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ABSTRACT

Accurately estimating the normalization term (also known as the partition func-
tion) in the contrastive loss is a central challenge for training Contrastive
Language-Image Pre-training (CLIP) models. Conventional methods rely on
large batches for approximation, demanding substantial computational resources.
To mitigate this issue, prior works introduced per-sample normalizer estimators,
which are updated at each epoch in a blockwise coordinate manner to keep track
of updated encoders. However, this scheme incurs optimization error that scales
with the ratio of dataset size to batch size, limiting effectiveness for large datasets
or small batches. To overcome this limitation, we propose NeuCLIP, a novel and
elegant optimization framework based on two key ideas: (i) reformulating the
contrastive loss for each sample via convex analysis into a minimization problem
with an auxiliary variable representing its log-normalizer; and (ii) transforming
the resulting minimization over n auxiliary variables (where n is the dataset size)
via variational analysis into the minimization over a compact neural network
that predicts the log-normalizers. We design an alternating optimization algorithm
that jointly trains the CLIP model and the auxiliary network. By employing a tai-
lored architecture and acceleration techniques for the auxiliary network, NeuCLIP
achieves more accurate normalizer estimation, leading to improved performance
compared with previous methods. Extensive experiments on large-scale CLIP
training, spanning datasets from millions to billions of samples, demonstrate that
NeuCLIP outperforms previous methods.

1 INTRODUCTION

Since its introduction, Contrastive Language-Image Pretraining (CLIP) (Radford et al.l 2021) has
emerged as the de facto standard for vision-language representation learning. The strong capability
to align images with corresponding texts has made CLIP valuable for a wide range of real-world
applications, including zero-shot classification (Qian & Hul 2024), cross-modal retrieval (Zeng &
Mao, 2022)), text-to-image generation (Ramesh et al.,[2022), and high-quality dataset selection (Fang
et al} |2023a). With the rise of large language models (LLMs), CLIP has also been widely adopted
to equip LLMs with the ability to interpret visual inputs (Bai et al., 2025)).

A fundamental impediment to training CLIP models is their extensive dependence on huge datasets:
attaining competitive performance typically mandates access to millions or even billions of image-
text pairs (Fang et al.l|2023aj; |Wang et al.,|2025b). A mainstream approach for training CLIP mod-
els is to optimize a bimodal contrastive loss, which contrasts each positive image-text pair against
numerous negative pairs. To enable training on billions of samples, two primary strategies have
emerged to approximate the prohibitive normalization term required for contrastive loss gradient
calculation. The first strategy, which relies on massive GPU resources, uses an extremely large
batch size to construct a contrastive loss within each batch for backpropagation. This strategy is
used by many works, including OpenAl CLIP (Radford et al., [2021) and OpenCLIP (Cherti et al.,
2023). The second strategy addresses the high resource demand of the first by directly optimizing a
global contrastive loss, which contrasts each positive pair with all negative pairs. To tackle the com-
putational challenge, an estimator of the normalizer for each sample’s contrastive loss is maintained
and updated using a moving average formula following a rigorous framework of finite-sum coupled
compositional optimization. It was first proposed by |Yuan et al.| (2022)) for unimodal contrastive
self-supervised learning, and later adopted by [Wei et al.| (2024) with significant improvements for
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CLIP training, yielding the FastCLIP method. While being less resource demanding, this strategy
suffers an inherent limitation that the optimization error scales with the ratio of dataset size to batch
size, constraining its effectiveness for large datasets or small batch sizes.

Recently, there emerge some new ideas for CLIP training. For example, [Zhai et al.| (2023)) proposed
SigL.IP with a sigmoid-based contrastive loss by formulating the problem as a binary classifica-
tion problem, which avoids the computation of the normalization term involving numerous nega-
tive pairs. However, SigLIP still requires a large batch size to achieve competitive performance.
Sun et al| (2025) proposed AmorLIP that leverages a lightweight network to predict the normal-
izer of each contrastive loss. While conceptually appealing, AmorLIP’s objective for training the
lightweight network still faces the challenge of estimating the log-partition function for the gradient
calculation of the lightweight network, leading to a chicken-and-egg problem.

This paper aims to address the limitations of FastCLIP and AmorLIP for CLIP training through a
principled approach towards optimizing the global contrastive loss with a neural normalizer. Our
method is built on two key ideas: (1) using convex analysis, we reformulate the contrastive loss
of each anchor data to a minimization problem with an auxiliary variable, whose optimal solution
corresponds to the log-normalizer; and (2) using variational analysis, we transform the minimization
over n auxiliary variables (where n is dataset size) into minimization over a compact network that
directly predicts the log-normalizers, referred to as the normalizer-prediction network (NPN).

Compared with FastCLIP and AmorLIP, our method offers several notable advantages. First, the
objective for learning the encoders and the NPN is unified, and its gradient avoids any nonlinear
dependence on the partition function. This allows traditional stochastic gradient methods to be
employed for updating both the encoders and the NPN without incurring gradient estimation bias.
Second, the unrestricted optimal solution of the auxiliary variable motivates us to inject inductive
bias into the design of the NPN, resulting in a simple yet effective architecture: a feedforward layer
on top of the encoders followed by a log-sum-exponential pooling layer. Moreover, this seamless op-
timization framework enables key acceleration techniques, including alternating optimization with
multiple NPN updates and periodic re-initialization of the NPN’s parameters using sampled updated
embeddings, which yields significantly better normalizer approximation. The contributions of this
paper are threefold:

* We reformulate the contrastive loss into an equivalent form in which the normalization terms are
explicitly exposed as optimization variables. This reformulation provides a principled foundation
for efficient neural normalizer approximation.

* We introduce a joint optimization problem that learns the encoders and a compact normalizer-
prediction network (NPN) with a unified objective, which is derived from variational analysis. We
also develop an efficient algorithm for alternatively optimizing the NPN and the CLIP encoders.

* We validate the effectiveness of our approach through extensive experiments on large-scale
datasets, showing consistent improvement over existing methods. Comprehensive ablation studies
are also conducted to highlight the contribution of different components in our framework.

2 RELATED WORKS

Efficient Training of CLIP Models. Numerous approaches have been proposed to enhance the
efficiency of CLIP model training. Prior works include curating high-quality datasets (Schuhmann
et al., 2022; [Fang et al., |2023a; (Xu et al.| 2024} [Wang et al., |[2024), designing more efficient vision
encoder architectures (Fang et al.| 2023b; |Alabdulmohsin et al.l 2023} |Chen et al., |2024)), applying
image-token masking to reduce computational cost (L1 et al.l [2023bza), and modifying the geome-
try of the embedding space (Chou & Alaml [2025} [Pal et al., 2025). Additional strategies leverage
knowledge distillation to train compact student models (Vasu et al.l [2024) or employ a pretrained
reference model to steer and accelerate the training of a target model, thereby improving scaling
laws (Wei et al., 2025). In contrast, our work is orthogonal to these directions: we focus on improv-
ing the optimization process itself by providing a more efficient and stable method for minimizing
the contrastive loss.

Optimizing the Global Contrastive Loss. The global contrastive loss was first introduced by |Yuan
et al.| (2022) to address the large batch-size requirement of SimCLR (Chen et al., 2020). They
proposed an efficient optimization algorithm, SogCLR, with provable convergence guarantees for
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unimodal self-supervised contrastive learning. Notably, SogCLR with a batch size of 256 matches
the performance of SimCLR with a batch size of 8192 on ImageNet. Subsequent work by |Qiu et al.
(2023) provided a distributionally robust optimization (DRO) interpretation of the global contrastive
loss, leading to a constrained DRO formulation with individualized temperature optimization. Build-
ing on this perspective, Wei et al.| (2024) proposed a simplified variant that unifies the temperature
parameters into a single scalar. Another line of work explains the global contrastive loss from
a probabilistic perspective, showing it as the maximum likelihood estimation of a discriminative
model (Wang et al., |2025a). Despite these different viewpoints, all methods rely on optimization
techniques similar to SogCLR, which maintain and update per-sample estimators for the normaliza-
tion term of the contrastive loss. Consequently, they share a key limitation: the optimization error
scales with the ratio between the dataset size and the batch size.

Learning with Auxiliary Networks. Leveraging auxiliary networks to facilitate training has been
widely explored (Shen et al., 2024} He et al., 2020; |Su et al.| 2025} Kim et al., 2024} Evans et al.,
20255 |Qiu et al.} 2024; [Sun et al., |2025). We highlight two closely related works (Qiu et al.|, 2024;
Sun et al.l [2025). |Qiu et al.|(2024) introduced TempNet, a network designed to predict personal-
ized temperatures for each sample when training CLIP models with a robust global contrastive loss.
Their approach was also motivated by variational analysis that led to the joint optimization of en-
coders and TempNet. Nevertheless, their optimization algorithm, built on SogCLR, still requires
maintaining and updating per-sample estimators of the contrastive loss normalization term, and thus
inherits the same limitations of SogCLR. [Sun et al.| (2025) proposed AmorLIP, which optimizes a
robust global contrastive loss similar to that of Wei et al|(2024) by jointly learning a lightweight
network to approximate the partition function. However, AmorLIP differs from our method in sev-
eral key aspects: (i) the objective for training the lightweight network is heuristically defined as
divergence minimization between its predictions and the true partition function values, which still
involves a non-linear function of the normalizer, leading to the chick-and-egg problem; (ii) Amor-
LIP simply employs a Multi-Layer Perceptron (MLP) with few layers for the NPN, while our design
leverages inductive bias to improve performance, as validated in ablation studies. Furthermore,
AmorLIP requires maintaining an exponential moving average (EMA) network of NPN to mitigate
the chicken-and-egg issue, since its auxiliary objective still involves estimating a nonlinear function
of the normalizer.

3 PRELIMINARY

Notations. We denote by w the parameters of the CLIP model. Let S = {(«;, z;)}/_; be a training
dataset of n samples, where x; is an image and z; is its corresponding text description. The features
of image x; and text z; output by the CLIP model are denoted by e; ; = e;(w; x;) € R¢ and
e2; = ea(w;z;) € RY respectively, where e1(w;-) and ez(w;-) denote the image encoder and
the text encoder, respectively. The cosine similarity between features e; ; and ey ; is denoted as
Si,j = (308(6171‘7 62,]‘).

The convex conjugate of a function f : R — R is given by f*(y) := max,y - — f(z). From
the Fenchel-Moreau theorem (Rockafellar, |1997, Theorem 12.2) we know that if f is a proper,
lower semi-continuous and convex function, the convex conjugate of f* is equivalent to f, i.e.,

f(@) = [ (x) == max, -y — f*(y).

Global Contrastive Loss. Following (Wei et al., [2024), we consider optimizing a robust global
contrastive loss defined below:

. Si,j — Siyi
woer S| Z log(EJf S[—1 > e (T)>

x, €S z; €S, j#i
g1 (w,7;1,8S) (l)
1 Sji — Si,i
(e e () v
z; €S x; €S,jFi
g2 (w,732,8)

where 7 is the temperature parameter, 7y, £ are small constants, and p > 0 is a hyperparameter.
In order to solve this problem, we need to compute an estimator of the gradient. In particular, the
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gradientwrt w is given by

1 1
—_— -V , T30, S —_— -V , T30, 8).
|S| Z 5+91(w 731, S) gu(w, 738, 8) + 7 |S| Z €+gz(w 731,8S) g2(w, 731, S)

2
We can see that the terms € + g1 (w, 7;¢,S) and € + g2 (w, 7; 4, S) serve as normalizers of the gra-
dient calculation for image «; and text z;. A key challenge is that g; (w, 7;4,S) and go(w, 7;,S)
cannot be computed exactly, as they depend on all other data samples. This necessitates approxi-
mating these normalizers using only a batch of samples.

Mini-batch Approximation. A naive approach is to simply use a mini-batch approximation (Rad-
ford et al.l 2021} [Cherti et al., 2023), i.e., sampling a subset 3 C S and computing the following
gradient estimator

1 1
— 'V , T34, B — 'V , T4, B).
|B| Z 5+gl(w 731, B) g1(w, 733, B) +7- \BI Z 5+92(w 754, B) g2(w, 733, B)

This is equlvalent to performing backpropagation on a rn1n1-batch contrastive loss 7 - log(e +
g1(w,7;4,B)) + 7 - log(e + ga(w, 754, B)). However, this gradient estimator is biased as its ex-
pectation does not give the true gradient in Equation due to the non-linearity of the reciprocal
function. As a consequence, it requires a large batch size (Yuan et al.,|[2022).

Moving-average Approximation. To address the large batch issue, |Yuan et al (2022) proposed

the SogCLR algorithm, which maintains two sequences of estimators {ugtz, Uy )} for each x;, z;

to approximate £ + g1 (w73, 8) and € + go(w®, 7(Y); i, S) at the t-th iteration, respectively.
At t-th iteration with solutions (w(*), 7(!)), for (z;, z;) in the sampled batch B(*), their normalizer
estimators are updated as follows

uf!TV = (1= ul’} + (e + g1 (! r<t>-i,s<”>>, )
uf Y = (1= )uff) + (e + g2(w®, 7033, B0)),
where € [0, 1] is a hyperparameter. Then, the gradient estimator for w(®) is computed by
*) 1 7® 1
. : ) 7). ) . 0. B
B Z sy Vwgi (w i, BY) 4+ B0 Z =y Vauwge(w' 7% BWY).
@ eB® Ul zeB® U2
“)

It has been shown that the optimization error of SogCLR converges to zero (Yuan et al., 2022)). Built
on this idea, |[Wei et al.| (2024)) proposed FastCLIP, an efficient distributed CLIP training framework
with several improvements including the temperature optimization and the learning rate schedule
for v. However, the convergence error of FastCLIP suffers from a scaling factor of O(n/B) on the
standard rate (Yuan et al.,[2022)), where B = |B ) | is the mini-batch size per-iteration. This property
is not desirable since the error will increase when n increases and B decreases.

4 NEUCLIP: CLIP TRAINING WITH NEURAL NORMALIZER OPTIMIZATION

In this section, we first present a reformulation of the contractive loss as a minimization problem.
Then we derive a joint optimization problem from variational analysis to learn the encoders and the
normalizer-prediction network (NPN). Finally, we present an optimization algorithm.

4.1 REFORMULATING THE CONTRASTIVE LOSS

Without lose of generality, let us consider the individual contrastive loss for an image anchor data x;,
as given by F(w, 7; ;) = log(e + ¢1(w, 7;4,8)). Since f(-) = —log(+) is a convex function, we
can leverage the conjugate transformation f(z) = max, y -z — f*(y) with f*(y) = —log(—y) — 1
to reformulate the above individual contrastive loss as follows (by setting © = € + g1 (w, 734, S)):

F(w,m25) =log(e + g1(w, 731, 5)) = —max{y - (¢ + g1(w, 734, 5)) = f*(y)}
= —max{y - (¢ + g1(w, 7;4,5)) +log(~y) + 1} = min{—y - (¢ + g1 (w, 73, 5)) — log(~y) — 1}
= m‘in{exp(—a) e+ g1(w,7;1,8)) +a—1}, Q)
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where the last equality uses a change of variable « = — log(—y). It is not difficult to derive that the
optimal solution a* to the last optimization problem is given by o* = log(e + ¢1(w, 7;,8)) (cf.
Appendix [A.T)), which is exactly the log-normalizer. We note that the above reformulation can be
viewed as a special case of the optimized certainty equivalent (OCE) (Ben-Tal & Teboulle, [2007).

Substituting the above reformulation of each contrastive loss in Equation (I, we get the following
equivalent form of the global contrastive loss:

1
min 7 - — Z {mmexp( a1) - e+ q(w, 734, 8)) + a1, — 1}

wr ]S o s
miGS
(6)
TS Z{gl;neXp ozz,i)-(€+92(w,7;i,8))+0¢2,i—1}+2T/)-

Indeed, the update of u, us sequences of SogCLR in Equation (3 can be recovered by solving the
above problem using stochastic block mirror descent method (Lan} 2020, Section 4.6.2). We provide
a detailed derivation in Appendix[A.2]

4.2 NEURAL NORMALIZER OPTIMIZATION

Maintaining and updating {1 ;, a2, } in a coordinate-wise manner is the root that leads to a scaling
factor of O(n/B) in the convergence error of FastCLIP. To mitigate this issue, our idea is grounded
in the following theorem from variational analysis.

Theorem 1 (Rockafellar & Wets, |2009}, Theorem 14.60). Let F be a space of measurable functions
Sfrom ) to R that is decomposable relative to a finite measure p. Let f : Q x R — R be a normal
integrand. Then, as long as [, _¢, f(z, a(x))pu(dx) # oo for all a(-) € F, we have

wt [ featomtn) = [ (int s ) uiao) ™

a()eF J, aeR

Moreover, if the above infimum is not —oo, then o*(-) € argmin, . cr [, . f(z,a(x))u(dz) if
and only if o (x) € argmin g f(z, &) for p-almost every x € Q.

The above equality indicates that the minimization over individual variables « for each x on the
right hand side within an integral of « can be translated into searching for a function «(-) € F that
minimizes the whole integral over all x € ().

Our reformulated contrastive loss (Equation [6) shares a similar structure to the right hand side of
Equation (7] . ) when the measure 1 is a probability measure, with minimization over aq ;, w2 ;, and
then the average over all samples. Hence, Theorem [I]implies that

T- \S| Z {mlnexp —a,) - e+ g1 (w,734,8)) +on — 1}

a1,

iz i S e ntnni ) sote -1}
As aresult, Equation @ can be transformed into:

min |S\ Z {exp —ay(xy)) - (e + g1(w, 734, S)) + ay(x;) — 1} (8)

w,T 041( ),Otz )E]:

\S| {exp —2(z:)) - (e + g2(w, 734, 8)) + aa(zi) — 1} + 2pr.

z; €S

Neural Normalizer Optimization. Directly solving is not easier than solving (6) due to the
constraint o (), ae(-) € F. Our strategy is to approximate these functions using parameterized
neural networks. Specifically, we solve the problem by restricting a1 () € Fw, and az(-) € Fw,,
where Fw, and Fywy, denote the function classes represented by neural networks parameterized by
W7 and W, respectively. This raises the question of how to design the architecture of the neural



Under review as a conference paper at ICLR 2026

network. A naive idea is to use simple feedforward neural networks. It is guaranteed by universal
approximation theory that a neural network can approximate any continuous function arbitrarily
well as long as the network is wide enough. However, this could increase the burden of training.
Instead, we draw insights from Theorem [I]to design a network with inductive bias, which implies

aq(x;) € argmin exp(—a ;) - (e + g1(w,7;4,8)) + a1 — 1

5

1 el ex; —ef e,
= log e+ |‘9|7_1 Z exp < - 3 (9)

z;€S,j#i

where the last equality is from Equation (5) and the definition of g. Since e ;, ez ; are readily
available from the CLIP encoders, we only need a model that compresses the information of all
e2,;. Inspired by this, we define the following network architecture with parameter Wy € R4*™,
where m is the number of neurons of the hidden layer:

T

1 & cos(ey ;, Wy ;) — el .ea;
ar(x;) ==a1(Wiser,ex;) =log | € + o Z exp ( ( e ) ,  (10)

=1

where W denotes the j'-th column of W. This can be seen as a compact network built on top of
the encoders, processing their output embeddings {ej ;, €2 ;} with a feedforward layer parameter-
ized by W and followed by a log-sum-exponential pooling layer. Compared with the unrestricted
optimal solution of «(x;) in Equation @]), we can view Wy 1,..., Wy ,, as prototypical embed-
dings that summarize {z;}. This is supported by existing studies of self-supervised representation
learning, which show that the learned embeddings of training samples from the same class tend
to concentrate around their class means (Ben-Shaul et al., [2023). Similarly, we use the following
network with an additional parameter Wy € RYX™ to approximate a(2;) by

. T
<COb(€27i, WQJ") — 6171-6271')

1 m
az(2;) :=az(Wajer i, ez;) =log | € + m ZleXp
J=

(1)

T

Finally, our unified objective for learning the encoders and the NPN becomes

1
w,TTIVl[;?,W2 T 18| mze:s (exp(—a1(Wh,e14,e2;)) - (e + g1(w, 730, S)) + a1 (Wi, ey i,e2;)) +
1 .
T 5] Z (exp(—aa(Wa, e14,€2.)) - (€ + go(w, 731, S)) + az(Wa, e14,ea,)) + 27(p — 1).

zZ, €S
(12)

4.3  ALTERNATING OPTIMIZATION AND ACCELERATION

To solve Equation (12)), a straightforward approach is to update w, 7, W1, Wy simultaneously by
using stochastic gradient based methods. However, we find that this approach does not work well
in practice (see Appendix for empirical results). The reasons are multi-fold: (i) the overall
objective landscape of w, 7, W1, W5 is much more complicated than the original objective in terms
of w, 7; (ii) the NPNs’ predictions also rely on the output embeddings of the encoders, which
makes the predicted normalizers from one step update of W7y, W5 not good enough for updating the
parameters w, 7. A natural idea to address this issue is to split the parameters w, 7, W1, W5 into
two blocks (w, 7) and (W7, W3), and use an alternating optimization scheme to update two blocks
one by one. A similar strategy has been used for other problems that exhibit two natural blocks, e.g.,
non-negative matrix factorization (Lin} 2007).

Another straightforward optimization scheme is to alternate the optimization over Wi, Wy given
w, 7 and then the optimization over w, 7 given W, W5, which is proved to enjoy a convergence
guarantee (Grippof & Sciandronel 1999, Theorem 6.3). However, it is not implementable as exactly
solving the optimization problem over one block given another block is unrealistic. To address this,
we present a practical method in Algorithm I] which is referred to as NeuCLIP. For comparison, we
present FastCLIP in Algorithm
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Algorithm 1: The NeuCLIP Algorithm

Input: CLIP model w(®), temperature 7(®), NPNs Wl(o), 2(0), dataset S, number of
iterations 7', restart frequency 7). and number of updates 7T, for NPNs
1 fort=0,...,7T—1do
2 Randomly sample a mini-batch B®) C S;

3 if t mod 7, = 0 then // Restart

4 ‘ Reset Wft), WQM with {e2 ; }iew and {eq ;};cp) . respectively ;

s | Set W) = W and WitV = wit;

6 fort’ =0,...,7, — 1do // Multiple updates

7 Compute mini-batch gradient of Equation w.I.t. Wl(t’t/), Wz(t’t/);
8 Update Wl(t’tlﬂ), Wg(t"’tlﬂ) with an optimizer ;

o | Set WY = W) and WY = wib T

10 Compute agtﬂ)(wi) and agtﬂ)(zi) for (x;,2;) € B®);

1 Compute mini-batch gradient of Equation wrtw® 7®);
12 | Update w1 and 7(*+1) with an optimizer;

Acceleration. We develop two techniques to accelerate training. First, we perform multiple NPN
updates before updating the CLIP model. Since each update of the encoders changes the loss
landscape of the NPNss, multiple updates enables the NPN’s to maintain the same pace as the encoders
and produce more accurate normalizers. In practice, we find that a small number of updates (e.g.,
T, = 10) is sufficient. Since the NPNs are lightweight networks, the additional cost is minimal
(cf. Appendix [B.4]for empirical results). Second, we apply periodic re-initialization of the NPNs
by using randomly sampled text embeddings {e3;} to reset W1 and their corresponding image
embeddings {e; ;} to reset W5. This also helps mitigate the convergence gap between the CLIP
model and the NPNs. This procedure is motivated by the observation that W; and W5 act as
compact summaries of all text and image embeddings. Together, these two techniques ensure that
the NPNs remain well-aligned with the evolving encoders, leading to more effective training.

Convergence of Algorithm [I} We analyzed the convergence property of Algorithm [I] in Ap-
pendix |C} Let f(w, 7, Wi, W5) denote the function considered in Equation , in Theorem
we show that after " = O(¢~*) iterations of Algorithm [I} we can find an e-stationary point such

2
that - ,Ef E Mvwﬁf(w(t)., ®, Wl([')., WZ([))H } < £2 under mild assumptions.

5 EXPERIMENTS

Experiment Settings. In all the experiments, we train a CLIP model on an image-text dataset with
a given compute budget (i.e., number of samples to be processed) using 8 NVIDIA H100 GPUs.
The text encoder of the CLIP model is a Transformer (Vaswani et al.,2017), and the image encoder
is either a ViT (Dosovitskiy et al., [2021)) or a ResNet (He et al., 2016). We consider five datsets,
including CC3M (Changpinyo et al., [2021), CC12M (Sharma et al., [2018) and three subsets of the
DFN dataset at different scales (Fang et al.,[2023a), ranging from 14M to 192M and 1B. The details
of the experiment settings, including batch size and training budget for each dataset, can be found
in Table[I] Ablation studies are conducted on the CC3M dataset and the DFN-14M dataset.

Evaluation Metrics. Throughout the section, we evaluate the performance of trained models
on zero-shot classification and retrieval tasks. Specifically, we leverage the Datacomp bench-
mark (Gadre et al.,|2023) and report the average performance on its 38 tasks (denoted as Datacomp
Average). Moreover, we report the average performance on two subsets of the 38 tasks: (1) Ima-
geNet & Variants, which consists of classification tasks on ImageNet-related datasets; (2) Retrieval,
which consists of retrieval tasks. More information can be found in Appendix [B.2]

Hyperparameters. For the NPNs, we set the number of columns m = 4096, restart frequency
T, = 500, and number of updates per iteration 7,, = 10. We use the AdamW optimizer (Loshchilov
& Hutter}, 2019) to train the CLIP model and the AdaGrad optimizer (Duchi et al.| 2011)) to train the
NPNs. We provide more details on other hyper-parameters in Appendix
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Table 1: Details of experiment settings. “Size” denotes the number of image-text pairs we success-
fully downloaded. “Samples” denotes the number of samples that are processed for training, which
equals the total number of iterations times global batch size. “Batch Size” denotes the global batch
size.

Dataset Dataset Size  Samples Seen  Vision Encoder  Batch Size
CC3M 2. M 100M ResNet-50 1024
CC12M 9.2M 300M ViT-B/32 2048
DFN-14M 13.7M 320M ViT-B/32 4096
DFN-192M 192M 1.3B ViT-B/16 5120
DFN-1B 1.0B 3.0B ViT-B/16 5120
== OpenCLIP = FastCLIP = SigLIP = AmorLIP === NeuCLIP
40 e —
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Figure 1: Performance curves of different methods on DFN-14M. (a): Datacomp Average perfor-
mance. (b): ImageNet & Variants performance. (c): Retrieval performance.

5.1 COMPARISON WITH BASELINES

In this subsection, we provide comparison between our proposed NeuCLIP and several strong base-
lines, including OpenCLIP 2023)), FastCLIP 2024), SigLIP
2023)) and AmorLIP 2025). For OpenCLIP and SigLIP, we use the implementation from
open_clip ([Tharco et al., [2021). For FastCLIP and AmorLIP, we use their released code, respec-
tively. For experiments on CC3M, CC12M and DFN-14M, we repeat each method three times with
different random seeds and report the mean. The Datacomp Average performance of different meth-
ods on the different datasets are presented in Table[2] and the full evaluation results are deferred to
Appendix [B.3] Additionally, we plot the performance curves during training in Figure [T}

The first observation we have is that NeuCLIP outperforms all other methods on all datasets, indi-
cating the effectiveness of our approach. Secondly, from Figure [T] we find that NeuCLIP achieves
larger improvement at the later stage of training. Note that in Algorithm [T} we optimize the NPNs
Wl(t), WQ(t) given a fixed CLIP model w(), 7() At later stage of training, the change in w®, 7(*)
becomes smaller, enabling the learning of NPNs to be more efficient for the updated encoders. Third,
for AmorLIP, we observe differences between our results on CC3M and CC12M and those reported
in (2025)). This is because we reran the AmorLIP training on the same datasets used for
the other methods, whereas our CC3M and CC12M datasets differ from those in (2025),
as they come from different downloaded snapshots. (cf. Appendix [B.3).

5.2 ABLATION STUDY

In this subsection, we conduct ablation study of different components in NeuCLIP. We run all the
experiments on DFN-14M or CC3M, where the setting is the same as in Table[T]

Comparison with AmorLIP’s Design. The main differences between the design of AmorLIP and
NeuCLIP lie in the training objective and model architecture of the NPN: (1) AmorLIP employs two
separate objectives to train the CLIP model and the NPNs respectively, while we leverage a unified
objective. Specifically, AmorLIP uses the following objective to train their NPNs:

1 s .
ﬁ Zm 2eS (Hal,z‘ —log(e + 91('“7777%3))”2 + |2, — log(e + g2 (w, T; Z,S))||2) ,
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Table 2: Datacomp Average performance of different methods trained on different datasets.

Method CC3M CCI2M DFN-14M DFEN-192M DFN-1B

OpenCLIP  21.84 2791 37.78 54.58 56.25
FastCLIP 24.74 31.50 38.45 54.72 56.68
SigLIP 22.19 28.60 37.23 54.26 56.32
AmorLIP 22.89 29.86 37.53 53.83 56.24
NeuCLIP 25.08 31.89 39.16 54.90 57.34
—— OpenCLIP FastCLIP —— NeuCLIP
0395 .
g mmm OurNPN | 8 3516 39.02 0 L e 821 1281
T390 MLP §390 20 \
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g §-38'5 38.48 5 10
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Figure 2: (a): Ablation study of training objective and architecture of NPNs. (b): Ablation study of
restart frequency of NPNs (left) and number of updates (right). (c): Estimation error of NPNs.

where o ; is the predicted log-normalizer for x; and oy ; is the predicted log-normalizer for z;.
(2) AmorLIP chooses Multi-Layer Perceptrons (MLPs) as their NPNs, while in NeuCLIP we use
single-layered NPNs that take advantage of the inductive bias in the optimal solutions of «. In or-
der to provide a comparison between these design choices, we conduct the following experiments:
(1) In Line 7] of Algorithm [T} we compute the gradient of the NPNs using the above equation, in
which case the objectives for training the CLIP model and the NPNs are not unified anymore. (2)
We instantiate the NPNs with MLPs, and initialize them with random weights, which follows the
practice of Sun et al.|(2025)). We present the Datacomp Average performance of different objectives
and architectures in Figure[2a] From the results we can observe that learning with the unified objec-
tive yields better performance than learning with two separate objectives, and our inductive-biased
NPN design outperforms MLPs. We also conduct the same experiments on CC3M and CC12M.
The results, along with full results on DFN-14M, are presented in Tables |E|to @ where we reach
a similar conclusion.

Restart Frequency. To investigate the impact of the restart frequency 7;., we conduct experiments
with different values of 7)., where T,, = oo means the NPNs are never re-initialized. We plot the
Datacomp Average performance of different 7, in the left part of Figure 2b} and present the full
evaluation results in Table [T7]in Appendix From the results we can observe that when T}, >
500, the performance decreases. Also, T, = 500 gives better performance than no re-initialization
(i.e., T, = o0). This is probably because the NPNs lack behind the updated encoders, making
their estimations less accurate for updated encoders. Moreover, when 7. is small, the NPNs are
frequently set to the mini-batch features. In this case the output of the NPNs is close to the mini-
batch estimators, which also leads to degraded performance.

Multiple NPN Updates. Another strategy to mitigate the gap of convergence speed between the
NPNs and the encoders is to update the NPNs multiple (7),) times before updating the encoders.
Specifically, we use the same batch of data to compute the stochastic gradient w.r.t. the NPNs’ pa-
rameters across multiple updates to avoid expensive forward passes of the CLIP model. We conduct
experiments with different T, and plot the results in the right part of Figure 2b] From the results
we can see that as the number of updates increases, the performance first increases, and starts to de-
crease when T;, > 10. The decrease is expected since we are using the same batch of data to update
the NPNs, which will overfit to the batch and provide inaccurate estimation for other samples.

Estimation Error of Normalizers. From Section ] we know the estimation error of FastCLIP
increases when the dataset size increases or when the batch size decreases. To demonstrate the
effectiveness of our approach, we compare the estimation error of normalizers in OpenCLIP, Fast-
CLIP, and NeuCLIP under the following two settings. Firstly, we run each method on CC3M using
two batch sizes (512 and 1024). For each run, we select five checkpoints such that the corresponding
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checkpoints across batch size settings have seen the same number of samples. At each checkpoint,
we compute the estimation error as the mean squared error between the logarithm of the predicted
normalizers and the true normalizers, and then report the mean across checkpoints. More details on
the computation of the estimation error are presented in Appendix As shown on the left part of
Figure the error of NeuCLIP increases only marginally when the batch size decreases, whereas
OpenCLIP and FastCLIP exhibit a much larger increase. Secondly, we run each method on two
datasets of different sizes: a subset of DFN-14M (n = 1.37M) and full DFN-14M (n = 13.7M). On
the right part of Figure[2c] we plot the average error of five checkpoints selected using the same pro-
cedure as above. The results show that NeuCLIP is only slightly affected by the increase in dataset
size, in contrast to OpenCLIP and FastCLIP that suffer significant degradation.

6 CONCLUSION

In this paper, we have studied the problem of efficiently approximating the normalizers in the con-
trastive loss for training CLIP models. We proposed a novel objective that allows us to jointly learn
CLIP encoders and compact networks that predict the log-normalizers of image and text data. We
proposed an alternating optimization algorithm to learn the encoders and the compact networks effi-
ciently. We conducted extensive experiments to demonstrate the effectiveness of our algorithm, and
reveal insights on training of the network through ablation study.
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A TECHNICAL DETAILS

A.1 DERIVATION OF OUR NEW OBJECTIVE AND THE OPTIMAL SOLUTION
When f(-) = —log(-), we have
f(y) = maxy -z — f(x) = maxy -z + log(x).

From the first-order optimality condition we know y+ 1/z* = 0, which is * = —1/y. Substituting
the optimal solution of z into the definition of f*(y), we get f*(y) = —log(—y) — 1. Since — log(")
is a convex function, we have

flx)=f"(z) = maxg -y — [ (y) = myzm%yﬂog(*y) + 1.

Plugging in = ¢ 4+ ¢1 (w, 7,4, S) into the above equation, we get
F(w,1;x;) =log(e + g1 (w, 751, 8))
=—1-(—log(e + ¢1(w, 7;1,8)))
=—max{y - (¢ + g1(w, 7;4,85)) + log(—y) + 1}
Y
=min{—y - (¢ + g1(w, 731, 8)) —log(~y) — 1}
=min{exp(—a) - (¢ + g1(w, 7;1,S)) + o — 1},
«
where the last equality uses a change of variable « = —log(—y). This completes the derivation
of the new objective. Moreover, to derive the optimal solution of «, we can leverage the first-order
optimality:
—exp(—a®) - (e + g1(w, 754,8)) + 1 =0,

which gives o* = log(e + g1 (w, 7514, S)).
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Algorithm 2: The FastCLIP Algorithm

Input: Model w©®), temperature 7(0) | estimators u1, Uo, dataset S, number of iterations T'
fort=0,...,7T—1do

Randomly sample a mini-batch B®)  S;

Update u(tH) (tH) using Equation H fori € B®

Set u(t+1) ul") and u(tH) = u(t) fori ¢ BW;

Compute gradlent estimators for 'w(t) 7(®) using Equations and , respectively

and u,

(t+1)

W)
B t)| Z )+ 2p
ieB(t) iEeB®
1 1
. &) (8).; )
o \B(t)| > (t+1) Vegi (w70, BW) 13
B(f)
1 1
RE . 0 1. g®
+ |B®)] Z (t+1) Vege(w', 7 )i, B ).
ZEB(t)

6| Update w*t1) and 7(**1) using an optimizer;

A.2 INDUCING THE © UPDATE OF SOGCLR FROM EQUATION @)

Indeed, the u sequence update in Equation (3)) and the gradient estimator of w in Equation (&) can be
derived for optimizing Equation (6). To illustrate this, we consider a stochastic block mirror descent
update of 31 ; = exp(—aq ;) and §2; = exp(—aa;) for (x;, z;) € B at the ¢-th iteration :

. . 1 _
gD = argmin gy - (e + g1 (w®, 7053, BO)) ~log ) + 5 Dl 7,
Y1,
. . 1 ~
gy = argmin yo, - (e + ga(w®, 7134, BY)) —log(ya,) + ' D(y2,i, 55))
Y2,i

where D(u,v) = —log(u)+log(v) + £ (u—v) is the Bregman divergence induced by — log(+) (also

known as the Itakura—Saito distance), ‘and n > 0 is a hyperparameter. We can derive closed-form
(t+1) =(t41)

updates of §; ;7,5 ; * as follows. By the first-order optimality condition, we have
1 1 1 1

e+ g (w®, 74 BO) - ) + = <—+> =0.
( AN R

Rearranging the terms, we get

1 11 U T
7:7.7+7.<€+91w<>,7<>;275’>),
A T T g T |

which can be mapped to Equation with ug = 1/y and v = n/(1 + n). With gjgtj_l), ggjl),
()

the stochastic gradient of Equation (6) w.r.t. w(t) is glven by

1 _ _ .
Oy 2 Vw70 B0 40 5 C 2 Y Vg (w705, 50),
i€eB® ieB®
which is exactly same as in Equation ( ' w1th u =1 / (%

A.3 DETAILS OF THE FASTCLIP ALGORITHM

The FastCLIP algorithm (Wei et al., 2024) is presented in Algorithm 2]
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Table 3: Hyperparameters for training the CLIP model.

Dataset Ir Irof 7 wd warmup 0
CC3M le-3 1.25e-4 0.1 10000 6.5
CCi12M 4e-4 Se-5 0.1 10000 8.5

DFN-14M Se-4 6.25e-5 0.2 500 11.0
DFN-192M  3.125e-4 3.9e-5 0.2 500 11.0
DEN-1B 3.125¢e-4  39e-5 0.2 500 11.0

Table 4: Hyperparameters for training the NPNs.

Optimizer Ir wd m T. T,
AdaGrad 1.0 0.0 4096 500 10

B ADDITIONAL EXPERIMENT RESULTS

B.1 DETAILS OF EXPERIMENT SETTINGS

Hyperparameters. In Table [3| we present more hyperparameters for training the CLIP model. For
each dataset, we tune the learning rate between le-4 and le-3, and tune the learning rate of the
temperature parameter between 1/8 of the learning rate and the learning rate. We set the weight
decay (wd) following previous works (Gadre et al., 2023 |Wei et al.,2024). For CC3M and CC12M,
we set the value of p following [Wei et al.| (2024). For the DFN datasets, we tune p between 8.0
and 13.0. In Table ] we present hyperparameters for training the NPNs. We tune the learning rate
between le-4 and 100.0 and the weight decay between 0.0 and 1.0.

B.2 DETAILS OF THE DATACOMP BENCHMARK

The Datacomp Benchmark (Gadre et al., [2023) consists of 38 tasks in total, including 35 zero-shot
image classification tasks and 3 zero-shot retrieval tasks. The performance metric for classification
tasks is top-1 accuracy, and the performance metric for retrieval tasks is the average of image recall
at 1 and text recall at 1. The “ImageNet & Variants” subset consists of ImageNet-1K (Deng et al.,
2009) and 6 distribution shift datasets (Wang et al., 2019; Recht et al., |2019; Hendrycks et al.,
2021aib; Barbu et al., 2019)), and the “Retrieval” subset consists of Flickr30K (Young et al., [2014)
and MSCOCO (Chen et al., 2015)).

B.3 SIMULTANEOUS VS. ALTERNATING OPTIMIZATION

In this subsection, we provide comparison for two approaches solving Equation (I2). The first
approach is a simple gradient-based algorithm that treats all parameters as a whole and updates
them simultaneously, which is presented in Algorithm [3| The second one is our NeuCLIP algorithm
(Algorithm|[T)), which optimizes the CLIP model and the NPNs in an alternating manner. We conduct
experiments on CC3M and plot the performance of the two approaches in Figure [3] From the
results we can see that the joint optimization algorithm performs much worse than the alternating
optimization algorithm.

Algorithm 3: Simple (Stochastic) Gradient-based Algorithm for Solving Equation

Input: Model w?, Temperature 7°, Prototypes W, W2, Dataset S, Number of iterations 7',
Restart frequency 7., Number of updates of networks per iteration 77,
1 fort=0,...,7T—1do
2 Randomly sample a mini-batch B®) C S;
3 Compute mini-batch gradient of w.rt. w®, (1), Wl(t), Wz(t);
4 | Update w1 7(+1), Wl(Hl)7 2(t+1) with AdamW;
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Figure 3: Comparison between simultaneous and alternating optimization.

Table 5: Running time of NeuCLIP under different settings. NPN Time denotes the training time of
the NPNs in one iteration. Total Time denotes the running time of one iteration. Overhead denotes
the portion of NPN Time in terms of Total Time.

Vision Embedding

Encoder  Dimension NPN Time (ms) Total Time (ms) Overhead

ResNet50 1024 4923 £1.10 529.09 £ 21.79 9.30%
ViT-B/32 512 54.17 £3.98 897.79 £ 31.89 6.03%
ViT-B/16 512 56.43 £2.83 944.41 +£29.40 5.98%

B.4 TRAINING COST OF THE NORMALIZER-PREDICTION NETWORK

In this subsection, we investigate the additional training cost incurred by the NPNs. We profile the
running time of NeuCLIP with ResNet50, ViT-B/32 and ViT-B/16 as the vision encoder respectively
using the PyTorch (Paszke et al}[2019) Profiler. We present the results in Table[5] from which we can
observe that the additional cost of the NPNs remains low. In addition, we profile the peak memory
of NeuCLIP and OpenCLIP during training. The results, reported in Table[6] suggest that memory
overhead of NeuCLIP is negligible.

B.5 COMPARISON WITH BASELINES

In this subsection, we provide more experiment results of different methods on various datasets. In
Tables [7)to[IT] we present the evaluation results of different methods trained on CC3M to DFN-1B.

Variation in Performance of AmorLIP. On CC3M and CC12M, we find that the results of our
reproduction of AmorLIP is different from those reported in the AmorLIP paper. For example, their
reported results of FastCLIP are lower than ours while that of AmorLIP are higher (c.f. Table [I2).
We would like to note that the training datasets used by [Sun et al.| (2025) and us are in fact differ-
ent. This is because the two datasets are distributed with their metadata only, i.e., texts and links
to their corresponding images. During the downloading process, not all images would be success-
fully downloaded. Specifically, |Sun et al.| (2025) reported a size of 2,274,566 samples for CC3M
and 8,059,642 samples for CC12M, while our CC3M and CC12M datasets contain 2,723,840 and
9,187,328 samples, respectively. We tune the parameters of AmorLIP and still could not achieve the
reported performance, thus we believe the difference in performance is due to variation in datasets.

Table 6: Memory consumption of NeuCLIP under different settings. Memory denotes the peak
memory of different methods during training. Overhead denotes the memory overhead of NeuCLIP
over OpenCLIP.

Vision Embedding Memory (MB)

Encoder  Dimension NeuCLIP OpenCLIP Overhead
ResNet50 1024 10573.2 = 11.10  10340.1 £ 12.47 2.25%
ViT-B/32 512 20721.0 +23.98  20550.0 £ 23.47 0.83%
ViT-B/16 512 55171.3 +33.28 55006.5 £ 36.13 0.30%
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Table 7: Evaluation results of different methods trained on CC3M. We run each method for 3 times
with different random seeds, and report the average performance over 3 training runs along with
standard deviation.

Method Datacomp Average ImageNet & Variants Retrieval
OpenCLIP 21.84 £0.23 14.73 £ 0.22 22.25 +£0.38
FastCLIP 24.74 £ 0.35 19.09 £ 0.20 29.56 £+ 0.25

SigLIP 22.19 + 0.11 16.08 + 0.16 22.13 £ 0.52
AmorLIP 22.89 + 0.20 17.78 £ 0.43 24.32 £ 0.53
NeuCLIP 25.08 £ 0.39 19.85 + 0.37 30.53 + 0.37

Table 8: Evaluation results of different methods trained on CC12M. We run each method for 3 times
with different random seeds, and report the average performance over 3 training runs along with
standard deviation.

Method Datacomp Average ImageNet & Variants Retrieval
OpenCLIP 2791 +0.77 21.21 +0.04 26.94 + 0.59
FastCLIP 31.50 £ 0.43 24.61 £ 0.05 32.33 £ 0.48

SigLIP 28.60 £ 0.35 22.67 £ 0.05 27.99 £ 0.25
AmorLIP 29.86 + 0.83 23.48 + 0.62 28.97 + 0.77
NeuCLIP 31.89 £ 0.15 25.09 £ 0.12 3293 £0.16

Table 9: Evaluation results of different methods trained on DFN-14M. We run each method for 3
times with different random seeds, and report the average performance over 3 training runs along
with standard deviation.

Method  Datacomp Average ImageNet & Variants Retrieval
OpenCLIP 37.78 £ 0.05 32.65 £ 0.20 24.33 £ 0.06
FastCLIP 38.45 £ 0.06 33.03 £ 0.06 25.15+0.11

SigLIP 37.23 £0.10 32.89 £0.17 23.97 £0.20
AmorLIP 37.53 £0.33 33.35 £ 0.04 2458 £0.19
NeuCLIP 39.16 + 0.20 33.79 + 0.07 26.60 + 0.28

Table 10: Evaluation results of different methods trained on DFN-192M.

Method Datacomp Average ImageNet & Variants Retrieval
OpenCLIP 54.58 55.16 50.42
FastCLIP 54.72 55.44 50.53

SigLIP 54.26 55.09 50.49
AmorLIP 53.83 55.09 51.43
NeuCLIP 54.90 55.88 51.39

Table 11: Evaluation results of different methods trained on DFN-1B.

Method Datacomp Average ImageNet & Variants Retrieval
OpenCLIP 56.25 57.49 55.27
FastCLIP 56.68 57.87 56.05

SigLIP 56.32 57.20 55.33
AmorLIP 56.24 57.12 55.23
NeuCLIP 57.34 58.69 56.71
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Table 12: Datacomp Average performance of FastCLIP and AmorLIP from (2025) and
our reproduction.

Method Source CC3M  CCi12M
FastCLIP (2025) 23.46  29.00
FastCLIP Ours 25.08  31.89
AmorLIP (2025) 24.11  30.66
AmorLIP Ours 22.89 29.86

Table 13: Comparison of Datacomp Average performance of NeuCLIP trained under the same
amount of compute as baselines.

Method CC3M CCI2M DFN-14M DFEN-192M DEN-1B

OpenCLIP  21.84 2791 37.78 54.58 56.25
FastCLIP  24.74 31.50 38.45 54.72 56.68

SigLIP 22.19 28.60 37.23 54.26 56.32
AmorLIP  22.89 29.86 37.53 53.83 56.24
NeuCLIP  25.06 31.75 39.16 54.85 57.28

On the other hand, if we compare their reported results with the results of NeuCLIP, we still observe
an improvement of NeuCLIP over AmorLIP.

Comparison under Same Amount of Compute. In Table[T3]we present the comparison between
NeuCLIP and other baselines trained for the same amount of GPU hours. The main focus is to
offset the computation overhead of NPN update (c.f. Table[5). We assume OpenCLIP, FastCLIP
and SigLIP consume the same amount of compute at each iteration since they only differ in loss
computation from image and text features (though[Wei et al] showed that FastCLIP is slightly
faster than OpenCLIP). And we reduce the number of iterations of NeuCLIP by the overhead of
NPN update shown in Table 3] so that the total amount of GPU hours of NeuCLIP matches that of
OpenCLIP, FastCLIP and SigLIP. From Table[I3]we can observe that the performance of NeuCLIP
slightly decreases compared with Table [2] but still outperforms other baselines. We did not provide
results of AmorLIP, but it is guaranteed that under the same amount of GPU hours, the performance
of AmorLIP is lower than that in Table 2

B.6 ABLATION STUDY

In this subsection, we present detailed results of the ablation study. In Tables [I4]to[I6] we present
evaluation results of different objectives and architectures on CC3M, CC12M and DFN-14M, re-
spectively. In Tables[I7|to[I9] we present the ablation results of the restart frequency 7)., the number
of updates T, and the number of prototypes m, respectively. In Figure ] we plot the estimation
error of different methods at different number of samples seen.

Computation of the Estimation Error. In order to obtain the estimation error of a given model
on a given dataset, we first obtain the embeddings ey ;, e2; for x;, z; in the whole dataset using
the model, which is done by performing forward pass on all the images and texts. Then for a given
image @; and a given model, its true normalizer is computed using Equation (9). Similar procedure
is applied for obtaining true normalizer for a given text. Thus the true normalizer does not incur
bias or variance. To obtain the estimation error of a given model, we randomly sample 10K data
points, and for each data point, we compute its true normalizer and estimators from corresponding
algorithm (OpenCLIP, FastCLIP and NeuCLIP).
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Table 14: Ablation of training objective and model architecture on CC3M.

Objective  Architecture Datacomp Average ImageNet & Variants Retrieval

Unified Our NPN 25.08 19.85 30.53
Unified MLP 24.84 19.28 29.50
Separate Our NPN 24.19 19.20 29.38
Separate MLP 24.02 19.09 29.08

Table 15: Ablation of training objective and model architecture on CC12M.

Objective  Architecture Datacomp Average ImageNet & Variants Retrieval

Unified Our NPN 31.89 25.09 32.93
Unified MLP 31.43 25.04 32.30
Separate Our NPN 31.05 25.04 31.34
Separate MLP 30.94 24.77 31.12

Table 16: Ablation of training objective and model architecture on DFN-14M.

Objective  Architecture Datacomp Average ImageNet & Variants Retrieval

Unified Our NPN 39.16 33.79 26.60
Unified MLP 38.58 33.19 26.35
Separate Our NPN 38.63 33.70 25.98
Separate MLP 38.26 33.12 25.86

Table 17: Ablation of restart frequency 7). on DFN-14M.

T, Datacomp Average ImageNet & Variants Retrieval

0 38.48 33.18 25.79
20 38.41 33.14 26.30
100 38.54 33.37 26.05
500 39.16 33.79 26.60
2500 39.06 33.29 26.25
12500 39.07 33.21 26.18

Table 18: Ablation of number of updates 7;, on DFN-14M.

T, Datacomp Average ImageNet & Variants Retrieval

1 39.02 33.50 26.65
5 39.10 33.60 26.48
10 39.16 33.79 26.60
20 38.68 33.57 26.05
50 38.03 33.35 26.46
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Algorithm 4: Algorithm for analysis

Input: Initial point (x(?), y(9)), step sizes 71, 7, momentum parameter £3, initial momentum

(0 , number of iterations 7', number of updates K.
1fort=0,...,7—1do

2 Set y(t’o) = y(t);

3 fork=0,..., K —1do

4 Randomly sample &(F);

s Update (51 = g(0) — 0, f (), y(B0), ¢(R));

6 Set y(t+1) = y(t’K),

7 Randomly sample £(*);

s | Update o) = (1 = B)ol® + BV, f(2®),y®,¢);
o | Update z(ttD) = g(®) — pp(t+D),

Table 19: Ablation of number of prototypes m on DFN-14M.

m Datacomp Average ImageNet & Variants Retrieval

1024 38.57 33.38 25.92
2048 38.56 33.73 26.28
4096 39.16 33.79 26.60
8192 39.25 33.90 26.28

—— OpenCLIP —— FastCLIP —— NeuCLIP
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Figure 4: (a): Estimation error of different methods with batch size 1024 (solid lines) or 512 (dashed
lines) on CC3M. (b): Estimation error of different methods with batch size 4096 (solid lines) or 512
(dashed lines) on DFN-14M. (c): Estimation error of different methods on subset of DFN-14M
(solid lines) or DFN-14M (dashed lines).

32.0 31.89
©
931.8
Ed
231.6
§
31.4
@ 31.22
831.2
0.02 0.1 05 25 o
T, (x1000)

Figure 5: Ablation study of restart frequency of NPNs on CC12M.
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C CONVERGENCE ANALYSIS OF NEUCLIP

In this section, we provide the convergence analysis of Algorithm [T} The analysis mainly follows
the proof in (Guo et al] (2023).

Notations: We let || - | denote the Euclidean norm. We use V1 f(x,y) and V3 f (z, y) to denote the
gradients of a function f(x,y) w.r.t. « and y, respectively. We use E;[-] to denote the expectation
w.r.t. all the randomness up to iteration ¢, and we use E[-] to denote the total expectation.

We cast the objective in Equation (12) as a function of two blocks of variables

f(wvy) = Eﬁ[f(wvyvg)}v

where ¢ = (w,7) and y = (W5, W3). Then Equation (I2)) becomes ming ,, f(z,y). We would

like to show that  converges to an e-stationary point of the function F'(z) := min,, f(x,y), ie.,

T Z:ol E[|[VF(z")|]?] < &2 after T iterations of optimization. Instead of directly analysing

Algorithm [T} we analyze Algorithm ] which is a slight modification of Algorithm [I] for ease of
analysis:

* In Algorithm ] we only consider using one sample to compute the stochastic gradients for
both x and y, instead of using mini-batches as in Algorithm [I]
* In Algorithm ] we use Momentum SGD optimizer for .
We would like to emphasize that the analysis is not the main contribution of this work, and the

analysis mainly serves as a theoretical justification of the proposed NeuCLIP method. To derive the
convergence of Algorithm[d] we need the following assumptions.

Assumption 1. The following conditions hold:
(a) f(x,y) satisfies
(y—y* (@), Vaof(z. ) 2 plly —y*(@)|°, Va,y,
where y*(x) € argmin,, f(z,y’) is one optimal solution closest to y.

(b) V1 f(x,y) is Lq;-Lipschitz continuous in @ and L;-Lipschitz continuous in y, i.e.,

IVif(@,y) = Vif(@',y)| < Lulle — ' + L2y - ¥/, Vo, 2',y,9"

(¢) Vaf(x,y) is Loi-Lipschitz continuous in & and Los-Lipschitz continuous in v, i.e.,

IVof(@,y) = Vaof (@', )| < Larllz — ' + Loy - ¥/l Vo, 2",y,9".

(d) There exists o1, 02 such that the stochastic gradients have bounded variance, i.e.,

Eg[Hvlf(m,y,f) - Vlf(m,y)Hz} < 0%7
Eg[”ng(:B,y,ﬁ) - va(may)Hﬂ < 0%7 V.’IJ, Y.

(e) F* :=ming F(x) > —cc.

Remark 1. Assumptions[I[b)]to[I[e)]are standard conditions for analyzing algorithms that optimize
non-convex problems with two blocks of variables (Guo et al| 2025} [Lin et al 2025]). Assump-
tion[I[a)]is a mild condition that has been shown to hold for wide neural networks (Liu et al} 2023).

With the above assumptions, we get the following convergence results.

Theorem 2. UnderAssumption let Lp := L1 + M, and set

2 2 2
B:i n?zmin{ug7uig7}7
2L5; 80Li505

m= min{ N e U #gz)K)l/z}

2LF7 4LF7 8\/§L%2(L12 =+ Lgl)

23



Under review as a conference paper at ICLR 2026

10(F(2©)) — F*) 10L . 2
r e PO o —wr| ] e e
then after T iterations of Algorlthml we have

N |[° 4+ L] < 2
73 E{[vre] o] } <
Corollary 1. Under the same assumptions as in Theorem[2} to achieve an e-stationary point, i.e.,

% t 0 [HVF (x®) || } g2, the total number of stochastic gradient evaluations of f(x,y, &)

is O(e7%).
Lemma 1. Under Assumptions and the function F(x) is differentiable with VF(x) =
Vif(z,y*(x)), and its gradient is Lr = L11 + %—Lipschim continuous.

Proof. From Lemma 9), we know that under Assumptions[I[a)land[I[c)} the func-
tion f(z, -) satisfies 7/—-PL condition for any fixed . Using (Nouiehed et al.| 2019, Lemma A.5),
we know that F'(x) is differentiable with VF () = V1 f(x,y*(x)), and its gradient is Lipschitz

Lis(L L
L11+ 12( 2;-!- 22)

continuous with constant Ly = . This completes the proof. O

Lemma 2. Under Assumptions fo for any z,x',y*(x) € argmin,, f(z,y), there exists
y*(z') € argmin,, f(z',y) such that

ly* () — y* (2] < L22llaz ¥ L2y)

l — ']].

I
Proof. The proof directly follows from (Nouiched et al.l 2019, Lemma A.3) and the fact that f(x, -)
satisfies 7— --PL condition for any fixed . ]
Lemma 3. Under Assumptionsand - formn; < ﬁ, we have

Fa)) < Fa®) + 2 o) vp@©) H m ‘vp(xu))HQ I pter H2 (14

Proof. From the L p-smoothness of I’ we have

L 2
F(ztD)) <F2®) 4 (VF@E®), 2D — 20) 4 TF Hmml) _2®

:F(.’I}(t)) _ (VF(m(t)) — D) ) m(t)> + <v(t+1), o D s,3(t)>

(DY _ Oy _ o) iy (o L\ || a2
=F(z") —m (VF(z'"Y) —v , v ) m 5 v

2
=F(z®) +m HVF(m(t)) ot H — o (VF(@®) — o) vRz®)

Lpn? 2
- (=55 ) el

Note that we have
(VF(@®) — o), VF(z®)) = % (HVF(:::(”) - v<t+1)H2 + HVF(w<t>>H2 - Hu<t+1>HZ> .
Thus we get
F(a®) <F@®) + ny HVF@(U) B ,U(t—i-l)‘ 2 (771 B L;;n%) Hv(t+1)H2

-3 ([t oo~ o)

<Fa®)+ T HVF(m(w) JCESY) ‘2 _m ’VF (2® H2 _m ’v(tH)HQ,

where the last inequality is due to choosing 1 < 57—. This completes the proof [
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Lemma 4. Under Assumptions to we have

2,2
Ei1 [Hv“”) - VF(:c““))m <= ) o — VPO |+ M%m fote+ |

(15)
2
+4BL3, Hy(t“) — y*(w(”l))H +B2o.

Proof. We have

[ 2
Eur | [0 = VR@H)| }

—Fyys H(l - B)v(tJrl) + 5V1f(m(t+1),y(t+1)’£(t+1)) _ VF(m(t+1))H2]

=E;41 H(l — ﬁ)v(”l) —VF(z t+1)) + BV f(x (t+1) y(t+1))
+5(V1f(w(t+1)’ y(t“), €(t+1)) _ vlf(w(t—&-l)? y(t+1)))H2'
2 J

:H(l _ﬁ)v(tJrl) — VF(z t+1)) + 8V, f( (t+1) y(t+1))H

+ B°E Vo f(tHD ytt) gty g (t+1) (404 ||
t+1 (&t ) 1f (2D )

+28Ei i [<(1 — B! — VF (@) 4 gV, f(aHY y ),

Vlf(w(t+1)7 Yyt £(t+1)) _ Vlf(m(t-i-l)’ y(t+1))>

2
= H(l — B+ — VE(zD) 4 BV, f(atHD), y(t+1))H

2R v (t4+1) ,,(t+1) #(t+1)y v (t+1) ,,(t+1) 2
+ﬁ t+1 1f(m Y v§ ) 1f($ Y )

2
<@ -8y - V@) 4 VL@, y ) 4 5202,
where the last equality comes from the fact that

Et 1 [((1 — B)o™D) — VE(ED) 4 gV, f(ztHD), 4 D),
Vlf(w(t+1) y(f+1),§(f+1)) _ vlf(w(t+1)7y(t+1))>

=((1-pB)v (t+1) VF(x t+1)) + /Bvlf(m(t+l)’y(t+1))7
Eo 1 [V (2D, 40D etHDy _ g f(gt+D) 4 t+D))) = o,
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and the last inequality is due to Assumption[I[d)} Furthermore, we have

H(l — Bt — VF(@EHY) 4 v, f(2tHD, y(t+1))H2

=[|0 = B — TF@O) + (1 - B)(VF (@) - VF(@+D))
AV f (D, y ) — VF(:L‘(H_D))H2

<(1- 821+ B) [ - VF(as<t>)H2

’ (1 ’ xlﬁ) |- BV P@®) ~ VPE ) + 8717,y D) ~ TR

<(1-8) Hv@“) - VF(a:(t))H2 L 204 6)ﬁ(1 — P’ HVF(:::“)) - VF(a;<t+1>)H2
I 2(1 25)52 “vlf(w(t+1)7y(t+1)) - VF(ac(tﬂ))Hz

1 2 QL%TI% nl? 1 1 NE
g(pﬂ)Hv(HLVF(m(t))H *TH”(H)H +45Hv1f(m<t+>,y<t+ ) — VR >)H ,

where the first inequality is due to the Young’s inequality, and the last inequality is due to the
Lipschitz continuity of VF(x) and the update rule of x. Thus we get

IN

2 2
Ei1 {Hv(tﬁ) _ VF(m(tJrl))Hg] (1-B) Hv(t+1) _ VF(w(t))HQ 4 2Lt HU(HUHZ

B
2
+4p Hvlf(m(tﬂ)’ y(tHD) - VF(x(tH))H 3202

2,2
<0 o -t 24 oo

2
+4813, Hy(”” - y*(w““))H + %02,

where the last inequality comes from Assumption and the fact that y*(z(**1)) is one optimal
solution closest to y(**1). This completes the proof. O

Lemma 5. Under Assumption for ny < min {L, %}, we have

2
L22

2
E, |:Hy(t+1) _ y*(w(t+1))H ]

K i 2 4L2(Lys + Loy )2n? 2
e R 1| ol I

L= pn2) )2 o3
1
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Proof. We have

B 2
By Hy(t,m) N y*(””(t))H ]

2
“Ep | [ — maVaf @,y D, ) - y ()| }

=E¢ iHy“”‘C) — 12V f (@@, y ) —y* (@) + Vo f (), y"P)
—aVa f(a®, y "), 5“’“)“2]
=[50 — s @,y D)~y @)
+ 13 B [Hvzf(l‘(t), y ) = Va f(a®,y 0, s“*’“))m
+ 2 B [y = Vo f @0,y ) — y* (@),
Vo f (@0, y0) = Ty (@), yt), £00))]
||y~ Vs @®,y ) - :u*(ﬂc(”)H2

2
+ 13 Ee g [Hvzf(w(“,y(t”“)) - V2f(w(t),y(t”“)7£<”“))H }

t,k t) L (tk on|I? 2 2
<y = Vot @,y )~y @)+ o, (17
where the last equality is due to the fact that
Eq k [<y(t’k) —mVaf(@®,y M) —y* (),
VQf(a:(t)v y(tk)) - v2f(m(t)> y(t)k)v f(t’k)»

=y — Vs (@, y ) — gy (a?),
Ei i [Vaf(x®,y") — Vs f(xt),y &R 0] =0,

and the last inequality is due to Assumption[I{d)] Furthermore, we have
2
y M — Vo f (™, ylk)) — y*(m(t))H
2
= ||y = V2t @D,y — y* (@) + Vo f @O,y (@)

2 2
= [ly™** — y*(w(t))H + 13 H%f(w“),y“’k’) — ng(w(”,y*(fv(t)))H
— 2o (y ) — g (2V)), Vo f (21, y+R)))

2 2
yth) — y*(w(t))H + 13 Hvzf(w“), y Ry — Vo f (2@, y*(-’v(t)))H

IN

2
=2z [y — g (@)

2

2
<(1+ Ly} — 2pme) [0 — @O < (1 = o) [ — 7@ 1)

where the first equality is due to the fact that Vo f(x®, y*(2("))) = 0, the first inequality is
due to Assumption and the second-to-last inequality is due to the Loo-Lipschitz continuity
of Va f(z,-) and choosing 7o < 5. Combining Equation and Equation lb we get

B ||y -y @] < - im e ||y - @O ot a9
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Telescoping over k = 0, ..., K — 1, and noting that y(*) = y(t:0) 4(t+1) — 4 (LK) \e have

) ’ * 2 (= (1= pm)$)mp o3
E; [Hy(t+1) -y (m(t))H } < (1 —pmp)® Hy(t) —y (w(t))H n (1—( ,u2) )12 2
Thus we get

(t+1) w0 (E41) 2
{Hy —y(z )H }
() o=t (o -
B 2 12
K 2
(1 + ﬂ) < 1 — ’u,’72)K Hy(t) _ ,!,I*(Q:(t))H2 + (1= (1 —pm2)™ )n2 02)
o
N (1 L2 ) Lap(Laz + Lan)* U’wm _ w(m)m

(02 1

2 413,(L L 2
< (1= 28)" g0 -y oo L2tz LV g, o]
2

2(1 — (1 — ) )nz o3
‘LL )
where the first inequality is due to Young’s inequality, the second inequality comes from Equa-

tion @ and Lemma [2] and the last inequality is due to the update rule of « and the choice that
This completes the proof. 0

Next we present the proof of Theorem 2}

Proof of Theorem[2] Multiplying Equation li by a := 3 ﬁ, Equation (16) by b := %
2
and adding them to Equation (T4), we have

1 2 & 1 &

F(w(t+ )) +aEi U’v(wr ) VF(:B(““ ))H } +bE, {Hy(ﬂr ) —y*(w(““ ))H }
2 2 2
<P0)+ o) - rEO) | - G [ereo] g o]

2 2
+a(l-p) Hv(t“) — VF(a:(t))H + a%%m Hv(t)

2
12 Hy(tﬂ) - y*(ﬂ’»'(tﬂ))H

2 2,,2
+b (1 - %)K Hy(t) — y*(:c(’f))H2 + 1)4]“2’2’(ng+ L21)"m Hv(t) ’
HoT)2

2(1 — (1 — K 2
+a[320§—|—b ( ( 5772) )77202.

Taking total expectation on both sides and rearranging the terms, we have

E[F(z (t+1))]+aE {H,U(Hz) VF(m(tJrl) H ] 4 (b— 4aBL2, [Hy(tJrl) _y*(m(tJrl))H2:|

<E[F(z®)] + (a(l —B)+ 772—1) E Mu<t+1> - VF(x<t>)H2]

o2 e o e

2 20303 4L3,(L12 + Lo1)?n} 2
_ My [HvF(w(t))H } + (a 2t m 4l 12; 21) 771) E Mu(“H ]
2 p 4 HoT2

2(1 — (1 — K 2
tafo? b (1—( an) )77202.
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With the choices of a, b, we have
1 1 1 1
a(1—5)+m: <+>7712IB771(1

b—4aBL3, =b—2L3,m = b(l_( (1_%) )>:b<1_%>

Setting

T . —E[F(w(”)HaE[H () _ yp(z®) M +(b—4aBL3,)E {Hy(“—y*(x(”)H?

we have
LZnp? 8L4 (Lia+ L )2 3 2
t+1 t t F'h 1 12412 21)°M t
T exe - e eree ]+ (S5 - 4+ T ) ]
N mﬂol L 2mliy 20— (L))o
N R (1) " |
(20)
Since "
R B i (R (e S b
T 4Lp’ 8v2L2,(L12 + Loy) 7
we have

Lini _m  8Lis(Lip+ L)} _ m

P4 (- - S T
Plugging the above inequality into Equation (20), and rearranging the terms, we have

’ ’ 2 A LA, (1—(1— K 2
7}1 [HVF )H }JrnSlE Mv(t)H ] < “I‘(t)Jr(tJrl)jL?hﬁQUljL Ui 15((1 - ((1 - %]22))[())772 o3
2

Telescoplng overt =0,...,T — 1, and dividing both sides by n;, we have

71
1 1 | 2] YO ™ ge?  ALL (1 — (1 — pn) X )y 03
N e e R e :
T ; > g T 2 (1~ (1 B)K)

Note that with our choices of a, b, we have a > 0,b — 4a3L3, > 0, thus T(7) > F*. Then we get

T—1
1 2 1 2
7 N+ 3]
T;E[HVF(:B )|+ 1]l
2(Y© — F 8Ly (1 — (1 — pp)X)na 03
< ( ) +ﬁt7% + 1a( ( Ngsz) K)772 03
Tm (1 — (1 — E2)K)
:2(F(w(°))*F*) +ﬁa%+8L‘%z( (1 — pm2)X)me
T771 (1_( #772)K
2

K . 9512 2
e |0 - vre ] + T 0 - =

5 &2 ' 1 €2
= T 9 = min Y onT 2 9 )
502 212, 80L2,02

L T ek 9 D
m = min ) 2 )
2LF 4LF 8\[_[/ (L12+L21)

T-max{lO(F(m(O))F*) T Mvw) V()| ] 10L12E M (>y*(m<0>)HZ]},

Thus for

me?
we have
T—1 )
S |[vref + 3o <=
t=0
This completes the proof. O
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D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs to help find recent applications of CLIP models, and to help search for works that
leverage auxiliary networks in other fields than CLIP training, such as Computer Vision and Natural
Language Processing. We also use LLMs to help polish up writing.
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