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Abstract— Garment grasping in low-light environments re-
mains a critical yet underexplored challenge for domestic
service robots. Insufficient illumination leads to sparse vi-
sual features, causing ambiguous similarities across garment
categories and impairing reliable recognition. While conven-
tional approaches employ infrared–visible multimodal fusion
to mitigate this issue, their heavy computational overhead
limits real-time deployment on resource-constrained robotic
platforms. To overcome these limitations, we propose DarkSeg,
a student–teacher model designed for low-light garment detec-
tion. Unlike multimodal fusion methods, DarkSeg leverages an
indirect feature alignment mechanism, where the student model
learns illumination-invariant structural representations from
infrared features provided by the teacher model. This effectively
compensates for structural deficiencies in low-light imagery
while maintaining computational efficiency. To further validate
DarkSeg in practical robotic applications, we introduce a depth-
perceptive grasping strategy and construct DarkClothes, a low-
light multimodal garment dataset. Experiments on a Baxter
robot demonstrate that DarkSeg improves the garment grasping
success rate by 22%, while reducing parameters by 99.08M
compared to traditional methods, highlighting its effectiveness
and feasibility for real-world deployment. The code and dataset
are available at https://github.com/Zhonghaifeng6/Darkseg

I. INTRODUCTION

Garment grasping is a fundamental capability for domestic
service robots in household cleaning [1], garment storage [2],
and dressing assistance [3], [4]. As the core of physical inter-
action, effective grasping requires comprehensive perception
to answer two critical questions: “What to grasp” and “Where
to grasp.” Current research [5]–[7] primarily adopts semantic
segmentation, leveraging its robust scene parsing capability
as the main perception mechanism for garment recognition.

The central challenge of applying semantic segmentation
in household robots lies in achieving reliable perception
under low-light conditions [8]. Low-light imagery exhibits
sparse structural features, such as blurred edges and loss
of fine details, leading to ambiguous garment similarities
and frequent misclassification. A conventional solution em-
ploys infrared–visible multimodal fusion [9], which enhances
structural representations by incorporating infrared features
into low-light images. However, such preprocessing is com-
putationally expensive, making it impractical for service
robots with real-time constraints and limited resources. Ad-
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Fig. 1. The overview of proposed DarkSeg. Due to the influence of low-
light conditions, the input image exhibits highly entangled and blurred
features between the shirts (yellow) and the pants (blue). Nevertheless,
DarkSeg can leverage the clear structural representations in infrared features
to enhance the distinction of these blurred features.

ditionally, annotating low-light datasets is challenging, as
manual labeling under poor visibility is error-prone.

To address these challenges, we propose DarkSeg—an
infrared structure-driven, lightweight semantic segmentation
model tailored for embedded platforms in low-light envi-
ronments. DarkSeg employs a teacher–student paradigm: in-
frared images are input to the teacher model, while low-light
images are input to the student model. Structural features ex-
tracted by the teacher act as constraints guiding the student’s
feature modeling. This enables the student model to learn
structural representations that compensate for incomplete
details in low-light conditions. Unlike multimodal methods,
DarkSeg relies on teacher guidance only during training,
avoiding image fusion at inference and ensuring efficiency.

Furthermore, we propose a garment grasping strategy that
integrates geometric constraint completion with depth-aware
mechanisms. Based on DarkSeg’s segmentation outputs, this
strategy refines candidate grasp regions through mask op-
timization and determines precise grasp points via depth-
guided search, substantially improving grasp stability and
robustness. Finally, we introduce the Darkclothes dataset, a
large-scale benchmark for low-light garment grasping with
comprehensive ground truth. Each sample includes three
aligned modalities: a low-light image, its corresponding well-
lit version, and an infrared counterpart. This design enables
(1) accurate annotation using well-lit references and (2)
effective exploitation of infrared structures as supplementary
training data to enhance low-light perception.

II. METHOD

A. The Overview of Proposed DarkSeg

The details of the proposed DarkSeg are shown in Fig. 1.
DarkSeg consists of a teacher model processing infrared
images and a student model handling low-light images.
Given a paired input of low-light and infrared images {Ilow,
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Iin}, we employ a backbone network [10] to extract multi-
scale features {low-light: Flow, infrared: Fin} from both
modalities. We leverage the teacher’s explicit structural rep-
resentations derived from infrared features Fin to drive the
student’s structural modeling of low-light images through
two novel components: the Short-Range Structural Percep-
tion (SRSP) module for localized pattern enhancement and
the Wide-Range Structural Perception (WRSP) module for
global contextual modeling.

1) Short-Range Structural Perception Module: The short-
range structural perception module (SRSP) operates on the
principle that convolutional neural networks inherently ex-
tract short-range features [11], enabling the model to per-
ceive prominent high-frequency structural information from
localized receptive fields.

Given the output of the encoder Fmid, we first split it into
four feature subsets along the channel dimension direction.
The feature splitting explicitly decouples the initial fea-
tures into multiple non-overlapping task components. Each
task component can independently calculate the structural
strength from different perspectives:

Fmid =
(
∆F1/4c

1 ,∆F2/4c
1/4c ,∆F3/4c

2/4c ,∆Fc
3/4c

)
, (1)

where ∆F1/4c
1 , ∆F2/4c

1/4c , ∆F3/4c
2/4c and ∆Fc

3/4c represent the
divided feature subsets, and each subset has the same number
of channels. Afterward, dilated convolutions are used to
compute high-frequency structure information within multi-
scale regions to structural intensity values:

∇Fn
m = fN (∆Fn

m ∗ D (s = r))⊗∆Fn
m, (2)

where fN is the sigmoid function. ∆Fn
m represents the

feature subset. ∗ represents the convolution process. D (·)
is the dilated convolution, and the dilated rate r=1, 2, 3,
5. After obtaining the strength weights of the structure, it
needs to be returned to the initial feature to complete the
enhancement of the structure information:

∇Fmid = ∇F1/4c
1 ∪∇F2/4c

1/4c ∪∇F3/4c
2/4c ∪∇Fc

3/4c, (3)

where ∪ is concatenation. We use ∪ to aggregate each subset
feature: F1/4c

1 ,F2/4c
1/4c ,F

3/4c
2/4c ,F

c
3/4c.

2) Wide-Range Structural Perception Module: The wide-
range structural perception module (WRSP) leverages the
Transformer’s superior long-range modeling ability [12],
enabling global perception of salient high-frequency struc-
tural features. However, the Transformer’s quadratic com-
putational complexity [13] makes it unsuitable for model-
ing intermediate features with high resolution and multiple
channels. To address this, we design a multi-layer structural
modeling Transformer (MSMT). A single MSMT provides
limited feature extraction, while stacking multiple MSMTs
significantly increases computational cost. To overcome this
trade-off, we introduce an Invertible Transformer Unit (ITU),
built upon invertible neural networks (INN) [14]. By exploit-
ing INN’s property of lossless information preservation [15],
ITU enhances MSMT’s structural feature modeling while
improving memory efficiency. The Fmid is first evenly split

along the channel dimension into two partitions: F [1 : c] and
F [c+ 1 : C], and feeds them into the ITU for processing:

T [c+ 1 : C] = F [1 : c] + I1 (F [c+ 1 : C]) ,
T [1 : c] = F [c+ 1 : C] + I2 (T [c+ 1 : C]) ,
∆Fmid = CAT {T [1 : c] , T [c+ 1 : C]} ,

(4)

where I1,2 represents the MSMT. T [·] indicates the features
processed by ITU. CAT represents the concatenation. We set
up two layers of MSMT in series in the ITU, and the weights
between different layers are shared to achieve lossless and
invertible mapping of features.

For MSMT (I1,2), given input Fmid, we employ simple
and effective depthwise-separable (DS) convolutions (kernel
sizes: 1, 3, 5, and 7) to process the input to minimize
computational effort and generate the data of the self-
attention from multiple perspectives: Init: (O = Fmid|k=1),
Query: (Q = Fmid|k=3), Key: (K = Fmid|k=5), and Value:
(V = Fmid|k=7). Considering that content information is
directly related to spatial location [16], employing large-
kernel convolutions enables self-attention to model contex-
tual associations over more valuable structural regions. After
completing the above steps, the self-attention computation
proceeds as follows:

Att = LN ∗ (Softmax ((Q ∗ K) /d) · V +O) , (5)

where LN is the layer normalization and d is the scaling
factor. The purpose of introducing O is to give it the self-
attention results to enhance the ability to express structural
information. The results need to be fed into the MLP (Mℓ)
to further enhance the nonlinearity of the modeling process:

Watt = Dr ∗Mℓ (Att) + Fmid, (6)

where Dr represents the Dropout operation. Finally, the
features ∇Fmid and ∆Fmid generated by SRSP and WRSP
are fused with the encoder’s output features and fed into the
segmentation decoder to produce the segmentation results.

B. Darkclothes Dataset

To address the lack of datasets for garment grasping under
low-light conditions, we construct Darkclothes, a low-light
garment dataset. To enrich illumination diversity, we varied
lighting levels (0–50 luminance, maximum 255) by adjusting
curtain openness in a controlled environment. Darkclothes
includes five categories: background, shirts, pants, tables,
and baskets. Data were collected using a Kinect v2 system
equipped with visible-light and infrared sensors. Infrared and
low-light images were aligned via the Kinect v2’s default
RGB–IR stereo calibration, followed by joint calibration and
cropping to ensure spatial consistency. The dataset contains
1,023 pixel-aligned groups (512×424 resolution), each com-
prising a low-light image, its normal-light counterpart, an
infrared image, and pixel-wise annotations. Darkclothes is
partitioned into 921 training and 102 validation groups (9:1
ratio), with the validation set covering the full illumination
range to evaluate robustness.



TABLE I
GRASPING PERFORMANCE OF DIFFERENT SEGMENTATION METHODS.

Method
Success Rate

Pants Shirts Average

PIDNet (RGB) 14 / 25 (64%) 18 / 25 (68%) 64%
MFRS (RGB-T) 18 / 25 (56%) 19 / 25 (72%) 74%
DarkSeg w/o TM 15 / 25 (68%) 19 / 25 (72%) 68%

DarkSeg 22 / 25 (88%) 21 / 25 (84%) 86%

C. Garment Grasping Strategy

To address flexible garment grasping, we propose a depth-
perceptive grasping strategy. Individual garments are first
separated from DarkSeg’s masks, and their geometric cen-
ters are computed. To handle irregular garment shapes, we
introduce a geometric constraint completion method, apply-
ing morphological closing with a 5×5 circular structuring
element to refine boundaries and extracting the largest con-
nected component for minimum bounding rectangle fitting:

minArea (R) ,∀p ∈ S, p ∈ C,C ∈ R, (7)

where S represents the original segmentation area, R is the
fitting rectangle, and p is the pixel point.

The geometric center (xo, yo) is determined by calcu-
lating the intersection of the rectangle’s diagonals. To en-
hance grasping reliability, we propose a depth-optimal search
method. Centered around the geometric center, we construct
a candidate region Na based on the garment’s area: Na =
Area (S) /k, where k is a scaling factor (default: 50). For
candidate point (xi, yi) ∈ Na, we utilize a candidate point
normalization function to ensure the selection of the highest
point while avoiding interference from isolated noise points:

Score (zi) =
z(p)−zmin

zmax−zmin
, (8)

where z (p) is the depth value of a pixel in Na, zmin and
zmax are the minimum and maximum depth values of all
pixels in the Na, respectively. zi is the optimal depth. Finally,
the robotic arm adopts a layered motion strategy: it first lifts
vertically along the Z-axis from the table center to a safe
height, then performs spatial linear interpolation based on
Eye-to-Hand calibration results to move above the optimal
grasp point (xi, yi, zi) and complete the grasping process.

D. Loss Function

The loss function of DarkSeg comprises infrared loss Lin

for training the teacher model and low-light loss Llow for
training the student model. For Lin and Lvi, we adopt a
cross-entropy loss to measure discrepancies between pre-

diction and result: Lin (pi, gt) = −
n∑
gt × log (pi) and

Llow (pl, gt) = −
n∑
gt × log (pl), where n, g2, pi, and pl

represent the class, label, infrared result, and low-light result.
Notably, to align features between the student and teacher
models, we introduce a structural modeling loss (Lsm):

Lsm = 1
H×W

H∑
h

W∑
w

∥∥Fmid
in (h,w)−Fmid

low (h,w)
∥∥
2
, (9)

TABLE II
GRASPING PERFORMANCE OF DIFFERENT GRASPING STRATEGIES.

Method
Success Rate

Pants Shirts Average

DarkSeg w/ [7] 19 / 25 (76%) 19 / 25 (76%) 76%
DarkSeg w/ [17] 17 / 25 (68%) 20 / 25 (80%) 74%
DarkSeg w/o DOSM 19 / 25 (76%) 20 / 25 (80%) 78%

DarkSeg 22 / 25 (88%) 21 / 25 (84%) 86%

where ∥·∥2 denotes the mean squared error. Fmid
in and

Fmid
low represent the intermediate features extracted from

the encoder outputs of the teacher and student models.
Lsm enforces the student model to emulate the teacher
model’s structural feature representation by aligning their
intermediate layer features. The total loss is formulated as:
Ltotal = Llow + Lin + Lsm.

III. EXPERIMENTS

A. Experiments on the Baxter Robotic Platform

To evaluate DarkSeg’s performance in garment grasping
(pants and shirts) under low-light conditions, we deploy
DarkSeg trained on the Darkclothes to a Baxter robot for
grasping assessment. The Kinect v2, used for scene capture,
is mounted above the Baxter’s head, oriented vertically
toward the table. The grasping process employs the depth-
perceptive strategy to target our specific garments, with 25
trials per round. A successful grasp is defined as the garment
being grasped and released into the basket.

1) We compared the grasping performance of different
methods under low-light conditions (0-20 luminance), as
shown in Tab. I. Compared with DarkSeg, conventional
semantic segmentation models like PIDNet and IDRNet
exhibited a decrease in average grasping success rates by
20% and 18%, respectively. This is due to the lack of infrared
features to correct the sparse structural features, resulting in
misclassification of the model, which affects the selection of
grasping points. Similarly, without (w/o) the teacher model
(TM), DarkSeg also exhibited significantly reduced grasping
accuracy under these conditions. This underscores the role of
infrared feature guidance in mitigating low-light perception
issues, thereby enabling robot to make accurate decisions.

2) To validate the effectiveness of the proposed depth-
perceptive grasping strategy (DPG) and its depth-optimal
search method (DOSM), we conduct the following abla-
tion studies: 1) substituting the DPG with (w/) alternative
grasping strategies ( [7] and [17]), and 2) removing DOSM.
As shown in Tab. II, the elimination of DOSM resulted in
an 8% decline in DarkSeg’s grasping accuracy. This degra-
dation occurs because, without DOSM, the model defaults
to considering the geometric centroid of candidate regions
as grasping points, without evaluating whether the depth
values facilitate arm grasping. When replacing our proposed
grasping strategy with [7] and [17], the accuracy decreased
by 10% and 12%, respectively. Although these baseline
methods adopt similar region-optimal point search strategies,
they fail to identify depth coordinates most suitable for
robotic grasping, resulting in failed grasps.
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