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4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

To rigorously validate our consensus verification problem, we established a variety of driving envi-
ronments, encapsulating the diverse scenarios vehicles encounter during normal driving conditions.
These environments included:

• Normal Road: Sparse traffic conditions with few vehicles on the road

• Crowded Road: Busy roads with heavy vehicle traffic

• Highway: High-speed highways where vehicles travel at high speeds

• Intersection: Complex intersections with intricate vehicular movements

These four settings comprehensively represent the spectrum of challenges vehicles face in real-
world driving situations. Within these environments, we conducted experiments under three distinct
configurations: with consensus, with partial consensus (part of consensus), and without consensus.
For the configurations involving with and without consensus, vehicles were driven five times in each
road setting. We recorded the completion rates and the number of collisions, averaging the driving
speeds to assess performance.For the partial consensus configuration, we undertook three ablation
experiments, each omitting one of the three components of the consensus mechanism. Each scenario
was tested by driving five times across the five road settings. The results from these three conditions
were aggregated and averaged to calculate the overall impact of each component on the consensus
mechanism’s effectiveness.

-20% 0% 20% 40% 60% 80% 100% 120%

Without
Consensus

Consensus
(Partial)

Consensus
(Complete)

Rate(%)

Average Speed Collision Completion

Figure 3: The results of the experiments under three distinct configurations: with consensus, with
partial consensus (part of consensus), and without consensus.

4.2 GLOBAL OPTIMALITY

Initially, we needed to validate the global optimality of our method, which means we had to ex-
perimentally verify that our method could effectively optimize vehicle operation under different
circumstances compared to scenarios where the method is not used. We utilized a multi-vehicle
intersection environment with numerous vehicles, where our egocar, the vehicle focused on by the
camera (which is not the leader), needed to move from one multi-vehicle node to another. The
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results in Table 1 showed that using the Raft consensus method could effectively avoid vehicle col-
lisions and congestion, allowing vehicles to smoothly reach their final destinations while ensuring
high-speed and stable operation. In contrast, vehicles not utilizing the consensus method experi-
enced sudden changes in speed or emergency braking during operation due to not receiving relevant
information in a timely manner. Conversely, the consensus allows vehicles to promptly obtain rel-
evant information and make superior decisions. Additionally, the consensus enables vehicles to
demonstrate more exceptional driving performance, resulting in smoother and more stable driving.

Table 1: Comparison of Different Consensus Usage Scenarios
Consensus (Full) Consensus (Partial) Without Consensus

Completion Status High Medium Low
Collision Probability Low Medium High
Running Speed High Low Medium
Lane Change Low High High

Collision! Lane Change & Smooth Driving 

Traffic Congestion! Proactive Communication to Yield

Velocity = 9 m/s Moving So Slowly! Velocity = 17 m/s Unimpeded Traffic Flow!

Without Consensus With Consensus

Figure 4: The comparison between situations with and without consensus. With consensus, the
traffic is smoother and faster, and there are fewer collisions.

4.3 ABLATION STUDY

Next, we verified the completeness of our method, meaning we needed to confirm that no steps in
our method were redundant. We tested the code with certain steps omitted, including the absence
of intra-group selection (random leader within the group, free information transmission), lack of
intra-group synchronization (missing timely information synchronization within the group), and ab-
sence of group merging (maintaining consistent group identities). The results in Table 2 showed that
in environments characterized by these three scenarios, when facing multiple groups and multiple
vehicles, collisions, interference, or various problems would occur, such as collisions at intersec-
tions or during lane changes. However, the complete code did not encounter similar issues under the
same conditions. Therefore, we ultimately demonstrated that each step of the Raft consensus opera-
tions is indispensable, with no room for omissions, to achieve the final synchronization of decision
information.
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Table 2: Comparison of consensus experimental results with different missing components

Intersection Crowded Road Highway
Lack of Intra-Group Selection Collision Collision Congestion
Lack of Intra-Group Merging Collision Congestion Collision
Lack of Intra-Group Synchronization Congestion Collision Collision

For individual vehicles or in scenarios where vehicles were sparse and scattered, the consensus
method struggled to make an impact, performing similarly to vehicles without consensus, which
also makes sense. Therefore, it appears that consensus offers unique advantages for multi-vehicle
or complex environmental scenarios, demonstrating superior functionality, primarily in terms of
vehicle driving stability and communication coordination. Compared to non-consensus vehicles,
the Raft consensus method performs better in these two aspects.

5 CONCLUSION

This study has made significant strides in addressing the critical challenges faced by intelligent
transportation systems. By introducing an LLM-powered consensus framework, we have enhanced
the decision-making capabilities of autonomous vehicles, moving beyond the constraints of ego-
only systems and localized planning. The integration of Large Language Models into the consensus
process not only enriches the decision-making knowledge base but also increases flexibility and
generalization in route planning. Our system’s dynamic grouping and consensus mechanisms ensure
that vehicles can effectively share information, leading to globally optimal decisions and improved
traffic flow. The experimental results validate the efficacy of our approach in reducing collisions and
traffic congestion, thereby offering a safer and more efficient transportation experience.

Looking ahead, this research opens up several potential directions for future studies. Firstly, the
scalability and robustness of the LLM-powered consensus in larger and more diverse traffic scenarios
need to be investigated. Secondly, the integration of additional context-awareness and real-time
data into the decision-making process can further refine the performance of autonomous vehicles.
Moreover, research into the ethical dimensions of decision-making algorithms in ITS is necessary
to ensure that these systems align with societal values.

The broader implications of this work extend beyond the realm of transportation. The consensus
mechanisms and LLM-based planning algorithms developed here can be applied to a wide range
of Internet of Things (IoT) systems, enhancing the performance and reliability of decentralized net-
works. The success of our system in achieving global optimality also underscores the transformative
potential of AI in solving complex societal challenges, paving the way to Artificial General Intelli-
gence (AGI).

In summary, this study not only contributes to the advancement of autonomous driving technology
but also provides a model for how AI can be leveraged to create more intelligent, efficient, and safe
systems. As we continue to navigate the path towards Artificial General Intelligence, the lessons
learned from developing ITS will undoubtedly play a crucial role in shaping the future of technology
and society.
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